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MALWARE ANALYSIS AND STATIC CALL GRAPH

GENERATION WITH RADARE2

ATTILA MESTER

Abstract. A powerful feature used in automated malware analysis is the
static call graph of the executable file. Elimination of sandbox environ-
ment, fast scan, function call patterns beyond instruction level information
– all of these motivate the prevalence of the feature. Processing and stor-
ing the static call graph of malicious samples in a scaled manner facilitates
the application of complex network analysis in malware research. IDA Pro
is one of the leading disassembler tools in the industry and can generate
the call graph via GenCallGdl and GenFuncGdl APIs – a tool which was
used in our previous works. In this paper an alternative analysis method is
presented using another disassembler tool, Radare2, an open-source Unix-
based software, which is also frequently used in this domain. Radare2 has
Python support (among other languages), via the r2pipe package, thus en-
abling full scalability on Linux-based servers using containerized solutions.
This paper offers a detailed technical description on how to use Radare2
to generate the static call graph of a PE file and a thorough comparison
with the output of IDA Pro, as well as a public dataset on which the
experiments were carried out.

1. Introduction

Analyzing malware in an automated manner not only eases the workload of
cybersecurity experts, but it is a necessity in this domain, due to the number
of new threats rising globally on a daily basis. A key statistic provided by AV-
TEST1 is the daily emerging several tens of thousands of malicious threats.
In 2022, roughly one hundred million new samples were discovered – that is
≈ 3 new malicious files per second. While these threats come from different
types of attacks and exploits such as phishing campaigns, emails, attachments,
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executables, android apps, etc., the leading source of malicious attacks comes
from Windows executable files (i.e. PE).

PE files can carry a vast amount of different attack techniques, hence they
can also contribute enormously to the process of gathering threat intelligence
about the origin of the attack. One such exceedingly valuable piece of infor-
mation is called attribution in literature. In its highly comprehensive book
entitled Attribution of Advanced Persistent Threats [27] (APT) published in
2020, Steffens explains why it is so important to attribute an attack, as well
as offers some detection ideas in this regard. There are fundamentally two
options in this domain: static and dynamic analysis. These methods assume
the use of either a sandbox environment – which is often expensive and time-
consuming, or a disassembler tool such as IDA, Radare2, Ghidra, etc.

In this work, we present a malware analysis framework using Radare2 to
extract the static call graph of a PE file and offer a detailed comparison with
an alternative disassembler, IDA Pro 6. Our previous work [17, 18, 19] relies
solely on IDA Pro 6 – this experience led to the need to try out an alternative
disassembler tool which enables containerized, parallel processing of samples.
Other alternatives were taken into consideration as well, but due to its popu-
larity in the literature – as described in Section 2, our tool of choice became
Radare2.

The paper is structured as follows. Section 2 covers the key directions in
the literature of PE analysis based on static call graph features, using IDA
or Radare2 tools. Our proposed framework for the generation of the static
call graph using Radare2 is described in Section 3. We then compare the
results of our analysis with the ones obtained with IDA, in Section 4. Our
conclusions are presented in Section 5, as well as possible future research ideas
using Radare2.

2. Related work

A recent survey paper [28] offers an ample overview on the literature of
automated malware analysis using various machine learning techniques. A
multitude of research papers are presented from the past decade, and it is
clearly shown that one particular feature is by far the most frequently used
in this domain – the static call graph. Our previous work [17] presents a
detailed overview on the literature of PE analysis, based on this survey paper,
visualizing the distribution of research work with histograms of the features
and methods applied. The motivation to use one particularly interesting static
feature, the call graph, is that it includes both topological information of an
executable file regarding function call sequences, and also the x86 assembly in-
struction list of each local subroutine – one presumption of the analysis process
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is that each of these local subroutines may be an original code of a malicious
actor or APT group. There is a multitude of potential use cases of this fea-
ture. Using only the topological structure of the call graph, graph matching or
graph edit distance (GED) may be applied [7, 22, 2, 13]. Attaching a feature
vector to graph, based on n-grams, is also common practice [5, 8, 26], as well
as applying graph embedding methods [23, 11]. The abundance of research
work using this feature raises the importance of analyzing malicious code in
a fast and scalable manner, preferably with a free, open-source tool which
enables the automated extraction of the call graph.

