
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 2, 2022
DOI: 10.24193/subbi.2022.2.03

COROUTINES COMUNICATIONS. DESIGN AND

IMPLEMENTATION ISSUES IN C++20

RADU LUPŞA AND DANA LUPŞA

Abstract. This paper explores the communication mechanisms and pat-
terns available to coroutines to cooperate with one another. It investigates
the issues in designing and implementing a framework for using C++20
coroutines effectively, for generators, asynchronous function calls, and es-
pecially asynchronous generators.

1. Introduction

Coroutines are a programming concept that allows execution to be sus-
pended and resumed. A coroutine can transfer the control to other piece of
code and, when getting back the control at a later time, it continues from the
next instruction and with all the data restored, including the execution stack.

Coroutines were originally proposed in 1963 and also were studied quite
thoroughly in 1960’s to beginning of 1980’s. The interest to coroutines has
resurfaced in recent years, with several mainstream languages offering some
support to coroutines.

Even though coroutines dates back to 1963 [9] , they are still found useful in
modern applications. For example, a recent work on coroutine study the use
of corotuine for a web crawler [15]. Coroutines were proven to perform better
than single-threaded and multi-threaded versions. Performance improvement
was also demonstrated for coroutine use in I/O requests [14]. When used
on Android, coroutines achieve better performance when compared to some
existing concurrency frameworks [8]. Also, lot of recent academic works study
the application of coroutines on resource-constrained platforms, in the Internet
of Things and Embedded Systems [7].

Received by the editors: 4 December 2022.
2010 Mathematics Subject Classification. 68N19, 68Q85.
1998 CR Categories and Descriptors. D.3.3 [Software]: Programming Languages –

Language Constructs and Features; D.1.3 [Software]: Programming Techniques – Language
Concurrent Programming .

Key words and phrases. asynchronous programming, coroutines, language design.

37

38 RADU LUPŞA AND DANA LUPŞA

While there are a lot of works exploring the low level aspects and the ap-
plicable aspects of using coroutine in asyncronous processing, not so much is
studied about higher-level abstractions and patterns. However, in [13] there
is a review about the following patterns: The Producer–Consumer Problem,
Generator, Goal-oriented programming, Cooperative Multitasking. They also
discuss Exception Handling, but this is more of CPS than coroutines. [10]
also present an implementation approach to asynchronous programming and
generator based on coroutines.

The coroutine primitives provided in C++20 are very powerful, but they are
very complicated to use directly. In this paper, we explore how to use them
to build the producer-consumer patterns and cooperative multitasking.

The rest of the paper is organized as follows. The next section makes an
overview of the most known coroutine classification and presents the char-
acteristics of coroutines existing in some programming languages. Section 3
details two main scenarios for inter-coroutine communication. Section 4 pro-
poses a framework over C++20 coroutines allowing several use cases: to make
an asynchronous call and switch to some other coroutine until the asyncronous
call completes, to have a coroutine yielding a sequence of values (to implement
a generator) and to combine those two features together. The paper ends with
a short review over the main things that are presented in this paper.

2. What is a Coroutine

Essentially, a coroutine is an execute thread, together with the notion of
current instruction, execution stack together with arguments, local and tem-
porary variables. However, unlike threads, switching to or from a coroutine is
done at the current coroutine request, instead of unpredictable, whenever the
operating system decides to.

According to [12], the characteristic property of a coroutine is that it can
transfer the control (yield) to other code and, when getting back the control
at a later time, it continues from the next instruction and with all the data
restored, including the execution stack.

