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Eigenvalues of a continuous beam with two spans 
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Abstract. Continuous beams can be found in various engineering appli-
cations. The dynamic behavior of continuous beams is strongly influ-
enced by the location of the intermediate support. The paper presents the 
determination of the frequency equation depending on the location of the 
intermediate support for a continuous beam with two openings for the 
case that this support can be placed in any position along the length of 
the beam. Finally, the obtained curves of the eigenvalues for the first six 
vibration modes are represented. 
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1. Introduction 

The dynamics of structures has as its main purpose the development of methods 
for determining efforts and deformations in the structure subjected to dynamic ac-
tions. A dynamic action is an action whose magnitude, direction or point of applica-
tion varies over time. Dynamics of structures develops specific calculation methods 
considering the time variation of the response of a subjected structure to dynamic 
loads and actions [1 – 5]. 

Continuous beams are placed on more than two supports, one of these supports 
is fixed (joint or embedded), and the others are mobile (simple supports). These sup-
ports do not prevent the variation of the length in the direction of the axis of the bar, 
it results that the axial effort does not represent a static indeterminacy of the struc-
tures [6 – 8]. 

Continuous beams are widely used in various engineering applications to effec-
tively support loads. Some engineering applications include bridge structures, build-
ing frames, and transportation systems. 

The paper presents the determination of the frequency equation depending on 
the location of the intermediate support for a continuous beam with two openings for 
the case that this support can be placed in any position along the length of the beam. 
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2. Euler-Bernoulli theory 

To determine the transverse frequency equation for a continuous beam with two 
openings, the Euler-Bernoulli theory is considered. The continuous beam is a simple 
beam supported on three supports, and the model of the beam is shown in figure 1. 

 
Figure 1. Continuous beam with two spans. 

 

 
For transverse vibrations, the Euler-Bernoulli model takes into account the 

bending moment and lateral displacement, and does not take into account the shear 
deformation and rotary inertia [9 – 10]. 

The spatial solution of transverse (bending) vibrations, free and undamped, for 
the Euler-Bernoulli model, has the expression (1): 
 

 𝑊𝑊(𝑥𝑥) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛼𝛼𝑥𝑥) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴(𝛼𝛼𝑥𝑥) + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴ℎ(𝛼𝛼𝑥𝑥) + 𝐷𝐷𝐵𝐵𝐵𝐵𝐴𝐴ℎ(𝛼𝛼𝑥𝑥) (1) 
 

where, 
A, B, C, D are the integration coefficients; 
α is the eigenvalue; 
W(x) is the modal wave function. 
Since the continuous beam has two openings, a modal wave function is considered 

for each span (fig. 1): 1 – 2, 3 – 2 (2). 

 

 �𝑊𝑊1(x1) = A1sin(𝛼𝛼𝑥𝑥1) + B1cos(𝛼𝛼𝑥𝑥1) + C1sinh(𝛼𝛼𝑥𝑥1) + D1cosh(𝛼𝛼𝑥𝑥1)
𝑊𝑊2(x2) = A2sin(𝛼𝛼𝑥𝑥2) + B2cos(𝛼𝛼𝑥𝑥2) + C2sinh(𝛼𝛼𝑥𝑥2) + D2cosh(𝛼𝛼𝑥𝑥2) (2) 

 

where, 
x1 ϵ (0, L1) is variable along the length of span 1 – 2; 
x2 ϵ (0, L – L1) is variable along the length of span 3 – 2; 
According to the Euler Bernoulli model, the boundary conditions for each sup-

port, taking into account (2) can be written as follows: 
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⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝑊𝑊1(0) = 0
𝑊𝑊1”(0) = 0
𝑊𝑊2(0) = 0
𝑊𝑊2”(0) = 0
𝑊𝑊1(L1) = 0

𝑊𝑊2(𝐿𝐿 − L1) = 0
𝑊𝑊1′(L1) = −𝑊𝑊2′(L2)
𝑊𝑊1”(L1) = 𝑊𝑊2”(L2)

 (3) 

where, 
W1, W2 is the deflection; 
W1’, W2‘is the slope; 
W1”, W2” is directly proportional to bending moment. 
L1 ϵ (0, L) is the location of the intermediate support. 

3. The frequency equation 

By solving the system (3) and taking into account (2), the integration constants 
(4) and the frequency equation (5) are obtained: 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝐵𝐵1 + 𝐷𝐷1 = 0
𝐵𝐵1 − 𝐷𝐷1 = 0 ⇒ 𝐵𝐵1 = 𝐷𝐷1 = 0

𝐵𝐵2 + 𝐷𝐷2 = 0
𝐵𝐵2 − 𝐷𝐷2 = 0 ⇒ 𝐵𝐵2 = 𝐷𝐷2 = 0

𝐴𝐴1𝐴𝐴𝐴𝐴𝐴𝐴(𝛼𝛼L1) + 𝐶𝐶1𝐴𝐴𝐴𝐴𝐴𝐴ℎ(𝛼𝛼L1) = 0 ⇒ 𝐶𝐶1 = −𝐴𝐴1
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼L1)
𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼L1)

𝐴𝐴2𝐴𝐴𝐴𝐴𝐴𝐴�𝛼𝛼(𝐿𝐿 − L1)� + 𝐶𝐶2𝐴𝐴𝐴𝐴𝐴𝐴ℎ�𝛼𝛼(𝐿𝐿 − L1)� = 0 ⇒ 𝐶𝐶2 = −𝐴𝐴2
𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼(𝐿𝐿−L1)�
𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛼𝛼(𝐿𝐿−L1)�

𝐴𝐴1𝐵𝐵𝐵𝐵𝐴𝐴(𝛼𝛼L1) + 𝐶𝐶1𝐵𝐵𝐵𝐵𝐴𝐴ℎ(𝛼𝛼L1) = −�𝐴𝐴2𝐵𝐵𝐵𝐵𝐴𝐴�𝛼𝛼(𝐿𝐿 − L1)� + 𝐶𝐶2𝐵𝐵𝐵𝐵𝐴𝐴ℎ�𝛼𝛼(𝐿𝐿 − L1)��
−𝐴𝐴1𝐴𝐴𝐴𝐴𝐴𝐴(𝛼𝛼L1) + 𝐶𝐶1𝐴𝐴𝐴𝐴𝐴𝐴ℎ(𝛼𝛼L1) = −𝐴𝐴2𝐴𝐴𝐴𝐴𝐴𝐴�𝛼𝛼(𝐿𝐿 − L1)� + 𝐶𝐶2𝐴𝐴𝐴𝐴𝐴𝐴ℎ�𝛼𝛼(𝐿𝐿 − L1)�

 (4) 

 

By solving the last two equations in system (4) it obtains the integration coeffi-
cient A2 and the frequency equation: 

 �
𝐴𝐴2 = 𝐴𝐴1

𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼L1)
𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼(𝐿𝐿−L1)�

𝑍𝑍11 ∙ 𝑍𝑍22 + 𝑍𝑍12 ∙ 𝑍𝑍21 = 0
 (5) 



 
125 

where it was denoted, 
 

 

⎩
⎪
⎨

⎪
⎧ 𝑍𝑍11 = 𝐵𝐵𝐵𝐵𝐴𝐴(𝛼𝛼L1) − 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼L1)

𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼L1) 𝐵𝐵𝐵𝐵𝐴𝐴ℎ(𝛼𝛼L1)

𝑍𝑍12 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝛼𝛼L1)

𝑍𝑍21 = 𝐵𝐵𝐵𝐵𝐴𝐴�𝛼𝛼(𝐿𝐿 − L1)� − 𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼(𝐿𝐿−L1)�
𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝛼𝛼(𝐿𝐿−L1)�

𝐵𝐵𝐵𝐵𝐴𝐴ℎ�𝛼𝛼(𝐿𝐿 − L1)�

𝑍𝑍22 = 𝐴𝐴𝐴𝐴𝐴𝐴�𝛼𝛼(𝐿𝐿 − L1)�

 (6) 

 

4. Results 

For a normalized length of the continuous beam (L=1) for which the cross-sec-
tion is constant having the moment of inertia I [m4] and is made of a material with 
modulus of elasticity E [N/m2], the eigenvalues obtained as solution of frequency 
equation (5), starting from L1=0.001 till L1=0.999, with step of 0.001, for the first 
six vibration mode, are presented in the figures 2 - 7. 

Table 1 presents the eigenvalues for the first six vibration modes for L1=0.001, 
L1=0.150, L1=0.325 and L1=0.500. Due to the symmetry of the supports, the eigen-
values for L1 =0.001 are the same with L1=0.999, for L1=0.150 are the same with 
L1=0.850 and L1=0.325 are the same with L1=0.675. 

 
Table 1. Eigenvalues for the first six vibration modes for different values of L1 

L1 0.001 / 0.999 0.150 / 0.850 0.325 / 0.675 0.500 

α1 3.9292235 4.40911578 5.28238731 6.2831853 

α2 7.07330383 7.98600823 9.41313727 7.85320462 

α3 10.216999 11.5834823 11.26626 12.5663706 

α4 13.3606957 15.1779383 14.6365202 14.1371655 

α5 16.5043945 18.7173101 18.8061283 18.8495559 

α6 19.6480955 21.929824 20.815083 20.4203522 
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Figure 2. Eigenvalues for the first vibration mode. 

 
Figure 3. Eigenvalues for the second vibration mode. 

 
Figure 4. Eigenvalues for the third vibration mode. 
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Figure 5. Eigenvalues for the fourth vibration mode. 

 
Figure 6. Eigenvalues for the fifth vibration mode. 

 
Figure 7. Eigenvalues for the sixth vibration mode. 
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5. Conclusions 

The results obtained for the eigenvalues of the continuous beam with two spans, 
assuming that the intermediate support can occupy any position along the length L 
of the beam, is important for calculating the natural frequencies of the beam, considering 
that the natural frequency of the beam is directly proportional to the square of the 
eigenvalue. 

Knowing the eigenvalues of the continuous beam and the values of the integra-
tion coefficients from system (2) we can write the modal function that allows us to 
draw the modal shapes for the vibration modes of the beam. 

From the analysis of figures 2 - 7, it can be seen that the eigenvalues obtained, 
compared to the middle location of the intermediate support, are symmetrical regard-
less of the mode of vibration. 

When L1=0.5, the eigenvalues, respectively the natural frequencies, for the odd 
vibration modes have maximum values. Minimum values are obtained when the     
intermediate support is positioned very close to the ends of the continuous beam. 

As a particularity, the maximum value of the eigenvalues is equal to (n+1)·π, 
where n represents the number of the vibration mode. 

When the intermediate support is positioned very close to the beam ends, the 
dynamic behavior of the continuous beam can be associated with a beam clamped at 
one end and hinged at the other. For these cases, the clamped end is not perfect, it 
can be considered a weak clamp, because the boundary conditions for the end point 
are for a hinge end and not a clamp end. In other words, in the hinged end of the 
continuous beam, the slope does not have zero value as in the case of a clamped end, 
all the more so as the boundary condition for this hinge imposes a bending moment 
with zero value. 
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