OPTICALLY STIMULATED LUMINESCENCE DATING OF THE UPPER HORIZON OF A SERBIAN LOESS-PALEOSOIL SEQUENCE USING QUARTZ

Authors

  • Anca AVRAM Babeș-Bolyai University, Faculty of Environmental Science and Engineering, 30 Fântânele Street, Cluj-Napoca, Romania; Babeș-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, Environmental Radioactivity and Nuclear Dating Centre, Cluj-Napoca, Romania. *Corresponding author: anca.avram92@gmail.com https://orcid.org/0000-0002-6631-311X
  • Marius MANDROC Babeș-Bolyai University, Faculty of Environmental Science and Engineering, 30 Fântânele Street, Cluj-Napoca, Romania.
  • Daniela CONSTANTIN Babeș-Bolyai University, Faculty of Environmental Science and Engineering, 30 Fântânele Street, Cluj-Napoca, Romania; Babeș-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, Environmental Radioactivity and Nuclear Dating Centre, Cluj-Napoca, Romania. https://orcid.org/0000-0003-0060-371X
  • Slobodan MARKOVIĆ University of Novi, Sad Chair of Physical Geography, Faculty of Sciences, Serbia. https://orcid.org/0000-0002-4977-634X
  • Alida TIMAR-GABOR Babeș-Bolyai University, Faculty of Environmental Science and Engineering, 30 Fântânele Street, Cluj-Napoca, Romania; Babeș-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, Environmental Radioactivity and Nuclear Dating Centre, Cluj-Napoca, Romania. https://orcid.org/0000-0003-4799-3866

DOI:

https://doi.org/10.24193/subbambientum.2021.01

Keywords:

luminescence dating, quartz, loess, SAR protocol, OSL ages.

Abstract

Optically stimulated luminescence dating is widely used for establishing high-resolution chronologies for the Quaternary in paleoclimate research. Loess is an important archive of past climate changes on continents. In order to provide a first absolute chronology for Zemun loess paleosol sequence in Serbia, the single-aliquot-regenerative dose (SAR) protocol was applied on coarse (63-90 µm) quartz fraction extracted from five samples. The profile reaches a thickness of 4 m, where the modern soil is visible in the uppermost part of the section. The investigated samples were collected from the transition between the uppermost visible soil and the loess layer, based on field observations. The results of the SAR-OSL protocol intrinsic rigor tests indicate that it can be successfully applied on coarse quartz extracted from Zemun samples, as all the results were within accepted limits of variation. The equivalent doses determined range from 14 ± 2 Gy (ZMN 55A) to 21 ± 2 Gy (ZMN 75A). Thus, the luminescence ages obtained for the investigated samples vary between 5.4 ± 0.7 ka (ZMN 55A) and 9.3 ± 1.2 ka (ZMN 75A). According to the ages obtained all the samples are assigned to the Holocene period.

References

Aitken M. J., Alldred J. C., 1972, The assessment of error limits in thermoluminescent dating. Archaeometry 14, pp. 257–267.

Avram A., Constantin D., Veres D., Kelemen S., Obreht I., Hambach U., Marković S. B., Timar-Gabor A., 2020, Testing polymineral post-IR IRSL and quartz SAR-OSL protocols on Middle to Late Pleistocene loess at Batajnica, Serbia. Boreas, 49, pp. 615–633.

Avram A., Constantin D., Hao Q., Timar-Gabor A., 2022, Optically stimulated luminescence dating of loess in South-Eastern China using quartz and polymineral fine grains. Quat. Geochronol. 67, pp. 101226.

Bazin L., Landais A., Lemieux-Dudon B., Toyé Mahamadou Kele H., Veres D., Parrenin F., Martinerie P., Ritz C., Capron E., Lipenkov V., Loutre M. F., Raynaud D., Vinther B., Svensson A., Rasmussen S., Severi M., Blunier T., Leuenberger M., Fischer H., Masson-Delmotte V., Chappellaz J., Wolff E., 2013, An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka. Clim. Past, 9, pp. 1715–1731.

Brezeanu D., Avram A., Micallef A., Cinta Pinzaru S., Timar-Gabor A., 2021, Investigations on the luminescence properties of quartz and feldspars extracted from loess in the Canterbury Plains, New Zealand South Island. Geochronometria, 48, pp. 46-60.

Constantin D., Begy R., Vasiliniuc S., Panaiotu C., Necula C., Codrea V., Timar-Gabor A., 2014, High-resolution OSL dating of the Costinesti section (Dobrogea SE Romania) using fine and coarse quartz. Quat. Int., 334-335, pp. 20-29.

