
INFORMATICA
1/2022

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 1/2022
January - June

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR Volume 67 (LXVII) 2022

MONTH JUNE

ISSUE 1

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

1

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

A. Bajcsi, B, Botos, P. Bájko, Z. Bodó, Can You Guess the Title? Generating Emoji

Sequences for Movies ... 5

I. Prăjescu, A.D. Călin, Multiple Types of AI and Their Performance in Video Games 21

B.A. Diaconu, B. Lázár-Lőrincz, Romanian Question Answering Using Transformer

Based Neural Networks ... 37

A. Petrescu, Music Recommendations Based on User's Mood Using Convolutional

Neural Networks... 45

A.R. Alexandrescu, A. Manole, A Dynamic Approach for Railway Semantic

Segmentation .. 61

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 1, 2022
DOI: 10.24193/subbi.2022.1.01

CAN YOU GUESS THE TITLE? GENERATING EMOJI

SEQUENCES FOR MOVIES

ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

Abstract. In the culture of the present emojis play an important role in

written/typed communication, having a primary role of supplementing the

words with emotional cues. While in different cultures emojis can be inter-

preted and thus used differently, a small set of emojis have clear meaning

and strong sentiment polarity. In this work we study how to map natural

language texts to emoji sequences, more precisely, we automatically assign

emojis to movie subtitles/scripts. The pipeline of the proposed method

is as follows: first the most relevant words are extracted from the movie

subtitle, and then these are mapped to emojis. In order to perform the

mapping, three methods are proposed: a lexical matching-based, a word

embedding-based and a combined approach. To demonstrate the viabil-

ity of the approach, we list some of the generated emojis for a randomly

selected movie subset, showing also the deficiencies of the method in gener-

ating guessable sequences. Evaluation is performed via quizzes completed

by human participants.

1. Introduction

Emojis and emoticons are commonly used to express emotions in online

written communication. They are preferred tools, because in written commu-

nication mimics and tone are hard to convey, however, it is much more easily

achieved by emojis.

In this paper we try to tackle a creative problem, to generate emoji se-

quences describing a movie. While guessing the movie title from – usually

Received by the editors: 3 November 2021.

2010 Mathematics Subject Classification. 68T50, 68T30.

1998 CR Categories and Descriptors. I.2.7 [ARTIFICIAL INTELLIGENCE]: Nat-

ural Language Processing – Text analysis; I.2.m [ARTIFICIAL INTELLIGENCE]:

Miscellaneous.

Key words and phrases. natural language processing, emoji, keyword extraction, movie

scripts, lexical matching, word embedding.

5

6 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

human-generated – emoji sequences is a popular game for movie enthusiasts1,

generating emojis describing a movie can be considered a task similar to auto-

matic (text) summarization [19]. The main idea is to extract keywords from

the movie subtitle and match them with emojis. In the present work we cal-

culate tf-idf scores to obtain the most important, most representative words

of the movie script. The most difficult part of the emoji sequence generation

is mapping the words to emojis. We describe two main approaches in this

paper: lexical matching between keywords and emoji names, as well as a word

embedding-based method. We also try to improve on the results by combining

these two approaches, as well as by taking into account the title of the movie

and the chronological order of the keywords.

The rest of the paper is organized as follows. In Section 2 we briefly de-

scribe how emojis shape the online media today, and Section 3 presents the

natural language processing problems where emojis can be useful instruments.

The structure of our system generating emoji sequences from movie scripts is

presented and detailed in Section 4. The experiments and the results obtained

are described in Section 5, and the paper concludes with Section 6, discussing

the results and specifying potential future research directions.

2. Emojis in online media

Emoticons are inventions of the 19th century, but the first recorded online

use occurred only in 1982 [11]. The word emoticon stems from “emotion

icon” [6], referring to a pictorial representation of a facial expression, gesture

using characters (e.g. punctuation marks, parentheses, etc.). While in North

America the horizontal representation of such faces became prevalent, e.g.

:-), in Japan the so-called kaomojis had been used [24], which are vertical

emoticons like (^_^). Emojis – meaning pictographs in Japanese (e = picture,

moji = characters) [2] – appeared in the late 1990s at the NTT Docomo

telecommunications company as the work of the designer Shigetaka Kurita

[24]. The resemblance to the English word “emotion” or even “emoticon” is

merely coincidental [25]. As pointed out in [24], the appearance of emojis in

Japan could be explained by the complexity of the predecessor kaomojis.

1See for example the BuzzFeed movie quiz “If You Can Identify 8/10 Of These Movies

From The Emojis, You’re Officially A Cinephile” (https://www.buzzfeed.com/hayleyroc

helletillett/identify-movies-by-emojis).

CAN YOU GUESS THE TITLE? GENERATING EMOJI SEQUENCES FOR MOVIES 7

Figure 1. “Call me Ishmael.” – the opening sentence of Her-

man Melville’s Moby Dick represented as a (vertical) list of

emojis in Fred Benenson’s Emoji Dick, reproduced after [21].

The 7 columns represent different vendors: Apple, Google,

Facebook, Windows, Twitter, JoyPixels, and Samsung.

The standardization of emojis took place in Unicode 6.0, containing 722

emojis, Kurita’s initial set having only 176 pictograms [12]. The current Uni-

code 14.0 standard includes 3633 emojis.2

Emojis became popular worldwide only in the 2010s, by appearing in various

mobile operating systems and web browsers. To emphasize their increasing

popularity, we mention the first ever published book written using emojis

only, appeared in 2010: Fred Benenson’s Emoji Dick, the crowdsourced and

crowdfunded translation of Herman Melville’s famous novel Moby Dick.3 In

2014 Microsoft added emoji support to Bing search.4 In 2013 Katy Perry

released a lyric video for her hit song Roar, showing the lyrics as a mixture

of words and emojis.5 We end the series of examples by a statistics from a

few years ago: by 2015, already half of the Instagram posts contained at least

one emoji.6 Fig. 1 shows the opening emoji sequence (U+260E, U+1F468,

U+26F5, U+1F40B, U+1F44C) of Emoji Dick using different sets of emojis.

2https://www.unicode.org/emoji/charts-14.0/emoji-counts.html
3http://emojidick.com/
4https://blogs.bing.com/search/2014/10/27/do-you-speak-emoji-bing-does/
5http://www.mtv.com/news/1712176/katy-perry-roar-lyric-video/
6https://instagram-engineering.com/emojineering-part-1-machine-learning-f

or-emoji-trendsmachine-learning-for-emoji-trends-7f5f9cb979ad

8 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

3. Emojis in natural language processing applications

With the growing popularity of emojis, these are used worldwide in nu-

merous apps and platforms alongside text in different languages. Emojis play

different roles, they offer “both complementary and supplementary relations

to words” [15]. Because of this reason, many research communities took in-

terest in emojis and their roles in written language. Although most research

can be found in computer and communication science, they represent a pop-

ular research topic in marketing, behavioral science, psychology, linguistics,

education, etc. as well [2].

In [7] the authors created the emoji2vec model, which – similarly to word2vec

[17] – assigns continuous vector representations to emojis, based on their de-

scription: the generated emoji embeddings are the sum of the word2vec em-

beddings of the words from the description. The obtained emoji embeddings

outperform word embeddings on the task of sentiment analysis, using a large

collection of tweets.

Since in most cases emoticons and emojis are used to express emotions, at-

titudes, it is not surprising that they are applied most frequently in sentiment

analysis, opinion mining. One of the conclusions of the analysis carried out

in [26] is that a small set of emoticons have strong and clear polarity, but the

rest of it, a much larger set maintain more complicated sentiments. The au-

thors of [8] apply distant supervision to perform sentiment analysis, i.e. they

use the emoticons as noisy labels, achieving high classification accuracies in

the experiments. In [11] the construction of the first emoji sentiment lexicon,

called Emoji Sentiment Ranking, is presented. The lexicon – which is similar

to SentiWordNet [1] – contains the 751 most frequently used emojis in Twit-

ter messages, the scores being relative frequencies in tweets having different

polarities. The work [29] discusses the importance of emoticons in sentiment

analysis, summarizes the existing methods, and it also briefly addresses is-

sues such as sarcasm detection. In [10] sarcasm detection is performed by

comparing the polarity of the text and of the emojis.

