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SOFTWARE MAINTAINABILITY AND REFACTORINGS

PREDICTION BASED ON TECHNICAL DEBT ISSUES

L. BERCIU AND V. MOLDOVAN

Abstract. Software maintainability is a crucial factor impacting cost,
time and resource allocation for software development. Code refactorings
greatly enhance code quality, readability, understandability and extensi-
bility. Hence, accurate prediction methods for both maintainability and
refactorings are vital for long-term project sustainability and success, of-
fering substantial benefits to the software community as a whole. This
article focuses on prediction of software maintainability and the number
of needed code refactorings using technical debt data. Two approaches
were explored, one compressing technical debt issues per software com-
ponent and employing machine learning algorithms such as ExtraTrees,
Random Forest, Decision Trees, which all obtained a high accuracy and
performance. The second approach retained multiple debt issue entries and
utilized a Recurrent Neural Network, although less effectively. In addition
to the prediction of the requisite number of code refactorings and soft-
ware maintainability for individual software components, a comprehensive
analysis of technical debt issues was conducted before and after the refac-
toring process. The outcomes of this study contribute to the advancement
of a dependable prediction system for maintainability and refactorings,
presenting potential advantages to the software community in effectively
managing maintenance resources. From all the employed models, the Ex-
traTrees model yielded the most optimal predictive outcomes. To the best
of our knowledge no other approaches of using ML techniques for this
problem have been reported in the literarture.

1. Introduction

In the last decades, software has known a continuous growth facing increas-
ingly demanding expectations and requirements. Consequently, the software
development process must aim for optimal efficiency. The objective is to cre-
ate software systems that are bug-free, easily modifiable and updatable, and
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capable of accommodating new features seamlessly. The maintenance phase
of software development is a substantial part of its life cycle. This phase is
of utmost importance as it spans the entire lifespan of the software product,
commencing immediately after the completion of the development process.
Numerous studies have emphasized the significance of software maintainabil-
ity [9], [5], [21].

There is a strong connection between software systems’ maintainability and
technical debt issues. There are several types of software issues that can
be detected by performing a static analysis of the software systems. Without
actually running the code, software static analysis looks for potential problems
and enhances code quality. It specifically looks at a program’s source code
to find potential problems such syntax mistakes, security flaws, performance
problems, and maintainability concerns. A small number of issues implies a
higher maintainability and vice versa. One of the code’s problems found in
the static analysis process is represented by the technical debt.

As presented in [2], [16], and [27], there is a strong connection between
the software systems’ detected issues, its maintainability and the refactorings
performed on that software. Refactoring aims to lower technical debt while
increasing readability, maintainability, and scalability of the software system.
When the maintainability is too low and there are too many issues which over-
complicate the development process, a refactor is needed. After successfully
and correctly performing the refactor, the number of issues should decrease
and the software maintainability should increase, improving the quality of the
software.

With the growing interest in the field of software development, there has
been a significant rise in the development of tools aimed at enhancing the
software development process. These tools offer various capabilities, including
the ability to measure code metrics, conduct static analysis to identify tech-
nical debt issues, and provide suggestions for code improvements. Among the
widely recognized tools in this domain are SonarQube 1, PyLint 2, ESLint 3,
cppcheck 4, CheckStyle 5, FindBugs 6. There are also tools that aim to detect

1Sonarqube. https://www.sonarqube.org/.
2PyLint, https://pypi.org/project/pylint/
3ESLint, https://eslint.org/
4cppcheck, https://cppchecksolutions.com/
5CheckStyle, https://github.com/checkstyle/checkstyle
6FindBugs, https://spotbugs.github.io/
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code refactorings between different code versions, such as RefactoringMiner 7,
RefactoringCrawler 8, RefDiff 9, and several others.

The goal of this paper is to predict the number of refactorings that need to
be performed, and based on this number to classify the maintainability of each
software component, aiming to obtain a performance as high as possible. To
accomplish this, multiple intelligent algorithms have been employed and ana-
lyzed to identify the most suitable algorithm for this specific task. In addition
to predicting software maintainability and number of needed code refactor-
ings, an analysis of the technical debt issues before and after the refactoring
process has been conducted.

The problem of predicting software maintainability and number of needed
refactorings based on technical debt issues was addressed firstly as a classifica-
tion problem, and then as a regression problem. The classification task referred
to classifying each software component into one of the following maintainabil-
ity classes: ”Great”, ”Good”, and ”Poor”, while the regression task referred
to predicting the number of needed refactorings by each software component.