Constantin D., Veres D., Panaiotu C., Anechitei-Deacu V., Groza S. M., Begy R. C., Kelemen S., Buylaert J. P., Hambach U., Marković S. B., Gerasimenko N., Timar-Gabor, A., 2019, Luminescence age constraints on the Pleistocene-Holocene transition recorded in loess sequences across SE Europe. Quat. Geochronol., 49, pp. 71–77.

Constantin D., Mason J. A., Veres D., Hambach U., Panaiotu C., Zeeden C., Zhou L., Marković S.B., Gerasimenko N., Avram A., Tecsa V., Groza-Sacaciu S. M., del Valle Villalonga L., Begy R., Timar-Gabor A., 2021, Earth-Sci. Rev., 221, pp. 103769.

Cunningham A. C., Wallinga J., 2010, Selection of integration time intervals for quartz OSL decay curves. Quat. Geochronol., 5, pp. 657–666.

Duller G. A. T., 2003, Distinguishing quartz and feldspars in single grain luminescence measurements. Radiat. Meas., 37, pp. 161–165.

Fuchs M., Rousseau D. D., Antoine P., Hatté C., Gauthier C., Marković S. B., Zoeller L., 2008, High resolution chronology of the upper Pleistocene loess/paleosol sequence at Surduk, Vojvodina, Serbia. Boreas, 37, pp. 66–73.

Govin A., Capron E., Tzedakis P.C., Verheyden S., Ghaleb B., Hillaire-Marcel C., St-Onge G., Stoner J. S., Bassinot F., Bazin L., Blunier T., Combourieu-Nebout N., El Ouahabi A., Genty D., Gersonde R., Jimenez-Amat P., Landais A., Martrat B., Masson-Delmotte V., Parrenin F., Seidenkrantz M.-S., Veres D., Waelbroeck C., Zahn R., 2015, Sequence of events from the onset to the demise of the last Interglacial: evaluating strengths and limitations of chronologies used in climatic archives. Quat. Sci. Rev., 129, pp. 1–36.

Guérin G., Mercier N., Adamiec G., 2011, Dose-rate conversion factors: update. Ancient TL, 29, pp. 5–8.

Haase D., Fink J., Haase G., Ruske R., Pécsi M., Richter H., Altermann M., Jager K. D., 2007, Loess in Europe - its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quat. Sci. Rev., 26, pp. 1301–1312.

Hansen V., Murray A., Buylaert J. P., Yeo E. Y., Thomsen K., 2015, A new irradiated quartz for beta source calibration. Radiat, Meas., 81, pp. 123–127.

Huntley D. J., Godfrey-Smith, D. I., Thewalt M. L. W., 1985, Optical dating of sediments. Nature, 313, pp. 105-107.

Lapp T, Kook M, Murray A. S., Thomsen K. J., Buylaert J. P., Jain M., 2015, A new luminescence detection and stimulation head for the Risø TL/OSL reader. Radiation Measurements, 81, pp. 178–184,

Lehmkuhl F., Nett J. J., Pötter S., Schulte P., Sprafke T., Jary Z., Antoine P., Wacha L., Wolf D., Zerboni A., Hŏsek J., Marković S. B., Obreht I., Sümegi P., Veres D., Zeeden C., Boemke B., Schaubert V., Viehweger J., Hambach U., 2021, Loess landscapes of Europe–Mapping, geomorphology, and zonal differentiation. Earth Sci. Rev. 103496.

Marković SB, Bokhorst MP, Vandenberghe J, et al. 2008. Late Pleistocene loess–paleosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science, 23, 73–84.

Marković S. B., Timar-Gabor A., Stevens T., Hambach U., Popov D., Tomić N., Obreht I., Jovanović M., Lehmkuhl F., Kels H., Marković R., Gavrilov M. B., 2014, Environmental dynamics and luminescence chronology from the Orlovat loess-paleosol sequence (Vojvodina, northern Serbia). J. Quat. Sci., 29, pp. 189-199.

Marković S. B., Stevens T., Kukla G. J., Hambach U., Fitzsimmons K., Gibbard P., Buggle B., Zech M., Guo Z., Hao Q., Wu H., O’Hara-Dhand K., Smalley I., Ujvari G., Sümegi P., Timar-Gabor A., Veres D., Sirocko F., Vasiljevic D., Svircev Z., 2015, Danube loess stratigraphy – Towards a pan-European loess stratigraphic model. Earth-Sci. Rev., 148, pp. 228–258.

Mejdahl V., 1979, Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry, 21, pp. 61–72.

Murray A. S., Wintle A. G., 2000, Luminescence dating using an improved single-aliquot regenerative-dose protocol. Radiat. Meas., 32, pp. 57–73.

Murray A. S., Wintle A.G., 2003, The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat. Meas., 37, pp. 377–381.

