
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 2, 2023
DOI: 10.24193/subbi.2023.2.01

DEOBFUSCATING JAVASCRIPT CODE USING

CHARACTER-BASED TOKENIZATION

ALEXANDRU-GABRIEL SÎRBU

Abstract. The JavaScript code deployed goes through the process of
minification, in which variables are renamed using single character names
and spaces are removed in order for the files to have a smaller size, thus
loading faster. Because of this, the code becomes unintelligible, making
it harder to be analyzed manually. Since JavaScript experts can under-
stand it, machine learning approaches to deobfuscate the minified file are
possible. Thus, we propose a technique that finds a fitting name for each
obfuscated variable, which is both intuitive and meaningful based on the
usage of that variable, based on a Sequence-to-Sequence model, which gen-
erates the name character by character to cover all the possible variable
names. The proposed approach achieves an average exact name generation
accuracy of 70.53%, outperforming the state-of-the-art by 12%.

1. Introduction

Over the years, naming variables have proven to be one of the most challeng-
ing steps during programming that developers face. Choosing a poor variable
name decreases the readability and understanding of the code, since their pur-
pose and meaning is not reflected directly by the label assigned [3]. Thus,
programmers communicate their intentions via suggestive names, which can
serve as a form of documentation within the code itself, helping other devel-
opers understand the code without relying heavily on external comments or
documentation.

JavaScript is a widely used programming language, primarily used for web
development. JavaScript code is typically embedded directly into HTML doc-
uments or included as an external script, running client-side, meaning that

Received by the editors: 31 July 2023.
2010 Mathematics Subject Classification. 68T05, 68T50.
1998 CR Categories and Descriptors. I.2.6 [Learning]: Subtopic – Connectionism and

neural nets; I.2.7 [Natural Language Processing]: Subtopic – Language generation.
Key words and phrases. JavaScript deobfuscation, variable name prediction, Deep

Learning, Recurrent Neural Network, Abstract Syntax Tree.

5

6 ALEXANDRU-GABRIEL SÎRBU

it executes in the user’s web browser, enabling dynamic content and interac-
tivity without requiring server-side processing. Since JavaScript is a scripting
language, meaning that the its code is interpreted, rather than compiled, and
because the JavaScript code is ran directly into the user’s web browser, this
code is visible directly in the web browser, thus allowing users to visualize,
analyze it and possibly learn from it.

In order to make the JavaScript code more difficult to understand, develop-
ers opt to modify the source code in order to make it less readable, while pre-
serving its functionality. Usually, these methods are based on a mapping from
the initial variable and function names to short, arbitrary, non-meaningful
identifier names, by using code minification tools, mapping which is available
only to the developers of the initial JavaScript code. As the name of the tools’
type suggests, the main idea behind such a tool is to reduce the size of the
JavaScript file, in order to reduce its loading time [13], thus increasing the
performance of the web page, while also providing a layer of code obfuscation.

While code obfuscation is often used on the web pages in order to protect
the intellectual property of the code, sometimes its deobfuscation is crucial.
For example, deobfuscation can be valuable for security analysis and vulner-
ability assessment, since obfuscated code can hide potential security risks.
Thus, by deobfuscating the code, security professionals can more easily iden-
tify and understand the underlying security issues, enabling them to assess
the risks accurately and propose appropriate mitigation strategies. Moreover,
deobfuscation can also be used in the educational process, allowing develop-
ers to learn from and understand obfuscated code. In general, experienced
programmers can easily understand obfuscated code, but those who lack the
experience require deobfuscation tools in order to gain some insights into ad-
vanced programming techniques and algorithms.

Although there are multiple deobfuscation techniques, such as Cloning,
Static Path Feasibility Analysis and a combination between Static and Dy-
namic Analyses [14], our main focus will be to rename the obfuscated variables
in order to facilitate the analysis of JavaScript files.

In this paper we propose a deep learning approach to deobfuscate JavaScript
source files, which reverses the process of code minification by inferring mean-
ingful variable names based on both their initial assignment and their further
usages, using character-based tokenization. A Sequence-to-Sequence model
will be used for generating the name character by character to cover all the
possible variable names. Thus, our trained model does not rely on the labels
that it has been initially trained on, offering a solution which gives decent
naming suggestions even on unseen training data, while also being able to
suggest better names for constant variables. Experiments will be conducted

DEOBFUSCATING JAVASCRIPT CODE 7

on a data set containing real world JavaScript code, and the results obtained
by our model will be compared to state-of-the-art approaches.

