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Abstract. Proteins are large, complex molecules with crucial roles in
the functioning of living organisms. Understanding the underlying mech-
anisms by which proteins achieve their structures and substructures, as
well as those involved in the conformational transitions may contribute
to a deeper comprehension of the involved biological processes. This pa-
per investigates a new machine learning perspective upon analyzing pro-
tein conformational transitions and introduces a new formalization for the
problem, with the more general goal of uncovering interesting patterns
in protein conformational transitions. This study represents the starting
point of a research which is being conducted in order to obtain a better
comprehension of proteins’ structures and, implicitly, functions, by inves-
tigating computational intelligence methods for analyzing and deducing
proteins conformational transitions.

1. Introduction

Proteins are large, complex molecules with crucial roles in the functioning
of living organisms: they can be building blocks in the body (structural pro-
teins), they catalyze biochemical reactions in metabolism (enzymes) or they
may execute key tasks in maintaining the cellular environment. Moments af-
ter a protein is synthesized it folds, forming a stable three-dimensional (3D)
structure, which is known to define the protein’s function and which is en-
tirely dictated by the linear sequence of amino acids composing the protein
[26]. According to various external factors from the protein’s environment
(e.g. temperature, interaction with other molecules), modifications in the
protein structures occur during their biological functions. Thus, a protein
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will acquire a limited number of alternative conformations (belonging to the
same fold), having the ability to transition between them [25]. Understanding
protein conformational transitions and protein dynamics is essential for the
comprehension of biomolecular interactions. This is of paramount importance
in the process of developing new drugs that can inhibit proteins’ uncontrolled
behaviour, which can arise in pathological cases (such as protein incorrect
folding or mutations) [15].

The contribution of the paper is summarized as follows. Our first goal is
to explore a new machine learning perspective upon studying protein confor-
mational transitions. Starting from the current state-of-the-art which refers
to the analysis of conformational changes in proteins, we propose a new com-
putational model for the problem of predicting protein conformational tran-
sitions. Secondly, we aim to provide an intuition upon the applicability of
machine learning techniques for uncovering interesting patterns in the struc-
ture of proteins. The study performed in this paper represents the starting
point of a research which is being conducted in order to obtain a better com-
prehension of proteins’ structures and, implicitly, functions, by investigating
computational intelligence methods for analysing and deducing proteins con-
formational transitions. The long-term goal of our research is to contribute
to a better understanding and to offer additional insight into the construction
and functioning of proteins.

The rest of the paper is organized as follows. Section 2 presents the moti-
vation of our approach, highlighting the importance and relevance of under-
standing protein conformational transitions, but the difficulty of the problem
as well. The biological background related to our approach is given in Section
3. The current state-of-the-art, as well as the limitations of existing approaches
related to the analysis of protein structure are presented in Section 4. Sec-
tion 5 introduces our machine learning perspective on the problem, together
with an incipient computational model. A case study which highlights the ap-
plicability of machine learning methods for analyzing protein conformational
transitions is described in Section 6. The conclusions of the paper, as well as
directions for continuing our research are pointed out in Section 7.

2. Motivation

Although the stable 3D structure of a protein is defined by a unique topology
(i.e. fold), this structure is not static and it is now widely accepted that pro-
teins are dynamic objects [25]. According to various external factors from the
protein’s environment (e.g. temperature, interaction with other molecules),
modifications in proteins’ structures occur during their biological functions.
A protein will thus acquire a limited number of conformations and will have
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the ability to transition between alternative conformations. Understanding
protein dynamics and how these conformational transitions occur is essential
for the comprehension of biomolecular interactions, which is of paramount
importance in the process of developing new drugs that can inhibit proteins’
uncontrolled behaviour [15].

When investigating the role of conformational transitions in biological func-
tion from a computational perspective, the first stage is devising a formali-
sation of the problem in question, which involves specific domain knowledge
and thus a collaboration between biologists, chemists, physicists and computer
scientists. Various formal abstractions of problems related to protein struc-
ture, or their equivalent transformations have been proven to be NP-hard or
NP-complete [7, 8], which means that there are no algorithms which can solve
these problems in realistic time. The complexity of the protein conforma-
tional transitions problem is further increased by the high dimensionality of
the space to be explored. For such classes of problems, heuristic techniques in-
spired from artificial intelligence and mathematical optimisation are certainly
suitable candidates. In addition to the difficulties mentioned above, obtain-
ing sufficient relevant experimental biological data for thorough analyses and
understanding is time-consuming and financially expensive.