In this section, we present some technical disadvantages of the disassembler
tool used in our previous research work, the IDA Pro 6. This is one of the
global leading solutions [20, 31] when it comes to static malware analysis,
however, it has its limitations as well. One key aspect to mention is that IDA
is commercial software, it offers scripted functionality only in its paid version,
IDA Pro. Another major blocking issue using the scripted functionality of this
tool is the series of unexpected runtime errors, which cause unnecessarily slow
analysis – making it impossible for real-time use cases for example, where one
needs to process a daily flux of new malicious samples.

3. Using Radare2 to obtain the static call graph

3.1. IDA Pro alternatives. As a consequence of the drawbacks of the IDA
tool listed in Section 2, a list of potential alternative disassemblers was an-
alyzed. Fortunately, there is a multitude of such tools: Binary Ninja [24],
Hopper [1], Relyze [29], x64dbg2, ODA3, etc. One of the most popular alter-
natives is Ghidra4, available on Windows/Linux, developed by NSA’s Research
Directorate under Apache License (FOSS) is a leading alternative to IDA Pro
[25, 14]. The downside of this tool which made our choice of another alterna-
tive is the difficulty in using its scripted API call/graph generation.

Radare25 is also available on Windows/Linux (FOSS), and offers a light-
weight alternative to Ghidra, while being able to integrate Ghidra decompiler
r2ghidra6. It can be used from command-line interface (CLI) and also GUI,
offered by Cutter7. A major power of this tool is the Python binding r2pipe8,
which offers extensive APIs for static analysis, including call graph inspection.

2https://x64dbg.com/
3https://github.com/syscall7/oda
4https://ghidra-sre.org/
5https://www.radare.org/
6https://github.com/radareorg/r2ghidra
7https://cutter.re/
8https://r2wiki.readthedocs.io/
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Radare2 (also referred to as r2 ) has also great popularity in the cyber tech
domain [16, 4, 9, 3, 12].

3.2. Radare2 usage and commands. Radare25 offers a clear description
of its installation on their Github page9 and has plenty of documentation
and community support on their Wiki page10 and their official e-book [21].
After installation, Radare2 can be invoked using the radare2 or r2 commands,
specifying a path to a PE file.

In this CLI, a variety of commands is offered for analyzing sections, imports,
exports, entry point information, blocks, function calls, for seeking certain
parts of the binary, and much more – also, each command has a helper interface
invocable by appending “?” after the respective command. Radare2 works
with the concept of flags, i.e a bookmark at an offset like “fcn.” or “sym.imp”,
meaning that every offset considered as interesting by Radare2 will be assigned
a corresponding flag to it, e.g. strings, functions, imports, and much more.
Analysis of a binary PE file can be started by the command “aaa”, which
analyzes all the flags in the file. Since this work focuses on the analysis of the
static call graph, we will detail commands which are related to the analysis of
the call sequences, function blocks, and entry points.

The majority of these r2 commands have multiple output formats, avail-
able by specifying a formatter at the end of the command – such as the de-
fault ASCII art, or “j” for json, “d” for dot, “b” for “Braile art” i.e. short
overview/bird’s eye plot, or “w” for an interactive plot – highly useful for
debugging purposes, similar to a matplotlib plot.

As mentioned in Section 3.1, Radare2 has also a GUI tool, Cutter, which
offers a definitely positive usage experience due to its intuitive and simple
interface.Even though Cutter makes it easy to analyze samples manually on
a daily basis, for us a huge advantage of Radare2 comes from its CLI, which
is clearly documented and offers fast analysis performance when called from
Python scripts, enabling the continuous analysis of the samples on a real-time
income flux.

