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ALGORITHMS FOR YIELD PREDICTION OF CORN AND
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Abstract. In this research, our objective is to identify the relationship
between the date of seeding and the production of corn and sunflower
crops. We evaluated the feasibility of using prediction models on a dataset
of annual average crop yields and information on plant phenology, from sev-
eral states of the US. After performing data analysis and preprocessing, we
trained a selection of regression models. The best results were obtained for
corn using HistGradientRegressor and XGBRegressor with R2 = 0.969 for
both algorithms and MAE% = 8.945%, respectively MAE% = 9.423%.
These results demonstrate a good potential for the problem of yield pre-
diction based on year, state, average plating day, and crop type. This
model will be further used, combined with meteorological data, to build
an agricultural crop prediction model.

1. Introduction

The problem of increasing crop yields and optimising agricultural produc-
tion has become more relevant in the context of the growing population world-
wide [27]. Recent years have added to this the rapid issues of climate change,
which involve water shortages and soil erosion, which affect crop yield (with a
projected decrease in corn production of 20-45% by 2100) [3].

Land degradation results in the reduction of available land for crops, unless
it is rehabilitated in a sustainable way. Although many agronomic mitigating
practises are being proposed, there must be an in-depth analysis as to which is
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the optimal approach, considering that they rely on economic viability, tech-
nical complexity, and the perception of the people involved [17]. Furthermore,
it seems that several crops (for example corn), when using the planting green
method, can become vulnerable to losses, while others are more stable (such
as soybeans) [25].

Digital farming tools enhanced with artificial intelligence and machine learn-
ing models have the potential to help mitigate these issues and bring efficiency
to crop management and protection. For example, they can reduce the usage
of fungicides by up to 30% and the tank residues by up to 75%, through more
precise calculations, thus reducing environmental pollution [28].

Furthermore, machine learning can be used successfully to identify factors
that increase crop production under different environmental conditions, as well
as model and predict future yields [20]. Many crops have a wide window of
ideal plating date (60-90 days). However, crop success can also be influenced
by changes in climate or soil composition; therefore, finding optimal planting
windows in this context, with its associated risks, is a case-by-case problem for
each crop and region [16]. The shortening of the planting window to a shorter
optimum must be carried out for each region, according to the characteristics
of the climate and hybrid type [5].

In this paper, our objective is to address the feasibility of using regression
algorithms to predict corn and sunflower yields, based on the plating date and
region, with limited available data. For this, we used historical crop data from
several US states that were available online. These crops have been chosen
as they are among the most widely cultivated in Romania. As algorithms
have proven potential, our aim in future work is to gather Romanian specific
crop data and apply machine learning algorithms for a more particular yield
prediction.

In the following sections, we will present the related work for this specific
problem, as well as the methods used in our experiments and the results
obtained.

2. Related work

The problem of optimising yield based on seeding date is approached in
many agricultural field researches with specific findings for each location, crop
type, and climate particularities.

Patel et al. [24] analyse the effect of different sowing dates for rice crops,
emphasising the importance of correlating the sowing date with the most
favourable weather conditions of the region. The adaptation of the sowing
date and the timing of management practises, as a result of climate change,
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are also urged by looking at the effects of the sowing date of spring barley and
maize in Germany and Poland [18].

For summer maize in irrigated crops, from the semi-arid Guanzhong region
of China, an optimum planting date and water requirements for increased yield
were modelled based on crop phenology, grain yield, above-ground biomass
and leaf area index, using the Decision Support System for Agro Technology
Transfer (DSSAT) Version 4.6 [26]. The results were statistically calculated on
the observed data, obtaining a normalised root mean square error (nRMSE)
of 9.91%, and R2 = 0.62. An other study referring to summer maize in China
regions argues that, given specific conditions of extreme heat, delaying the
sowing date would improve the maize yield by 2–25% [15]. A late sowing date
appears to be the best for overall yields for irrigated regions in the Mediter-
anean also [19], and a mid-to-late for the North China Plain [30].

When cultivating sunflower in Mediteranean climate conditions [12], the
most effective was a later date, under rainfed conditions, but an early date in
regions with little water availability. A study carried out on sunflower crops
in Punjab, Pakistan [29], recommends earlier sowing dates for spring sowing
and delayed sowing dates for fall, to mitigate the warming effects of climate
change and ensure sustainable productivity.

A limitation of the studies presented above is that they only use a narrow
data range of 1 to 3 years and a few plantations (1-5), which means that
annual seasonal meteorological variations are not always accounted for [23].
Additionally, regional characteristics (soil type, climate) for the specific hy-
brids [2] will have an influence on yield, but field data is limited to one or two
regions in most studies.

