
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 2, 2023
DOI: 10.24193/subbi.2023.2.03

ON COMPOSING ASYNCHRONOUS OPERATIONS

RADU LUPŞA AND DANA LUPŞA

Abstract. Asynchronous operations are very useful for actions that wait
for an external event or work for a long time, to avoid blocking the thread
that launches them. Unfortunately, whether they report their termination
via callbacks or via completing a future, composing several asynchronous
calls is difficult and error prone. The continuations mechanism (provided,
for example, in C# Task Parallel Library via ContinueWith()) offers lim-
ited support for scheduling a sequence of operations. In this paper we try
to improve this mechanism with better support for sequencing operations
and exceptions, and with support for conditionals and loops, while cover-
ing the specifics of a C++ implementation. The most recent version of our
source code is at [14].

1. Introduction

Asynchronous operations are operations that are started by a thread via a
function call, but that continue after the initiating call returns.

They are essential in exploiting the parallelism, either between the CPU
and the peripherals or external events, or between CPU cores.

Asyncronous communication and future objects are useful mechanisms to
tolerate high latencies and improve overall performance. Automatic continua-
tion and the mechanism used for updating result values can be used to further
increase applicability and performance in different application and deployment
scenarios [11] [15].

Research in the domain include: analysis of different strategies for updating
future objects[15], proposal for architectures to support asynchronous mes-
sages using future objects while preserving the separation between the logic
and the control aspects in the implementation [10], design for asynchronous

Received by the editors: 28 February 2023.
2010 Mathematics Subject Classification. 68N19, 68Q85.
1998 CR Categories and Descriptors. D.3.3 [Software]: Programming Languages –

Language Constructs and Features; D.1.3 [Software]: Programming Techniques – Language
Concurrent Programming ; D.2.2 [Software]: Software Engineering – Design Tools and Tech-
niques .

Key words and phrases. asynchronous programming.

41



42 RADU LUPŞA AND DANA LUPŞA

stream generators, extending previous facilities [6], new framework to mimic
simple synchronous programming but able to achieve fullflow processing asyn-
chronously [4].

Combining several asynchronous operations to form a program is a difficult
task. The goal of this paper is to study how to create patterns similar to
structured programming. We try to improve the continuation mechanism with
better support for sequencing operations and exceptions, and with support for
conditionals and loops, while covering the specifics of a C++ implementation.

The rest of the paper is organised as follows: section 2 reviews the mecha-
nisms available for getting the results for asynchronous operations. Section 3
discusses in more details the futures with continuation mechanisms. Section 4
describes the proposed framework allowing to combine simpler asynchronous
operations into a more complex ones in a way similar to structured program-
ming. The paper ends with conclusions.

2. Asynchronous operations result and chaininig

For any asynchronous operation, the caller needs to have some mechanism
allowing it find out when the asynchronous operation has finished, and to
retrieve any data produced by that asynchronous operation.

There are two basic mechanisms used by frameworks that offer asynchronous
operations:

callbacks: When the asynchronous operation ends, a callback provided
by the application is called.

futures: The call that initiates the asynchronous operation returns an
object (a future or something that can be used as such) that can be
polled by the application to find out if the asynchronous operation
ended and, possibly, to wait until the operation ends.

2.1. Callbacks. It should be noted that there are lots of ways in which various
libraries offer the callback mechanism. For some, the callback is given as an
argument to the function that starts the asynchronous operation, for others
the callback is registered ahead of time to be called when any operation of a
certain type completes. Also, for some libraries, the callback receives as an
argument the result of the just finished asynchronous operation; for others,
the callback is supposed to call some function to retrieve the asynchronous
operation result and also to free any resources associated to the asynchronous
operation.

Using callbacks is similar to goto-based programming. It is extremely flex-
ible and can be used to build structures like sequence, if-then-else, or loops,
but it is tedious and error-prone to use directly.