A video search system is presented in [4], in which video retrieval is ac-

complished using emojis to formulate the query. Emojis are assigned to a

video based on the title, as well as by object recognition on the video frames.

The closest research to ours is the Image2Emoji model presented in [3], which

assigns emoji sequences to real-world images. Similarly to [4], the word2vec

embeddings of the recognized objects in the pictures, as well as embeddings

CAN YOU GUESS THE TITLE? GENERATING EMOJI SEQUENCES FOR MOVIES 9

Figure 2. Scheme of the emoji sequence generation algorithm:

given a movie title the movie subtitle is retrieved, from which

the most relevant keywords are extracted, and finally, the key-

words are matched with emojis using lexical matching and word

embeddings to build the proper sequence.

of the picture title, description and tags are compared against the emoji em-

beddings to get a ranking of the most relevant emojis for a given picture.

The system proposed in this paper assigns emoji sequences to movies, using

the movies’ subtitles, first by extracting the keywords from the subtitle file,

and then searching for the semantically nearest emojis for these.

4. Generating emojis from movie scripts

Emojis can be a powerful tool for natural processing algorithms to utilize.

For example, the presence of a certain emoji can clearly indicate certain emo-

tions in sentiment analysis, making such a prediction much more accurate.

Sentiment analysis, however, is not the goal of this paper. We instead intend

to summarize larger texts using emojis. For this purpose, we chose movie

subtitles as our data source, and tried to produce a sequence of emojis to de-

scribe their plots. While at first this may seem a simple game intended only

to entertain the user, summarizing a movie via summarizing its script by a

handful of emojis involves many challenges. One such challenge is caused by

the very small number of emojis: the retention ratio usually grows with the

compression ratio [9], and in this scenario we are dealing with very low com-

pression ratios, values around 0.0014.7 Thus, although the goal is just to guess

the title of the movie, it is difficult to achieve high retention ratios at such low

compression rates, however, longer emoji sequences will similarly confuse the

respondents.

7Using a random sample of 50 movie subtitles, we obtained an average number of

candidate keywords of 4169.54, where a candidate keyword means that all of its characters

are alphabetic, not a stopword, and having a minimum length of 3 letters. If we consider an

average emoji sequence length of 6, we obtain a compression ratio of 0.0014.

10 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

In the following we will discuss the three main methods used to achieve

the above-mentioned goal, our conclusions about the results and also possible

future directions to expand this project. All three methods presented are based

on keyword extraction and matching these keywords with existing emojis.

The scheme of the algorithm is shown in Fig. 2: we start with a movie title,

obtain the subtitle of the given movie, extract its most relevant keywords, then

match these keywords with emojis using different methods, and finally create

the emoji sequence representing the movie.

4.1. First approach: lexical matching. The basis of all methods proposed

is keyword extraction. For this we used tf-idf (term frequency × inverse

document frequency) scores, known as a weighting scheme for the bag-of-

words representation of documents in text categorization [23, 22], but also

as a successful keyword extraction approach as well [16, 27]. This method

assigns a value to every word, based on how many times it appears in the given

document, and how many times it appears in other documents. A frequently

used version of tf-idf is the following,

tfidf(t, d) = ft,d · log
(
N

nt

)
,

where ft,d is the frequency of word t in document d, N is the total number of

documents in the corpus, and nt denotes the number of documents containing

word t. The more the word appears in the current document, and the fewer

times in other documents, the higher the tf-idf value.

By this procedure, each word from a movie script will have a tf-idf assigned

to it: the words with the highest such values are considered the keywords for

a given movie. The keyword extraction step is common to all three methods

presented below.

In the first method we check for emojis with names that match fully or

partially with the extracted keywords. To measure the similarity between a

keyword and an emoji, the Sørensen—Dice coefficient [5] was used,

DSC(X,Y) =
2|X ∩ Y |
|X|+ |Y |

,

where X and Y denote two sets. More precisely, we used the convex com-

bination of the Dice coefficients between the emoji name, treated as a set of

tokens, and the extracted keywords, as well as the Dice coefficient of the key-

words officially assigned to the emoji and the extracted keyword. For each

extracted keyword the emoji with the highest Dice value is chosen, provided

CAN YOU GUESS THE TITLE? GENERATING EMOJI SEQUENCES FOR MOVIES 11

that this value exceeds a given threshold. At the end, duplicate emojis are

removed from the sequence, keeping the first occurrence only.

This approach, however, has one major drawback: if none or just a very few

keywords match the emojis, the generated sequence will not be a satisfactory

one. A possible solution to this would be to extract a larger set of keywords

from the documents, but then the relevancy of these could be questioned.

4.2. Second approach: word embeddings. This approach uses vector rep-

resentations to define the similarities between words and emojis. The vec-

tor representation of a word is a series of real values, obtained by applying

a computational framework providing continuous word representations, e.g.

word2vec [17], GloVe [20] or fastText [18]. Using pretrained models we can

get the vector representations of the words (keywords). To do the same for

the emojis, the emojis’ names are used by taking the average of the vectors of

the words present in the emoji name.

Similarity is computed by simply calculating the cosine of the angle enclosed

by the resulting vectors [22],

cos(x,y) =
xTy

∥x∥∥y∥
,

where xT denotes the transpose of x and ∥ · ∥ is the Euclidean (ℓ2) norm.

Similarly to the previous approach, an emoji is selected if its cosine similarity

is above a certain threshold, and duplicates are removed.

4.3. Third approach: the combination of the previous two. This third

method simply combines the outcomes of the previous two methods by con-

catenating the resulting sequences one after the other, the first being the

sequence obtained via lexical matching. Duplicate emojis are again removed

from the output.

Potential improvements. During keyword extraction, the chronological or-

der of the keywords is also taken into account, since a better ordering might

result in a more logical enumeration. Using this method, the keywords (and

later the emojis) will appear in the sequence in the same order as they appear

in the movie (see Fig. 3(b)).

Furthermore, the movie title may hold a lot of information, therefore we

considered emojizing the title too, i.e. placing the words of the movie title

into the keyword list as well, applying the procedure described in Section 4.3

12 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

to the movie title (see Fig. 4). The resulting emojis – if any – are placed at

the beginning of the final sequence.

5. Experimental results

As discussed in Section 4, we extracted the keywords from a given movie

subtitle using tf-idf scores. Given a movie title, its subtitle is downloaded

via the OpenSubtitles API8. The content of the subtitle file was preprocessed:

tokenized, lowercased and the stopwords were removed. Next, the term fre-

quency of each word in this document was calculated. For calculating the

idf scores we used the OpenSubtitles dataset [14] (2018 version)9. The full

English dataset contains a total of 446 612 subtitle files, but a single movie

can have multiple subtitles corresponding to different versions (e.g. different

authors/transcribers/translators). We used one subtitle per movie, resulting

in 140 045 files processed, where the first file for each movie was taken. The

lowercased dictionary of idf scores contains 1 716 310 different tokens.

To define the vector representation of the extracted keywords and the emo-

jis the GloVe10 model was used. It contains 400K tokens, extracted from

the Wikipedia 2014 dump11 and English Gigaword Fifth Edition12, and their

100-dimensional vector representations. Since our method extracts no collo-

cations but only single-word expressions as keywords, it was straightforward

to calculate their GloVe representations – provided these were known tokens.

In order to get continuous vector representations for the emojis, their name

was tokenized, lowercased and stopword filtered, and the average of the to-

kens’ GloVe vectors were considered. The emoji names, Unicodes and emoji

keywords were obtained from EmojiNet [28]. When searching for the best

matching emojis the Unicode list v13.1 was considered, omitting emojis with

skin-tones,13 resulting in a set of 1816 pictographs.