Both the importance and the complexity of the problem motivate us to
investigate the usefulness of machine learning models and methods for the an-
alyzing and detecting the conformational changes in proteins. Our perspective
on the problem is new, to the best of our knowledge it has not been inves-
tigated in the literature, yet. We are confident that machine learning based
solutions are applicable and may lead to interesting and valuable information,
due to these models’ ability to discover hidden patterns in data.

3. Background

Proteins are large molecules, having significant roles in the structure, de-
velopment and functioning of living organisms. They are composed of basic
building blocks - amino acids - small molecules which chain together in order
to create proteins. The amino acids sequence forms the primary structure of
the protein, which can be represented as a string of symbols representing the
20 amino acids (they are encoded by the letters of the alphabet). Although
the sequence of amino acids is linear, the protein does not have an extended
conformation, as intramolecular forces between the amino acids lead to a fold-
ing of the protein. As soon as it is synthesized as a linear sequence of amino
acids, a protein folds in a matter of seconds to a stable three dimensional
structure called the protein’s native state. This structure of the protein is
very important, as it defines the protein’s function. However, proteins are
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Figure 1. Structural elements and their associated symbols
of the SA. Figure source: Alessandro Pandini [19].

dynamic molecules and undergo slight changes in their structures, according
to the function they are fulfilling and depending on environmental conditions.
Understanding and tracing these conformational changes (or transitions) could
help us gain new insight into the way proteins function.

When studying protein conformations, it can be noticed that there are sev-
eral frequently occurring conformations for small fragments. These so-called
states have been determined with various methods and encoded in Structural
Alphabets (SA) [18], which contain codes for the re-occurring short conforma-
tions. There are several types of SA, derived using various methods [16]. These
are particularly useful in computational applications, as they allow represent-
ing a three dimensional structure via a one dimensional array (a sequence of
characters of the alphabet), thus facilitating analysis of protein structure.

In our study we employ the structural alphabet derived by Pandini et al.
in [18]. This is composed of 25 codes, represented by 25 letters of the (con-
ventional) alphabet, each letter representing the short structural (three di-
mensional) element composed of four amino acids in the linear sequence of
the protein. The structural elements and their associated letters of the SA
are depicted in Figure 1. The structural element is characterized by the two
angles between consecutive amino acids (more specifically, between the alpha
carbon atoms of these amino acids) and by the torsion angle formed by all
four atoms [18].

Let us consider a protein Pr, whose primary sequence is composed of n
amino acids: Pr = p1p2 · · · pn. Then, a structural conformation of protein Pr
can be represented as a sequence of letters of length n − 3, where each letter
encodes the structure formed by four amino acids in the primary sequence:
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Figure 2. 3D view of protein 1HP9. Image from the RCSB
PDB (www.rcsb.org) [2] of PDB ID 1HP9 [24] 2.

C = s1s2 · · · sn−3. Slight changes in a protein’s conformation lead to different
conformations (thus different representations). One could imagine a sliding
window of length four, passing over the protein’s structure and each group
of four amino acids is represented by a symbol of the SA. An as example,
we present protein 1HP9 1 (a toxin from scorpion venom), which has a short
primary sequence (22 amino acids): GHACYRNCWREGNDEETCKERC. A
three dimensional view of this protein is illustrated in Figure 2. Five possible
SA representations of this protein from the analysis of conformations available
in a database of molecular simulations [13] are shown below (the symbols in
these representations are symbols of the structural alphabet [18]):

• QSUWNSVVVPRIJUUVVUV

• QSUWNSVVVPRIJUUVUUV

• RSUWNSVVVPRIKUUVVUV

• QSUWNSVVVPRGKUUVVUV

• QSUWNSVVVPRGKUUVVUV

It can be noticed that all these conformations have the same length of 19
symbols (= 22 − 3) and there are very slight differences among them. The
amount of changes is consistent with the timescale of the original simulation:
conformations were recorded at intervals of 1 picosecond.

