
STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LXV, Number 2, 2020
DOI: 10.24193/subbi.2020.2.06

DEFECT PREDICTION-BASED TEST CASE

PRIORITIZATION

CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

Abstract. Changes in the software necessitate con�rmation testing and
regression testing to be applied since new errors may be introduced with
the modi�cation. Test case prioritization is one method that could be
applied to optimize which test cases should be executed �rst, involving
how to schedule them in a certain order that detect faults as soon as
possible.

The main aim of our paper is to propose a test case prioritization
technique by considering defect prediction as a criteria for prioritization
in addition to the standard approach which considers the number of dis-
covered faults. We have performed several experiments, considering only
faults and the defect prediction values for each class. We compare our
approach with random test case execution (for a theoretical example) and
with the fault-based approach (for the Mockito project). The results are
encouraging, for several class changes we obtained better results with our
proposed hybrid approach.

1. Introduction

In order to establish if a delivered software is reliable, appropriate veri�ca-
tion practices have to be performed. A valuable and proper technique in this
sense is provided by testing. In spite of its signi�cant advantages, testing is,
most of the time, a particularly expensive and demanding activity. The growth
in software complexity is re�ected in an exponential manner towards the cost
of testing. As software evolves, the number of tests needed to preserve correct
functionality increases as well, leading to a proportionate extension in the time

Received by the editors: 22 May 2020.
2010 Mathematics Subject Classi�cation. 68M15,6804,68N30.
1998 CR Categories and Descriptors. D.2.8 [Software engineering]: Metrics � Complex-
ity measures C.4 [Performance of systems] � Performance attributes D.2.4 [Software
engineering]: Software/Program Veri�cation � Reliability D.2.5 Software engineering:
Testing and Debugging � Testing tools .
Key words and phrases. Test Case Prioritization, Regression Testing, Defect Prediction,
Average Percentage of Faults Detected (APFD).

78



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 79

taken to execute the test suite. Thus, a solution which manages to lower the
cost, while also preserving the veri�cation quality is required.

The source code quality is a characteristic of any software project. The
constant variation of this metric should be kept within certain bounds to ensure
the proper functionality of an application, while also not neglecting its general
cost. The quality of the code involves taking into consideration many factors,
like the number of programmers writing the code or the change frequency as
the entire bug-�xing process is performed. Increased consideration must be
given to this process, as a module in which a found bug is �xed may be prone
to future failures. Considering the overall quality of the source code (which will
be later re�ected in the quality of the product), a speci�c amount of attention
should be involved in the bug �xes. One of the methods that help with this
aspect is regression testing, through the various existing approaches.

Regression Testing (RT) [7] is �the process of validating modi�ed software to
detect whether new errors have been introduced into previously tested code and
to provide con�dence that modi�cations are correct�. Similar other de�nitions
may be found in [4] as �the retesting of the software that occurs when changes
are made to ensure that the new version of the software has retained the
capabilities of the old version and that no new defects have been introduced
due to the changes�, in [10] as �performing testing after making a functional
improvement or repair to the program�, and in [20] as �rechecking test cases
passed by previous production versions�.

Regression testing [1] is an essential part of any viable software development
process and in practice is often incorporated into a continuous integration
service. It is well known that if the regression tests do not �nish in a timely
manner, the development process is disrupted.

The challenging problem regarding regression testing refers to the fact that
at a given point during the development, the test suites are so large that run-
ning all the test cases would take too much time. There are many approaches
that investigate the regression testing problem, from test suite minimization
to test case selection and test case prioritization. A review on various RT
techniques is presented in paper [3]. A more detailed view about subtypes of
RT is presented in [14].

The Test Case Prioritization (TCP) [3] technique helps to increase the rate of
fault detection. It also increases in practice the e�ectiveness of test suites. To
evaluate the regression-based test suite prioritization, the ordering is in general
measured using the APFD (Average Percentage Faults Detected) metric [12].
More information regarding APFD metric is provided in Section 2.2.