The proposed methods have a relatively large set of hyperparameters that

should be selected following a systematic procedure (e.g. cross-validation),

but since we did not have a usable benchmark dataset for this, we selected the

following parameters in a trial-and-error fashion. Lexical matching is based on

8http://www.opensubtitles.org/
9https://opus.nlpl.eu/OpenSubtitles-v2018.php
10https://nlp.stanford.edu/projects/glove/
11https://archive.org/details/enwiki-20141106
12https://catalog.ldc.upenn.edu/LDC2011T07
13http://unicode.org/emoji/charts/emoji-list.html

CAN YOU GUESS THE TITLE? GENERATING EMOJI SEQUENCES FOR MOVIES 13

Table 1. Table showing the extracted keywords, the most sim-

ilar emojis’ Unicodes and the obtained scores with the com-

bined model + keyword ordering.

Interstellar Pirates of the Caribbean

Keyword Unicode Score Keyword Unicode Score

ghost U+1F47B 0.8 singapore U+1F1F8 U+1F1EC 0.8

corn U+1F33D 0.8385 ship U+1F6A2 0.8

twelve U+1F51E 0.8228 fire U+1F525 0.8

black U+26AB 0.8971 sunset U+1F307 0.8

hole U+1F573 1.0 mate U+1F9C9 1.0

fuel U+26FD 0.918 fish U+1F41F 0.8

sri U+1F1F1 U+1F1F0 0.9125

the Dice coefficient of an extracted keyword and the name and keywords of an

emoji: 80% percent of the resulting score is given by the Dice similarity of the

extracted keyword and the name of the emoji, and 20% of it is calculated as

the Dice similarity between the extracted keyword and the keywords assigned

to the emoji. The name and the emoji keywords are treated as sets, while the

extracted keyword constitutes a single element set. To select a keyword/emoji

into the generated sequence, a similarity threshold needs to be exceeded; we

set this to 0.8 in our experiments. When working with word embeddings, the

similarity threshold for cosine was also set to 0.8. The length of the generated

emoji sequence is also important: being too short, there is no room for showing

all the pictographs that would be good indicators for guessing the movie, while

being too long could confuse the user. Both for the lexical matching and the

word embedding-based methods we set this limit parameter to 6. We also

used a similar limit parameter when considering the titles, setting it to 2 in

both cases.

The emoji sequences obtained for the selected movies are shown in Fig. 3

and 4. Based on the test performed on a randomly chosen set of movie subti-

tles, the best results were obtained using the combined method, therefore we

show some of the generated emoji sequences only by this approach. In order to

present not only the bright side of the proposed method, we selected 3 movies

for which quite decent sequences are generated, and also 3 other movies for

which the extracted keywords and the generated emojis do not really make

14 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

(1)

(2)

(3)

(4)

(5)

(6)

(a)

(1)

(2)

(3)

(4)

(5)

(6)

(b)

Figure 3. Emoji sequences generated for 6 selected movies:

(a) using the combined method, i.e. lexical maching combined

with word embeddings, and (b) the same sequences shown in

chronological order of the extracted keywords.

the movie guessable. The selected movies are the following: (1) Django Un-

chained14, (2) Interstellar 15, (3) Shrek 16, (4) Bird Box 17, (5) Borat18, (6) Pi-

rates of the Caribbean: at World’s End 19. The first three of the sequences we

14https://www.imdb.com/title/tt1853728

CAN YOU GUESS THE TITLE? GENERATING EMOJI SEQUENCES FOR MOVIES 15

(4)

(6)

Figure 4. Emoji sequences obtained with the combined

method applying chronological ordering and placing the emojis

generated from the title at the beginning of the list. Only those

movies are shown here, for which considering the title as well

introduced new pictographs.

consider relevant and guessable, however, the other three are less successful.

Fig. 3(a) shows the emoji sequences obtained using the combined method, i.e.

lexical matching combined with the word embedding-based method, Fig. 3(b)

displays the same sequences but in chronological order, while Fig. 4 shows the

two motion pictures for which the introduction of the title affected the results.

Table 1 lists the most relevant keywords found by the combined method, to-

gether with the Unicode code points of the best fitting emojis, as well as the

similarity scores obtained for two movies.

Emoji sequence generation for movie scripts was implemented in Python,

and its source code can be found at https://github.com/bajcsianna/movi

e2emoji.

5.1. Evaluating the emoji sequences. Evaluating the generated emoji se-

quences, that is evaluating the performance of the proposed method proved to

be a difficult task. Since generating pictograms that show the main events and

motifs of a movie can be considered a summarization task, using the ROUGE

metric might seem appropriate [13]. The problem with the application of this

measure is twofold: (i) no sufficiently large dataset of human-generated movie

emoji sequences is available, (ii) the sequences – usually containing 2 to 6

pictograms – are too short for this metric.

In order to obtain an evaluation of the proposed methods, we randomly

generated 10 + 10 pictograph sequences using the combined method (without

15https://www.imdb.com/title/tt0816692
16https://www.imdb.com/title/tt0126029
17https://www.imdb.com/title/tt2737304
18https://www.imdb.com/title/tt0443453
19https://www.imdb.com/title/tt0449088

16 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

Table 2. Accuracies obtained for the two movie emoji quizzes,

the last line showing the overall accuracy.

1st quiz 2nd quiz

Movie #1 13.15% 31.88%

Movie #2 0% 23.18%

Movie #3 0% 57.97%

Movie #4 0% 30.43%

Movie #5 0% 50.72%

Movie #6 36.82% 26.08%

Movie #7 2.63% 68.11%

Movie #8 65.78% 30.43%

Movie #9 26.31% 46.37%

Movie #10 44.73% 27.53%

18.94% 39.27%

(a)

(b)

11/1/21, 4:37 PM movie2emoji II.

https://docs.google.com/forms/d/13tkyyZPi7-0cEYkmnbhX-OyDflgLRx6GBz6IQiCXj70/viewanalytics 7/7

10.

10. film címe?

69 responses

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Snatch
Blood Diamond
The Matrix
The Prestige

36.2%

34.8%

27.5%

 Forms

Figure 5. Example for an overly successful obfuscation: (a)

emoji sequence obtained for Snatch and (b) the answers given

by the participants. The results show that three of the four

possible answers seemed equally acceptable for the participants

of the survey.

taking into account the movie title), and assembled two surveys: (s1) for guess-

ing the movies by typing in the title, and (s2) for guessing the movies in form

of multiple choice questions with four possible answers. The selected movies

contain only motion pictures and animated films, not necessarily blockbusters,

CAN YOU GUESS THE TITLE? GENERATING EMOJI SEQUENCES FOR MOVIES 17

released between 1994 and 2019. The surveys have been sent to students of

the Babeş–Bolyai University and members of the academic staff via learning

management systems, business communication platforms and social network-

ing sites. For the two quizzes we received 38 and 69 answers, respectively.

The accuracy results are shown in Table 2. As it was anticipated by us, the

second quiz produced better results, since the possible answers were narrowed

down to four, as in the case of the first quiz all existing films – from the above-

mentioned period, as this was brought to the attention of the respondents – had

to be considered. For the first quiz the majority answers correctly determined

3 out of 10 movies, while this number was 4 for the second quiz.

In survey (s2), in addition to the correct title we selected three incorrect

ones, but not in a random manner: the incorrect titles were chosen such that

at least one emoji matched the main motifs of the movie. However, this

obfuscation sometimes worked too well. In Fig. 5(a) the emojis generated for

the movie Snatch20 are shown, while the pie chart in (b) shows the distribution

of the participants’ answers. The answers for other movies show the signs of

too successful obfuscation as well, which certainly affects the results. Choosing

the movies to generate the emoji sequences for is also a difficult task, since

one cannot assure that all movies are known by the participants. Similarly,

one cannot expect the same degree of seriousness of quiz completion from all

participants. Therefore, we suggest to consider the obtained accuracy scores

as lower limits of guessability of the generated emoji sequences.