In this sense, machine learning can help model these problems, using differ-
ent algorithms and techniques for data preprocessing and augmentation, and
may leverage the effect of a single independent variable, which may not be obvi-
ous, in contrast to statistical models [20]. Algorithms such as Artificial Neural
Networks, Support Vector Regression, k-Nearest Neighbour, Multiple Linear
Regression, M5-Prime have been successfully applied with accurate results in
estimating crop yield [13]. The accuracy metrics that are generally used for
validation are Root Mean Square Error (RMS), Root Relative Square Error
(RRSE), Normalised Mean Absolute Error (MAE) and Correlation Factor (R)
or Coefficient of Determination (R2 - basically, the square of the correlation
coefficient) [7].

Yield prediction is a sub-field of crop management, and most research papers
related to machine learning focus geographically on China, USA, India, and
Brazil [4], with limited interest in European countries, especially Romania.
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Alam et al. [1] use regression to determine the correlation between sowing
dates and maize grain yield in Bangladesh, obtaining R2 = 0.972. In Mourtzini
et al. [20] process crop information for maize (n = 17,013) and soybean (n
= 24,848) (including yield, crop management), and weather data involving
28 US states, between 2014 and 2018. The data was split in training (80%)
and test (20%). The extreme gradient boosting (XGBoost) algorithm was
trained to predict the yield based on the previous variables, resulting in a
mean absolute error (MAE) of 4.7 with R2 = 0.94 for maize, and MAE=6.4
with R2 = 0.92 for soybean. Evaluation was performed using ten-fold cross-
validation. A similar study uses the functional gradient descent algorithm on
the data from the US corn and soybean, with a split of 85% training and 15%
test [21]. The model predicts that early sowing dates can increase soybean
yield by 10% in most US states, in the simulated context of climate change
with a 30% reduction in precipitation during the summer months.

In the case of wheat yield prediction in Australia, Random Forest and Mul-
tiple Linear Regression models are used with meteorological data, identifying
drought seasons as the main factor in yield losses [10]. The forecasts at 35
days before harvest were r = 0.85, MAPE = 17.6%, and 60 days before harvest
r = 0.62, MAPE = 27.1%.

For the prediction of massive crop yields, Gonzalez-Sanchez et al. [13] anal-
yse several algorithms on ten crop datasets. The M5-Prime Regression Trees
and the k-Nearest Neighbour obtain the lowest average RMSE errors (5.14 and
4.91), the lowest average MAE errors (18.12% and 19.42%), and the highest
average correlation (0.41 and 0.42), followed by Multiple Linear Regression,
Multilayer Perceptron Neural Networks, and Support Vector Regression. In
another study, Deshmukh et al. [9] analyse several algorithms (Random For-
est, KNN, Näıve Bayes, XGBoost) for the top three crop recommendations for
an optimised yield, of which XGBoost provides the best results.

3. Methods

Given the variety of approaches and results for different algorithms, we have
selected the best potential for our specific data. Our approach focuses on the
two types of crops: corn and sunflower.

3.1. Data preprocessing. The data have been extracted from the US Na-
tional Agricultural Statistics Service [31]. Although there are sufficient entries
(with n = 88808 data instances) and many machine learning approaches for
the corn data, as presented above, the sunflower data are limited to n = 312 in-
stances for the sowing date and the corresponding yield, which is not sufficient
for the accurate training of the regression model. Therefore, data preprocess-
ing involved first the aggregation of yield data (in lb/ac) for each state and
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year with the seeding date for both crops. The information available on the
planting was in the format of percentage of the crop planted each week of the
year. Using this information, a new feature was created as the average plant-
ing day of the year (D or AVGWeek), calculated as a weighted average based
on the weekly percentages, with di the day of seeding and wi the cumulative
percentage planted up to that date di, with w0 = 0 (see Equation (1) below).
The resulting date was then translated into the day of year (with January 1
being the first day of year).

(1) D =
1

n

n∑
i=1

di(wi − wi−1)

Data cleaning was also performed to remove inconsistent field values or
incomplete entries. As a result, we obtained n = 88808 instances for corn, for
several years from 1979 to 2022. This is described in Figure 1.

For sunflower, given the available yield data, the information that was not
available on the seeding date was completed using the forward fill method,
which means similar planting dates for the same state, thus resulting n = 1108
instances, for several years in the range 1950 to 2021. The data description
plots for sunflower are shown in Figure 2.

As a result, for each crop dataset, an entry contains 5 features: the year
(type int), the state ANSI (type int), the crop type (Irrigated, Non-irrigated
and Total, which have been encoded using the factorise method), the yield (of
type float) and the planting day of year (of type float). From these data, we
can extract and visualise the plating day-of-year interval window used in each
state, across the reference years. In Figure 3, it can be observed that there are
fewer states available for the sunflower dataset. The planting days are from
day 80 to day 170 for corn and from day 135 to day 170 for sunflower, with
the width of the planting windows ranging from 15 to 40 days.