In short, the work aims to answer the following research questions:

RQ1. How to correctly pick a name for a variable using a deep learning ap-
proach, without encountering it beforehand in the training data?

RQ2. How would a generative model compare as opposed to a simple, classi-
fication model for the problem of JavaScript code deobfuscation?

The rest of the paper is organized as follows. Section 2 will discuss previous
ways of generating variable names, including state-of-the-art techniques and
how well they performed. Section 3 will present our approach of choosing the
best suited variable name, by using a Sequence-to-Sequence architecture, how
the data is handled and how to evaluate our constructed model. Section 4
directly compares our approach to the state-of-the-art approach in the litera-
ture, while also discussing our achieved results. The conclusions of the paper
and directions for future work are outlined in Section 5.

2. Related work

A deep learning approach is proposed by Bavishi et al. [1], which is com-
pared to two state-of-the-art tools JSNice [11] and JSNaughty [15], against a
large corpus of real-world JavaScript code, achieving 47.5% name prediction
accuracy, outperforming or performing really close to the tools aforementioned.
This approach tokenizes the JavaScript code and uses the context of a vari-
able in order to provide a fitting name for it. Thus, for each occurrence of a
local variable, it extracts the q preceding tokens and the q following tokens,
concatenating them into the context of that respective variable. Since this
approach generates highly redundant usage summaries, since sub-sequences of
tokens occur repeatedly, an auto-encoder is used in order to compress the given
vector. For prediction, a predefined vocabulary of possible variable names is
constructed, and the the authors use a Recurrent Neural Network with a single
Long Short-Term Memory layer in order to learn a mapping from the variable
context to the variable name. The Recurrent Neural Network is used in order
to solve conflicts between variable names: if the predicted variable name is a
keyword or if it overshadows a name from its parent scope, then another name
prediction is made.

In order to improve the performance of code related tasks, Roziere et al. [12]
introduced a new pre-training objective based on deobfuscation and outper-
forms Masked Language Modeling objectives, such as BERT, on tasks such as
code search, code summarization and unsupervised code translation, besides
deobfuscating fully obfuscated source files. The pre-training objective used is

8 ALEXANDRU-GABRIEL SÎRBU

represented by replacing class, function and variable names with special to-
kens, after which the model has to recover the original names, similarly to how
Masked Language Modelling’s objective is to predict a word based on its con-
text. The deobfuscation objective is realized with a seq2seq model, which is
trained to map the obfuscated code into a dictionary represented as a sequence
of tokens. This model manages to recover 45.6% of the initial identifier names
on the Google BigQuery data set. By solving the task of deobfuscation, the
authors showed that this pre-trained model achieves better performances than
the BERT model on clone detection, code summarization, natural language to
code and on code translation from Python to Java and vice-versa.

The problem of variable name generation also arises when copy-pasting
code, and the copied code has to be modified in order to match the context
into which it was pasted. Liu et al. [9] have discussed this problem of code
adaptation, whose importance rises from the adaptation bugs, raised by incon-
sistent control flow, inconsistent renaming, inconsistent data flow and redun-
dant operations. To solve this task, the authors collect a data set from GitHub
repositories with at least 20 stars. Their goal is to compare their approach
with various pre-training objective introduced for code related tasks. Thus, the
authors compared three Masked Language Modeling approaches by training
a RoBERTa model, the aforementioned model in the previous approach and
a CodeT5 model, which is supposed to outperform prior methods on under-
standing tasks such as code defect detection, clone detection and translation
tasks. The model the authors proposed is a transformer with two possible
implementations: a uni-decoder transformer, which names a variable based
on previously predicted names, and a parallel-decoder transformer, which cal-
culates the individual probability without taking into consideration the other
predicted symbols. The second type of transformers predicts a name indepen-
dently from the rest, factorizing the output distribution per-symbol. The re-
sults are somehow predictable, as the uni-decoder transformer achieves higher
performance than the pre-trained objective-based models, and has slightly
better results than the parallel-decoder transformer.