The subsequent sections of this paper are organized as follows: Section 2
outlines the related work, Section 3.1 presents the data preparation, and Sec-
tion 3.2 expounds on the architectural configurations of the employed machine
learning algorithms. A comparative analysis is presented in Section 4, followed
by a more comprehensive examination of the SonarQube issues in Section 5.
Ultimately, Section 6 offers the drawn conclusions and points towards potential
directions for future work.

2. Related work

Ensuring the correctness and efficiency of modern software systems is es-
sential. Software maintainability, being a crucial quality factor, plays a vital
role in ensuring the long-term sustainability of software systems and mitigat-
ing technical debt. It facilitates effective bug fixing, enables seamless software
updates and improvements, fosters collaboration within development teams,
and supports the overall adaptability and evolution of software systems. By
prioritizing maintainability, organizations can streamline their software de-
velopment processes, enhance productivity, and deliver reliable, high-quality
software products that meet the evolving needs of their customers and stake-
holders.

The topic of software maintainability prediction has received a significant
interest, leading to numerous studies dedicated to addressing this problem.

7RefactoringMiner, https://github.com/tsantalis/RefactoringMiner
8RefactoringCrawler, http://dig.cs.illinois.edu/tools/RefactoringCrawler/
9RefDiff, https://github.com/aserg-ufmg/RefDiff
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A comprehensive review study conducted by Elmidaoui et al. [8] examined
77 research studies published between 2000 and 2018 that aimed to predict
software maintainability based on various software quality metrics. The review
presented in [8] provides a detailed analysis of the employed maintainability
prediction techniques, validation methods, accuracy criteria, overall accuracy
of machine learning (ML) techniques, and the techniques offering the best
performance.

In [26], Van Koten and Gray found that ML techniques, including Bayesian
networks [23], outperformed regression-based models in prediction accuracy.
The study showed that ANNs [24] capture complex non-linear relationships
and approximate any measurable function, SVM/R [6], [7] excels in learning
classification and regression tasks, especially with high-dimensional data, DT
[4] offer a straightforward and comprehensible approach and FNF methods [13]
handle limited or missing data, while RA [20] is a simple and reliable technique,
particularly useful with multiple independent variables. This represented a
reason for which, in this approach, machine learning algorithms were chosen
to be used in the detriment of regression-based models.

The prediction techniques utilized in these studies can be broadly classified
into two main groups: ML techniques and statistical techniques. Statistical
techniques encompassed various approaches, such as regression analysis (RA),
probability density function (PD), Gaussian mixture model (GMM), discrim-
inant analysis (DA), weighted functions (WF), and stochastic model (SM). In
contrast, ML techniques encompassed artificial neural networks (ANN), case-
based reasoning (CBR), regression and decision trees (DT), Bayesian networks
(BN), evolutionary algorithms (EA), support vector machine and regression
(SVM/R), fuzzy and neuro fuzzy (FNF), inductive rule-based (IRB), ensemble
methods (EM), and clustering methods (CM).

The review study [8] showed that the statistical techniques, more popular
from 2000 until 2007, are only effective when a linear or predetermined rela-
tionship exists between the dependent and independent variables. With the
advent of ML techniques, researchers started exploring both statistical and
ML approaches to assess their predictive capabilities for maintainability. In
[14], Kaur and Kaur emphasized that traditional parametric statistical data
analysis methods may be insufficient and suggested that the utilization of ML
algorithms or pattern recognition approaches, which are inherently nonpara-
metric, could lead to improved prediction accuracies.

The process of refactoring holds an important significance owing to its ca-
pacity to enhance code quality, improve maintainability, and foster collabora-
tion among developers. By eliminating code smells, mitigating technical debt,
and optimizing code performance, refactoring contributes to the development
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of robust and scalable software systems. Consequently, numerous research
studies have been conducted to comprehensively analyze the relationship be-
tween refactoring and software maintainability, as well as to explore predictive
methods for anticipating the need for refactorings.

In [12], Hegedus et al. presents an enhanced dataset comprising verified
refactoring data pertaining to open-source systems. The study reveals that
refactoring is frequently employed on entities exhibiting low maintainability,
signifying developers’ proactive efforts to address deteriorated code. Metrics
associated with size, complexity, and coupling exhibit notable increases in
refactored elements, indicating developers’ focus on improving these aspects.
However, the analysis suggests that metrics related to code clones have a
comparatively lesser impact.