Test Case Prioritization has been widely researched as a strategy for reduc-
ing the time needed to discover regressions in software. While many di�erent



80 CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

approaches have been developed and evaluated, previous experiments have
focused on faults or code coverage used as prioritization techniques, and only
few approaches [11] considered the defect prediction probability of a class. The
probability associated to a class may determine the likelihood of it to contain
software bugs. This metric could be used as a test case prioritization technique.
We propose an investigation in this direction, i.e. test case prioritisation based
on defect prediction.

The aim of this paper is to propose and investigate an algorithm that con-
siders both the faults and the defect prediction probability as criteria for pri-
oritization. We employ the use of defect prediction probability of a class as
described in [11] where the aim was to study how to con�gure the Schwa tool
[5] to maximize the likelihood of an accurate prediction. More information
regarding the computation of the defect prediction probability of a class is
provided in Section 2.2.

The reminder of the paper is organized as follows: Section 2 presents related
work regarding the test case prioritization and also referring to defect predic-
tion, Section 3 describes our approach regarding Test Case Prioritization that
considers also the defect prediction probability. The experiments in Section 4
revealed that our approach �nds better solutions for several class changes, and
the last section outlines the concluding remarks and future work.

2. Background on Test Case Prioritization and Defect

Prediction

Regression testing [7] is an important process that mostly every software
systems will go through multiple time during its development and maintenance
process. Being highly time consuming, performance improvements are a must,
thus several studies are currently proposed to minimize the cost of the process
and maximize its e�ciency.

2.1. De�nition of Test Case Prioritization. De�nition for TCP is given
by Graves [7] in what follows.

De�nition 1. Test case prioritization [7]: Given a test suite, T, the set of
permutations of T, PT; a function from PT to real numbers, f.

Problem: to �nd T ∈ PT such that

(1) (∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]

The function f assigns a real value to a permutation of T according to the
test adequacy of the particular permutation.

The ideal order would be the one that reveals faults soonest, the rate of
which can be expressed in APFD (Average Percentage Faults Detected) metric



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 81

(described in the next subsection). The latest regression testing approaches
use various code coverage criteria since fault detection is not known in advance.
Several approaches are scrutinized by Rothermel et al. [15] using various cov-
erage measurements, showing that coverage prioritisation can improve the rate
of fault detection [19].

In what follows we present a short overview of various test case prioritization
techniques and also studies related to defect prediction.

2.2. Test case prioritization approaches. This section details the APFD
and defect probability metrics, alsor presenting various existing approaches for
test case prioritization.
Average Percentage Faults Detected

APFD measures the e�ectiveness of TCP as the rate of fault detection
achieved by the produced ordering of test cases [16]. APFD relates with earlier
fault detection abilities.

De�nition 2. Average Percentage Faults Detected (APFD) [12] is de�ned as
follows:

(2) APFD = 1− Tf1 + Tf2 + ...+ Tfm

mn
+

1

2n

Where n be the no. of test cases and m be the no. of faults. (Tf1,...,Tfm )
are the position of �rst test T that exposes the fault.

Paterson et. al [11] proposes a test case prioritisation technique considering
defect prediction, a strategy which analyses code features in order to predict
the likelihood that a �le or function inside a software system is faulty. The
paper introduces a test case prioritisation approach, namely G-clef, that uses
bug prediction data to reorder a test suite in such a way that it concentrates
�rst on the classes that are prone to include faults. The paper not only presents
this new test case prioritization strategy, but also compares the approach with
other nine existing approaches using an empirical study on real faults.
Defect prediction probability of a class

Schwa [5] uses a ranked-based technique, Time-Weighted Risk (TWR) to
estimate how reliable a Java class is, thus the function has its maximum value
when a component was changed recently:

(3) twr(ti) =
1

1 + e−12ti+w

Schwa [5] estimates the likelihood that a Java class c contains a bug using
Equation 4, in which each of the three factors (i.e., revisions, authors, and
�xes) is calculated and modi�ed by a weight, where the sum of all weights



82 CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

must be equal to 1. For each component the score is computed as provided in
Equation 4. Intuitively, a Java class with higher defect value is less reliable,
thus more likely to contain a bug, than those classes with low defect value.