Jaffe et al. [6] have approached this problem in the form of assigning mean-
ingful variable names for decompiled code. Their solution is based on aligning
the line-by-line translation of the decompiled code into meaningful code, using
a Statistical Machine Translation, Moses. In decompiled code, variables are
automatically given general names, such as v1 and v2, and Statistical Ma-
chine Translation model should rename these variables, while keeping the rest
of the code identical. The main idea behind such a model is that the model
tries to learn the probability distribution of a sentence in target language to

DEOBFUSCATING JAVASCRIPT CODE 9

be the translation of a sentence in the source language. Moses is an open-
source Statistical Machine Translation toolkit, which automatically estimates
the language and translation models given a sentence-aligned parallel corpus,
which, in our case, is the decompiled code against the initial pre-compiled
code, which contains meaningful names for variables. This approach achieved
a 28.6% exact match for the name of each variable.

3. Methodology

This section introduces our methodology for deobfuscating JavaScript code,
using a Sequence-to-Sequence model in order to generate the variable names
character-by-character, based on their initial value and their usages, with the
goal of answering RQ1.

3.1. Problem statement. Our problem can be formulated as follows: given
a JavaScript file, rename a variable in such a way that its new name reflects
intuitively its purpose. For this task, we will convert the JavaScript code into
an Abstract Syntax Tree, after which we will extract that variable’s assignment
and usages and, based on that, the model will suggest a fitting name for it.

The data set for this problem can be constructed directly based on any
available source code, be it online or offline, depending if the target is to
write more general code or specialized code in some issue, respectively. Once
the code has been selected, there are various tools, such as UglifyJS which,
although are intended to be used as minification tools, they usually obfuscate
variables to reduce the size of the JavaScript file, making them load faster in
order to improving a website’s performance. Thus, UglifyJS renames variables
and function names to shorter, often single-letter names, removes unnecessary
white spaces and comments, and perform other transformations to make the
code more compact, without altering its functionality. Since we are later
converting the obfuscated code directly into an Abstract Syntax Tree, none of
the other operations done by UglifyJS should impact the information we gain
through that conversion.

3.2. Proposed approach. The first step in our approach is to convert the
given code into an Abstract Syntax Tree. An Abstract Syntax Tree is a tree-
like data structure that represents the abstract syntactic structure of a pro-
gram, specific to a programming language, which are commonly used when
constructing compilers and when analyzing code. This tree representation,
when compared to the simple string interpretation of the input, provides a
more structured representation of the code, that captures the hierarchical re-
lationships between different elements of the code, such as functions and loops.

10 ALEXANDRU-GABRIEL SÎRBU

Figure 1. JavaScript code example converted into an Ab-
stract Syntax Tree format

Thus, a machine learning algorithm would better understand the code’s logi-
cal flow and dependencies, which would make it easier to extract meaningful
patterns and features. Moreover, Abstract Syntax Trees typically have a lower
dimensionality than raw text strings, especially for complex code, whose re-
duction can lead to both faster training times and better model performance
due to reduced complexity [17]. An example of a JavaScript code conversion
from plain-text code into an Abstract Syntax Tree format can be seen in Figure
1, where a variable is assigned, a function is called, after which that function
is declared.

Usually, when naming a variable, choosing an appropriate and meaningful
name is essential for writing clear, maintainable and understandable code.
Thus, the chosen name has to clearly describe the meaning and purpose of
the variable. The meaning is usually represented by the type of that variable,
usually inferred by its initialization. As for the purpose of the variable, it
can be inferred directly based on that variable’s usages. Programmers tend to
rename variables when the purpose of those variables is changed, or if their
initial type is completely different. As for experts in code deobfuscation, they
can intuitively guess a variable’s purpose based on its usages, but still choose
to rename them in order to aid them for further deobfuscation. Because of this,
we will extract from the constructed Abstract Syntax Tree the initialization
of our current variable, and its usages i.e., lines of code where the variable has
been used, where the initial variable name is replaced by a special token.