In [1], an investigation on the prediction of software refactoring by employ-
ing Support Vector Machine (SVM) and optimization algorithms is presented,
exploring the relationship between code coverage and the effectiveness of the
test suite in an evolutionary context. The authors examine the application
of SVM in conjunction with genetic algorithms to forecast refactoring at the
class level. Utilizing a dataset derived from open-source software systems, the
study achieves promising levels of accuracy, ranging from 84% to 93%. The
performance is further enhanced by integrating SVM with the optimization
algorithms.

3. Experiment and study plan

The experiment was designed in the following manner: firstly, the data
was gathered, then the dataset was prepared The last included several steps:
Preparing the technical debt dataset: computing the number of issues per soft-
ware component, then associating numerical values to severity (BLOCKER:
5, CRITICAL:4, MAJOR:3, MINOR:2, INFO:1) and type (CODE SMELL:1,
BUG:2, VULNERABILITY:3), removing the N/A entries and finally comput-
ing for each software component the mean of the severity, debt and type values;
Preparing the refactoring dataset implied computing the number of refactor-
ings per software component. Finally, the dataset was created after merging
the technical debt dataset with the refactoring dataset. After that, data was
split into training (70%) and testing (30%). The models were trained, and then
the testing data was used to evaluate them. The last step was represented by
analyzing the obtained results and drawing conclusions.

3.1. Data Preparation.
In order to predict the software maintainability and number of needed refac-

torings based on technical debt issues, several steps need to be performed. The
first element needed is represented by data. In this research investigation, a
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comprehensive analysis was conducted on three open-source Java projects,
namely jEdit 10, FreeMind 11, and TuxGuitar 12. The study encompassed two
distinct categories of data pertaining to these projects. Firstly, the techni-
cal debt issues encountered in jEdit version 5.5, FreeMind version 1.0.1, and
TuxGuitar version 1.5.2 were examined. Secondly, the refactorings performed
between these versions and subsequent versions of each project, specifically
jEdit 5.6, FreeMind 1.1.0, and TuxGuitar 1.5.3, were taken into account. The
dataset [17] containing all technical debt issues information about the jEdit
project version 5.5, FreeMind project version 1.0.1 and TuxGuitar project
version 1.5.2, has been previously used in other studies as well, such as [18].

The data needed for the Technical Debt analysis step of the experiment
was collected by running SonarQube on the three projects and extracting the
issues data found by the tool, such that the details provided by the tool will be
considered as attributes. While the tool execution for jEdit and FreeMind was
straightforward, namely successfully compiling the projects and running the
Sonarqube tool by using the Sonar Scanner version matching the build system
used (ANT in both cases), the data collection for TuxGuitar proved to be more
difficult, as TuxGuitar is divided in a multitude of individual projects compiled
by Maven build system, more exactly 65 individual projects. From those, we
selected the base TuxGuitar project, TuxGuitar Android Resource, TuxGuitar
AudioUnit, TuxGuitar CoreAudio, TuxGuitar Editor Utils, TuxGuitar GM
Utils, TuxGuitar Lib and TuxGuitar UI toolkit. SonarQube was executed on
each individual project and then the issues fetched and merged together.

In this research study, a selective approach was adopted regarding the at-
tributes of the technical debt issues under consideration. After running the
chosen static analysis tool, a report was obtained that contained a list of all
detected issues, each issue associated with the name of the software compo-
nent in which it’s located, and several other attributes such as severity, debt,
type, creation date, rule, update date, and others. Specifically, the severity,
debt, and type of each issue were thoroughly investigated. This decision was
based on the notion that certain attributes, such as the key, did not provide
significant or pertinent information for the classification or regression model.
Furthermore, some attributes required more intricate examination and pre-
processing, which warranted their inclusion in future research endeavors. In
addition to the severity, debt, and type of each issue, the computation of the
number of issues per component was performed and subsequently utilized in
the prediction process.

10jEdit, http://www.jedit.org/
11FreeMind, https://freemind.sourceforge.net/
12TuxGuitar, https://sourceforge.net/projects/tuxguitar/
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Regarding the final representation of the technical debt issues data, two
distinct approaches were pursued:

• The first approach involved compressing the technical debt issues
for each project into a single instance per software component. To
obtain the final values of severity and type for each component,
these attributes were mapped to numerical values using the following
scheme: Severity = INFO: 1, MINOR: 2, MAJOR: 3, CRITICAL:
4, BLOCKER: 5 and Type = CODE SMELL: 1, BUG: 2, VUL-
NERABILITY: 3. After the mapping process, the mean values of
severity and type were computed by summing their respective values
for each component and dividing the sum by the number of issues
associated with that component. When calculating the mean for the
debt attribute, instances with a value of N/A were excluded from
consideration, and the associated issues were removed from the total
count per component. By performing these operations, each software
component was represented by a single instance.