There are 3 important classification criteria for coroutine support in a corou-
tine implementation [13], [10]:

symmetric vs asymetric: : in symmetric coroutine implementation,
any coroutine can transfer control to any other coroutine; with asym-
metric coroutines, a caller coroutine can transfer control to a subor-
dinate coroutine, while the subordinate can only transfer back to the
caller (or to own subordinates).

stackfull vs stackless: : a stackless coroutine can transfer control
only from its main function; a stackfull one can transfer control from

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 39

within a called function at any depth. However, as a partial work-
around, a stackless coroutine can create and call a child stackless
coroutine, which can then transfer control to some other coroutine.

first class vs constrained: : a first-class coroutine is explicitly ma-
nipulated by the programmer, via handles that can be passed around
and stored in variables; constrained coroutines exist only implicit,
within some programming constructs such as a generator created
based on yield statements and iterated within a foreach loop, or
the async-await mechanism, both introduced in C# [4], [5] and also
available in other languages such as Python.

2.1. Existing coroutine support in programming languages. Windows
Fibers [6] are symmetric, stackfull, first-class coroutines. The API is con-
structed for the C language. The basic operations are: CreateFiber(),
that creates a coroutine, given its main function, SwitchToFiber(), that
suspends the current coroutine giving control to the specified coroutine, and
DeleteFiber(), that deletes the specified coroutine.

Lua coroutines [11] are asymmetric, stackfull, first-class coroutines. The
basic operations are: coroutine.create() that creates a child coroutine,
coroutine.resume(), that transfers control to the specified child coroutine,
and coroutine.yield(), that transfer control to the parent coroutine. An in-
teresting feature is that an additional parameter given to coroutine.resume()
(beside the coroutine identifier) gets retrieved inside the coroutine as the re-
turn value of coroutine.yield() and, vice-versa, any parameter given to
coroutine.yield() can be retrieved in the parent coroutine as the returned
value from coroutine.resume().

C# coroutines [4], [5] are stackless, constrained coroutines (symmetry is a
bit unclear). They occur under two forms: generators and the async-await
mechanism. A generator looks like a function returning an IEnumerable. The
parent coroutine transfers the control to the child by a call to MoveNext()

on the corresponding iterator; the control is transferred back to the parent
by a yield return statement in the generator. In an async-await scenario,
the mechanism is more complex and involves threads and some thread pool
mechanism in addition to the coroutines. A coroutine is marked with the
async keyword and must return a Task or a Task<T>. An await statement
inside a coroutine suspends it and may transfer control to a coroutine that is
runnable at that time. The coroutine is resumed when the awaited future is
completed.

C++20 coroutines [1] are symmetric, stackless, first-class coroutines, al-
though the mechanism for controlling them is complex, poses some constraints

40 RADU LUPŞA AND DANA LUPŞA

and offers distinct mechanisms for symmetric and asymmetric transfer of con-
trol. A coroutine main function is identified by having one or more of the
co await, co yield or co return statements within its body. The declared
return type of a coroutine main function is a user-defined type that serves two
purposes: on one hand, it is created when starting the coroutine and should be
a wrapper over the coroutine handle, and, on the other hand, it must declare
an inner class, promise type, containing some member functions that control
the behavior of the coroutine. It is those functions that decide if and to which
coroutine should the control be transferred as a result of co await, co yield

or co return. These functions also allow data to be transmitted between
coroutines in a user-customised way, allowing the construction of higher level
mechanisms.

3. Communication between coroutines

Regardless of the lower level mechanisms of handling coroutines, there are
two higher level patterns that cover most uses of coroutines:

• Producer-consumer scenarios, where one coroutine produces values
for the consumption of another, with passing control together with
the values.

• As ”poor man’s threads”, that is to switch from a task, that cannot
be continued because it depends on some external data, to another
task, that can be continued.

3.1. Producer-consumer scenario. In this scenario, there is a producer
and a consumer, and both are written as in full control, each having a main
loop. Thus, the producer will have the main loop and will repeatedly execute
a statement (usually called yield) that pushes a value to the consumer; the
consumer also has the main loop and repeatedly pulls data from the producer,
often just through a special form of a for loop. The producer push (yield) op-
eration needs to both give data and switch control to the consumer coroutine;
the consumer pull operation needs to give control to the producer and, when
the control is transferred back, to return the data pushed by the producer.