3.3. Generating the static call graph. When generating the static call
graph of a PE binary using Radare2, multiple r2 commands are leveraged to
obtain the final graph object. Radare2 offers Python bindings via the r2pipe
package, which simply enables the pipeline of multiple r2 commands without
the need to open and load the file each and every time. Some of the commands
mentioned here are detailed in Section 3.2. We start the analysis by calling
“aaa” command. Then, entry point nodes are collected (i.e. function blocks)

9https://github.com/radareorg/radare2
10https://r2wiki.readthedocs.io/
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1 import r2pipe

2 import pygraphviz

3 import networkx as nx [...]

4 r2 = r2pipe.open(self.file_path)

5 r2.cmd("aaa")

6 entrypoint_info = r2.cmd("ie").split("\n") [...]

7 agCd = r2.cmd("agCd")

8 agRd = r2.cmd("agRd") [...]

9 nx = nx.drawing.nx_agraph.from_agraph(pygraphviz.AGraph(agCd))

10 [...]

11 for addr , data in nx.nodes.items():

12 block = r2.cmd(f"agfd {addr}") [...]

Listing 1. Creating the call graph in Python using Radare2

by calling “ie”. The r2 commands that are used for call graph analysis are
part of the “ag” command group.

The structure of the call graph is provided by the “agC” command, where
the desired DOT format is specified using the “d” flag. The full reference graph
(e.g. imports) is offered by “agR” command. It is important to mention that
none of these two commands include node-level information regarding to the
instruction list. In order to obtain the assembly code of each subroutine, “agf”
command is called on each node of the call graph. In a similar manner to gen-
erating the call graph using IDA Pro 6, merging the output of “GenCallGdl”
and “GenFuncGdl” [17, 18, 19], the same logic applies in Radare2 as well.
Both the global function graph (“agC”) and global references graph (“agR”)
is needed to be analyzed, furthermore, each function block (“agf”) must be
processed in order to obtain the final, complete call graph.

One key difference between IDA Pro 6 and Radare2 is that in the former,
only 2 APIs have to be called, while in the latter, a multitude of r2 com-
mands are needed – O(n) where n is the number of function blocks. The
unexpected revelation is that despite all these aspects mentioned, Radare2
scans the binaries much faster and in a way more reliable way than IDA –
scan time information is provided in Section 4 (note: this may be due to the
environmental circumstances of the scripted analysis).

4. Comparing Radare2 with IDA Pro

The experiments were run on multiple machines, thus a reliable comparison
of the runtime cannot be provided yet. IDA Pro 6 was run on Windows Server
2012 R2, while Radare2 was run on Ubuntu 22.04. An example output of the
disassembler tools is shown in Figures 1 and 2, where the structure of the call
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Figure 1. Call graph obtained with IDA Pro 6 (“GenCallGdl”).

Figure 2. Call graph obtained with Radare2 (“agCd”).

graph of the same executable file is depicted, dumped in DOT file format by
each tool, and converted to SVG image.
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The comparison of the call graph of a binary file is carried out on both topo-
logical level (edges, i.e. function/import calls) and node-level (x86 instruction
list of the functions), and follows the following steps. The PE file is scanned
with IDA Pro 6, using the method described in our previous works [17, 18, 19]
– DFS traversal is applied on the control flow graph obtained by GenFuncGdl
and it is then merged with theGenCallGdl API’s output. The file is then
scanned using Radare2, with the method described in Section 3.3. A series of
normalizing steps are taken into consideration, e.g. IDA Pro subroutine labels
follow the structure of “sub 0XXXXXX” (i.e. a capitalized RVA address),
while Radare2 names its function blocks “fcn.0xxxxxx”. Another example
where normalization must be applied is on the instruction level: IDA prefers
to use conditional jump instructions with the notation of jump if zero (e.g.
“jz”, “jnz”, “repz”, etc.), while Radare2 uses the form of jump if equal (“je”,
“jne”, “repe”). These instructions have the same meaning, so they should not
account in the node-level comparison of the call graphs.