• The second approach did not involve compressing the issue instances
into a single instance per class/component. Instead, it focused on
removing issues that had an N/A value for the debt attribute. This
decision was made to enhance interpretability for the model, as N/A
values posed difficulties in interpretation. Additionally, this approach
also resulted in a decrease in the number of issues per component,
which had been previously computed.

The data utilized in this study comprised information related to the refac-
torings conducted between two versions of each project, which was obtained
through the employment of the RefactoringMiner tool. This tool facilitated
a comparison between two project versions and generated a report detailing
the refactorings executed during this transition. The provided refactoring
information encompassed the type of each refactor, a concise description of
its purpose, and the specific component on which the refactoring was per-
formed. Additionally, the number of refactorings for each software component
was computed. These attributes provided valuable insights into the code’s
condition and offered suggestions for improving its maintainability. To avoid
challenges associated with high-dimensional data, such as overfitting, compu-
tational complexity, and data sparsity, only the count of performed refactorings
per software component was considered in this study.

To create the final dataset, the technical debt issues data and the refac-
torings data were merged. The software components served as the common
element between these datasets, enabling the addition of a new column in
the technical debt issues dataset that represented the number of refactorings
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performed on each specific component. Consequently, the analyzed data fed
into the intelligent algorithm contained information pertaining to the severity,
debt, type, and count of technical debt issues for each software component,
alongside the number of refactorings conducted on that particular component.

The problem in this study was initially formulated as a classification task
and later as a regression task. In the regression setting, the predicted output
was the estimated number of refactorings required for each component. In the
classification problem, the output classes were defined as follows:

• ”Great” category: Corresponded to components that had fewer than
5 refactorings performed on them.

• ”Good” category: Associated with software components that under-
went between 5 and 20 refactorings.

• ”Poor” category: Assigned to software components that had more
than 20 refactorings performed on them.

3.2. Architectural Configurations of Employed Machine Learning
Algorithms.

Various architectural configurations were evaluated for the prediction of
software maintainability and the required quantity of refactorings in the ana-
lyzed projects. Employing the initial dataset, which comprised a single entry
for each software component, multiple models were trained and achieved com-
mendable performance.

For the classification approach, the LazyClassifier from the lazypredict.Super-
vised library was employed, and several models were studied, including the
Extra Tree Classifier [10], LGBM Classifier [15], Random Forest Classifier
[3], and K-Neighbors Classifier [11]. Cross-validation with 5 folds and the
f1 macro scoring metric were applied using the cross val score function from
the sklearn.model selection module. Additionally, the MLPClassifier [25] from
the sklearn.neural network module was evaluated with different configurations,
such as varying the number of neurons (100, 150, and 200), considering acti-
vation functions like Relu and logistic sigmoid, and utilizing the lbfgs and
adam solvers as optimization methods. The results are presented in Table 1.

For the regression approach, the LazyRegressor from the lazypredict.Super-
vised library was utilized, and several models were examined, including the
Extra Tree Regressor, K-Neighbor Regressor, Hist Gradient Boosting Regres-
sor, Random Forest Regressor, and Decision Tree Regressor. Similar to the
classification approach, cross-validation was conducted using a KFold of 5,
and the negative mean squared error was used as the scoring metric. The
multi-layer perceptron (MLP) was also applied for regression, with the num-
ber of neurons set to 20, 25, and 30, and the activation functions and solvers
remaining the same as those used in the classification task.
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Table 1. Results obtained for Lazy Classifier models and
MLP and RNN models

Model Accuracy Recall Precision F1-Score

ExtraTreesClassifier 0.92 0.92 0.92 0.92
RandomForestClassifier 0.90 0.90 0.90 0.90

LGBMClassifier 0.88 0.88 0.88 0.88
DecisionTreeClassifier 0.88 0.88 0.88 0.88
ExtraTreeClassifier 0.82 0.81 0.83 0.82
KNeighborsClassifier 0.77 0.76 0.79 0.77

SVC 0.70 0.70 0.71 0.70
MLP 0.69 0.65 0.69 0.67

LogisticRegression 0.63 0.63 0.62 0.62
LinearSVC 0.60 0.59 0.58 0.58
Perceptron 0.56 0.56 0.56 0.56

RNN 0.57 0.58 0.56 0.56

The second dataset, which included multiple entries per component corre-
sponding to detected technical debt issues, was used for training a recurrent
neural network (RNN). The RNN model consisted of the following compo-
nents:

• An Embedding layer with a length equal to the training data’s length.
• A LSTM (long-short term memory) layer followed, utilizing Relu
activation functions for both regression and classification tasks, and
sigmoid activation function solely for classification.

