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Abstract. In this work, we have considered a cantilever beam with a  
rectangular plastic cross-section, reinforced by four wire reinforcements 
made of ductile Iron. It was studied using numerical resolution based on 
theoretical formulae and then simulated using Solidworks software. A 
comparison of the results on the frequency ratios between the theoretical 
and numerical by Solidworks models gave a low error of 1.389% with a high 
correlation coefficient of around 0.959. Then, two top reinforcements inside 
the beam were cut in order to study the behavior of the intact beam and the 
damaged beam. Using the simulation results, we found an accurate damage 
severity using a mathematical method based on error deviation indicators 
or Model Performance Analysis (MPA). 
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1. Introduction 

SOLIDWORKS is a computer-aided design (CAD) software package devel-
oped by Dassault Systèmes and used mainly in the mechanical engineering industry. 
Since its arrival in 1993, this software has revolutionized the engineering world and 
become the most widely used modeling tool in the industrial sector [1]. Adopted 
mainly in the automotive and aerospace industries, SolidWorks allows designers to 
visualize an accurate, to-scale representation of the final product [2] and examine its 
static and dynamic behavior. 

In this work, we propose exploiting the powerful features of the SolidWorks 
software to study the behavior of a cantilever plastic beam reinforced with four re-
inforcements inside. The study focuses on the out-of-plain vibrations. The dynamic 
response of cantilever beams with and without cracks is well-known and compre-
hensively described in [3]-[5].  
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The severity of damage is defined in [6], and a mathematical model of beams 
with cracks is proposed in [7]. In order to obtain reliable results with the model pre-
sented by the authors in previous research, it is essential to have a good correlation 
between the crack depth and the severity. 

The contribution of this paper consists of extending the mathematical model’s 
availability for reinforced beams and defining a methodology to find the severity of 
reinforcement wire damage accurately. 

 
 
2. Theoretical background and methodology 

2.1. About the vibration of beams 

We consider the Euler-Bernoulli beam theory, which formulates the problem of 
the transversely vibrating beam with constant cross-section and rigidity in terms of 
the partial differential equation of motion [8]: 
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where v is the vertical displacement of the beam at distance x measured from the 
clamped end. Considering that v depends on distance x and time t, and the evolution in 
time is harmonic, the expression of displacement is : 
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After derivation of relation (2) and substitution in relation (1), one obtains : 
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and, after simplifying by sin(ωt+φ), we have : 
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with the well-known solution [8]: 
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In the above equation, we denoted:  
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The constants A, B, C, and D are determined from the boundary conditions. 
These derivatives are proportional to the vertical displacement v(x), deflection θ(x), 
bending moment M(x), and shear force T(x). Putting the boundary condition for the 
clamped cantilever beam, given by mechanical reasons : 

 ( ) ( ) ( ) ( ) 000 ==== LL iiiiii φφφφ  (7) 

to find the constants A*, B*, C* and D* we obtain the equation : 

 ( ) ( ) 01cosh*cos =+LL αα  (8) 

 We can find the n solutions to equation (8) by solving it graphically: 

 

 
Figure 1. Graphical resolution of the characteristic equation of a cantilever beam 

 
 

The adimensional wave numbers for the first n = 6 modes of vibration of a beam 
are given in the following table: 

 
Table 1. Wave numbers of a cantilever beam 

Modes i 1 2 3 4 5 6 

αL 1,8751 4,6941 7,8548 10,9955 14,1372 17,2788 

 
We denote λ=αL, and calculate the angular frequencies ωi by multiplying the 

relation of k4 by L4 and substituting the values of λi. It results: 
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Finally, we find the natural frequencies: 
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Obviously, for each angular frequency ωi there is a corresponding mode shape 
ϕi. The mode shape for the cantilever beam is found, according to [9], with the 
mathematical relation: 
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The second derivative of the mode shape represents the mode shape curvature. 
For a particular bending vibration mode, it can be expressed: 
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2.2. The expression of the severity 