Furthermore, the correlation matrices were also calculated and are shown
in Figures 4 and 5. For corn, we note a 0.22 positive correlation between the
yield and year, and a negative correlation between crop type and yield.

In the case of sunflower, we observe a 0.57 positive correlation between year
and yield value, and 0.25 between year and average planting day of year. The
correlation between the yield value and the average day of planting is 0.13, and
there is a negative correlation between the type of crop and the yield value.

Given the correlation in both datasets between year and yield, we have
analysed the line plots of crop yield for each state per year, in Figure 6. It
can be observed that the overall tendency is that yield increases over time.
As this might be due to several factors, including technological agricultural
advancements (availability of machinery, fertilisers, pesticides, new hybrids,



26 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

Figure 1. Feature description for the corn crop dataset fea-
tures: Year, State ANSI (or state numerical code), AVGWeek
(the average plating day of year) and Value (the yield value).

etc.), we decided to perform two experiments: one in which all features are
involved in yield prediction, and one in which the year feature is removed,
remaining only state code, crop type, and average plating day to be considered
in the prediction of the crop yield.
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Figure 2. Feature description for the sunflower crop dataset:
Year, State ANSI (or state numerical code), AVGWeek (the
average plating day of year) and Value (the yield value).

3.2. Models training. Based on the literature review, we have selected sev-
eral regression algorithms that are appropriate for our specific problem.

3.2.1. DecisionTreeRegressor. A Decision Tree is built in the form of a tree-
like hierarchical structure, containing internal nodes (or decision nodes) and
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Figure 3. The average planting day of year window in each
state (based on state ANSI) for corn (left) and sunflower(right).

Figure 4. Correlation heat map for the corn crop dataset

leaf nodes (or prediction nodes). The height and width of such a tree depend
on the data characteristics, amount, and algorithm configuration. In the case



YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 29

Figure 5. Correlation heat map for the sunflower crop dataset

Figure 6. Yield value per year for each state for corn (left)
and sunflower (right).

of prediction, we use an input xi to go down the tree using decision nodes, up
to a leaf that contains the predicted yi value [8].

3.2.2. RandomForestRegressor. Random forest is an algorithm that groups an
ensemble of growing decision trees, depending on a random vector f(ϕ) . Thus,
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the predictions are performed by aggregating the predictions of all the decision
trees h(x, ϕ) [14].

3.2.3. HistGradientBoostingRegressor. The Histogram-based Gradient Boost-
ing Regression Tree also uses ensemble decision trees. It improves performance
by adding new corrective models in a greedy stepwise manner, with the aim
of reducing the square error loss function until it is acceptable [11]. The his-
togram is an efficient data structure used by the tree-building algorithm to
accelerate the process.

3.2.4. XGBRegressor. The XGBoost is a scalable end-to-end Gradient Boost-
ing Tree system that is using cache access patterns, data compression, and
block sharding to optimise resource use [6].

3.2.5. Models training and hyperparameters tuning. The algorithms presented
above have been trained and tested using a data split of 20% for testing and
80% for training. Next, the parameters were fine-tuned; for XGBRegressor
the number of estimators was set to 500, max depth to 8 and learning rate
to 0.1. HistGradientBoostingRegressor used a learning rate of 0.01, with the
maximum iterations set to 1000 and the loss function Poisson. RandomFore-
stRegressor was set to use 25 estimators with a maximum of 4 features and
at most 700 leaf nodes, with a random state of 45. For DecisionTreeRegressor
the max depth was set to 10, the other parameters being as default by the
Sklearn Python library implementation.

3.3. Models evaluation. For the model evaluation we used the k-fold cross-
validation with k = 10. We note the mean absolute error (MAE), which is
calculated as an average of the absolute prediction error as in Equation (2),
where yi is the observed value and ŷi is the predicted value.

(2) MAE =
1

n

n∑
i=1

|yi − ŷi|

Another metric used is the coefficient of determination R2, which represents
how much of the variation in the y values (yield in our case) is taken into
account by the involved features, computed as in Equation (3), where ȳ is the
mean of the observed values [22].

(3) R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

We also computed MAE%, computed by dividing MAE by the average yield
value for corn and sunflower, respectively, as described by Formula (4):



YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 31

(4) MAE% =
MAE

1
n

∑n
i=1 yi

∗ 100

4. Results and Discussion

The results obtained by each model are presented in Table 1 below, in which
we provide the values for the mean (M) and standard deviation (SD), for the
datasets including all features or without year (w/t year). The best yield
prediction was obtained by the XGBRegressor (with R2 = 0.969 for corn and
R2 = 0.905 for sunflower) and HistGradientBoostingRegressor (R2 = 0.969,
for corn and R2 = 0.884 for sunflower), when all features were included.