• A Dropout layer with a dropout rate of 0.2.
• Another LSTM layer with the same activation functions as the pre-
vious LSTM layer

• A subsequent Dropout layer with a dropout rate of 0.2
• A Dense layer with Relu activation function for regression and clas-
sification, and sigmoid activation function only for classification,

• Another Dropout layer, identical to the previous two. This layer
helps prevent overfitting and introduces noise, making the network
more robust to dependencies on specific features.

• The last layer was a Dense layer with either 3 output channels for
classification (corresponding to the defined maintainability classes)
or 1 output channel for regression. The activation function used was
Softmax for classification and no activation function for regression.
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The model was compiled using the sparse categorical cross entropy loss
function for the classification algorithm and mean squared error loss function
for the regression algorithm. The optimizer used for both algorithms was
adam. The results are presented in Table 2.

Table 2. Results obtained for Lazy Regressor models, MLP
and RNN models

Model R-Squared Adjusted R-Squared RMSE MAE

ExtraTreesRegressor 0.92 0.91 2.75 1.77
RandomForestRegressor 0.90 0.89 3.12 2.36
ExtraTreeRegressor 0.81 0.81 2.88 2.54

DecisionTreeRegressor 0.88 0.88 3.01 1.87
LGBMRegressor 0.88 0.88 3.07 2.18

KNeighborsRegressor 0.75 0.75 2.87 1.99
SVR 0.65 0.65 3.88 3.28

LinearSVR 0.59 0.58 3.97 3.02
MLP 0.58 0.58 3.85 3.25
RNN 0.50 0.50 4.21 3.25

LinearRegression 0.49 0.48 4.69 3.88

4. Comparative analysis

In Table 1, the results obtained for LazyClassifier models, MLP and RNN
models are presented. The best performing model was represented by Extra-
TreesClassifier using the first approach of handling the data, while the lowest
performance was obtained by the RNN model using the second data approach.
The accuracy of the ExtraTreesClassifier was 0.92, also having the same value
for the recall, precision and F1-Score metrics. This suggests that that the
classification model is performing at a high level, making correct predictions,
and effectively capturing positive cases. As for the RNN model, it achieved an
accuracy of 0.57, a recall of 0.58 and a precision and a F1-Score of 0.56, indi-
cating that model has some level of predictive ability, but the performance is
quite low comparative to the other employed models. The RNN model might
be making correct predictions for a portion of the data, but there are also
instances where it’s struggling to provide accurate results. This needs to be
further investigate in order to be improved.

The regression results presented in Table 2 are similar to the ones from the
classification task presented in Table 1, the ExtraTrees algorithms being the
most performant one. The RNN model behaved better than LinearRegression,
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but its performance still needs to be further analysed and improved. The RNN
model obtained a R-Squared and and Adjusted R-Squared of 0.50, suggesting
that he model explains about 50% of the variability in the target variable,
being a moderate fit. A RMSE of 4.21 implies that the model’s predictions
have an average error of around 4.21 units, while a MAE of 3.25 suggests that,
on average, the model’s predictions are off by about 3.25 units from the actual
values.

Following the execution of the ExtraTrees classifier, the outcomes for each
maintainability class are displayed in Table 3. The analysis reveals that the
”Good” class achieved the highest performance, while conversely, the ”Poor”
class exhibited the lowest performance. This observation aligns with the char-
acteristics of the initial dataset, which exhibited an imbalance prior to under-
going data augmentation. Specifically, the dataset contained a smaller number
of instances classified as ”Poor” compared to instances classified as ”Great”
and ”Good.”