This section presents a method for determining the deflection at the free end of 
a cantilever beam with a crack. In our case, the crack consists of two cuttings in the 
reinforcement wires that are located inside the beam (Figure 2).  
 

   
a) Intact beam                                       b) Damaged beam 

Figure 2. Presentation of the intact beam and damaged beam 

cracks 
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The challenge faced when attempting to evaluate damages is that the effect of 
the crack, both on the deflection and the natural frequencies, is different when it is 
placed in different positions along the beam [9]. In prior research [7], we have 
determined a method for assessing the severity of transverse cracks, considering the 
deflection of a cantilever beam in the intact state and when it is altered by a breathing 
crack of known depth located at the fixed end. This mathematical relation is: 
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In Eq.(14), we denoted γ(a) the severity of a crack with depth a located at the 
fixed end; δ(a,0) the deflection at the free end of the cantilever beam having a crack 
with depth a at the fixed end (index 0 stays for location x = 0 mm); δU the deflection 
of the intact beam at the free end. 

In [6], it is presented how to determine the deflection at the free end for the 
intact beam with a constant cross-section subjected to dead mass: 
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and the frequency of the undamaged beam becomes: 
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Here, ρ is the volumetric mass density, S is the cross-sectional area, g is the 
gravity, E is Young’s modulus, and I is the second moment of inertia. 

Similarly, the deflection at the free end for the damaged beam is : 
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and the frequency of the damaged beam [6]: 
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The ratio of the two frequencies gives : 
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Consequently, we obtain: 
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The severity is given by: 
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Thus, we have: 
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The authors [9] established a relationship indicating the change in frequency for 
any vibration mode i, damage depth a, location x, and any types of bar fixation: 
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which makes use of the natural frequency of the intact beam fiU , the damage severity 
γ(a) , and the normalized mode shape curvature )(" xφ . 
 

2.3. The Model Performance Analysis (MPA) method 

This analysis proposes a series of performance indicators to assess the predictive 
power of a model. The proposed indicators make it possible to evaluate a model’s 
fidelity, exactitude, and accuracy [10]. 

The bias or Fidelity criteria is the first condition for validating a model, which 
is that the average of all the deviations ei should be as close as possible to zero, i.e. 
an unbiased model. The bias can be calculated as follows: 
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The RMSE (Root Mean Square Error), or Exactitude criteria, characterizes the 
size of the differences between observations and measurements. 
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The bias indicates differences but does not give us any information about the 
amplitude of these differences since the positive and negative values of ei 
compensate for each other in the mean. 
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The variance of the term ei over the entire simulation time interval will be 
defined as the "accuracy" of the model. It can be calculated using the following 
equation: 

 222 biasRMSEe −=σ  (27) 

The equations (25), (26), (27) will be used to assess the optimum severity of 
damaged in order to obtain a high-performance model. 

 
 
3. Numerical simulations 

This work considers a plastic rectangular (6x20 mm²) beam reinforced by four 
rectangular (1x2 mm²) wires with ductile Iron inside. The length of the cantilever 
beam is 500 mm. 

 

    
Figure 3. Presentation of the cross-section of the test beam 

 

 

3.1. Simulation of the intact beam 

Using Solidworks with standard parameters, the following table summarises the 
simulation results for the first six vibration-relevant modes (out-of-plane bending): 
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Table 2. Frequencies of the intact beam for the first six vibration modes 

Modes 1 2 3 4 5 6 
ωi (rad/sec) 58.227 363.45 1011.3 1964 3209.9 4730.9 

fi (Hz) 9.267 57.844 160.95 312.58 510.87 752.95 
Ti (sec) 0.10791 0.017288 0.006213 0.003199 0.001957 0.001328 

 

 

The following figure shows the stresses for the first four vibration modes for the 
intact beam : 

 

  
 

  
 