(4)

score = revisions ∗ revisionsweight

+ fixes ∗ fixesweight

+ authors ∗ authorsweight

Test case prioritisation approaches

Test Case Prioritisation (TCP) arranges test cases into an optimal order so
that a speci�c criteria is met as early as possible. The work of [13] presents a
black-box strategy called REMAP that incorporates three fundamental compo-
nents: a rule miner, a static prioritiser, and a dynamic executor and prioritiser.
The relations between test cases are de�ned using fails and pass rules being
mined from the historical execution data. Multi-objective search is applied to
statically prioritise test cases considering two objectives: fault detection capa-
bility and test case reliance score. The test case order is dynamically updated
using the results of the test case execution and the fail and pass rules.

2.3. Defect prediction approaches. This section contains various existing
approaches related to defect prediction approaches.

When discussing a defect prediction solution, one approach taken into con-
sideration is a multi-objective approach [2], the two con�icting objectives being
the cost and e�ectiveness. The approach allows software engineers to choose
between various predictors: predictors that identify a high number of defect-
prone artifacts, predictors requiring a lower cost, and predictors achieving a
cost-e�ectiveness compromise.

In paper [9], the search problem was enhanced, such that the defect prone
classes are predicted using the Object-Oriented metrics design suite instead
of static code metrics. An extensive comparison of eighteen machine learning
techniques in the context of defect prediction was performed. Six releases of
widely used Android application package were used.

A qualitative and quantitative study regarding defect prediction was done
[17] to investigate what practitioners consider and expect in contrast to re-
search �ndings. The study that was done through interviews and question-
naires. The results revealed that most respondents are willing to adopt defect
prediction techniques, but there is a discrepancy between practitioners' per-
ceptions and supported research evidence regarding defect density distribution.
Also, the most preferred level of granularity of defect prediction by practition-
ers is at the feature level.



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 83

However, as mentioned before, there exists a gap regarding test case priori-
tization and defect prediction probability of classes. The approach we propose
in this work addresses an empirical attempt of the method to consider defect
prediction probability of a class as well.

3. Our Defect Prediction - based Test Case Prioritization

Our approach investigates the test case prioritization problem considering
various criteria (faults and defect prediction probability) using a Greedy-based
approach in order to select the test case ordering. We compare our approach
that uses the defect probability with two other approaches: one approach that
only considers the faults found by the test cases and the other that is a random
execution of the test suite.

As we mentioned before, our approach is based on greedy strategy. We have
tested 3 versions of greedy algorithm in order to obtain the ordering which
is expected to retrieve the best results, as graphically depicted in Figure 1: a
random prioritization, a faults-based prioritization order, and also an approach
based on defect prediction.

Algorithm 1 Algorithm 2 Algorithm 3

Defect Probability-based Prioritization

Defect Prediction-based Execution Order

Fault-based Prioritization

Fault-based Execution Order

Random Prioritization

Random Execution Order

Figure 1. Overview of the three investigated Test Case Pri-
oritization approaches.

We compare our approach with the basic Random Prioritization approach
that is described in Algorithm 1. The approach just randomly orders the test
cases that are relevant for the changed c class and afterwards adds the remain-
ing test cases from the test suite. We performed our expriments considering
that each class c of the project p is changed.

The second approach in our investigation uses the number of faults discov-
ered by each test case that is relevant for the changed class c. The description
of this approach is provided in Algorithm 2.



84 CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

Random Prioritization Algorithm

Data:

list of all classes in a project with their corresponding tests;
list of all tests with corresponding number of bugs discovered for each
test.
Result:

prioritized list of tests (and APFD) for each class in the project.
foreach class c in project p do

get the list of tests relevant for c;

randomly order the tests;
add to the resulted list all the tests that are not relevant for the
class;

compute APFD for the obtained prioritized list of tests;

end
Algorithm 1: Random Prioritization Algorithm

Faults-Based Prioritization Algorithm

Data:

list of all classes in a project with their corresponding tests;
list of all tests with corresponding number of bugs discovered for each
test.
Result:

prioritized list of tests (and APFD) for each class in the project.
foreach class c in project p do

get the list of tests relevant for the class c;
sort list descending based on the number of bugs discovered by each
test;
add randomly to the resulted list all the tests that are not relevant
for the class;

compute APFD for the obtained prioritized list of tests;

end
Algorithm 2: Faults-Based Prioritization Algorithm

Our new proposed approach uses the defect prediction probability for each
class. The tests are order based on the maximum defect probability among
all test cases that are relevant to the changed class c. The description of this
approach is provided in Algorithm 3.