The quizzes used in the evaluation process – with the correct answers – are

available at the following links: movie2emoji I.: https://forms.gle/YHGeky

6oCcxAwjkd8, movie2emoji II.: https://forms.gle/XFkjCHtZXbcbkjbN8.

6. Discussion and future work

In this paper we presented a system that is able to assign emoji sequences to

movies, based on the movie’s subtitle. The pipeline of the proposed method is

simplistic but rather effective: extraction of the most relevant keywords from

the subtitle (or script) of the movie, and then assigning emojis to these. We

experimented with three approaches: (i) lexical matching using Dice coeffi-

cients to determine similarity, (ii) a word embedding-based approach using

cosine similarity, and (iii) the combination of these two.

20https://www.imdb.com/title/tt0208092

18 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

While the obtained results are promising, there is room for improvements

and further experiments too. Since the keyword extraction model applied is

a central component of this approach, we consider experimenting with other

such models important. In the present system information is acquired only

from the movie subtitle, providing an efficient means to generate the emojis,

which could be supplemented by object recognition models considering also

the movie frames when available, similarly to [3]. Studying the effect of stem-

ming/lemmatization of the extracted keywords on the output is also left as

a future work. Part of speech tagging and selection of words belonging to

important parts (nouns, verbs, adjectives), as well as considering word collo-

cations or neighborhoods of the selected keywords can also positively affect

the performance of our system.

Acknowledgements

We would like to thank the students and the academic staff of the Babeş–

Bolyai University who participated in our experiments to evaluate the pro-

posed models.

References

[1] Baccianella, S., Esuli, A., and Sebastiani, F. SentiWordNet 3.0: an enhanced

lexical resource for sentiment analysis and opinion mining. In LREC (2010), vol. 10,

pp. 2200–2204.

[2] Bai, Q., Dan, Q., Mu, Z., and Yang, M. A systematic review of emoji: Current

research and future perspectives. Frontiers in Psychology 10 (2019), 2221.

[3] Cappallo, S., Mensink, T., and Snoek, C. G. Image2emoji: Zero-shot emoji pre-

diction for visual media. In Proceedings of the 23rd ACM International Conference on

Multimedia (2015), pp. 1311–1314.

[4] Cappallo, S., Mensink, T., and Snoek, C. G. Query-by-emoji video search. In

Proceedings of the 23rd ACM International Conference on Multimedia (2015), pp. 735–

736.

[5] Dice, L. R. Measures of the amount of ecologic association between species. Ecology

26, 3 (1945), 297–302.

[6] Dresner, E., and Herring, S. C. Functions of the nonverbal in CMC: Emoticons

and illocutionary force. Communication Theory 20, 3 (2010), 249–268.

[7] Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., and Riedel, S.

emoji2vec: Learning emoji representations from their description, 2016.

[8] Go, A., Bhayani, R., and Huang, L. Twitter sentiment classification using distant

supervision. CS224N project report, Stanford 1, 12 (2009), 2009.

[9] Hovy, E. Text summarization. In The Oxford Handbook of Computational Linguistics,

R. Mitkov, Ed. Oxford University Press, Oxford, 2004, ch. 32.

CAN YOU GUESS THE TITLE? GENERATING EMOJI SEQUENCES FOR MOVIES 19

[10] Karthik, V., Nair, D., and Anuradha, J. Opinion mining on emojis using deep

learning techniques. Procedia Computer Science 132 (2018), 167–173.

[11] Kralj Novak, P., Smailović, J., Sluban, B., and Mozetič, I. Sentiment of emojis.

PloS One 10, 12 (2015), e0144296.

[12] Kumari, R., and Gangwar, R. Use of expression based digital pictograms in interper-

sonal communication: a study on social media and social apps. International Journal

of Innovative Knowledge Concepts 6 (2018), 11.

[13] Lin, C.-Y. ROUGE: A package for automatic evaluation of summaries. In Text Sum-

marization Branches Out (2004), ACL, pp. 74–81.

[14] Lison, P., and Tiedemann, J. OpenSubtitles2016: Extracting large parallel corpora

from movie and TV subtitles. In Proceedings of the Tenth International Conference

on Language Resources and Evaluation (LREC’16) (Portorož, Slovenia, May 2016),

European Language Resources Association (ELRA), pp. 923–929.

[15] Mei, Q. Decoding the new world language: Analyzing the popularity, roles, and utility

of emojis. In Companion Proceedings of The 2019 World Wide Web Conference (New

York, NY, USA, 2019), WWW ’19, Association for Computing Machinery, p. 417–418.

[16] Mihalcea, R., and Csomai, A. Wikify! Linking documents to encyclopedic knowl-

edge. In Proceedings of the Sixteenth ACM Conference on Information and Knowledge

Management (2007), pp. 233–242.

[17] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of word

representations in vector space, 2013.

[18] Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. Advances

in pre-training distributed word representations. In Proceedings of the International

Conference on Language Resources and Evaluation (LREC) (2018).

[19] Nenkova, A., and McKeown, K. A survey of text summarization techniques. In

Mining Text Data. Springer, 2012, pp. 43–76.

[20] Pennington, J., Socher, R., and Manning, C. D. Glove: Global vectors for word

representation. In Proceedings of the Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP) (2014), pp. 1532–1543.

[21] Radford, W., Chisholm, A., Hachey, B., and Han, B. :tele-

phone::person::sailboat::whale::okhand:; or “Call me Ishmael” – How do you translate

emoji? In Proceedings of Australasian Language Technology Association Workshop

(2016), pp. 150–154.

[22] Schütze, H., Manning, C. D., and Raghavan, P. Introduction to information re-

trieval. Cambridge University Press, 2008.

[23] Sebastiani, F. Machine learning in automated text categorization. ACM Computing

Surveys (CSUR) 34, 1 (2002), 1–47.

[24] Stark, L., and Crawford, K. The conservatism of emoji: Work, affect, and commu-

nication. Social Media + Society 1, 2 (2015), 2056305115604853.

[25] Taggart, C. New words for old: Recycling our language for the modern world. Michael

O’Mara Books, 2015.

[26] Wang, H., and Castanon, J. A. Sentiment expression via emoticons on social media.

In International Conference on Big Data (2015), IEEE, pp. 2404–2408.

20 ANNA BAJCSI, BARBARA BOTOS, PÉTER BAJKÓ, AND ZALÁN BODÓ

[27] Wartena, C., Brussee, R., and Slakhorst, W. Keyword extraction using word co-

occurrence. In International Workshops on Database and Expert Systems Applications

(2010), IEEE, pp. 54–58.

[28] Wijeratne, S., Balasuriya, L., Sheth, A., and Doran, D. EmojiNet: An open

service and API for emoji sense discovery. In Proceedings of the International AAAI

Conference on Web and Social Media (2017), vol. 11.

[29] Yadav, P., and Pandya, D. Sentireview: Sentiment analysis based on text and emoti-

cons. In 2017 International Conference on Innovative Mechanisms for Industry Appli-

cations (ICIMIA) (2017), pp. 467–472.

Faculty of Mathematics and Computer Science, Babeş–Bolyai University, Cluj-

Napoca, Romania

Email address: anna.bajcsi@stud.ubbcluj.ro

Email address: barbara.botos@stud.ubbcluj.ro

Email address: peter.bajko@stud.ubbcluj.ro

Email address: zbodo@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 1, 2022
DOI: 10.24193/subbi.2022.1.02

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN

VIDEO GAMES

IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

Abstract. In this article, we present a comparative study of Artificial
Intelligence training methods, in the context of a racing video game. The
algorithms Proximal Policy Policy Optimization (PPO), Generative Adver-
sarial Imitation Learning (GAIL) and Behavioral Cloning (BC), present in
the Machine Learning Agents (ML-Agents) toolkit have been used in sev-
eral scenarios. We measured their learning capability and performance in
terms of speed, correct level traversal, number of training steps required
and we explored ways to improve their performance. These algorithms
prove to be suitable for racing games and the toolkit is highly accessible
within the ML-Agents toolkit.