ON COMPOSING ASYNCHRONOUS OPERATIONS 43

Another issue with callbacks is that they execute sometimes on some thread
spawn by the library providing the asynchronous operations, and sometimes
from within functions of that library called by the application. In either case,
the thread on which the callback is called may hold some mutexes or may
have to do some more work inside the library after the callback returns. As
a result, there may be restrictions upon what library functions may be called
from within the callback; calling forbidden functions may lead to the call being
rejected, to a deadlock, or even to undefined behavior.

2.2. Futures. Futures were introduced by Liskov and Shrira [9]; they call
them promises. They are available in most mainstream languages and recom-
mended for asynchronous operations. Meyers [12] gives a very good explana-
tion of the futures mechanism in C++11/14, while [5] discusses various future
related issues and their approach in Kotlin.

Futures are better fit for structured programming mechanisms, and the main
pattern is to start several asynchronous operations, that will then proceed in
parallel, and then wait for all to finish and gather and using their results.

Having several operations executing one after another or one operation ex-
ecuting several times in a cycle requires however a thread that waits for the
future corresponding to the previous operation and then calls the next one.
This requires a thread that gets blocked.

3. Futures with continuations

The futures with continuations mechanism was introduced in C#/.NET
Task Parallel Library (TPL) [3], and is also available in Boost, in a C++
standard proposal [1] or in the stlab library[8].

Extending the futures mechanism with continuations in C++ standard li-
brary is a debated issue. There are proponents, like [13], which proposes this
as an extension to the basic C++ std::future mechanism. There are also
opponents, like [7], which argue that std::future should remain a simple,
wait-only type that serves a concrete purpose of synchronously waiting on po-
tentially asynchronous work and they find that it should not be extended with
continuations.

Basically, with futures with continuations, the asynchronous function re-
turns a future that will complete when the asynchronous operation completes.
However, beside the possibility to check whether the future has completed or
to wait for its completion, the caller can also set a callback to be called when
the future completes. The callback typically executes on some thread pool,
usually called an executor.

The basic feature of the future with continuation mechanism is that it decou-
ples the registering of the callback (the continuation) from the asynchronous



44 RADU LUPŞA AND DANA LUPŞA

call itself. With the classical callback mechanism, the callback is supplied as
an argument to the asynchronous call. With the future with continuation, the
asynchronous call returns a future — called Task in C# TPL — which can be
used in all 3 ways of getting the result from the asynchronous operation:

wait for completion: call Wait(),
poll: examine the IsCompleted property,
register a callback: call ContinueWith().

Decoupling of the callback (continuation) from the asynchronous operation
has several benefits.

First, the continuation is registered after the asynchronous operation is
started, at any convenient time for the caller. The classical callback needs to be
prepared beforehand and, in extreme cases, it might get executed even before
the control returns from the call that initiates the asynchronous operation.

Second, the classical callback executes on a thread controlled by the frame-
work providing the asynchronous operation. This usually poses some restric-
tions regarding which functions (especially, from the same framework) can be
called from within the callback; disobeying those restrictions may lead to calls
being rejected, deadlocks, or, in extreme cases, undefined behavior. The con-
tinuations, on the other side, execute on a thread in a thread pool provided
by the future with continuation framework; thus, no restrictions exist with
respect to which functions can be called from within the continuation.

Finally, continuations are more flexible, as their handling is independent of
the asynchronous operation. It is possible to add multiple continuations to the
same asynchronous operation (by calling ContinueWith() multiple times). It
is also possible to add a continuation that is to be invoked when all operations
from a set of asynchronous operations complete (by calling WhenAll()).

4. Composable asynchronous operations

The already existing mechanisms presented in the previous section evolved
in a bottom-up manner, being provided as-is, and to be used as the program-
mer sees fit.

In this paper, we try a more systematic approach: we examine how to write
an asynchronous function as a composition of smaller asynchronous functions.
The construction should thus be similar to the way a classical, sequential,
function is constructed by composing smaller functions.

So, our goal in this section is to create a framework allowing to compose
asynchronous functions in the classical programming structures: sequence,
conditional (if-then-else), and loop, as well as a try-catch mechanism. The
result of composing asynchronous functions should be a new asynchronous
function.



ON COMPOSING ASYNCHRONOUS OPERATIONS 45

At the same time, we want not to lose the possibility of executing the
asynchronous operations in parallel, when appropriate.