While the R2 score is lower when the year is removed, it is still greater than
0.9 for corn, with the best result for sunflower being 0.815.

The prediction plot is visible in Figure 7 for the corn dataset, including
both experiments: using all features, and when removing the input feature
that represents the year. Figure 8 presents the regression plot for sunflower
with all features and, respectively, without year. In both figures, the x axis
represents the actual yield, and the y axis is the predicted yield.

Figure 7. Corn crop yield prediction plot using all features
(left), and without year (right), using the XGBRegressor model

Based on these results, we can state that the algorithms used in the predic-
tion reveal models with a good correlation of the selected characteristics (year,
state, plantation date, type of crop) with yield. From these, the year and the
planting day appear to be both relevant features in predicting the yield for a
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Table 1. The results on yield prediction for each algorithm

XGBRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.969 0.006 7.864 0.634 9.423
Sunflower 0.905 0.028 106.778 10.473 9.768
Corn (w/t Year) 0.907 0.013 14.299 0.976 17.134
Sunflower (w/t Year) 0.815 0.047 156.957 13.515 14.359

HistGradientBoostingRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.969 0.006 7.465 0.619 8.945
Sunflower 0.883 0.032 119.289 10.838 10.913
Corn (w/t Year) 0.909 0.015 12.736 1.187 15.261
Sunflower (w/t Year) 0.797 0.047 167.133 13.687 15.290

DecisionTreeRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.940 0.010 10.009 0.776 11.993
Sunflower 0.861 0.039 124.517 13.345 11.391
Corn (w/t Year) 0.870 0.021 14.587 1.139 17.479
Sunflower (w/t Year) 0.753 0.056 180.455 15.437 16.509

RandomForestRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.959 0.007 8.483 0.700 10.164
Sunflower 0.905 0.026 107.432 10.457 9.828
Corn (w/t Year) 0.891 0.018 13.779 1.235 16.510
Sunflower (w/t Year) 0.794 0.043 168.073 13.256 15.376

specific geographical location (state). These are in agreement with the results
obtained and the findings described in the state-of-the-art literature presented
in Section 2.

We also note the high metrics obtained for predicting the sunflower crop
yield, where the available data were limited, which means that the total num-
ber of instances was n = 1108. Of these only n = 312 contained complete
information regarding the plating day, the others were completed by our al-
gorithms in the preprocessing phase. This is an important finding, because
no other study has performed similar experiments on such a small number of
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Figure 8. Sunflower crop yield prediction plot with all fea-
tures (left), and without year (right), using the XGBRegressor
model

instances for a crop dataset, considering our goal is to train models on Ro-
manian crop datasets also, for which the data are being collected, and are
expected to be reduced in size. This is due to the fact that the collection is
not yet being centralised by a national statistical organisation, but privately
gathered by smaller independent agricultural entities for their own research
and seasonal activity.

Figure 9. Geographical location of the available data. Blue
dots represent states with corn crop data. Red dots are states
with sunflower crop data.
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5. Conclusions and future work

In this paper, we analysed two crop datasets for the purpose of predicting
the yield based on the plating date. We obtained the best score of R2 = 0.969
for the corn dataset (n = 88808) and R2 = 0.905 for the sunflower dataset
(n = 1108), using XGBRegressor.

To better isolate the effect of the plating date from other factors, such
as technical advances throughout the years (especially given the wide range
of years of available data and the tendency of yield increase throughout the
years), we repeated the experiments without the year component. In this
case, the best results were obtained using the HistGradientBoostingRegressor
for the corn dataset (R2 = 0.909).

Given the results obtained, we conclude that the plating day of year has
a significant influence on crop yield prediction, for both corn and sunflower
datasets. We also note that it is feasible to use regression algorithms to suc-
cessfully predict crop yield even in cases where the available data are limited
(as in the case of the sunflower crop), using adequate data preprocessing tech-
niques. This finding is relevant for our planned work, because we expect the
initial available data to be reduced and perhaps incomplete.

As next steps, we aim to collect several crop data sets specific for the Roma-
nian agricultural sector and train predictive models adapted to geographical
and crop particularities.

Also, considering the literature in the field stating that the seeding date
might be in itself influenced by specific climate changes or meteorological sea-
sonal variations, further work also involves correlating these parameters, in
the context of global warming and its effects in agriculture.
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Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: alina.calin@ubbcluj.ro

Email address: horea.muresan@ubbcluj.ro

Email address: adriana.coroiu@ubbcluj.ro