DEOBFUSCATING JAVASCRIPT CODE 11

3.2.1. Deep learning model. In our task, since we will generate the sequence
of characters that determine the name of the variable, we will use a Sequence-
to-Sequence model. This model is a type of deep learning model, which is
composed on an Encoder and a Decoder. The Encoder is an Recurrent Neural
Network which processes the input sequence and generates a fixed-length con-
text vector, also known as the encoding. The Encoder works by reading the
input sequence step by step and encoding the information into a context vec-
tor, aiming to capture the semantic representation of the input sequence. The
second component, the Decoder, is also a Recurrent Neural Network, which
takes the context vector produced by the encoder as its initial hidden state,
then it generates the output sequence step by step, one token at a time. The
Sequence-to-Sequence model architecture allows to handle input and output
sequences of different lengths, by compressing the variable-length input into
a fixed-length context vector, after which the output sequence is generated
token by token based on that context vector.

In our approach, variable names and values are encoded in character-level,
in order to accommodate for new values, unseen in our training data, to be
handled correctly by the model constructed [10]. Moreover, using a character-
level encoding, it is possible to capture sub-word information of, for example,
a class name and its characteristics, and may allow the model to understand
prefixes, suffixes and stems, thus giving the model the ability to understand
word inflections and grammatical variations better. Another advantage is
represented by the removal of noise in the form of typos, and the model may
recognize similar words based on their character-level similarity, even if there
might be some minor spelling differences, while also being more memory ef-
ficient because the vocabulary size is substantially reduced. When encoding
Abstract Syntax Tree Nodes, we will be liniarizing each node using Breadth
First Search in order to maintain the structural equivalence, while also keeping
the model relatively more lightweight [5]. Thus, each node type will have a
specific label, which will be stored in the vocabulary specific to the JavaScript
code, alongside the ASCII characters for the value of these nodes.

The proposed model will follow the Sequence-to-Sequence architecture, which
is composed of two components: the Encoder and the Decoder, whose archi-
tecture can be seen in Figure 2. The Encoder receives the input tokenized
and converts it into a more dense and continuous representation, via the Em-
bedding layer, whose purpose is to capture the semantic relationships between
tokens. As a regularization technique, a Dropout will be used, in order to pre-
vent overfitting and to improve the generalization of the model. The Gated
Recurrent Unit, which computes the hidden state of the input and forwards
it to the decoder as a context, by using both the output of the Decoder and

12 ALEXANDRU-GABRIEL SÎRBU

Figure 2. Sequence-to-Sequence deep learning model architecture

the output of previous Gated Recurrent Units. The Decoder follows a similar
data flow, but this time, the previous output result will be the input to the
Embeddings layer, forwarded to a Gated Recurrent Unit. After that, the out-
put of the Gated Recurrent Unit, together with the context resulted from the
Encoder will go through a Cross Attention layer, whose purpose is to allow the
Decoder to focus on relevant parts of the source sequence, while generating
each word of the target sequence [16]. A further processing of the results is
done through the Linear layer, and a Softmax layer extracts the best next
character for our resulting variable name.

The formula based on which the character at position t is generated is given
by:

ct = softmax(fseq2seq([init : usages], st−1)),

where fseq2seq is the function the Sequence-to-Sequence model tries to ap-
proximate, init represents the embedding of the initialization of the variable,
usages is the embedding of the usages of that variable, [:] denotes vector
concatenation, and st−1 is the previous hidden decoder step.

DEOBFUSCATING JAVASCRIPT CODE 13

3.2.2. Performance evaluation. For evaluating our model’s performance, we
will apply k-fold cross-Validation, splitting the data set into a two compo-
nents: one for training, and the other for validation and testing. The latter
component will be split in half, resulting in 80% of the data set being used
for training, 10% for validation and the other 10% for testing, when choosing
k = 5. Thus, we will be able to give a proper confidence interval, which should
give a better performance measure grasp over the data set used [4].

For our task, two evaluation metrics will be used on a testing data set: one
evaluation metric which computes the accuracy of each character prediction,
since we are using Recurrent Neural Networks, and another evaluation metric
which scores the accuracy of each name predicted. The second metric helps
us compare to other approaches, in order to see how well the model proposed
by us fares against the other approaches proposed.