One trivial way to compose asynchronous functions is to treat them as syn-
chronous: just call the function and then wait for the asynchronous operation
to complete, blocking the execution of the current thread. This defeats the
purpose of asynchronous operations. It needs to create a potentially large
number of threads, and then, each time a thread blocks waiting for an asyn-
chronous operation, it must switch to a new thread. Creation of a thread and
switching from a thread to another are expensive operations because they in-
volve going through an operating system call. So, instead of blocking threads,
the finishing of each asynchronous operation needs to trigger a callback that
would call the function that launches the next asynchronous operation.

Finally, the framework must be a pure library, without needing any special
support from the programming language, such as coroutines. Coroutines are
indeed very useful for describing an asyncronous function that calls other
asynchronous function, and languages like C# and Python support this via
the async-await mechanism: the asynchronous function is declared async, so
that the compiler or interpreter knows it should be implemented as a coroutine,
and, when the function calls some other asyncrounous function, its coroutine
gets suspended until the called asynchronous operation completes, at which
time the coroutine resumes. This allows the programmer to write code almost
as if it were ordinary sequential code. However, some languages do not support
coroutines and, even though recent C++20 does, there are systems where, for
various reasons, upgrading to C++20 is not possible.

We choose C++ language for implementing the framework.

4.1. Basic building blocks. First, the basic building blocks will be asyn-
chronous functions. Each asynchronous function will return a future, that
completes when the asynchronous operation completes.

The future mechanism needs to allow the possibility to hook to a future a
callback that gets executed when the future completes.

4.2. Sequence. In a sequence of asynchronous calls, each asynchronous oper-
ation would start after the previous one finishes. The full sequence becomes an
asynchronous operation that completes when the last asynchronous operation
of the sequence completes.

The basic support for a sequence is the future with continuation mechanism,
described in section 3.



46 RADU LUPŞA AND DANA LUPŞA

The C# ContinueWith() operation, or its equivalent then() in the C++
standard proposal, takes a future, representing the result of a first asynchro-
nous operation, and a function and returns a future that will get the result of
the second operation.

However, looking at the continuation enqueueing operation from the com-
posability perspective, there are two aspects to be noticed.

First, the function for the second operation in the sequence takes as argu-
ment a future (a Task, in C#) instead of its value.

Second, the original ContinueWith() returns a future that completes when
the function passed as argument returns. This works if the continuation is a
synchronous function. However, if the function is asynchronous, the result of
ContinueWith() is a future that completes when the second operation starts.
The value of that future is a second (inner) future and its value is what the
user code is interested in. C# provides a function called Unwrap() that creates
and returns a future that completes when the inner future completes.

The C++ proposed then() function does the unwrap automatically, if the
continuation function returns a future.

As an example, consider an asynchronous function that looks up in some
database. For simplicity, let both the key and the value be of type int,
and that we want the asynchronous equivalent of a synchronous code like
lookup(lookup(k)). Then, the asynchronous version of lookup needs to be
declared as
Task<int> AsyncLookup(int)

and the usage would be
Task<int> result = AsyncLookup(k).

ContinueWith((Task<int> arg) => AsyncLookup(arg.Result)).

Unwrap()

The last Unwrap() is needed because the future returned ContinueWith()

completes when the second lookup starts. Its value is a second future, that
completes when the second lookup completes, and the value of that inner
future is the result of that second lookup — which is what we are interested
in.

Java’s CompletableFuture [2] offers two distinct functions for adding a
continuation to a future, thenApply() and thenCompose(), the first behaving
like C#’s ContinueWith() and the second like ContinueWith() followed by
Unwrap().

Standard C++ futures do not offer continuations, but there is a proposed
then() function on a future that does an automatic Unwrap() if and only
if the continuation function returns a future, thus being assumed to be an
asynchronous function.