1. Introduction

From their inception in the 1950s, video game started to evolve and to
become more and more complex in terms of better graphics, interaction con-
trollers and game mechanics, audio and visual feedback, progressing at the
same pace with the technology of the time and sometimes even pushing tech-
nology forward, becoming the beautiful pieces of art we think about today.
The industry has been dominated by a small number of companies that es-
tablished specific practices around the development and distribution of video
games. Strategy video games have found an important role due to their effect
on improving hand–eye coordination and visual-motor skills [14].

One of the most important steps in this evolution is marked by adding Arti-
ficial Intelligence (AI) methods, which simulates the presence of other players
or characters, increasing the immersive experience of the game. This aims at
designing agents capable of playing video games without human intervention
[12], often called non-player characters. Thus, the efficiency of an AI agent
in a game is generally evaluated by human experience [9]. The importance of

Received by the editors: 23 September 2021.
2010 Mathematics Subject Classification. 91A10, 68T05.
1998 CR Categories and Descriptors. I.2.1 [Artificial intelligence]: Applications and

Expert Systems – Games; K.8.0 [Personal computing]: General – Gaming .
Key words and phrases. racing game, PPO, GAIL, behavioral cloning, AI in games.

21

22 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

AI tools in games is not limited to the game experience, but provides a rich
research ground for studying and experimenting how humans interact with AI
agents [21].

However, there is a gap between academic and industrial approach of game
AI that needs addressing. The basic AI algorithms usually used in games
(such as ad hoc authoring, tree search, evolutionary computation, and machine
learning) do not rise to the current demands, meaning that new methods and
techniques are needed [4].

In this paper we aim to encourage a more sophisticated use of AI in in-
dustry (such as neural networks) [20], by presenting the new tools available
(like the Unity ML-Agents Toolkit, Pytorch) and specific case scenarios where
algorithms can be used successfully. Thus, this paper focuses on determining
the best method to train AI agents for a specific type of game: car racing
simulation games, by presenting a specific video game context. The impor-
tance of this type of game is not only recreational, but given the realistic
environment, it is used to develop driving skills in a safe environment. Using
intelligent methods to simulate the required challenges of the environment and
drive progress by competition with non-human agents is the key to success.
Three types of AI agents are compared in simulating car driving agents, us-
ing the game development platform Unity [8] and the machine-learning agents
module based on the PyTorch technology [11]: Proximal Policy Optimiza-
tion (PPO), Behavioral cloning (BC) and Generative Adversarial Imitation
Learning (GAIL) algorithms [18].

2. Background

Some examples of related work in the field would include the idea of a uni-
fied video game AI middleware [15], which was created by The International
Game Developers Association (IGDA) by launching an Artificial Intelligence
Interface Standards Committee (AIISC) in 2002, which had the goal of cre-
ating a standard AI interface for reusing and outsourcing AI code [15]. In
Berndt et al. [1], was proposed an Open AI Standard Interface Specification
(OASIS), which aimed at making the integration of AI in video games easier.
This kind of game AI middleware can now be found in multiple video game
engines [15], such as CryEngine, Havok, Unreal Engine and Unity, these game
engines aiming to provide realistic agents and virtual environments.

In relation to racing games, recent interest has been present in the literature
with the most focus on algorithms such as PPO for vehicles in mixed and full-
autonomy traffic [13, 17], GAIL for modelling a human driver [2, 10], or BC
for robust autonomous vehicles with end-to-end imitation learning [16].

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 23

2.1. The Unity ML-Agents Toolkit. This Unity toolkit is an open source
project that consists of two elements: the ML-Agents software development
kit (for creating environments within the Unity Editor and with the associated
C# scripts) and a Python package (to help interfacing with the environments
created). ML-Agents presents three components: (1) the Agent, responsible
with collecting observations and taking actions; (2) the Brain, responsible with
making decisions for the linked Agents containing matching observation and
action space configurations; (3) the Academy, responsible for managing the
learning environment by keeping track of the steps performed by the Agents,
setting the target simulation speed and frame rate, and resetting parameters
for eventual configuration changes during run-time.

The Python Unity ML-Agents Trainers Package provided in this toolkit
communicates with Unity by using the included UnityEnvironment class, by
the use of a gRPC communication protocol, which utilises protobuf messages.

2.1.1. Proximal Policy Optimization (PPO). By trying to improve the already
ample scene of reinforcement learning with neural network function approxi-
mators, the OpenAI team introduces a new family of policy gradient methods
with the Proximal Policy Optimization Algorithms [18]. These new methods
share some of the benefits brought by the trust region policy optimization
(TRPO), but have the advantage of having better sample complexity (empir-
ically). While TRPO uses a complex second-order method when confronted
with the problem of trying to improve the step on a policy using the data
it currently has without stepping too far as to cause a performance collapse,
PPO uses a family of first-order methods which use some other algorithmic
approaches to keep the new policies close to old.

The main deviations of PPO are the PPO-Penalty and the PPO-Clip. We
will primarily focus on the PPO-Clip variant as it is the most commonly used
and it is present in the ML-Agents toolkit used in this study. As opposed to
PPO-Penalty, it does not have any constraint or a KL-divergence term in the
objective, but instead relies on specialised clipping in the objective function
to remove incentives for the new policy to get far from the old policy. The
PPO algorithm uses fixed-length trajectory segments, where on each iteration,
every of the N actors collect T timesteps of data in parallel, then constructs the
surrogate loss on the NT timesteps of data and optimises them with minibatch
Stochastic gradient descent (SGD) for a K number of epochs.

2.1.2. Generative Adversarial Imitation Learning (GAIL). Generative Adver-
sarial Imitation Learning (GAIL) is an Inversive Reinforcement Learning al-
gorithm, which, as the name suggests, uses a Generative Adversarial Network
(GAN) to function. This algorithm can be also described as a model-free

24 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

imitation learning algorithm, and can yield a good performance for complex
behaviours, particularly in big, high-dimensional environments. As presented
in [6], GAN is a type of generative model, which brings a way to learn deep,
hierarchical representations in a semi-supervised or unsupervised manner.

The GAN architecture consist of two different networks working together to
learn from existing datasets. The first network is the generator, which has the
role of generating new data by learning the distribution of the input dataset.
The second network called the discriminator has the role of gathering the
samples from the training data and classifying them either as generated by the
generator or as real data. The Inversive reinforcement learning (IRL) methods
were presented in the idea of helping the reinforcement learning agents to learn
the experts policy and to get reward functions in order to explain the experts
behaviors from their given trajectory [7].

2.1.3. Behavioral Cloning (BC). Behavioral Cloning (BC) represents a form
of “Imitation Learning” which has the goal of creating a model of a human’s
behavior when trying to execute a difficult set of actions. The BC method is
one of the most used approaches in regards to the imitation learning problem
and has been proven powerful in the sense that it can very quickly imitate the
demonstrator without needing to interact with the environment [19].

This method has been used in many different applications, from flying down
a quadrotor on a forest trail [5], to autonomous driving [3]. BC is related with
other methods of learning by imitation [31], such as GAIL [7], IRL and other
methods that use data from human performance. The behavioral cloning al-
gorithm used by the ML-Agents toolkit is one of Behavioral Cloning from
Observation [19] and works in the following fashion: the algorithm needs to
find a good imitation policy from a set of state-only demonstration trajec-
tories. The extraction of the agent-specific part of the demonstrated state
sequence and the forming of a set of demonstrated agent-specific state transi-
tions, in order for the use of the agent-specific inverse dynamic model [19]. For
each transition the algorithm computes the model-predicted distribution over
demonstrator actions and uses the maximum-likelihood action as the inferred
action. We then build the set of complete state-action pairs [19].