4.1. Comparison metrics. The topological similarity of the call graphs is
expressed with the Jaccard similarity of the edge set – an edge being repre-
sented by the name of its endpoints. For example, if the call graph from IDA
has two edges, namely

[sub 40010A → sub 400200, sub 400200 → sub 400300],

and Radare2’s call graph has also two edges, namely

[fcn.40010a → fcn.400200, fcn.400200 → sym.imp.kernel32.dll WriteF ile],

then their topological similarity will be 0.33. Similarly, another topological
similarity is calculated, referring to the node labels – the Jaccard score between
the function label sets obtained from IDA and Radare2.

The node-level similarity is expressed using the similarity between the in-
struction lists (precisely, the mnemonic list) of each matching subroutine of
the call graphs (in the sense of their label matching). For this purpose, several
metrics are calculated, i.e. Levenshtein distance, relative Levenshtein simi-
larity, Jaro distance, and Jaro-Winkler distance on each matching function
block, and statistics are gathered regarding the minimum, maximum, average,
median and 75% percentile of the values.

4.1.1. Levenshtein distance. The Levenshtein distance [15] is a commonly used
distance metric in information theory, and it measures the number of edits
needed to obtain one string from the other one. The edits permitted are in-
sertion, deletion, and substitution. This is a naturally good distance metric in
our application because we want to know how many instructions differ between
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two function blocks, taking into consideration their place as well. Naturally,
if this metric is 0, it means that the instruction lists match completely.

Since the function blocks may have varying lengths of instruction lists, a
relative similarity should be expressed as well – two instruction lists having 100
assembly mnemonics that differ in only one instruction should have a higher
similarity score than two functions having 2 mnemonics, differing in only one
instruction. The relative distance, i.e. similarity is expressed in Equation 1,
and its values are bound to the interval [0, 1].

(1) Lr(a, b) = 1− L(a, b)/max(len(a), len(b)).

4.1.2. Jaro distance. The Jaro distance metric [10] is specifically designed for
short strings, names, measuring the number of matching characters while tak-
ing into consideration the distance between them as well.

4.1.3. Jaro-Winkler distance. The Jaro-Winkler metric [30] is a variant of the
Jaro distance. In addition to the former one, this metric takes into consider-
ation not only the matching characters but also some scaling factor, i.e. the
length of the common prefix. This way, it will have a higher similarity value
for strings that are similar at the beginning – in contrast to the Jaro metric
which considers the characters’ position equally important. In this paper, all
the results referring to Jaro and Jaro-Winkler distances are expressed as a
similarity score in the [0, 1] interval – 1 marking the perfect match. A detailed
comparison between various distance metrics is described in [6].

4.2. Dataset. The dataset consists of publicly available samples, in order
to increase the transparency of the experiments. The samples are part of a
Kaggle competition11. 435 binary files were analyzed with the comparison
method described in Section 4. The dataset was extracted from the Kaggle
competition11, and can be viewed on our page12.

4.3. Results. To demonstrate the efficiency of the Radare2 scanner, a his-
togram of runtime values is presented in Fig. 3.

In each of the following images, Figs. 4, 5, 6, 7, 8, 9, 10, two sets of
plots are shown, regarding the dimensions of the original IDA call graphs
– plots referring to graphs having nodes in the [0, 100) and [100, ) intervals,
respectively. This was necessary in order to offer relevant statistics divided by
the category in which they are measured.

Figures 6, 7, 8, 9, 10 represent histogram plots of the minimum, maximum,
average, median and 75% percentile value of the respective metrics, which are
measured on a set of nodes. The first row represents values measured on a

11https://www.kaggle.com/competitions/malware-detection/data
12https://attilamester.github.io/call-graph/studia2022.html

https://www.kaggle.com/competitions/malware-detection/data
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Figure 3. Runtime of the Radare2 scanner programme.

set of smaller graphs. Each of these graphs has a set of nodes (i.e. function
blocks) – the metrics are calculated on these sets of nodes. The second row
is calculated using the same logic applied on larger graphs. It should be
noted that these images refer to node-level statistics, and some smaller graphs
having under 10 nodes contain only functions marked as sys.imp (i.e. import
functions) – thus, these graphs are excluded from these plots. That is the
reason why these images contain statistics of only 425 graphs.

