STRUCTURAL INVESTIGATION OF SOME NATIVE BIODEGRADABLE PACKAGING MATERIALS

Authors

  • Onuc COZAR Babes-Bolyai University, Dept. of Physics, Kogalniceanu 1, Cluj-Napoca, Romania. *Corresponding author: onuc.cozar@phys.ubbcluj.ro
  • Nicolae CIOICA National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry – INMA Bucureşti – Cluj-Napoca Branch, RO-400458 Cluj-Napoca, Romania.
  • Elena Mihaela NAGY National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry – INMA Bucureşti – Cluj-Napoca Branch, RO-400458 Cluj-Napoca, Romania. https://orcid.org/0000-0002-8909-9160
  • Constantin COŢA National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry – INMA Bucureşti – Cluj-Napoca Branch, RO-400458 Cluj-Napoca, Romania.
  • Radu FECHETE Technical University of Cluj-Napoca, Dept. of Physics, RO-Cluj-Napoca, Romania. https://orcid.org/0000-0003-1989-0253
  • Claudiu FILIP National Institute for Research and Development of Isotopic and Molecular Technologies, Donath no. 71-103, P.O. 700, 400293, Cluj-Napoca, Romania https://orcid.org/0000-0002-0737-5791

DOI:

https://doi.org/10.24193/subbambientum.2017.2.02

Keywords:

starch, plasticizers, IR, Raman, NMR.

Abstract

The IR, Raman and NMR methods are used to investigate the structural effects of water and glycerol (plasticizers) on biodegradable packaging materials proceeding from native corn starch. The IR and Raman methods not give a clear response on the amorphous/crystalline content in the investigated starch samples because the origin of vibrational bands is in the same atomic groups of the major starch components (amylose, amylopectin). The nuclear magnetic relaxation data show that the amorphous/crystalline ratio depends not only by the amylose/amylopectin content but also of the mobility and the place of theirs polymer chain segments. The shapes of 13C CP/MAS NMR spectra show clearly the presence of A, B, V-types crystalline structures and also amorphous phase which prevails with the increasing of plasticizers content and also in the extruded starch samples. The composition having starch/glycerol/water 68/17/15 mass % ratio was found to have a dominant amorphous character and very similar features with a commercial specimen (USA) used for the package. It was also found that this best package is extremely degraded after just one day under water absorption.

References

Almeida M.R., Alves R.S., Nascimbem L.B.L.R., Stephani R., Poppi R.J., Oliveira L.F.C., 2010, Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal. Bioanal. Chem., 397 (7), p. 2693-2701.

Bellon–Maurel V., Vallat C., Goffinet D., 1995, Quantitative analysis of individual sugars during starch hydrolysis by FT-IR-ATR Spectrometry. Appl. Spectroscopy, 49 (5), pp. 556-562.

Benzerdjeb A.M., Mokhtari I.N.T., Rahal M.S., 2007, Normal coordinates analyses of disaccharides constituted by d-glucose, d-galactose and d-fructose units. Spectrochim. Acta Part A, 68, pp. 284 - 299.

Borgia G.C., Brown R.J.S., Fantazzinit P., 1998, Uniform-penalty inversion of multiexponential decay data. J. Mag. Reson. 132 (1), pp. 65-77.

Brümmer T., Meuser F., Lengerich B., Niemann C., 2002, Effect of Extrusion Cooking on Molecular Parameters of Corn Starch. Starch-Stärke, 54 (1), pp.1-8.

Capron I., Robert P., Colonna P., Brogly M., Planchot V., 2007, Starch in rubbery and glassy states by FTIR spectroscopy, Carbohydr. Polym., 68, pp. 249-259.

Cioica N., Fechete R., Cota C., Nagy E.M., David L., Cozar O., 2013, NMR relaxation investigation of the native corn starch structure with plasticizers. J. Molec. Struct., 1044, pp. 128-133.

Cereda M.P., Daiuto E.R., Carvalho L.J.C.B., 2002, Features and properties of starch extracted from different layers of cassava root cultivar Mico (Manihot esculenta Crantz). Braz. J. Food Technol., 5, pp. 217-223.

Gussem K.D., Vandenabeele P., Verbeken A., Moens L., 2005, Raman spectroscopic study of Lactarius spores (Russulales, Fungi). Spectrochim. Acta, Part A, 61 (13-14), pp. 2898-2908.

Iizuka K., Aishima T., J. 1999, You have full text access to this content Starch Gelation Process Observed by FT-IR/ATR Spectrometry with Multivariate Data Analysis. Food Science – Chemistry / Biochemistry, 64, pp. 653-658.

Kizil R., Irudayaraj J., Seetharaman K., 2002, Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem., 50 (14), pp. 3912-3918.

Liu H., Yu L., Xie F., Chen L., 2006, Gelatinization of cornstarch with different amylase/amylopectin content. Carbohydr. Polym., 65, pp. 357-363.

Liu H., Xie F., Yu L., Chen L., Li L., 2009, Thermal processing of starch-based polymers. Progr. in Polym. Sci., 34, pp.1348-1368.

Lopez-Rubio A., Flanagan B.M., Shrestha A.K., Gidley M.J., Gilbert E.P., 2008, Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules, 9 (7), pp. 1951-1958.

Luckachan G. E., Pillai C. K. S., 2011, Biodegradable polymers :a review on recent trends and emerging perspectives. J. Polym. Environ., 19, pp. 637-676.

Morales A.F., Estrada M.J., Escobedo R.M., 2012, Determination of the structural changes by FT-IR, Raman and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym., 87, pp. 61-68.

Mościcki L., Mitrus M., Wójtowicz A., Oniszczuk T., Rejak A, Janssen L., 2012, Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Research International, 47, pp. 291-299.

Nabar Y., Narayan R., Schindler M., 2006, Twin-screw extrusion production and characterization of starch foam products for use in cushioning and insulation applications. Polym. Eng. Sci. 46, pp. 438-451.

Nikonenko N.A., Buslov D.K., Sushko N.I., Zhbankov R.G., 2005, Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. J. Molec. Struct., 752, pp. 20-24.

Shah A.A.,. Hasan F, Hameed A., Ahmed S., 2008, Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26 (3), pp. 246-265.

Soesta J. J.G., Vliegenthartb J. F.G., 1997, Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol., 15 (6), pp. 208-213.

Therien H.A. and Zhu X.X., 2009, NMR spectroscopy and imaging studies of pharmaceutical tablets made of starch. Carbohydr. Polym. 75 (3), pp. 369-379.

Wang S., Yu J., Zhu Q., Yu J., Jin F., 2009, Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloids, 23, pp. 426-433.

Warren F.J., Gidley M.J., Flanagan B.M., 2016, Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr. Polym., 139, pp. 35-42.

Wilson R.H., Belton P.S., 1988, A Fourier-transform infrared study of wheat starch gels. Carbohydr. Res., 180, pp. 339-344.

Wollerdorfer M., Bader H., 1998, Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind. Crop. Prod. 8 (2), pp. 105-112.

Yang L., Zhang L.M., 2009, Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym., 76, pp. 349-361.

Downloads

Published

2017-12-30

How to Cite

COZAR, O., CIOICA, N. ., NAGY, E. M., COŢA, C., FECHETE, R., & FILIP, C. (2017). STRUCTURAL INVESTIGATION OF SOME NATIVE BIODEGRADABLE PACKAGING MATERIALS. Studia Universitatis Babeș-Bolyai Ambientum, 62(2), 19–28. https://doi.org/10.24193/subbambientum.2017.2.02

Issue

Section

Articles