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 85

Defect-Prediction Prioritization Algorithm

Data:

list of all classes in a project with their corresponding tests;
list of all tests with corresponding number of bugs discovered for each
test.
Result:

prioritized list of tests (and APFD) for each class in the project.
foreach class c in project p do

get the list of tests relevant for the class;

foreach test t in tests for class c do
get the list of all classes tested by the test t;

access the maximum defect probability from all the classes;

end

sort list descending based on the maximum defect probability;
add randomly to the resulted list all the tests that are not relevant
for the class;

compute APFD for the obtained prioritized list of tests;

end
Algorithm 3: Defect-Prediction Prioritization Algorithm

We will exemplify our approach by using a theoretical example provided in
Table 1 and Table 2.

t1 t2 t3 t4 t5 t6 defectProb

c1 1 0 0 0 0 0 0.25
c2 0 0 0 1 0 0 0.65
c3 1 0 0 1 0 0 0.70
c4 0 0 0 0 1 0 0.55
c5 0 0 0 0 0 1 0.45
c6 1 0 0 0 0 0 0.85
c7 1 0 0 0 1 1 0.80
c8 0 0 0 0 0 0 0
c9 1 1 1 0 0 1 0.82
c10 0 0 0 0 1 0 0.72

Table 1. Class to
tests cases matrix

f1 f2 f3 f4 f5

t1 1 0 0 0 0
t2 0 0 0 1 0
t3 0 0 0 0 0
t4 1 0 0 0 1
t5 0 1 0 0 0
t6 0 0 1 0 0
Table 2. Test cases
to bugs matrix

We consider the provided order of the test cases as

TC=[t1, t2, t3, t4, t5, t6].



86 CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

As we mention earlier, test case prioritization is applied in the context of
regression testing, thus when a change is done in the source code due to the
�xing of a fault. In that follows next, we present each approach using this
theoretical case study and considering that the changed class is c3.

The random algorithm starts from an existing order of the tests (t1, t2, ...,
tn) and after generates a new random execution order of the test suite.

First, the tests corresponding for class c3 are selected. Those tests are (t1,
t4). The algorithm randomly chooses an order for the list and then appends
the rest of the tests (that do not test the class c3). A possible order of the
tests may be TC3=[t1, t4, t5, t6, t2, t3].

The most used criteria regarding the test case prioritization is the one re-
garding the faults the test cases discover, thus ordering the test cases to be
executed using the discovered number of faults. For the theoretical example
this ordering is: C3=[t4, t1, t5, t6, t2, t3].

The tests t1 and t4 are ordered descending based on the number of bugs
discovered. Test t1 discovers 1 bug, while t4 discovers 2 bugs, such that the
�nal order of the tests may be TC3=[t4, t1, t5, t6, t2, t3], or any random order
between the third and the last test.

Our proposed approach considers also the defect probability de�ned by Pe-
terson et. all in paper [11].

The probability is de�ned as the likelihood that a Java class contains a
bug. This estimation is computed based on three weights, corresponding to the
importance given to revisions, �xes and authors, applied to the Time-Weighted
Risk of a class, a metric which uses di�erent features to estimate how reliable
a Java class is. The sum of the weights must be equal to 1. For the proposed
approach, the weights were de�ned as 0.25 for revisions, 0.5 for �xes and 0.25
for authors. The computation uses an upper limit for the number of commits
taken into consideration when estimating the defect probability. Two di�erent
values were chosen as an upper limit, 50 and 1000 commits respectively.

Our defect prediction-based prioritization approach is performed in three
major steps: the �rst one selects �rst the test cases that are related to the
class that was changed and order them based on the number of discovered
faults, the second one orders the remaining test cases from this set (if there
are test cases that did not discover any faults) based on the defect probability
value, and the last step adds randomly the test cases that did not take part of
the changed class, thus completing the test suite with all the test cases.