3. Case study

3.1. The game. The racing game environment we study is built in Unity, em-
ploying several levels (tracks), race configurations, and car models (see Figure
1). The player can compete against multiple AI cars trained and compared
in this case study. The agents used different training methods such as PPO,
GAIL, BC, and Soft Actor-Critic (SAC). After multiple training sessions, the

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 25

SAC models did not manage to train to the point of completing the level so
the other methods were used forward.

Figure 1. Game circuit

3.1.1. Training the AI. After the training process, five models using three dif-
ferent training methods were obtained, one type using PPO, two types using
GAIL and two types using BC. The training of the AIs was done using ML-
Agents. In this framework the necessary components for training an agents in-
clude a virtual environment, the agent component present in the Unity project
and a configuration file which holds all the variables and parameters of the
neural network and training method used.

The specific settings for each training methods are as follows: for the
PPO method the trainer type: ppo and the reward signals need to be
extrinsic; for the GAIL methods one more module needs to be added, which
is the gail: one with multiple specific parameters such as demo path for
showing the location of the demo file used in the training process, strength
value representing how much the agent should copy the demonstration, gamma,
learning rate, use actions and use vail; finally for the BC method the
behavioral cloning module which adds the demo path parameter and the
value representing how much the agents should copy the demonstration and
other BC specific parameters.

3.2. Experiments.

3.2.1. Training PPO. The parameters of the configuration file were adjusted
to train multiple agents using trial and error in order to increase the perfor-
mance of the agents. The best configuration identified (Test 33), which con-
sisted of 40 agents, used a batch size of 120, the learning rate of 0.0003

26 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

and strength of the extrinsic reward signals of 1(the maximum recom-
mended value). This configuration demonstrated very good performance in
accurately parsing the circuit, with the maximum speed reaching the value of
27. The agents started training with the environment reward at -1.477 and
after training for over 5 million steps they reached the value of 0.7687, being
the highest value achieved with this method, and it had a growth value of
2.2457. The evolution of the training is shown in Figure 2.

Figure 2. Environment cumulative reward of the PPO method

In terms of traversing the level, the final model takes shortcuts by cutting
corners and getting off the track portion of the level in order to complete the
level as fast as possible. This is a good thing in the context of finishing first,
but ultimately decreases the value of the model for not traversing the level
correctly.

3.2.2. Training GAIL. For the GAIL training method two types of demos
were used, one made by a human player, and one made using the PPO trained
method, where one demonstration of traversing the track and one agent using
the PPO Test 33 brain were recorded. This was done in order to determine if
there is a difference in performance between these two kinds of demos.

For both models trained using the GAIL method, along with the 40 agents
used, the extrinsic reward signals module was utilised, with the same values
as the PPOmethod, in collaboration with the gailmodule, which included the
learning rate of 0.0003, the encoding size of 128 and the gail strength
of 0.1. After adding the gail module, the agents started to learn and the
cumulative reward started increasing alongside the performance on the racing
track.

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 27

The performance of the GAIL method using a player demo reached the
speed value of 21, being a very good one for the gaming context, achieved
after a bit over 5.5 million steps, and after starting with the environmental
cumulative reward of -1.486, it reached the value of 0.725, having a growth
value of 2.211. The evolution of this method can be seen in Figure 3.

Figure 3. Environment cumulative reward of the GAIL
method using a player demo versus using an AI demo

The performance of the GAIL method using the AI demo reached the speed
value of 17 after just over 2.5 million steps. Starting with the cumulative
reward of -1.486 and reaching the value of 0.679, it had an approximated
growth value of 2.165, very close to the player made demo method described
above and also the PPO model, used for creating the demo after which this
model learned. We will examine the evolution of the training session present
in Figure 3.

When comparing the two GAIL methods we can see that they have similar
results but also big differences. Starting with the similarities, they both have
very close growth values and the learning process is very similar, both with
the cumulative reward slowly decreasing until the second half of the session
where they started to reach their maximum value very fast, then very slightly
increasing until the end of the training session. Considering this, the second
method, using the AI made demo, learned twice as fast as the first one, but
ultimately had a smaller speed performance.

With all this said, we can see that using the player made demo was better
than the AI made one, even after considering the inefficiency in time.

3.2.3. Training BC. Just like the GAIL agents, the BC method was used to
create two types of AI using the same demos as before to determine if the
type of demo affects the performance of the AIs and what differences can be

28 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

found. The best configuration found so far for this method used 40 agents
and the same values for the extrinsic reward signal as the PPO and GAIL
methods, with the exception of the batch size which was increased to 512
and the behavioral cloning module was added which included a strength of
0.1. The best session of the BC method using a player demo was the fourth
one with the maximum speed of 6. This result was achieved after 6 million
steps, starting with the environment cumulative reward of -5.534 and reaching
the value of -4.053 by the end of the training session. The growth value of this
method was 1.481 and we can see the evolution of the agent in Figure 4.

Figure 4. Environment cumulative reward of the BC method
using a player demo versus using an AI demo

Unfortunately, when traversing the environment, this model also takes short-
cuts, going off the track part and onto the surrounding environment, losing
value.

As the aforementioned GAIL agent that used an AI made demo, this one
also uses the same demo made from the performance of the PPO trained AI.
Just like the agents trained with a player demo, the AI demo trained agents
achieved a speed performance value of 6 but in this case, the training session
was much shorter, ending after just over 1 million steps. Within this period,
the agents grew the environment cumulative reward from -5.531 to the value
of -4.863, having the final growth value of 0.668.This method had the poorest
growth while training and we can visualise it in Figure 4.

Even though both models using the BC training method had the same
maximum speed value, the difference between these two methods is the one
of training session length and efficiency, the agents using the AI made demo
reached the same performance almost 6 times faster than the one trained with
the player made demo even though the latter had a bigger growth value.

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 29

Overall, we can say that using an AI made demo is better than using a
human player demo for the BC training method.

3.3. Results. When comparing all five models trained for this experiment,
we can see exactly how different the training methods perform and which one
has the best performance.

The methods with the fastest growth of their reward value are the BC meth-
ods (Player demo red, AI demo dark blue) reaching values close to maximum
in just 1 million steps, after that, the GAIL method using an AI made demo
(green) is in third place, followed by the PPO method (orange) and finally the
GAIL method using a player made demo (light blue).

For the criteria of correctness while traversing the level, all five models have
a bad performance, taking shortcuts and cutting corners through the level by
going off the track onto the surrounding environment (leading to incorrect
level traversal). This fact will not be taken into consideration in the current
comparison.

All results are compared in Table 1 below, in terms of speed of circuit
traversal, growth value (based on starting and ending reward) and number of
steps involved in the training.

Table 1. Comparison of all five initial AIs specifications

Speed Starting
reward

Ending
reward

Growth
value

No. of
steps

PPO 27 -1.477 0.7687 2.2457 5 mil
GAIL& player demo 21 -1.486 0.725 2.211 5.5 mil
GAIL & AI demo 17 -1.486 0.679 2.165 2.5 mil
BC & player demo 6 -5.534 -4.053 1.481 6 mil
BC & AI demo 6 -5.531 -4.863 0.668 1 mil

This table shows us all the properties of each model in the order of which
they were trained. Coincidentally, the order also represents the performance
order of the models. The PPO model had the best performance of all the
trained AIs with the biggest speed and growth values. The next best perfor-
mance is of the GAIL method with both models having a good performance
and as stated in subchapter 3.2.2, the model using a player made demo had a
better performance than the one using the AI made demo in both speed and
growth value.

The method with the least performance is the BC one, with both models
reaching the low speed value of 6 and having suboptimal growth values com-
pared to the other two methods. Even though the BC model using the AI
agent demo has the smaller growth value than the one trained with a a human

30 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

player demo, it managed to train about 6 times faster reaching the same speed
performance, therefore we conclude that it is a much better model.