3.2. Poor man’s threads scenario. This scenario considers several inde-
pendent operations. We want that, when one operation is blocked waiting
for an asynchronous operation, to schedule another. Each operation has its
own coroutine and decides when it can pass the control to another. This way,
coroutines are used as a cooperative multitasking mechanism.

Each coroutine acts as a line of execution, similar to a thread. Its main
advantage, though, is that it is handled in user space, which means that it is
cheaper to switch from a coroutine to another. Also, since control is yielded

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 41

only at some specific points within the code, concurrency control can be re-
laxed.

When a coroutine executes an asynchronous operation (an operation that
has to wait for an external event, such as read from input, from a socket,
sleep for an amount of time, wait for a computation executed on some other
thread), the coroutine must do three operations:

(1) start the asynchronous operation;
(2) arrange so that the completion notification of the operation marks

the coroutine runnable again;
(3) invokes a scheduler that switches to a runnable coroutine.

It is important to note that, in this scenario, coroutines are mostly inde-
pendent from one another, so, switching from a coroutine to the next is not
accompanied with passing information. On the contrary, even deciding which
coroutine is the next one is independent of the main bussines of the current
coroutine, so, it is delegated to a scheduling mechanism. Furthermore, the
scheduler can also move a coroutine from one thread to another.

4. Designing asynchronous generators

The basic usages of constrained coroutines in programming languages like
C# and Python is for generators and for the async-await pattern.

We will look into creating these mechanisms with C++20 coroutines and
combining them to form asynchronous generators.

Note that the C# language, that invented the async-await mechanism, does
not support asynchronous generators yet, although the work in this direction
is under way. Python has it implemented [3], and it comes in a straightforward
way from the generators and the async-await. Both use a scheduler mecha-
nism to decide which coroutine gets the control when the current one gets
suspended, but neither gives the programmer explicit control to choose the
scheduler.

There also exists an implementation for asynchronous generators using
C++20 coroutines — the CppCoro project [2]. However, our framework has
two important differences over what CppCoro provides:

(1) we provide primitives for conveying data from sources or to destina-
tions that are not implemented as coroutines, while CppCoro only
provides the possibility for a non-coroutine source to signal to a
coroutine that it can proceed, and similar for a coroutine source
to a non-coroutine consumer;

(2) we allow a scheduler to decide which coroutine would take over the
current thread when the current coroutine gets suspended, thus using
the symmetric coroutines mechanism in C++20 coroutines; CppCoro

42 RADU LUPŞA AND DANA LUPŞA

returns the control to the parent (or latest resumer), using the asym-
metric coroutine mechanism in C++20 coroutines.

4.1. Implementing a generator mechanism. The common way the com-
munications and coroutines work together is the generator mechanism. We
implemented a small C++20 framework allowing an easy way to write a gener-
ator — as a coroutine function that produces values and pushes them via the
co yield statement to the consumer — and the consumer code — that can
consume the elements via the standard iterators mechanism, for example as a
simple foreach style for loop.

The proposed implementation has the following elements:

• The returned type for the producer coroutines is a template over the
produced objects, Generator<T>;

• The Generator<T> object contains only the coroutine handle;
• The Generator<T>::promise type holds the value between the pro-
ducer and the consumer, as an std::optional<T>. An empty op-
tional signifies the end of data.

• The producer coroutine starts suspended (initial suspend() in
promise type returns std::suspend always). This way, we have
a lazy evaluation mechanism — the values are produced on demand.

• The consumer calls a function next() defined in Generator<T>. This
resumes the coroutine (suspending the caller).

• The producer coroutine sends the data items via the co yield, invok-
ing the yield value() in the promise type, which stores the value
and suspends the producer coroutine, resuming the caller (consumer)
code.

• The next() call returns in the value in the consumer code.
• At the end, the producer coroutine ends, leading to the runtime
invoking return void() in the promise type. This stores a null
optional, suspends the producer coroutine and resumes the consumer.
The consumer must not invoke next() after a null was returned.