Using the defect probability prioritization algorithm, the ordering of the
tests t1 and t4 is determined by the maximum defect probability for the classes
that are tested for each test. For test t1, the classes veri�ed by it are c1, c3,
c6, c7 ,c9, the maximum probability being 0.85, for c6. In a similar matter,



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 87

for test t4 the veri�ed classes are c2 and c3, with a maximum probability of
0.70, corresponding to c3. Based on this information, the test order will be t4,
followed by t1. A possible test ordering for class c3 is TC3=[t4, t1, t5, t6, t2,
t3] (or the last 4 tests in any order).

4. Experiments and results

Choosing the method for our research investigation was based on the book
of Yin [18] that supported us in identifying the case study method and revealed
how to do the research design.

Generalization from a case study to theory is an important issue, Yin [18]
stating that the analytic generalization should be used for case studies: multi-
ple cases resemble multiple experiments, thus the mode of generalization being
analytic. Replication [18] may be claimed if two or more cases support the
same theory: some replications seek to duplicate the exact conditions of the
original experiment, others change some experimental conditions.

4.1. Experiments Design. The replication strategy that we used considered
various number of classes, test cases and faults, those numbers being changed
from one experiment to the others. The �rst experiment considers the the-
oretical example with a small number of classes, test cases and faults. The
next two experiments are based on a open source project and even if the same
number of classes, test cases and faults are used, they have di�erent number
of classes with the defect probabilities greater than 0 as described next.

Experiment 1: 10 classes, 6 test cases, 5 faults.
Experiment 2: 365 classes, 116 test cases, 38 faults, 199 classes with defect

probabilities > 0 (considering 50 commits).
Experiment 3: 365 classes, 116 test cases, 38 faults, 336 classes with defect

probabilities >0 (considering 1000 commits).
It is worth mentioning that we performed the above experiments considering

that each class was changed, thus applying test case prioritization for each
scenario.

4.2. Case studies used. The experiments are based on a theoretical project
and on an open project, Mockito from the Defect4J database [8]. We have used
the defect probability de�ned by Peterson et. all in paper [11] as we mentioned
earlier in Section 3.

The Defect4J database [8] contains a set of software projects that contain
reproducible bugs. The fact that the projects were originally obtained from
di�erent version control systems allows the possibility of collecting information
regarding the faults of the program from versioning perspectives. Each project



88 CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

has associated a list of faults with the corresponding test that discover a par-
ticular fault. In addition, a list of classes that are veri�ed during the execution
of a particular test is also kept.

Those �les represented the base for the data pre-processing. Two comma
separated value �les were created, representing di�erent matrices useful for
further computations. One of the matrices represented a binary bug-to-tests
correspondence, where 1 denotes that a bug is discovered by a certain test.
The form of a row is class name and k values of 1 or 0, where k is the number
of tests. The second matrix represents the tests relevant for a particular class.
A row-structure contains the class name and k values of 1 or 0, where k is the
number of tests, where 1 represents if a particular test is relevant for the given
class.

Another tool that was used for computing the defect probability for the
classes of a certain project is Schwa [6]. The output contains a json �le with
the defect probability for each class, while also mentioning a defect probability
value for each method that is part of a class. The information was processed
in a csv �le, which is a mapping between the class names and the defect
probabilities obtained. Two separate �les were obtained, one by taking into
account the last 50 commits of the Mockito project, obtained from the Defect4J
library, and other �le made by analyzing the last 1000 commits of the same
project.

The e�ectiveness of the proposed prioritization technique, thus the ordering
of the test cases is assessed using the rate of faults detected using the APFD
metric as described in the above sections.

4.3. Experiment 1. The �rst case study considers the theoretical example
that we provided in Section 3. The case study contains: 5 classes, 7 test cases
and 4 faults, along with the defect probabilities being provided. The class that
was modi�ed is c3.

We consider the provided order of the test cases as

TC=[t1, t2, t3, t4, t5, t6].