4. Literature review

Several theoretical models have been proposed for modelling conformational
transitions, among which we mention those introduced by Miyashita et al. [14],
Whtford et al. in [27], Skjaerven et al. [22]. These were employed by physics-
based computational methods, such as molecular dynamics [17] or Monte Carlo
[12] to simulate the movement of atoms. However, although having the po-
tential to offer valuable information about protein structure, these simulations

1 http://www.rcsb.org/pdb/explore/explore.do?structureId=1hp9
2This image is used according to RCSB PDB Policies & References: http://www.rcsb.

org/pdb/static.do?p=general_information/about_pdb/policies_references.html.

www.rcsb.org
http://www.rcsb.org/pdb/static.do?p=general_information/about_pdb/policies_references.html
http://www.rcsb.org/pdb/static.do?p=general_information/about_pdb/policies_references.html
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are extremely computationally expensive and thus their time intervals are con-
siderably shorter than those of real biological conformational changes. Normal
Mode Analysis [22] and simplifications of it have been used in several cases
for modelling protein conformational transitions: Schuyler et al. present in
[21] a tool which is able to generate a transition pathway from a source to
a destination conformation and Al-Bluwi et al. use in [1] robotics inspired
methods (motion planning algorithms) to model conformational transitions.

Another technique presented by Haspel et al. in [9], who propose to trace
conformational changes from a start to a goal conformational state by mapping
the protein to a reduced representation, capturing low-energy conformations
with the help of a coarse-grained physics based energy function and applying
a sampling-based motion planning algorithm (again, inspired from robotics).
The limitations of these later solutions are that they either use relatively sim-
ple energy functions (which thus only consider a small number of energy pa-
rameters), or they provide approximations of the paths, which require further
refinement.

Raveh et al. introduce in [20] an approach called PathRover that, based
on initial external constraints can generate motion pathways. The motion
planning algorithm takes into account any available prior information and in-
corporates it into the algorithm of rapidly exploring random trees (RTT ). This
solution’s main advantage is that by using initial constraints, it narrows down
the search in high-dimensional spaces thus being significantly faster. They
managed to do that by integrating their solution into Rosetta - modelling
framework that aggregates algorithms for computational modeling and anal-
ysis of protein data. In order to successfully integrate it, they had to provide
energy functions, optimising protocols and techniques for sampling.

The generated pathways are the result of partial data assimilation in sampling-
based motion planning of molecules. As a result, each pathway has to form a
sequence that satisfies all the initial restrictions while consisting of clash-free
low-energy conformations. The challenge still remains in extracting physical
features from simulated motion and being able to bridge experimental and
computational observations. Significantly less options are explored in [20] be-
cause of the use of partial input but there is no learning involved based on
existing findings.

Cortés et al. propose in [4] a computational approach based on path plan-
ning. The technique is intended to predict the motions of the molecules of
the proteins. It is mentioned that motion planning techniques have lots of
applications in computational biology and that they can be successfully ap-
plied on protein study. The proposed approach is split in two main stages, a
geometric filtering phase and an energy based computation applied only on the
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solutions extracted from the first stage. One of the advantages of this split is
the increase in computational speed. The approach analysis shown that the
filtering stage is very effective and that it is capable to present very important
knowledge to biologists. However, the second stage still has some limitations,
since it cannot exploit all the provided knowledge.

The study we conducted on the current state-of-the-art on the problem of
identifying proteins conformational transitions revealed that a machine learn-
ing based computational model has not been investigated in the literature,
yet.

5. Theoretical model. Our proposal

As opposed to other approaches in the literature (Section 4), we tackle
the problem of determining conformational transitions in proteins from a
different angle and we derive a different formalization for it, starting from
a data set of more than 300 proteins and their associated conformations.
As described in Section 3, a protein Pr or length n can be viewed as
a word over the alphabet of 20 letters representing amino acids A =
{G,P,A, V, L, I,M,C, F, Y,W,H,K,R,Q,N,E,D, S, T}: Pr = p1p2 . . . pn,
where pi ∈ A, ∀i ∈ {1, 2, . . . , n}.

For each protein we are given thousands of different conforma-
tions, obtained by molecular dynamics simulations. Each conforma-
tion is converted into its SA representation. The structural alpha-
bet is composed of the 25 letters shown in Figure 1: SA =
{A,B,C,D,E, F,G,H, I, J,K,L,M,N,O, P,Q,R, S, T, U, V,W,X, Y }. It is
important to remark that although same symbols are being used both for
amino acids and for structural elements, these are actually completely dif-
ferent concepts (this is important to be remembered when processing and
experimenting on the data).