Table 3. Results obtained for ExtraTrees model

Output Class Accuracy Recall Precision F1-Score

Great 0.92 0.91 0.93 0.92
Good 0.94 0.94 0.94 0.94
Poor 0.90 0.91 0.89 0.90

Total 0.92 0.92 0.92 0.92

The study focused on comparing the obtained results of software maintain-
ability with the values of the maintainability index [22], which is a popular
measurement method. The maintainability index categorizes software into
three classes: Bad, Satisfactory, and Acceptable. The jEdit 5.5 project was
classified as ”Satisfactory,” FreeMind 1.0.1 as ”Bad,” and TuxGuitar 1.5.2 as
”Satisfactory” based on their maintainability index values. To perform a fair
comparison between the results and the maintainability index, the mean value
of the maintainability index for each project was computed.

The prediction model showed high performance based on the training data,
with the lowest metrics observed for the ”Poor” class. However, the observed
maintainability index values for the three projects did not fully align with
this finding. The mapping between software components and maintainability
classes based on the number of needed refactorings did not match the mapping
based on maintainability index values. This might suggest that there is no di-
rect relationship between the number of refactorings or technical debt issues
and the maintainability index value [19]. The discrepancy between the study’s
findings and the maintainability index can be attributed to the limitations of
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metrics used in the maintainability index, which do not fully capture the com-
plexities of object-oriented software. Since the studied projects were developed
using the object-oriented paradigm, it is expected that the results may not
align perfectly with the maintainability index. Thus, our study confirms one
more time that maintainability index does not accurately characterize object
oriented systems.

5. A deeper dive into SonarQube issues

In the previous sections, we provided a high level overview on how main-
tainability index and technical debt metrics exhibit variation between two
successive versions of a project’s release timeline. On the Technical Debt ex-
periment side, we leveraged the SonarQube issues and the refactorings data
from the provided datasets, selected the data most suitable for the experiment
from both sources, merged it together and fed it to artificial intelligence tools.
While this proved to be effective in computing the results of the study and pro-
viding a general answer on the aforementioned research questions, we decided
to further refine and improve our research findings by following a particular
path: diving deeper into SonarQube issues.

Throughout this section, we will present the particularities of SonarQube
issues found inside each project by doing a classification of their types, sever-
ities and numbers, see how they compare between versions and offer a final
comparison with the initial results from the previous section.

5.1. JEdit 5.5 and 5.6. JEdit proved to have the highest number of issues
found for both versions, from all projects under study. For version 5.5, we
have extracted a total of 139.905 issues, from which 134.901 were labeled as
CODE SMELLS and 4004 were labeled as BUG. For Version 5.6, the number
of total issues was 63899, from which 57773 were labeled as CODE SMELL
and 6126 were labeled as BUG. Interestingly, the latter version also reported
8 issues explicitly labeled as vulnerabilities. The sonar rules spanned multiple
file types, such as .java, .html and .xml. The general data can be visualised
in Table 4, while Table 5 shows the data for Java only files.

Table 4. General issues comparison between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jEdit 5.5 135901.0 4004.0 -
jEdit 5.6 57773 6126 8

To properly show how the issues fluctuated between the two releases, tables
6 and 5.1 show how the percentages between issue types changed. We can
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Table 5. Java issues comparison between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jedit-5-5.csv 29093.0 441.0 -
jedit-5-6.csv 20355 541 8

observe a decrease in code smells from 97.14% to 90.40% when it comes to
total code smells reported to the other issues and a staggering numeric decrease
from 135901 to 57773. While this looks like an improvement on a first glance,
if we take BUG issues into consideration, we can observe an actual increase
from 2.86% to 9.59% between versions, more specifically, from 4004 to 6126
issues reported as bugs. An extra 8 vulnerabilities were also found. While the
total number of issues may have decreased, we can clearly observe that their
severity increased, as the number of bugs increased by 50% and bugs having
a higher severity than code smells in general. We can conclude that, at least
for now, the quality of the code decreased through the versions.

Table 6. Distribution of general issues between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jEdit 5.5 97.14% 2.86% -
jEdit 5.6 90.40% 9.59% 0.01%

Table 7. Distribution of Java issues between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jEdit 5.5 20.79% 0.32% -
jEdit 5.6 31.85% 0.85% 0.01%

5.2. Freemind 1.0.1 and 1.1.0. For Freemind, we extracted a total of 12653
issues, from which 12349 labeled as code smells, 302 labeled as bugs and 2
labeled as vulnerabilities. As opposed to jEdit, the number of Java issues
comprises the majority of general issues, with a number of 12549, from which
12269 code smells, 278 bugs and 2 vulnerabilities. Data can be visualised in
Tables 8 and 9.