• The next() call is wrapped in a standard STL iterator.

The above mechanism allows, for instance, a straightforward way to im-
plement a permutations generator. Note that the coroutine function here is
recursive, so it acts both as a producer and as a consumer, so it demonstrates
both usages:

Generator<std::vector<int> >

permutations_rec(std::vector<int> const& prefix, int n) {

std::vector<int> newPrefix = prefix;

newPrefix.push_back(0);

for (int i = 0; i < n; ++i) {

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 43

if (std::find(prefix.begin(), prefix.end(), i) ==

prefix.end()) {

newPrefix.back() = i;

if (newPrefix.size() == n) {

co_yield newPrefix;

} else {

for (auto perm : permutations_rec(newPrefix, n)) {

co_yield perm;

}

}

}

}

}

Like for other coroutine-based generators, the downside is that the generator
is not copyable, so, the user cannot make a copy at a certain point and have
both the original and the copy generate independently the remaining elements.

4.2. Async-await pattern. The next element we need is to implement a
framework allowing to make an asynchronous call and switch to some other
coroutine until the asyncronous call completes.

Its goal is to be able to write something like v = co await func(), where
func() is an asynchronous operation returning a future, with the following
effect:

(1) func() is called, starting some asynchronous operation;
(2) our coroutine is suspended and the control is passed to some corou-

tine that is runnable;
(3) when the asynchronous operation completes, our coroutine is marked

runnable again;
(4) eventually, when some other coroutine gets suspended or finishes, our

coroutine is resumed;
(5) the result of the asynchronous operation is returned and assigned to

the variable v.

Additionally, to make the mechanism composable, our framework allows
the same v = co await func() statement to be executed with func() being
a coroutine returning a single value. In this case, the effect is similar to a single
asynchronous call, but there will be multiple suspends and resumes between
the initial call and getting the final result.

The implementation uses two auxiliary objects:

• a CoroutineScheduler, for keeping track of runnable coroutines.
• a PromiseFuturePair, that will hold the return value from the asyn-
chronous call.

44 RADU LUPŞA AND DANA LUPŞA

The CoroutineScheduler needs to offer two functions, markRunnable(),
that puts the specified coroutine into a set of coroutines ready to be executed,
and schedule(), which picks and returns a runnable coroutine or waits until
such a coroutine exists.

The PromiseFuturePair offers three operations: set(), that can be called
only once and sets the return value of the asynchronous operation, get(), that
waits for the result and returns it, and addCallback(), that sets a callback to
be called when the operation completes; this is needed to mark the coroutine
that waits for the result runnable.

With the above, the PromiseFuturePair can be wrapped into an awaiter ob-
ject. The await suspend() will set the callback for the PromiseFuturePair

to mark the awaiting coroutine runnable again and will invoke the scheduler
to schedule some other coroutine. The await resume() will return the value
from the future.

Note that the PromiseFuturePair awaiter needs to be linked to the Corou-
tineScheduler that will provide the next coroutine for the current thread and
will also schedule the current coroutine when the awaited condition is full-
filled. The way it is done is by having the coroutine promise object holding
a pointer to the CoroutineScheduler and the await transform() that creates
the awaiter out of the PromiseFuturePair embed the CoroutineScheduler into
the awaiter object. We took two basic assumptions behind this design:

(1) each coroutine is handled by a single scheduler (it cannot go from
one scheduler to another);

(2) no coroutine may outlive its scheduler.

The coroutine return object is also an awaiter. Its await suspend() oper-
ation, invoked by the caller coroutine, makes the called coroutine runnable,
so that the called coroutine will eventually run. It also memorizes the han-
dle of the coroutine invoking it (that gets suspended) as well as its scheduler,
so that the caller coroutine is marked ready in its scheduler when the called
coroutine returns a value. The return value() of the promise type object
marks runnable the coroutine mentioned above.