4. Experimental results

This section presents the experimental results obtained by evaluating the
performance of the approach introduced in Section 2 for deobfuscating JavaScript
code. In addition, a direct comparison to Context2Name [1], JSNice [11] and
JSNaughty [15] is conducted, in order to answer RQ2. Section 4.1 will describe
the data set that we are working on, then the experimental setup and the pa-
rameters employed for the deep learning model are presented in Section 4.2. A
discussion on the obtained results and a comparison to related work is further
conducted in Section 4.3.

4.1. Data set. At this step we will construct a data set similar to the one
described by Bavishi et al. [1], to be able to compare our model with the
state-of-the-art. Thus, from all the files from a publicly available data set1 of
JavaScript programs, which contains 150 thousands non-minified JavaScript
files, the duplicate files, the ones very large and the ones that cannot be
processed will be removed. After that removal, 97979 files remain which con-
tain 2667804 total variables and 239007 unique names. The minification of
JavaScript code is done using UglifyJS, which reduces the file size of those
files by renaming variables and removing spaces.

As it can be seen in Figure 3, the most frequent names that the variables
have are those with a more generic value, such as len or length, which usually
describe the size of an object or array, result, which is usually the returned
variable from a function call or operation, and self , which referred to the
current browser window. There are also many variables names that are either

1https://www.sri.inf.ethz.ch/js150

14 ALEXANDRU-GABRIEL SÎRBU

Figure 3. Word cloud over the most frequent variable names
found in the dataset

highly generic, such as x, or whose name describes perfectly what it refers to,
such as style or error.

The Recurrent Neural Network architecture highly depends on the size of
the output, i.e., in our case, the length of the variables’ name. Thus, as it can
be seen in Figure 4, although the length can vary infinitely, most of the cases,
a name has 4 characters, and the variable names with a length higher than 6
follow a standard exponential distribution.

4.2. Experimental setup. The input for our model is represented by both
the context of the variable, i.e. its initialization and usages, and the previous
hidden state of the Decoder’s Gated Recurrent Unit, used for generating the
next character for the mentioned variable. Thus, we will require two vocab-
ularies: one for the code component, and one for the name of the variable.
From our tests, the vocabulary for code has a size of 158, while the size for the
name’s vocabulary will be 77. In the data set, all non-ASCII characters have

DEOBFUSCATING JAVASCRIPT CODE 15

Figure 4. The distribution of the variable name length

been removed, since they would hundredfold these sizes, making them more
difficult to align and the model more complex.

In our experiment, the architecture used has been described in Section 3.2.1.
After constructing the vectors for the initialization and the usages, we decided
to keep the first 300 tokens from them, while also picking only the first 3
usages, and concatenating everything, thus obtaining a vector with a size of
1200. The Encoder’s Embeddings layer will have an input equal to the size
of the code’s vocabulary, and an output of 256. It will be followed by a
Bidirectional Gated Recurrent Unit, which increases the output size to 512.
The Decoder’s Embeddings layer will have an input size equal to the size of the
name’s vocabulary and an output of 256, being followed by an Unidirectional
Gated Recurrent Unit, which has the output equal to 256. Thus, the Cross-
Attention layer receives a question having the size of 512, and the key equal
to 256, having as an output a vector of size 512. The Decoder’s Linear layer
has an input of size 512 and an output equal to the name’s vocabulary size.
Thus, the total number of parameters that have to be trained is 738,381.

16 ALEXANDRU-GABRIEL SÎRBU

4.3. Results and discussion. After applying a 5-fold cross-validation as de-
scribed in Section 3.2.2, we obtained an average character generation accuracy
of 96.52% and an average name match of 70.53% on our test date sets. For
each iteration of the cross-validation algorithm, we obtained the following
name match accuracies: 70.81%, 81.16%, 61.70%, 66.30% and 72.68%. Thus,
we obtain [64.13, 76.93] name match accuracy percentage as a confidence in-
terval, with a confidence of 95%. The 95% confidence interval (CI) [2] has
been computed by using the formula [µ − α, µ + α], where µ is the mean of
the accuracies obtained during the 5-fold cross-validation and α is the margin
of error, computed as

α = 1.96
σ√
5

(σ is the standard deviation of the obtained accuracies). Although our ob-
tained 95% CI (6.4%) is large enough, the name match accuracy metric em-
ployed is more restrictive than the standard character generation accuracy,
mostly because of the variable sequence length of both the input and the
output, which might lead the model to learn certain parts of target name at
different epochs. Moreover, although our goal is to match the generated name
fully to the one predetermined, partial matches might still be valuable, even
if the final output does not perfectly match the target sentence, which is not
considered by our metric.