3.4. Improvements.

3.4.1. Improving PPO. For this training session, the parameters batch size

and learning rate were increased to 2048 and 0.0005 respectively and 20
agents were used, which at the beginning of the session had a cumulative
environment reward of -1.562 and after just 5 million steps, reached the reward
value of 0.7193, having an approximate growth value of 2.2813 and an average
speed value of 24.

In Figure 5, we can see how the second version (blue) started the training
session very close to the first one and oscillated until the 1.7 million steps
mark, compared to the 2 million steps mark of the first version (grey). After
that point, it slowly started to learn, oscillating until the 3.5 million steps
mark where it reached its maximum potential and until the end of the episode
maintained its value close to the maximum like the first version.

Figure 5. Environment cumulative reward of the PPO
method initial versus final model

When comparing the first model with the improved one, the improved one
has a slower speed value, 24 versus 27, but a slightly bigger growth value
2.2813 versus 2.2457. While traversing the level, the improved model has a
better understanding of the environment, maintaining its traversing pattern
almost exclusively on the track part of the level, compared to the first model
which cuts corners in order to complete the level faster. This adds more value
to the improved model, making it more realistic and better suited for this
genre of video games.

3.4.2. Improving GAIL. Compared to the first models trained with the GAIL
method, the improved ones used 20 agents, new demos and had the same
configuration with only a slight increase in the gail strength, having the value
of 0.15. The performance of the improved GAIL model using a player made

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 31

demo is very good, reaching the speed value of 21 after 5 million steps and
after starting with the cumulative environment reward of -1.486, it reached
the value of 0.8046, having an approximate growth value of 2.2906.

In Figure 6 we can see the training evolution of the model, compared to the
previous version.

Figure 6. Environment cumulative reward of the GAIL
method using a player demo initial versus final model

As we can see, the improved model (orange) learned faster due to the in-
crease in the learning rate, from around the 2.1 million steps mark compared
to the 3 millions steps mark of the first version (blue). It reached its maxi-
mum potential around the 3 million steps mark and from there, maintaining
its value close to its maximum until the end of the session.

Both the first and the improved models have relatively the same perfor-
mance, with average speed of 21, but the improved model has a slightly bigger
growth value. When comparing the models while traversing the level, the
improved one has a better understanding of the environment, traversing the
level almost exclusively on the track part. This again adds more value to the
improved model, making it more realistic and better suited for this genre of
video game.

The performance of the improved GAIL model using an AI made demo
is very good, reaching the speed value of 21 after 5 million steps and after
starting with the cumulative environment reward of -1.527, it reached the
value of 0.7133, having an approximate growth value of 2.2403.

In Figure 7 we can see the training evolution of the model, compared to the
initial experiment. When comparing the two versions, the improved one has
an approximately 23% increase in speed performance, going from 17 to 21, and
it has a bigger growth value. While traversing the level, both the models take
shortcuts, going off the track part and on to the surrounding environment, so
there is no significant improvement in this department.

32 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

Figure 7. Environment cumulative reward of the GAIL
method using an AI demo initial versus final model

3.4.3. Improving BC. Regarding the improved BC configuration, the only dif-
ferences consisted of using 20 agents, just like the improved PPO and GAIL
models, and using new demos from which the agents learned.

The performance of the improved BC model using a player made demo
did not increase in terms of speed, having the average speed of 6, like the
model before it. In terms of environmental cumulative reward, it started with
the value of -1.499 and had a maximum value of 0.4614 with an approximate
growth value of 1.9604.

As we can see from Figure 8, the improved version of this method started
to slowly learn until reaching close to its maximum potential at the 1 million
steps mark. From there until the 2.5 million steps mark held its value very
steady, but after that it had an unpredictable behaviour and slowly decreased
until the end of the training session.

Figure 8. Environment cumulative reward of the BC method
using a player demo initial versus final model

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 33

When compared to the previous model, the improved one has the same
average speed but a bigger growth value, 1.9604 versus 1.481. While traversing
the level, the improved model learned to take fewer shortcuts, by cutting less
corners and staying more on the track part of the level, this in turn increases
the value of the model.

The performance of the improved BC model using an AI made demo did
not increase in terms of speed, having the average speed of 6, like the model
before it. In terms of environmental cumulative reward, the model started
with the value of -1.541 and had a maximum value of 0.5802 after 5 million
steps with an approximate growth value of 2.1212.

In Figure 9 we can see how the improved model started to learn slowly,
reaching its maximum potential at around the 1 million steps mark and keeping
its value pretty consistent throughout the training session, until approximately
around the 3.3 million steps mark where it started to raise and fall until the
end of the session. Compared to the previous version it had a more stable
learning rate, the first version having a very unpredictable learning pattern.

Figure 9. Environment cumulative reward of the BC method
using an AI demo initial versus final model

When compared to the previous model, the improved one has the same
average speed but a bigger growth value, 2.1212 versus 0.668. While traversing
the level, the improved model follows along relatively the same pattern as the
previous version, taking shortcuts, leaving the track part of the level and
traversing the surrounding environment. Other than the increase in growth
value, the model did not receive an increase in its value compared to the
previous version.

34 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

3.5. Final results. When comparing the improved version of the five models
trained for this experiment, we can see even more clearly how different the
training methods perform and which one has the best performance.

The method with the fastest growth is the BC method (red for BC using a
player demo and dark blue for BC using an AI demo), with both its models
reaching their maximum potential by the 1 million steps mark. Following we
have the GAIL model using an AI demo (brown), reaching its maximum at
around the 2.5 million steps mark. Finally, we have the PPO (light blue)
and GAIL using a player demo (orange) models, which both reached their
maximum around the 3 million steps mark.

In the context of traversing the environment, the models of PPO, GAIL
using a player demo and BC using a player demo have improved by staying
more on the track and not taking shortcuts on their way to complete the level,
with the BC model only having a slight improvement in this regard.

In Table 2, we have the values of the performance for all the five improved
models (with 5 mil number of steps for each) with correct level traversal for
some (does not cut through the environment like before). The best model was
the one of the PPO method, which had the biggest speed value out of all five
models, with the value 24. The PPO model is followed again by the GAIL
models, both having the speed value of 21. Lastly, the BC models had again
the poorest performance with the average speed value of 6.

Table 2. Comparison of all five improved AIs specifications

Speed Starting
reward

Ending
reward

Growth
value

Correct
level tra-
versal

PPO 27 -1.562 0.7193 2.2813 Yes
GAIL& player demo 21 -1.486 0.8046 2.2906 Yes
GAIL & AI demo 21 -1.527 0.7133 2.2403 No
BC & player demo 6 -1.499 0.4614 1.9604 Yes
BC & AI demo 6 -1.541 0.5802 2.1212 No

The reason behind this ranking is that the PPO model had the best speed
performance in both the original and improved model, with the increase in
value coming from the improved model, which learned to traverse the environ-
ment more correctly. Next, we have the GAIL models, which had the same
speed performance in the improved model, but ultimately the model using a
player made demo learned to traverse the environment more correctly than
the model using an AI made demo. For the final places, the BC method had
the poorest performance of all five model, but the model using a player made

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 35

demo learned a little bit better to traverse the environment and ultimately
this put it at an advantage compared to the one using an AI made demo.

4. Conclusions

The purpose of this article is firstly to present the power of the ML-Agents
toolkit, which, as we have seen, is a very competent and accessible tool for
training multiple types of intelligent agents using different training methods.
This is thanks to the use of a high-level framework such as PyTorch, work-
ing in the background. This is a facilitating tool in the process of creating,
training and adding artificial intelligence to video games, supporting the game
development industry.

Moreover, we have shown how different methods of AI perform compared
to one another in the context of a racing video game and which would be the
best option to choose when developing this type of video games. The PPO
method, using reinforcement learning, had the best performance of all the
trained models, followed by GAIL and BC respectively. The results found in
this experiment may not be definitive, as there is always room for improvement
and every training game environment is different, but they are a good reference
point on how each of these methods performs. The implemented application
also shows the simplicity and efficiency of the training process and it is a very
good graphical representation of the results found in this experiment.