For each protein Pr = p1p2 . . . pn in the data set, we are given a large
number m of experimentally determined conformations (for the data set we
use, m = 10000). Therefore, for each protein we have a set S = {cj | cj =

c1jc
2
j . . . c

n−3
j , j ∈ {1, 2, . . . ,m}, ckj ∈ SA, k ∈ {1, 2, . . . n − 3}} of conforma-

tions. Considering all these conformations, a distribution matrix is computed
for each protein, which holds information about the SA elements’ distribu-
tion, for each position k, ∀k ∈ {1, 2, . . . , n − 3}. This frequency matrix can
be interpreted as a ”profile” of the protein dynamics where for each fragment
position we have a probabilistic measure of the occurrence of each letter in the
alphabet. An example of such a matrix, for the 5 conformations of the protein
1HP9 presented in Section 3, is given in Table 1. For each position in the
SA representation we compute the probability of occurrence of each symbol of
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
G 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0
N 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Q 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0.2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
S 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
U 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
V 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1
W 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1. Distributions of SA symbols for the example pre-
sented in Section 3.

the SA on that specific position. For simplicity, in Table 1 we only show the
distributions of the symbols occurring in the 5 conformations, but on a real
world example, all symbols of the SA are considered.

Furthermore, other useful biological information about the protein and the
composing amino acids can be considered (structure related information). For
instance, a property an amino acid is characterized by is the relative solvent
accessibility (RSA), which measures the solvent exposure of the amino acid.
This property is numerical and it can have different values for the same amino
acid, belonging to different structural environments. Another example would
be the amino acid’s hydrophobicity, a physical property which measures how
much the amino acid is repelled by water. This is important, as hydrophobic
forces are decisive factors in the protein folding process.

Considering the input information described above, we formulate the prob-
lem of determining protein conformational transitions as follows:

• Given:
– A protein, as a string of amino acids.
– Other structurally significant, biologic characteristics of amino

acids (e.g. RSA values, hydrophobicity).
– A small number of conformations (e.g. 10 conformations, de-

termined using molecular dynamic methods).
• The requirement is to solve any or both problems below:
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– Generate a matrix of probability distributions similar to the one
presented in Table 1, corresponding to all m possible conforma-
tions (even though these are not known).

– Generate all m possible conformations for the protein.

Our aim is to further formalize the problem, considering various combina-
tions of possible input data in order to be able to approach it from a ma-
chine learning perspective. Nonetheless, both requirements are difficult and
conventional machine learning techniques are very probably not sufficient for
satisfying results, therefore a more thorough investigation, as well as new or
hybrid techniques are demanded in order to solve any of the two formulations
of the problem.

6. Experiments

In this section we aim to give an empirical confirmation of our hypothesis
that machine learning methods are applicable for analyzing proteins conforma-
tional transitions. More specifically, our focus is to highlight that unsupervised
learning methods are able to capture patterns among the conformations of the
same protein, as well as relationships between related proteins, relations which
are confirmed from a biological perspective.

We considered an experiment consisting of seven proteins (codes: 1ASH,
1DLW, 1ECA, 1C52, 1CCR, 1APQ, 1COU in the Protein Data Bank [2]),
taken from three different superfamilies (1.10.490.10, 1.10.760.10, 2.10.25.10).
The superfamilies for the proteins were determined using CATH Protein
Structure Classification database [3] which is a publicly available online
resource that provides information on the evolutionary relationships of pro-
tein domains [5]. In this database, two proteins are considered in the same
superfamily if there is a similarity between their three-dimensional structure
[11].

Table 2 illustrates the superfamilies for the seven proteins considered in
our experiment, as well as the similarity index between the proteins belonging
to the same superfamily, as provided by the FATCAT algorithm (Flexible
structure AlignmenT by Chaining Aligned fragment pairs allowing Twists)
[28].

From Table 2 we observe that the proteins from the first two families have
a similarity index about 20%, while the proteins from the third family have
the lowest similarity index of about only 5%.

In order to test our hypothesis that unsupervised learning models are able
to capture the biological relationships between proteins data, we performed
the following experiment.
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# Superfamily Proteins Similarity index

1 1.10.490.10 {1ASH, 1DLW, 1ECA}
1ASH - 1DLW: 20.57%
1ASH - 1ECA: 25.85%
1ECA - 1DLW: 19.08%

2 1.10.760.10 {1C52, 1CCR} 1C52 - 1CCR: 27.10%
3 2.10.25.10 {1APQ, 1COU} 1APQ - 1COU: 4.92%

Table 2. Sample proteins

A B C D E F G H I J K L M N O P Q R S T U V W X Y
0 0 0 0 0 0 0.021 0 0.031 0.021 0.031 0 0 0.052 0 0.052 0.042 0.063 0.105 0 0.221 0.305 0.052 0 0

Table 3. Probabilities of occurrence of SA symbols for the
example presented in Section 3.