The equivalent implementation of the double lookup above using the C++
standard proposal would be:



ON COMPOSING ASYNCHRONOUS OPERATIONS 47

std::experimental::future<int> result = AsyncLookup(k).

then([](std::experimental::future<int> arg) {

return AsyncLookup(arg.get());

});

We propose here some small modifications that, while mostly cosmetic, em-
phasize on composability. Our continuation enqueueing operation is declared
as:
template<typename R, typename Func, typename Arg>

Future<R>

addAsyncContinuation(Executor& executor, Func func, Future<Arg> fArg)

Aside from the explicit specification of the thread pool used for executing
the continuation (executor) and the fact that addAsyncContinuation() is a
stand-alone function (not a class member), the differences are that func takes
a simple value of type Arg (not Future<Arg>), and the returned Future<R>

completes when the asynchronous operation completes.
The above example becomes:

Future<int> tmp = AsyncLookup(k);

Future<int> result = addAsyncContinuation<int>(executor, AsyncLookup, tmp);

4.3. Conditional. Implementing an if-then-else can be done in a straight-
forward way even without framework support. An asynchronous function
implementing an if-then-else could have the following structure:
Future<int> conditional() {

Future<int> f1 = foo();

Future<int> f2 = addAsyncContinuation<int>(executor,

[](int v) -> Future<int> {

if(v>0) {

return thenFunc(v);

} else {

return elseFunc(v);

}

}, f1);

}

4.4. Loop. Creating a loop around an asynchronous function is the main con-
tribution of this paper. While the other structured programming constructs
are relatively easy to obtain from the continuation enqueueing operation, cre-
ating a loop is much harder.

The need for loops arise in many places. For example, consider reading and
parsing data coming via a connection. Suppose that reading bytes is provided
as an asynchronous operation. Also, suppose that one needs to implement
parsing as an asynchronous operation, that returns a parsed value (an integer,
or some more complex object). To obtain that, the parsing operation would
have a loop where it starts a read and, when the read completes, parses the
read data and, if not complete, starts a new read and repeats.



48 RADU LUPŞA AND DANA LUPŞA

As another example, handling a client from a server is also a loop where a
(parsed) request is read, the response is sent, and the cycle repeats until the
connection is closed or the request is to terminate the connection.

The basic loop construction needs a loop condition and a loop body.
Similarly with the case of the sequence, the body of the loop will be a

function that launches an asynchronous operation and returns a future.
The asynchronous operation for each iteration is started after the asynchro-

nous operation for the previous operation completes. Additionally, to pass
information from one iteration to the next, the function acting as the loop
body takes a value of some type and returns a future of the same type, whose
value is passed to the loop body for the next iteration.

For the loop condition, we will use a synchronous function, taking as the
value the value passed from one iteration to the next.

Putting all together, the result is a framework function declared as follows:

template<typename R, typename LoopFunc, typename PredicateFunc>

Future<R> executeAsyncLoop(Executor& executor, PredicateFunc loopingPredicate,

LoopFunc loopFunc, R const& startValue)

The startValue argument is the initial value to be checked by the predicate
function and to be passed to the loop body function for the first iteration.
Consequently, executeAsyncLoop() creates an asynchronous function, taking
a value — that is passed as the initial value for the loop body — and returning
a future — that completes when the loop ends and receiving the returned value
from the last iteration.

The following is a simple example of how a loop can be created. The
function delayedResult() returns a future that is completed with the value
given as the last argument after a time given as the second argument (1000)
after it starts. The loop will thus count up to 10 with each step taking the
given amount of time.

Future<int> f = executeAsyncLoop<int>(executor,

[](int v)->bool {return v < 10;},

[&alarmClock](int const& v)->Future<int> {

return delayedResult(alarmClock, 1000, v + 1); },

0);

To test in a slightly more realistic scenario, a small demonstrative server was
implemented. The server repeatedly reads two integers (as sequences of digits)
and responds with their sum. Below is a small excerpt that demonstrates the
usage of the asynchronous loop:

Future<bool> executeOneRequest() {

Future<int> fa = m_reader.readInt();

Future<int> fb = addAsyncContinuation<int>(*m_pExecutor,

[this](int a)->Future<int> {

if(a > 0) return m_reader.readInt();



ON COMPOSING ASYNCHRONOUS OPERATIONS 49

return completedFuture<int>(0);