From a percentages point of view, we can observe that the ratio is similar
for both general issues and java issues, with an approximate 97% and 2%
percent of code smells and bugs holding between releases 10 and 11. The
improvement here can be observed from the number of actual issues between
the two versions, with a clear decrease of both code smells by 25% and bugs
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Table 8. General issues comparison between Freemind versions

Project Code Smell Bug Vulnerability
Freemind 1.0.1 12349 302 2
Freemind 1.1.0 9633 249 2

Table 9. Java issues comparison between Freemind versions

Project Code Smell Bug Vulnerability
Freemind 1.0.1 12269 278 2
Freemind 1.1.0 9547 225 2

by 20%. While explicit vulnerabilities did not change, their number are too
few to be relevant in this context.

We can say that the quality of code improved by 20% between releases, as
opposed to jEdit, where the severity increased.

Table 10. Distribution of general issues between Freemind versions

Project Code Smell (%) Bug (%) Vulnerability (%)
Freemind 1.1.0 97.60 2.39 0.02
Freemind 1.0.1 97.46 2.52 0.02

Table 11. Distribution of Java issues between Freemind versions

Project Code Smell (%) Bug (%) Vulnerability (%)
Freemind 1.0.1 96.97 2.20 0.02
Freemind 1.1.0 96.59 2.28 0.02

5.3. TuxGuitar 1.5.2 and 1.5.3. TuxGuitar analysis shows a total of 3296
total issues for version 1.5.2, with a number of 3012 code smells, 258 bugs
and 26 vulnerabilities. For version 1.5.3, we registered a total of 2930 issues,
from which 2746 code smells, 184 bugs and 18 vulnerabilities. We can already
observe an improvement from v1.5.2 to v1.5.3, as all categories of issues had a
clear decrease. Data is shown in Table 12. A main difference from the previous
two inspections shows that, for TuxGuitar, our test produced only java issues,
meaning that the TuxGuitar projects that we analysed did not include other
types of resources such as .html and .xml files that could have been analysed
by SonarQube in the way we ran the tool. Hence, we did not publish a second
table as the data between general issues and Java only issues is not different.
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Table 12. General issues comparison between TuxGuitar versions

Project Code Smell Bug Vulnerability
TuxGuitar 1.5.2 3012 258 26
TuxGuitar 1.5.3 2746 184 18

The distribution percentage of issues between versions has a similar ratio,
while showing a slight increase in code smells and a slight decrease in bugs.
This shows an improvement in the overall code base and a decrease in severity,
as the percentage of bug issues is smaller than code smells when reported to
the total number of issues. The improvement is better than in Freemind’s
case, where, even though every category of findings improved, the percentage
of bugs related to the total issues became higher in the newer version. Table
13 contains the distribution of TuxGuitar issues.

Table 13. Distribution of issues between TuxGuitar versions

Project Code Smell (%) Bug (%) Vulnerability (%)
TuxGuitar 1.5.2 91.38 7.83 0.79
TuxGuitar 1.5.3 93.15 6.24 0.61

5.4. Comparison between the three datasets. All three datasets showed
improvements in the number of issues found between versions. This indicates
that continuous development and refactorings decreased the number of total
issues for each project. Even though the total number of issues has shown
improvement, the quality of the changes was different:

• jEdit introduced more bugs than before, more specifically an addition
of 2122 SonarQube BUG rule violations

• Freemind kept a similar ratio between code smells and bugs, with
bugs slightly taking more space in the newer version

• TuxGuitar had the best result, with a similar ratio between code
smells and bugs, and bugs also decreasing from a distribution point
of view

Relating the above results with the maintainability index computed from
Section 4, we can conclude the following:

• Starting with jEdit as the first analyzed project, we concluded that
the overall code quality decreased between releases, even though the
total number of issues has improved. This is backed by the fact
that the number of bugs introduced in a newer release were superior
(from 2% to 9%) than the older release and the fact that bugs hold
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a higher severity than code smells. The flow of development in this
case seems to have brought down the overall quality of the project,
asking the question of what might have happened in the development
process. There may be a correlation between a big number of issues
that the project has and the difficulty of maintaining and developing
a complex application, hence the decrease in code smells and the
increase in bugs in vulnerabilities. This can mark the subject of
future research.