A direct comparison to other state-of-the-art approaches can be seen in
Table 1, where our approach and its results are marked with bold. The ta-
ble depicts the name match accuracies for our Seq2Seq model compared to
the state-of-the-art tools Context2Name [1], JSNice [11] and JSNaughty [15].
This comparison has been made using the results available in the previous
work [1], which have been computed on the exact same data set and testing
methodology. During the training of our model, validation loss has decreased
in conjunction with the training loss, which can be seen in Figure 5, which
shows that the model was not overfitted. Moreover, in Figure 6, we can see
a direct comparison between the output generated from UglifyJS, where each
variable name is obfuscated using a single letter. The output of JSNice, as
compared to the output generated from our model provides a level of confu-
sion regarding the variables fb and Helper. In this case, our model generates
wrongfully only one name, i.e. adddataService, as opposed to the instance
found in the dataset addDataService, which proves that the model correctly
learned that lowercase letters have the same meaning as capital letters.

As it can be seen in Figure 7, both most frequent and the most inaccurately
predicted type is represented by function calls, whose assigned name can be
challenging for programmers, thus the inconsistencies in the dataset, which
might lead to incorrect-generated names. One interesting case is represented

DEOBFUSCATING JAVASCRIPT CODE 17

Seq2Seq Context2Name JSNice JSNaughty
70.53% 58.1% 56.0% 47.7%

Table 1. Results compared to state-of-the-art approaches

Figure 5. Training and validation losses

Figure 6. Comparison between code generated by UglifyJS,
JSNice and the output of our proposed model

by function expressions, which are similar to functions lambda functions as-
signed with a name, and string literals assignments, where there are fewer and
more varied examples to learn from, which might cause the high error rate.

18 ALEXANDRU-GABRIEL SÎRBU

Figure 7. Histogram over the variable name types correctly
and incorrectly predicted, sorted based on their frequency

The approach introduced in the paper presents both advantages and dis-
advantages which have to be considered. The main difference between our
approach and the previous work in this field is the character-level encoding
of non-fixed nodes in the Abstract Syntax Tree, such as the values of strings
and function names. This allows us to build an open label vocabulary, which
would be much smaller than others and uses strictly the possible types of nodes
and the ASCII characters. Thus, the model is able to generate names from
input never-before seen, and might generate an output related to that input.
Moreover, the code encoding based on Abstract Syntax Tree allows the model
to easily learn the relations between nodes and their values as opposed to the
traditional token representation of each line of code. As for the disadvantages,
as opposed to other methods, this approach cannot handle name collisions: in
the previous work presented, name collisions were solved by picking the label
with the highest probability, which is not yet existent in the current scope.

DEOBFUSCATING JAVASCRIPT CODE 19

Such an approach to name collisions would not provide well-generated labels,
but a random sequence of non-intelligible characters.

5. Conclusions and Future Work

This paper addressed the problem of JavaScript code deobfuscation, more
generically the problem of assigning names to variables. We proposed a
deep-learning generative model, which constructs a fitting name for a vari-
able character-by-character, using their initialization and usages, encoded as
Abstract Syntax Trees. After evaluating the model on a data set contain-
ing real world JavaScript code, we achieved 70.53% name match accuracy,
outperforming state-of-the-art approaches.

Overall, the code obfuscation is a devious task, while also making the code
harder for the user to understand it, and sometimes, making him completely
unaware of the code that is running on his machine. Code obfuscation was
used for malware to propagate through the internet [8], yet there are still orga-
nizations that try to protect their code and intellectual property, whose code
should be technically safe. There are many other methods of obfuscation be-
sides renaming variables, such as adding code sequences that, when executed,
it will have no effect. This technique is used for generating polymorphic code,
usually used in malicious code [7]. These techniques provide no real protec-
tion from stealing the intellectual property because a professional developer
will eventually understand the code, but the described techniques make the
whole process more difficult.