}, fa);

Future<bool> result = addAsyncContinuation<bool>(*m_pExecutor,

[this,fa](int b) -> Future<bool> {

if(fa.get() > 0) {

int sum = fa.get() + b;

std::shared_ptr<std::string> pSumStr =

std::make_shared<std::string>(std::to_string(sum) + "\n");

return m_pSocket->send(pSumStr);

} else {

return completedFuture<bool>(false);

}

}, fb);

return result;

}

Future<bool> run() {

return executeAsyncLoop<bool>(*m_pExecutor,

[](bool b){return b;},

[this](bool b){return executeOneRequest();},

true);

}

The the function executeOneRequest() launches an asynchronous oper-
ation that reads two integers over the socket and sends back their sum. It
uses in turn other asynchronous functions for receiving and for sending data
over the socket (readInt() and send()). The function immediately returns
a boolean future that completes with true after the sum has been sent. The
future completes with false if the client closes the connection or if an error
occurs. Then, the run() function does the complete handling of a client: it
returns a future that completes when the handling of the client is over (either
because the client disconnects or because an error occurs.

The pattern solved by the executeAsyncLoop() is thus repeatedly calling
an asynchronous operation that pulls data from a source (a connection, for
instance) or pushes data into a sink.

Obtaining the same effect without executeAsyncLoop() is possible, but
tedious. The implementation of the function run() from above, with C#
TPL, would be (a helper function, loopBody(), is needed):

void loopBody(TaskCompletionSource result) {

Task.Factory.StartNew(executeOneRequest)

.ContinueWith((Task<bool> execResult) => {

if(execResult.Result) loopBody(result);

else result.SetResult();

}

}



50 RADU LUPŞA AND DANA LUPŞA

Task run() {

TaskCompletionSource ret = new TaskCompletionSource();

loopBody(ret);

return ret;

}

One difficulty that should be noted about this example is that there are a
lot of shared pointers. They are needed because of the asynchronous nature of
the code. The actual functions usually only do some setup, so local variables
will be long gone when the actual computation happens. Note that this is not
a characteristic of the framework, but rather a common issue of asynchronous
functions.

4.5. Exceptions. In regular programming, exceptions provide a mechanism
for easily exiting from the structures.

Providing the same mechanism for asynchronous programming requires sev-
eral elements which we will present below.

First, the futures can complete in two modes: with a value or with an
exception.

Next, the sequence stops if a step completes with an exception. The next
steps are skipped, but the sequence result completes with the same exception.
Concretely, this means that, for addAsyncContinuation(), if the future given
as argument completes with an exception, the returned future completes with
that exception without the function argument being called.

Note that this behavior is quite distinct from what C# TPL is doing. In
C#, if a Task completes with an exception and its continuations are set to
execute only on normal completion, then the continuations resulting Tasks
complete as canceled. This means that, in order to get the exception, one
needs to examine the Task corresponding to the failed operation; subsequent
Tasks have no information on the exception.

Similarly to addAsyncContinuation(), for executeAsyncLoop(), if the
body completes with an exception, the loop stops and the future returned
by executeAsyncLoop() completes with that exception.

Finally, the equivalent of the try-catch mechanism is also needed. Our
framework provides a function declared as

template<typename T, typename CatchFunc>

Future<T>

catchAsync(Executor& executor, CatchFunc catchFunc, Future<T> value);

Its catchFunc argument must be an asynchronous function taking an
std::exception ptr and returning Future<T> and gets the role of the catch
block. The semantic of catchAsync() is the following:

• It immediately returns a future;



ON COMPOSING ASYNCHRONOUS OPERATIONS 51

• If value completes normally, the future returned from catchAsync()

completes with the same value;
• If value completes with an exception, catchFunc() is called with
that exception as argument and the future returned by catchAsync()
will complete with the value (or exception) returned (respectively
thrown) by catchFunc().