This design allows control of the scheduler for each coroutine, allowing,
among other use cases, to control the thread used by each coroutine. This
is important for some GUI frameworks that insist that GUI related functions
can be called only on the UI thread.

4.3. A pipe mechanism. To go from asynchronous operations returning sin-
gle values to asynchronous operations returning multiple values, the mecha-
nism for conveying the result must be changed from PromiseFuturePair to a
pipe (queue).

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 45

While the basics of a pipe are very simple, with the two basic operations,
send() and recv(), there are a few needed additions and clarifications needed.

First, there is the issue of how to signal the end of communication. On the
producer end, we have to either call a different function (say, pipe.close())
or send a special EOF data value. On the consumer end, since the consumer
cannot usually know beforehand when the communication will end, the only
possibility is to have pipe.recv() return the special EOF value.

Second, like for the PromiseFuturePair, we need a callback to be called
when an element is put into the queue. As the pipe is fed from an asynchronous
operation, setting the callback can be at race with putting an element into the
queue. To simplify the operations, we make the following assumptions:

• When setting a callback to be called for enqueued elements, the call-
back will be called on each element that is not consumed yet (via
recv()).

• For this to not create a race condition, the functions recv() and
setDataAvailableCallback() must not be called concurrently.

• To simplify the behavior of setDataAvailableCallback(), the ca-
pacity of the pipe will be 1 element.

4.4. Asynchronous generator. We combined the elements described above
to enable the creation of asynchronous generators.

Our design offers the user the possibility to implement an asynchronous
generator as a coroutines function having the following elements:

• like a regular generator, it returns multiple values via co yield;
• like an async-await coroutine, when it executes co await, it gets
suspended until the result of the function invoked with co await is
available;

• the argument of co await may be an asynchronous function produc-
ing multiple values. In this case, the calling coroutine gets suspended
until the next value is generated and co await returns that value;

• the argument of co await may be another asynchronous generator,
in which case co await returns the next generated value. Note that
this may lead to an arbitrary sequence of nested asyncronous gener-
ators calls and the use of co await leads to a potentially complex
sequence of suspending and resuming of their coroutines.

To support the above functionalities, our framework defines a class template,
AsyncGenerator<T>, that represents an asynchronous generator coroutines
that generates objects of type T. Given the way coroutines work in C++20,
the coroutine function that acts as an asynchronous generator should have a
declared return type which is AsyncGenerator<T>

46 RADU LUPŞA AND DANA LUPŞA

AsyncGenerator<T> is designed to be usable in two contexts:

• in a coroutine, as an argument of a co await statement. Here, it
must act as an awaiter.

• in a regular function. Here, it must offer a blocking receive function.

To implement that, the AsyncGenerator<T>::promise type acts as pipe.
The pipe is fed by the yield value(), which puts a value, and return void(),
which closes the pipe (that is, it adds a special EOF object). After feeding
the pipe, the control is transmitted back to the calling coroutine.

For the case AsyncGenerator<T> is the operand of co await, its method
await suspend() memorizes the handle of the calling coroutine and resumes
the own (called) coroutine. This is done so that the owned coroutine can
produce the next value. When the next value is produced (via yield value()

or return void() of AsyncGenerator<T>::promise type), the memorized
calling coroutine is set to runnable again.

For the case AsyncGenerator<T> is used from a regular function, it of-
fers a blocking recv() function that repeatedly calls resume() on the owned
coroutine, until a value is made available by the coroutine.

To demonstrate the capabilities of our framework, we present below an
implementation of an asynchronous generator that uses coroutines. It takes
a sequence of characters produced by another asynchronous generator named
source, parses it as a sequence of numbers and returns them to its caller.