The test cases that are involved in the c3 class that is changed are: t1 and
t4.

The execution of the random algorithm found the following result: [t1, t4,
t3, t2, t6, t5]. The obtained APFD values is: 0.48.

The execution of the algorithm that considers only the number of discovered
faults by the test cases found the following result: [t4, t1],[t5, t6, t2, t3]. The
APFD value is: 0.62.

The execution of our proposed algorithm found the following result: [t1,
t4],[t5, t6, t2, t3]. The APFD value is: 0.58.



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 89

For this example, the proposed algorithm does �nd better solution than the
random approach (APFD is greater, 0.58 > 0.48), but did not �nd better
solution than the faults-based approach (0.58 > 0.62).

As mentioned earlier, we have also executed the algorithm considering that
each class is changed, that performing test case prioritization for each class
modi�cation. The results in Figure 2 still do not �nd better solution for our
approach. We executed the algorithm such that each class in the project is
changed thus being required to apply test case prioritization in each scenario.

Figure 2. Theoretical example results

4.4. Experiment 2. Our next experiment considers the Mockito project from
the Defect4J dataset [8].

The Mockito case study contains: 365 classes, 116 test cases and 38 faults,
along with the defect probabilities being provided. The defect probabilities
were computed using the last 50 available commits, which resulted in values
for 190 classes. The rest of the classes had associated a defect probability of 0.

For example, for class
�org.mockito.internal.invocation.serializablemockitomethod� the APFD values
found for each approach are: TCP-Random APFD=0.72, for TCP-byFaults
APFD=0.72, and for TCP-byFaultsAndDefectProb APFD=0.72.

Comparing our approach with the byFaults approach we obtained the results
in Figure 3: for 26 classes the APFD values are higher. If we consider APFD
highest or equal then for 132 number of classes we obtained better or equal
APFD results.

4.5. Experiment 3. The last conducted experiment considered the same Mock-
ito case study with di�erent defect probabilities computed.



90 CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

Figure 3. Mockito-50 Results: For out of 190 classes, we
obtained better or equal APFD values for 132 classes, and ob-
tained higher APFD values for 26 classes.

The Mockito case study contains: 365 classes, 116 test cases and 38 faults,
along with the defect probabilities being provided. The defect probabilities
were computed using the last 1000 available commits, which resulted in values
for 336 classes. The rest of the classes had associated a defect probability of 0.

The results for this experiments revealed that for 114 classes we obtained
higher or equal APFD when comparing TCP-byFaults approach with the TCP-
byFaultsAndByDefectPred. Figure 4 contains these results.

Figure 4. Mockito-1000 Results: For out of 336 classes, we
obtained better or equal APFD values for 114 classes.



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 91

4.6. Discussions. Following the replication approach to multiple experiments
[18], each individual experiment was �nalized by an individual report (conclu-
sion) that will be next considered to be part of a summary report, i.e. a
cross-case conclusions.

In our case the results obtained for each experiment are reported in the
above sections and in this section conclusions about the potential used of de-
fect prediction probabilities for the test case prioritization problem are drawn:
augmenting the standard test case prioritization criterion, i.e. number of faults
discovered by the test cases, with the defect prediction probability of each class
may lead to better results regarding which test cases should be �rst executed
in the context of regression testing.

Our approach considered only one of the classes to be modi�ed, thus com-
puting the regression test suite only for this one modi�cation. Future work
will tackle these multiple changes in the classes.

5. Conclusions

Regression testing, with all existing strategies plays an important role in
identifying and �xing faults after software changes are performed. Test case
prioritization is one of the strategies that could be applied and that can provide
important information about the system under test regarding the best test
cases that may identify existing faults.

Our hybrid test case prioritization approach considers not only the number
of faults discovered by the test cases but also the defect probability of each
class.

The design of our experiments considered various combinations of number
of classes, test cases, faults and classes with defect probability not zero. Our
hybrid approach is compared with two other approaches: a random based
approach and a faults-based approach. The results are encouraging, for several
class changes we obtained better results with our proposed hybrid approach.

References

[1] Paul Ammann and Je� O�utt. Introduction to Software Testing,2nd edition. Cambridge
University Press, 2016.