• With Freemind, the development process showed linear progress in
the quality of the code. Both code smells and bugs issues have a
similar percentage between releases, with an overall improvement of
the project quality. Vulnerabilities were not taken into account due
to their low number. This improvement may signify a better man-
agement in development processes and a greater attention to detail
than the other projects when it comes to solving issues. The lower
number of issues than jEdit may also pose a reason for this result,
bringing into consideration the possible correlation from the previ-
ous point. Against all evidence, the maintainability index classified
the project as ”Bad”, showing that the metric may not be generally
applicable to empirical studies on refactorings.

• Finally, it can be observed that TuxGuitar’s shift from version 1.5.2
to 1.5.3 not only exhibited a decrease in overall problems but also
reflected an improvement in its maintainability index. The software
obtained a ”Satisfactory” rating in this area. The success of its refac-
toring endeavors is evident in the positive trajectory, which is charac-
terized by a decrease in bugs and vulnerabilities. Simultaneously, the
increase in code smells highlights the significance of ongoing empha-
sis on refining coding practices, in a way that both maintainability
and overall code quality are maintained in future iterations.

6. Conclusions and future work

This study focuses on the analysis of software source code and its impact on
software maintainability, considering factors such as cost and time allocation.
The use of artificial intelligence has gained prominence in analyzing software
problems. The study explores the relationship between software maintainabil-
ity, technical debt issues, and code refactorings. The objective is to develop
high-performing approaches for predicting software maintainability and the
number of code refactorings based on technical debt issues.

To ensure accurate prediction of software maintainability and the number of
required code refactorings, a comprehensive dataset was essential. This study
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focused on three open-source Java projects: jEdit, FreeMind, and TuxGuitar.
Technical debt issues were obtained by performing static analysis on specific
versions of these projects (jEdit 5.5, FreeMind 1.0.1, and TuxGuitar 1.5.2).
Refactoring data was obtained by using the RefactoringMiner tool to compare
different versions of each project. The technical debt data from the SonarQube
tool was combined with the RefactoringMiner data and processed accordingly.

Two different approaches were considered. The first approach consolidated
the technical debt issues to a single issue per software component, while also
including the count of technical debt issues per component as an additional
feature. Data augmentation techniques, such as Noise Injection, were applied
to balance the dataset for increasing the generalization capacity of the models
by simulating different variations in the data through the addition of random
noise. Classical machine learning algorithms, including the Multi-layer Per-
ceptron, Decision Trees, Random Forest, and Support Vector Machine, were
employed as intelligent algorithms. The ExtraTrees algorithm yielded the best
results in both the classification and regression tasks, achieving an accuracy
of 0.92, F1-Score of 0.92 (classification), R-Squared of 0.92, and RMSE of 2.75
(regression).

The second approach did not modify the technical debt issues associated
with each software component, allowing for the possibility of multiple entries
for the same component in the dataset. A Recurrent Neural Network (RNN)
was employed as the intelligent algorithm for this approach. However, the
RNN model did not perform as well as the ExtraTrees algorithm in the first
approach, achieving only an accuracy of 0.57 (classification) and R-Squared of
0.50 (regression).

The proposed methodology employs technical debt data to forecast the
maintainability of software and the required number of code refactorings in
three open-source Java projects. However, it is important to acknowledge a
potential threat to the validity of the obtained outcomes due to the specific
use of Java projects. Consequently, when applied to projects developed in
different programming languages, the reliability of the results and the model’s
performance may be compromised.

Furthermore, certain aspects were not considered in the current approach
that warrant exploration. These aspects include specific details pertaining to
technical debt issues (e.g., message content) and refactorings (e.g., refactoring
type and description). Integrating the message content of issues and the type
or description of refactorings into the prediction model has the potential to
enhance accuracy and provide more insightful information to end users. Addi-
tionally, the current implementation solely relies on technical debt data, and
future enhancements could involve incorporating additional software metrics.
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Such metrics offer valuable insights into the code’s state and their inclusion
could improve the predictive model.

Another area for investigation involves refining the performance of the sec-
ond proposed approach, as it does not condense technical debt data to a single
entry per software component. Similarly, in the first approach, reducing tech-
nical debt data to a single entry per component is achieved by calculating the
mean of all values. However, it is essential to note that this may not be the
most optimal reduction method. Therefore, this presents an additional area
that requires further investigation and refinement.

The attained results represent a step towards building a strong predictive
model for software maintainability and the necessary number of code refactor-
ing. Additionally, these outcomes can be easily integrated into a web applica-
tion, ensuring convenient access. This advancement has the potential to aid
the software community in improving their assessment of software maintain-
ability, thereby contributing to reduced resources needed for the maintenance
phase.
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