AsyncGenerator<unsigned> parseFlow(CoroutineScheduler* pScheduler,

AsyncGenerator<char>& source) {

unsigned v = 0;

bool parseStarted = false;

while (true) {

ElementOrEof<char> el = co_await source;

if (el.isEof()) {

if (parseStarted) {

co_yield v;

}

co_return;

}

char c = el.value();

if (c >= ’0’ && c <= ’9’) {

parseStarted = true;

v = 10 * v + (c - ’0’);

} else if(c == ’ ’ || c == 10 || c == 13) {

co_yield v;

v = 0; parseStarted = false;

}

}

}

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 47

It is worth noting that the above example shows a possible typical usage
of our framework, for instance in some networked server or client. The data
source in the example would encapsulate an asynchronous read operation from
a network connection, the coroutine in the example would do some parsing or
preprocessing of the requests, and the user of the data would contain the
main processing loop. Classical alternative mechanisms would be threads or
callbacks. Threads consume more resources than coroutines. Callbacks are
harder to understand because of the inversion of control — in the callback, the
programmer needs to keep track of a state and to update it at each incoming
callback; with coroutines, the programmer writes the main processing loop.

5. Conclusions

The asynchronous coroutines, proposed in this paper, allow a very natural
way of writing code that processes a flow of data coming asynchronously, from
some external source, without resorting to threads for this purpose.

This paper also demonstrates how to create, each by itself, the generators
and the async-await mechanism, which exist in other languages, but only at
its beginning using C++20 coroutines.

It also shows that the C++20 coroutines mechanism, while quite a bit hard
to use directly, is very powerful and allows very diverse use scenarios.

References

[1] C and c++ reference, coroutines.
https://en.cppreference.com/w/cpp/language/coroutines. Accessed: 2022.

[2] A library of c++ coroutine abstractions for the coroutines ts.
https://github.com/lewissbaker/cppcoro. Accessed: 2022.

[3] Pep 525 – asynchronous generators.
https://peps.python.org/pep-0525/ . Accessed: 2022.

[4] .NET/C# guide/language reference. await operator - asynchronously await for a task to
completes.
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await.
Accessed: 2022.

[5] .NET/C# guide/language reference. yield statement - provide the next element.
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/yield.
Accessed: 2022.

[6] Windows app development documentation. processes and threads. fibers.
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers.
Accessed: 2022.

[7] Belson, B., Xiang, W., Holdsworth, J. J., and Philippa, B. W. C++20 coroutines
on microcontrollers—what we learned. IEEE Embedded Systems Letters 13 (2021), 9–12.

[8] Chauhan, K., Kumar, S., Sethia, D., and Alam, M. N. Performance analysis of
kotlin coroutines on android in a model-view-intent architecture pattern. In 2021 2nd
International Conference for Emerging Technology (INCET) (2021), IEEE, pp. 1–6.

48 RADU LUPŞA AND DANA LUPŞA

[9] Conway, M. E. Design of a separable transition-diagram compiler. Commun. ACM 6,
7 (jul 1963), 396–408.

[10] Elizarov, R., Belyaev, M., Akhin, M., and Usmanov, I. Kotlin coroutines: Design
and implementation. In Proceedings of the 2021 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Software
(2021), Association for Computing Machinery, p. 68–84.

[11] Ierusalimschy, R. Programming in Lua, 2003.
[12] Marlin, C. D. Coroutines: A Programming Methodology, a Language Design and an

Implementation, vol. 95 of Lecture Notes in Computer Science. Springer, 1980.
[13] Moura, A. L. D., and Ierusalimschy, R. Revisiting coroutines. ACM Trans. Pro-

gram. Lang. Syst. 31, 2 (feb 2009).
[14] von Merzljak, L., Fent, P., Neumann, T., and Giceva, J. What are you wait-

ing for? use coroutines for asynchronous I/O to hide I/O latencies and maximize the
read bandwidth! In International Workshop on Accelerating Data Management Systems
(ADMS) (2022).

[15] Wang, Z. Web crawler scheduler based on coroutine. 2019 International Conference on
Intelligent Computing, Automation and Systems (ICICAS) (2019), 540–543.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: radu.lupsa@ubbcluj.ro, dana.lupsa@ubbcluj.ro