Figure 4. Modes shape of the intact beam using Solidworks 
 

3.2. Simulation of the damaged beam 

Now, we cut two of the reinforcements inside the beam. The width of the cut is 
2 mm, and X[mm] is the location from the fixed end of the beam. Using Solidworks 
with standard parameters, the following table summarises the simulation results for 
the first four vibration-relevant modes: 

Mode 1                                                    Mode 2                                                    

Mode 3 Mode 4                                                    
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Table 2. Frequencies of the damaged beam for the first four vibration modes 

X (mm) Mode 1 Mode 2 Mode 3 Mode 4 
1 9.091 56.844 158.41 308.14 
6 9.091 56.883 158.6 308.64 

20 9.146 57.305 159.9 311.25 
60 9.162 57.672 160.95 312.44 

100 9.178 57.848 160.6 310.63 
140 9.192 57.79 159.74 311.17 
180 9.204 57.515 159.66 312.55 
220 9.219 57.124 160.55 309.84 
260 9.238 56.956 160.85 308.5 
300 9.256 57.142 159.82 311.86 
340 9.266 57.414 159 311.96 
380 9.271 57.642 159.25 309.38 
420 9.274 57.797 160.28 310.04 
460 9.276 57.866 160.9 312.15 
494 9.279 57.912 161.12 312.89 
499 9.279 57.916 161.15 312.96 

 

Figure 5 shows the curves given by Solidworks (blue) from Table 2 compared 
with the theoretical (red) for the first four modes of vibrations. 

After cutting the reinforcement of the beam, we confirm that the results found 
on Solidworks with the damaged beam allow us to have a curve shape that is well 
synchronized with the theoretical but with errors that oscillate between [0 : 0.0050], 
which is accepted. 

 
 

Table 3. Error indicator values for each vibration mode 

Modes 1 2 3 4 
MAE 0.00126 0.00184 0.00132 0.00146 
RMSE 0.00168803 0.00239106 0.00157144 0.00197598 
Correlation coefficient 0.9784 0.9437 0.9731 0.9409 
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Figure 5. Frequencies of the damaged beam plotted with results from  

Solidworks (blue line) and calculus (red line) 
 

We conclude that for each vibration mode, the values of the error deviation 
indicators are acceptable. Solidworks can generate the theoretical results well, with 
an average correlation coefficient of 0.9590, which is satisfactory. 
 

3.3. Severity assessment using the MPA method 

Figure 6 shows that the values of the indicators (MAE and RMSE) change as a 
function of the damage severity coefficient. Therefore, we propose the following 
approach to determine the optimum value for severity:  

- plotting a points cloud of MAE and RMSE as a function of the severity 
coefficient, 

- the optimal coefficient corresponds to the minimum value of MAE (Mean 
Absolute Effor) and RMSE (Root Mean Square Error) together. 

  



61 

The following example was made using vibration mode number 3: 

Figure 6. Points cloud for determining optimum severity 

We deduce that for mode number 3, the optimum severity is 0.020. We found 
the optimum severity values for each vibration mode using the same procedure. The 
results are presented in Table 4. 

Table 4. Optimum severity values for each vibration mode 

Modes Mode 1 Mode 2 Mode 3 Mode 4 
Optimum severity 0.020 0.022 0.020 0.019 

From the values in Table 4, we estimate the optimum severity as the average of 
the severities for the considered modes, which is 0.02025. We chose a single value 
for the severity for all modes since this was demonstrated in [6]. 

4. Conclusion

We used SolidWorks to accurately model and analyze the behavior of a rein-
forced cantilever beam subjected to vibration. The simulations showed perfect syn-
chronization between the theoretical vibrations of the beam and the SolidWorks sim-
ulation results. Thus, we confirmed the reliability of the models developed in Solid-
Works for structural dynamics applications. 
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We also determined the severity value for the considered damage using a prob-
abilistic approach based on error indicators, and the results are demonstrated as very 
satisfactory. 
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