Using exceptions, the small server of the previous section can be re-written
in a simpler way, eliminating the repeated checks that the state of handling
the client is still normal, and instead relying on the “fast exit” mechanism of
the exceptions:

Future<bool> executeOneRequest() {

Future<int> fa = m_reader.readInt();

Future<int> fb = addAsyncContinuation<int>(*m_pExecutor,

[this](int a)->Future<int> {

if(a < 0) {

throw Flag::client_disconnected;

}

return m_reader.readInt();

}, fa);

Future<bool> result = addAsyncContinuation<bool>(*m_pExecutor,

[this,fa](int b) -> Future<bool> {

if(b < 0) {

throw Flag::invalid_input;

}

int sum = fa.get() + b;

std::shared_ptr<std::string> pSumStr =

std::make_shared<std::string>(std::to_string(sum)+"\n");

return m_pSocket->send(pSumStr);

}, fb);

return result;

}

5. Conclusions

We developed, and presented here, a framework for using the futures with
continuations mechanism in a way very similar to the classical, structured
style, programming. This way, programs using asynchronous calls look rea-
sonably similar to regular programs, and this is probably the best that can
be achieved without language support like coroutines. Its central point is the
asynchronous loop mechanism.

As a limitation, the lifetimes of the variables are not very obvious, and
shared pointers are required almost everywhere because of this. This is not
a limitation of the framework per se, but a result of the asynchronous work



52 RADU LUPŞA AND DANA LUPŞA

model. A study of possible improvements in this area may come as a future
work.

Yet another future direction would be to attempt to use the looping mecha-
nism to produce or to consume a stream of values, in the reactive programming
style.

References

[1] C++ reference. extensions for concurrency.
https://en.cppreference.com/w/cpp/experimental/future/then. Accessed: 2023.

[2] Java Platform, Standard Edition 8 API Specification, CompletableFuture .
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/

CompletableFuture.html. Accessed: 2023.
[3] David Pine, e. a. Task parallel library (tpl).

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/

task-parallel-library-tpl, 2022. Accessed: 2022.
[4] Duan, J., Yi, X., Wang, J., Wu, C., and Le, F. Netstar: A future/promise frame-

work for asynchronous network functions. IEEE Journal on Selected Areas in Commu-
nications 37, 3 (2019), 600–612.

[5] Elizarov, R., Belyaev, M., Akhin, M., and Usmanov, I. Kotlin coroutines: Design
and implementation. Onward! 2021, Association for Computing Machinery, p. 68–84.

[6] Haller, P., and Miller, H. A reduction semantics for direct-style asynchronous
observables. Journal of Logical and Algebraic Methods in Programming 105 (03 2019).

[7] Howes, L., Grynenko, A., and Feldblum, J. Continuations without overcom-
plicating the future. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0783r0.html, 2017. Accessed: 2022.

[8] Lab, A. S. T. stlab: Api documentation. futures.
https://stlab.cc/libraries/concurrency/future/. Accessed: 2023.

[9] Liskov, B., and Shrira, L. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the ACM SIGPLAN 1988 Con-
ference on Programming Language Design and Implementation (New York, NY, USA,
1988), PLDI ’88, Association for Computing Machinery, p. 260–267.

[10] Manolescu, D. A. Workflow enactment with continuation and future objects. 40–51.
[11] Marshall Cline, e. a. A unified futures proposal for c++. https://www.open-std.

org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html, 2018. Accessed: 2022.
[12] Meyers, S. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11

and C++14, 1st ed. O’Reilly Media, Inc., 2014.
[13] N., G., A., L., H., S., and S., M. A standardized representation of asynchronous

operations, tecnical report n3538. https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2013/n3558.pdf, 2013. Accessed: 2022.

[14] Radu, L. futures-demo https://github.com/rlupsa/futures-demo, 2023.
[15] Ranaldo, N., and Zimeo, E. Analysis of different future objects update strategies in

ProActive. In 2007 IEEE International Parallel and Distributed Processing Symposium
(2007), pp. 1–7.

Computer Science Department, Babeş Bolyai University, Cluj-Napoca, Roma-
nia

Email address: radu.lupsa@ubbcluj.ro, dana.lupsa@ubbcluj.ro

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0783r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0783r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3558.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3558.pdf
https://github.com/rlupsa/futures-demo