[2] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella.
Multi-objective cross-project defect prediction. In 2013 IEEE Sixth International Con-
ference on Software Testing, Veri�cation and Validation, pages 252�261, 2013.

[3] Anjali Choudhary and Tarun Dalal. A review on regression testing techniques. IJ of
Emerging Trends and Technology in Computer Science, 4(3):56�59, 2015.

[4] Jean-Francois Collard and Ilene Burnstein. Practical Software Testing. Springer-Verlag
New York, Inc., 2002.

[5] A. Freitas. Software repository mining analytics to estimate software component relia-
bility, Faculdade de Engenharia da Universidade do Porto, Master's thesis, 2015.



92 CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

[6] Andre Freitas. Software Repository Mining Analytics to Estimate Software Component
Reliability. PhD thesis, Faculdade de engenharia da Universidade do Porto, 6 2015.

[7] T. L. Graves, M. J. Harrold, J. Kim, A. Porters, and G. Rothermel. An empirical
study of regression test selection techniques. In Proceedings of the 20th International
Conference on Software Engineering, pages 188�197, 1998.

[8] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014, page 437�440,
New York, NY, USA, 2014. Association for Computing Machinery.

[9] Ruchika Malhotra and Rajeev Raje. An empirical comparison of machine learning tech-
niques for software defect prediction. In Proceedings of the 8th International Conference
on Bioinspired Information and Communications Technologies, BICT '14, page 320�327,
Brussels, BEL, 2014. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[10] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
2004.

[11] D. Paterson, J. Campos, R. Abreu, G. M. Kapfhammer, G. Fraser, and P. McMinn.
An empirical study on the use of defect prediction for test case prioritization. In 2019
12th IEEE Conference on Software Testing, Validation and Veri�cation (ICST), pages
346�357, 2019.

[12] R Pradeepa and K VimalDevi. E�ectiveness of test case prioritization using apfd met-
ric: Survey. In International Conference on Research Trends in Computer Technologies
(ICRTCT�2013). Proceedings published in International Journal of Computer Appli-
cations (IJCA), ISSN: 0975�8887, pages 1�4, 2013.

[13] D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen. Remap: Using rule mining and
multi-objective search for dynamic test case prioritization. In 2018 IEEE 11th Inter-
national Conference on Software Testing, Veri�cation and Validation (ICST), pages
46�57, 2018.

[14] Mohammad Rava and Wan M.N. Wan-Kadir. A review on prioritization techniques in
regression testing. International Journal of Software Engineering and Its Applications,
01(1):221�232, 2016.

[15] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. Test
case prioritization: An empirical study. In Proceedings IEEE International Confer-
ence on Software Maintenance-1999 (ICSM'99).'Software Maintenance for Business
Change'(Cat. No. 99CB36360), pages 179�188. IEEE, 1999.

[16] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. Test case
prioritization: an empirical study. In Software Maintenance, 1999. (ICSM '99) Proceed-
ings. IEEE International Conference on, pages 179�188, 1999.

[17] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang. Perceptions, expectations,
and challenges in defect prediction. IEEE Transactions on Software Engineering, pages
1�1, 2018.

[18] Robert K. Yin. Case Study Research: Design and Methods (Applied Social Research
Methods). Sage Publications, fourth edition. edition, 2008.

[19] Shin Yoo and Mark Harman. Pareto e�cient multi-objective test case selection. In Pro-
ceedings of the 2007 International Symposium on Software Testing and Analysis, ISSTA
'07, page 140�150, New York, NY, USA, 2007. Association for Computing Machinery.

[20] Michal Young and Mauro Pezze. Software Testing and Analysis: Process, Principles
and Techniques. John Wiley and Sons, 2005.



DEFECT PREDICTION-BASED TEST CASE PRIORITIZATION 93

Department of Computer Science, Faculty of Mathematics and Computer

Science, Babe³-Bolyai University, 1 Kog lniceanu St., 400084 Cluj-Napoca, Ro-

mania

Email address: {tcie2430, tmie2434}@scs.ubbcluj.ro, avescan@cs.ubbcluj.ro