To conclude, these results prove that the names in variables are more than
a simple label, and they provide a meaning, and their name’s characters are
similar to words in a sentence.

As for the future work, the presented approach cannot handle well name
collisions, as opposed to any of the previous work presented. This approach
could be enhanced by adding the current generated name up to that point,
but would also require a data set where variables are annotated with multiple
possible names. Thus, picking the character with the second-best probability
would be a valid solution to this problem, since the model could generate a
name properly by using it in future character generations.

The task of generating variable names, in the presented approach, can be
adapted to other programming languages as well, where code obfuscation at
the level of variable names is predominant, such as decompiled Java and C++.
Thus, the only component which has to be changed would be the one that con-
verts the code into the language-specific Abstract Syntax Tree, which can be an
area worth experimenting in. Moreover, the task of variable name generation
can be integrated in other code-related Natural Language Processing tasks,

20 ALEXANDRU-GABRIEL SÎRBU

such as code generation, where suggestive names have to be recommended
based on already-generated logic, or into a code linter, which suggests mean-
ingful variable names based on pre-defined projects to set a naming standard
as company policy.

References

[1] Rohan Bavishi, Michael Pradel, and Koushik Sen. Context2name: A deep learning-
based approach to infer natural variable names from usage contexts. arXiv preprint
arXiv:1809.05193, 2018.

[2] George W. Burruss and Timothy M. Bray. Confidence intervals. In Kimberly Kempf-
Leonard, editor, Encyclopedia of Social Measurement, pages 455–462. Elsevier, New
York, 2005.

[3] Raymond PL Buse and Westley R Weimer. Learning a metric for code readability. IEEE
Transactions on software engineering, 36(4):546–558, 2009.

[4] Tadayoshi Fushiki. Estimation of prediction error by using k-fold cross-validation. Sta-
tistics and Computing, 21:137–146, 2011.

[5] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016.

[6] Alan Jaffe, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, and Bogdan
Vasilescu. Meaningful variable names for decompiled code: A machine translation ap-
proach. In Proceedings of the 26th Conference on Program Comprehension, pages 20–30,
2018.

[7] Xufang Li, Peter KK Loh, and Freddy Tan. Mechanisms of polymorphic and metamor-
phic viruses. In 2011 European intelligence and security informatics conference, pages
149–154. IEEE, 2011.

[8] Peter Likarish, Eunjin Jung, and Insoon Jo. Obfuscated malicious javascript detection
using classification techniques. In 2009 4th International Conference on Malicious and
Unwanted Software (MALWARE), pages 47–54. IEEE, 2009.

[9] Xiaoyu Liu, Jinu Jang, Neel Sundaresan, Miltiadis Allamanis, and Alexey Svyatkovskiy.
Adaptivepaste: Code adaptation through learning semantics-aware variable usage rep-
resentations. arXiv preprint arXiv:2205.11023, 2022.

[10] Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and Jan
Cernocky. Subword language modeling with neural networks. preprint (http://www. fit.
vutbr. cz/imikolov/rnnlm/char. pdf), 8(67), 2012.

[11] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties
from” big code”. ACM SIGPLAN Notices, 50(1):111–124, 2015.

[12] Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. Dobf:
A deobfuscation pre-training objective for programming languages. arXiv preprint
arXiv:2102.07492, 2021.

[13] Steve Souders. High-performance web sites. Communications of the ACM, 51(12):36–41,
2008.

[14] Sharath K Udupa, Saumya K Debray, and Matias Madou. Deobfuscation: Reverse
engineering obfuscated code. In 12th Working Conference on Reverse Engineering
(WCRE’05), pages 10–pp. IEEE, 2005.

DEOBFUSCATING JAVASCRIPT CODE 21

[15] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. Recovering clear, nat-
ural identifiers from obfuscated js names. In Proceedings of the 2017 11th joint meeting
on foundations of software engineering, pages 683–693, 2017.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[17] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. A novel neural source code representation based on abstract syntax tree. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 783–
794. IEEE, 2019.

Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: alexandru.gabriel.sirbu@stud.ubbcluj.ro