Murray A. S., Schmidt E. D., Stevens T., Buylaert J.-P., Marković S. B., Tsukamoto S., Frechen M., 2014, Dating Middle Pleistocene loess from Stari Slankamen (Vojvodina, Serbia) – Limitations imposed by the saturation behaviour of an elevated temperature IRSL signal. Catena, 117, pp. 34–42.

Pécsi M., 1990, Loess is not just the accumulation of dust. Quat. Int., 7-8, pp. 1-21.

Perić Z. M., Marković S. B., Avram A., Timar-Gabor A., Zeeden C., Nett J. J., Fischer P., Fitzsimmons K. E., Gavrilov M. B., Quat. Int., in press., http://dx.doi.org/10.1016/j.quaint.2020.10.040.

Prescott J. R., Hutton J. T., 1994, Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long term variations. Radiat. Meas., 23, pp. 497–500.

Rasmussen S. O., Bigler M., Blockley S. P., Blunier T., Buchardt S. L., Clausen H. B., Cvijanovic I., Dahl-Jensen D., Johnsen S. J., Fischer H., Gkinis V., Guillevic M., Hoek W. Z., Lowe J. J., Pedro J. B., Popp T., Seierstad I. K., Steffensen J. P., Svensson A. M., Vallelonga P., Vinther B. M., Walker M. J. C., Wheatley J. J., Winstrup M., 2014. A stratigraphic framework for abrupt climatic changes during the last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev., 106, pp. 14–28.

Schaetzl R. J., Bettis E. A., Crouvic O., Fitzsimmons K. E., Grimley D. A., Hambach U., Lehmkuhl F., Marković S. B., Mason J. A., Owczarek P., Roberts H. M., Rousseau D. D., Stevens T., Vandenberghe J., Zarate M., Veres D., Yang S. L., Zech M., Conroy J. L., Dave A. K., Faust D., Hao Q. Z., Obreht I., Prud’homme C., Smalley I., Tripaldi A., Zeeden C., Zech R., 2018, Approaches and challenges to the study of loess - introduction to the Loess-Fest. Quat. Res., 89, pp. 563–618.

Stevens T., Marković S. B., Zech M., Hambach U., Sümegi P., 2011, Dust deposition and climate in the Carpathian Basin over an independently dated last glacial–interglacial cycle. Quat. Sci. Rev., 30, pp. 662–681.

Tecsa V., Gerasimenko N., Veres D., Hambach U., Lehmkuhl F., Schulte P., Timar- Gabor A., 2020a, Revisiting the chronostratigraphy of late Pleistocene loess-paleosolsequences in southwestern Ukraine: OSL dating of Kurortnesection. Quat. Int., 542, pp. 65–79.

Tecsa V., Mason J.A., Johnson W.C., Miao X., Constantin D., Radu S., Magdas D.A., Veres D., Marković S. B., Timar-Gabor A., 2020b, Late Pleistocene to Holocene loess in the central Great Plains: Optically stimulated luminescence dating and multi-proxy analysis of the Enders section (Nebraska, USA). Quat. Sci. Rev., 229, pp. 106130.

Thomsen K. J., Bøtter-Jensen L., Denby P. M., Moska P., Murray A. S., 2006, Developments in luminescence measurement techniques. Radiat. Meas., 41, pp. 768–773.

Timar-Gabor A., Constantin D., Marković S. B., Jain M., 2015, Extending the area of investigation of fine versus coarse quartz optical ages from the Lower Danube to the Carpathian Basin. Quat. Int., 388, pp. 168-176.

Vandenberghe D. A. G., De Corte F., Buylaert J.-P., Kŭcera J., Van den Haute P., 2008, On the internal radioactivity in quartz. Radiat. Meas., 43, pp. 771–775.

Veres D., Tecsa V., Gerasimenko N., Zeeden C., Hambach U., Timar-Gabor A., 2018, Short-term soil formation events in last glacial east European loess, evidence from multi-method luminescence dating. Quat. Sci. Rev., 200, pp. 34–51.

Walker M., Head M. J., Lowe J., Berkelhammer M., Björck S., Cheng H., Cwynar L., Fisher D., Gkinis V., Long A., Lowe J., Newnham R., Rasmussen S., Weiss H., 2019, Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J. Quat. Sci., 34, pp. 173–186.

Downloads

Published

2021-12-30

How to Cite

AVRAM, A., MANDROC, M., CONSTANTIN, D., MARKOVIĆ, S., & TIMAR-GABOR, A. (2021). OPTICALLY STIMULATED LUMINESCENCE DATING OF THE UPPER HORIZON OF A SERBIAN LOESS-PALEOSOIL SEQUENCE USING QUARTZ. Studia Universitatis Babeș-Bolyai Ambientum, 66(1-2), 5–18. https://doi.org/10.24193/subbambientum.2021.01