We are further considering the theoretical model introduced in Section 5.
For each protein, 10000 conformational transitions are known. The specific
data we use is retrieved from MoDEL, a database which includes representa-
tives from different protein families and fold arrangements [13]. Our current
experiment’s goal is to investigate whether biologically relevant correlations
could be found within the given numerical data and to mine this given data in
order to discover significant signals than can later be used by machine learn-
ing strategies to solve the problem described and defined in Sections 3 and
5. For this purpose, we use a further simplified representation of a protein:
instead of the frequency matrix, we use a frequency vector, constructed as
follows. For each of the 25 letters li (1 ≤ i ≤ 25) from the structural alpha-
bet and each protein Pr, we compute the probability pPr

li
of occurrence of

each letter li in the conformational transitions of protein Pr. Thus, a protein
Pr may be visualized as a 25-dimensional vector containing the probabilities
of occurrence of the symbols from the structural alphabet in the given pro-
tein, Pr = (pPr

l1
, pPr

l2
, . . . , pPr

l25
). For the protein example presented in Section

3 (1HP9), including the 5 presented conformations, the frequency vector is
presented in Table 3.

Considering the above modelling, each of the seven proteins considered in
our case study is represented as a multi-dimensional vector. Our focus is to
test if the conformational transitions of the proteins provide useful informa-
tion regarding their three-dimensional structure and if an unsupervised learn-
ing model is able to capture this type of biological relationships between the
proteins.
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(a) Proteins 1ASH, 1DLW, 1ECA,
1C52, 1CCR, 1APQ and 1COU.

(b) Proteins 1ASH, 1ECA and
1COU.

Figure 3. U-Matrix visualization.

We will use a self-organizing map (SOM) as an unsupervised learning model.
SOMs are known to be powerful data mining tools for visualizing high-
dimensional data. A self-organizing map [23] is a type of artificial neural net-
work that is trained using unsupervised learning to provide a low-dimensional
representation of the high-dimensional input space, called a map [6]. The
topological mapping is the main characteristic of the unsupervised mapping
provided by a SOM, more exactly the input samples which are close to each
other in the input space will be mapped into neighboring neurons on the out-
put map.

6.1. Results and discussion. We mapped the seven proteins described
above (considering their 25-dimensional representations) on a SOM having
a torus topology. For the SOM visualization, we use the U-Matrix method
[10] with the following interpretation: the lighter regions express data that are
dissimilar while darker regions contain data that are similar.

Figure 3a depicts the U-Matrix visualization of the SOM trained on the
seven proteins. Visualizing the U-Matrix for the resulting map, we clearly
observe three regions corresponding to the three protein families described in
Table 2.

Figure 3b illustrates the U-Matrix visualization of the SOM trained on only
three proteins: 1ASH, 1ECA and 1COU. From these, only the first two belong
to the same superfamily. This can be visualized on the U-Matrix, since there is
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a clear separating boundary between the protein 1COU and the class formed
by the other two proteins.

The results previously described and depicted in Figures 3a and 3b indicate
the potential of unsupervised machine learning models (the self-organizing
map, in our case) to uncover patterns encoded in the conformational transi-
tions of proteins.

7. Conclusions and future work

In this paper we have investigated the problem of analyzing the confor-
mational transitions of proteins, with the more general goal of contributing
to a comprehensive understanding of the problem. We presented the current
state-of-the-art approaches and we proposed a new computational perspec-
tive on the problem, based on machine learning. Our proposal represents the
starting point of a research initiated on the topic approached in this paper,
our long-term goal being to offer additional insight into the construction and
functioning of proteins.

We also highlighted, through a data mining experiment, that the informa-
tion obtained through analyzing proteins conformational transitions capture
the relationships between related proteins, relations which are confirmed from
a biological perspective.

Starting from the computational model proposed in Section 5, future work
will be done in order to apply concrete supervised machine learning methods
(e.g. artificial neural networks, support vector machines) for predicting the
conformational transitions of proteins, as well as the matrix of probability
distributions associated to protein conformations.
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