Fig. 4 has the purpose of showing the sizes of the call graphs which are ex-
amined in this paper. The upper and lower images show that the sizes range
from almost empty graphs to enormously huge ones, topping at around 15
thousand nodes (i.e. functions) and 70 thousand edges (i.e. function calls).
This fact highlights the need to separate each of the statistics into different
categories. It can be also concluded that the majority of the dataset consists
of call graphs having under one thousand nodes and edges – this is the infor-
mation shown by the lower two rows of plots. Another conclusion could be
that very few graphs have under 10 nodes or edges.

The topological similarities, as described in Section 4.1, are shown in Fig. 5.
When measured on smaller graphs, in the upper row, it can be observed that
the Jaccard is either 1, or a rather small value. Meanwhile, on larger graphs,
this score barely reaches 1, which is natural, it is highly improbable that a
sample whose call graph has hundreds of nodes will have the same scanning
result in IDA and Radare2 as well. On the contrary, what can be confirmed is
that the size of the graphs does not affect negatively this score – as the graphs
grow, the average Jaccard still remains in the [0.4, 0.6] interval. It should
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Figure 4. Histogram of call graph sizes using Radare2 (nodes
and calls).

be mentioned here that this does not mean that Radare2 obtains different
nodes than IDA – it can happen that the nodes are assigned other labels, but
their instruction content may still be the same. This is a key aspect, which
highlights the fact that the real similarity between IDA Pro and Radare2 scan
results are higher than the values measured.

Fig. 6 aims to show us the size of the local subroutines in the graphs – i.e. the
length of the assembly instruction list in a subroutine. One can observe that
the average and median values (around 100−200) are not so much affected by
the size of the graphs, but the maximum values are heavily affected (6000 −
20, 000): the larger the graph in node count, the longer its functions may
become. This may be an unwanted effect of metamorphic malware samples,
which fill their sections with garbage code from one generation to another.
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Figure 5. Topological similarity: histogram of Jaccard score
between IDA and Radare2 nodes and calls.

Figures 7, 8, 9, 10 show histograms of the distance and similarity metrics
between the instruction mnemonic lists of the nodes within the call graphs ob-
tained with IDA and Radare2. In Fig. 7 we can see one of the most valuable
conclusions of this paper: while call graphs grow, their nodes’ instruction list
grow, the Levenshtein distances’ average value still remains fixed in the range
of 10− 20. This conclusion is reinforced by Fig. 8, where relative Levenshtein
similarities converge to 1 even in the case of large graphs. This observation
remains valid in the case of the remaining plots, shown in Figures 9 and 10,
depicting the histograms of Jaro and Jaro-Winkler similarity scores, respec-
tively. The fact that the median values, especially the 75% percentile values
are close to 1 means that even though the content of the functions may change
from IDA to Radare2 and vice-versa, this change is insignificant.
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Figure 6. Histogram of Radare2 nodes’ instruction count.
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Figure 7. Histogram of Levenshtein distances between
Radare2 and IDA nodes.

5. Conclusions and future work

This paper presents a novel comparison between IDA Pro 6 and Radare2
disassembler tools, by analyzing a dataset of malicious files using both of
these, and comparing their output. The subject of the analysis is the static
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Figure 8. Histogram of relative Levenshtein similarities be-
tween Radare2 and IDA nodes.
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Figure 9. Histogram of Jaro distances between Radare2 and
IDA nodes.

call graph, which is generated by using the tools’ scripted APIs and processing
the output to create the final, global call graph. In the experiments, a public
dataset is used in order to offer full transparency of the results. The call
graphs are compared from various perspectives, both topological aspects i.e.
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Figure 10. Histogram of Jaro-Winkler distances between
Radare2 and IDA nodes.

the function calls, and also node-level criteria i.e. the instruction list of each
subroutine. Our results claim that there is no significant change in the output
of IDA and Radare2 disassemblers, however, the latter offers a faster, more
stable way of scripted analysis which is suitable for a production environment
where performance is a key aspect.

Future ideas include and are not limited to the use of Radare2 in order
to analyze the call graphs of a larger dataset, with the aim of attribution
classification, clustering, or other threat intelligence retrieval.
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