References

[1] Berndt, C., Watson, I., and Guesgen, H. Oasis: an open ai standard interface
specification to support reasoning, representation and learning in computer games. In
IJCAI-05 Workshop on Reasoning, Representation, and Learning in Computer Games
(2005), Citeseer, pp. 19–24.

[2] Bhattacharyya, R., Wulfe, B., Phillips, D., Kuefler, A., Morton, J.,
Senanayake, R., and Kochenderfer, M. Modeling human driving behavior through
generative adversarial imitation learning. arXiv preprint arXiv:2006.06412 (2020).

[3] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,
P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

[4] Fan, X., Wu, J., and Tian, L. A review of artificial intelligence for games. Artificial
Intelligence in China (2020), 298–303.

[5] Giusti, A., Guzzi, J., Cireşan, D. C., He, F.-L., Rodŕıguez, J. P., Fontana, F.,
Faessler, M., Forster, C., Schmidhuber, J., Caro, G. D., Scaramuzza, D., and
Gambardella, L. M. A machine learning approach to visual perception of forest trails
for mobile robots. IEEE Robotics and Automation Letters 1, 2 (2016), 661–667.

[6] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. Advances in
neural information processing systems 27 (2014).

36 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

[7] Ho, J., and Ermon, S. Generative adversarial imitation learning. Advances in neural
information processing systems 29 (2016), 4565–4573.

[8] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., et al. Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627 (2018).

[9] Kreminski, M., Samuel, B., Melcer, E., and Wardrip-Fruin, N. Evaluating ai-
based games through retellings. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (2019), vol. 15, pp. 45–51.

[10] Kuefler, A., Morton, J., Wheeler, T., and Kochenderfer, M. Imitating dri-
ver behavior with generative adversarial networks. In 2017 IEEE Intelligent Vehicles
Symposium (IV) (2017), IEEE, pp. 204–211.

[11] Nandy, A., and Biswas, M. Unity ml-agents. In Neural Networks in Unity. Springer,
2018, pp. 27–67.

[12] Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R. D., Togelius, J., and Lucas,
S. M. General video game ai: A multitrack framework for evaluating agents, games, and
content generation algorithms. IEEE Transactions on Games 11, 3 (2019), 195–214.

[13] Quang Tran, D., and Bae, S.-H. Proximal policy optimization through a deep re-
inforcement learning framework for multiple autonomous vehicles at a non-signalized
intersection. Applied Sciences 10, 16 (2020), 5722.

[14] Rollings, A., and Adams, E. Andrew Rollings and Ernest Adams on game design.
New Riders, 2003.

[15] Safadi, F., Fonteneau, R., and Ernst, D. Artificial intelligence in video games:
Towards a unified framework. International Journal of Computer Games Technology
2015 (2015).

[16] Samak, T. V., Samak, C. V., and Kandhasamy, S. Robust behavioral cloning for au-
tonomous vehicles using end-to-end imitation learning. arXiv preprint arXiv:2010.04767
(2020).

[17] Sander, R. Emergent autonomous racing via multi-agent proximal policy optimization.
Embodied Intelligence (2020).

[18] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

[19] Torabi, F., Warnell, G., and Stone, P. Behavioral cloning from observation. arXiv
preprint arXiv:1805.01954 (2018).

[20] Yannakakis, G. N. Game ai revisited. In Proceedings of the 9th conference on Com-
puting Frontiers (2012), pp. 285–292.

[21] Zhu, J., Villareale, J., Javvaji, N., Risi, S., Löwe, M., Weigelt, R., and
Harteveld, C. Player-ai interaction: What neural network games reveal about ai
as play. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (2021), pp. 1–17.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-
Napoca, Romania

Email address: alina.calin@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 1, 2022
DOI: 10.24193/subbi.2022.1.03

ROMANIAN QUESTION ANSWERING USING

TRANSFORMER BASED NEURAL NETWORKS

DIACONU BOGDAN-ALEXANDRU AND LÁZÁR-LŐRINCZ BEÁTA

Abstract. Question answering is the task of predicting answers for ques-
tions based on a context paragraph. It has become especially important,
as the large amounts of textual data available online requires not only
gathering information but also the task of findings specific answers to spe-
cific questions. In this work, we present experiments evaluated on the
XQuAD-ro question answering dataset that has been recently published
based on the translation of the SQuAD dataset into Romanian. Our best-
performing model, Romanian fine-tuned BERT, achieves an F1 score of
0.80 and an EM score of 0.73. We show that fine-tuning the model with
the addition of the Romanian translation slightly increases the evaluation
metrics.

1. Introduction

Question answering (QA) refers to answering questions based on a context
paragraph. The answers are of variable length and contain segments of the
provided context paragraph. QA is a natural language processing (NLP) task
as it entails the automatic understanding of the text.

The importance of question answering has been discussed for more than two
decades, as online information has become widespread and users raised the
need for not only gathering information from large collections of documents,
but also answering specific questions [7].

The task of QA has been addressed with various approaches such as the ones
based on Information Retrieval/Information Extraction (IR/IE), restricted do-
main systems, or rule-based systems [6]. Most IR based systems are returning
a list of top-ranked documents or passages as responses to a query. In the
following step, the IE system parses the questions and documents yielding the

Received by the editors: 9 December 2021.
2020 Mathematics Subject Classification. 68T07, 68T50.
1998 CR Categories and Descriptors. I.2.7 [Artificial Intelligence]: Natural Lan-

guage Processing – Language models; I.2.7 [Artificial Intelligence]: Natural Language
Processing – Language parsing and understanding ; I.2.7 [Artificial Intelligence]: Natural
Language Processing – Text analysis .

Key words and phrases. question answering, deep learning, Transformer, Romanian.

37

38 DIACONU BOGDAN-ALEXANDRU AND LÁZÁR-LŐRINCZ BEÁTA

interpretation of each word, using several resources like Named Entity Tag-
ging, Template Element, Template relation, Correlated Element, and General
Element. The limitation of this system is the fact that it can only answer
yes/no type of questions and wh-type of questions (such as when, where, what,
etc.). Restricted domain systems, as the name suggests, restrict the domain
of questions and the size of the knowledge base. In this system, a question is
linguistically inspected by the Heart of Gold architecture. The semantic rep-
resentations are then interpreted, and a question object that contains a proto
query is produced. From this, an instance of a specific database or ontology
query is created. An answer object is generated from the result(s) returned by
the queried knowledge source. This object forms the foundation for subsequent
natural language answer generation. Rule-based systems are an extension of
the IR-based QA systems. For each type of question, it generates rules for
the semantic classes like who, when, what, where, and why type questions.
Rule-Based QA systems initiate parse notations and create training cases and
test cases throughout the semantic model.

However, more recently the state of the art results are achieved with neu-
ral network models, especially with the fully attention-based Transformer [12]
model. This neural architecture is commonly applied to NLP tasks, as it is
capable of modeling long-range dependencies. The unidirectionality of the
standard language Transformer models limits the options for the architec-
tures used at pre-training. BERT (Bidirectional Encoder Representations from
Transformers) is a model proposed by [4] with the purpose of reducing this
unidirectionality by using a “masked language model” (MLM) for pre-training.
The MLM objective allows the representation to analyze the context both to
the left and the right, which enables the pre-training of the deep bidirectional
Transformer.

Question answering models were proposed for several languages as a result
of the availability of datasets that provide training data for these models.
However, for under-resourced languages such as Romanian, to the best of our
knowledge, the first baseline model for QA is described in [5]. In our work, we
aim to analyze a model for Romanian QA for the newly introduced dataset
by [5]. The rest of the paper is structured as follows: Section 2 presents the
related work, Section 3 details the method describing the dataset and training
architectures, in Section 4 the experiments and results are presented, and
conclusions are summarized in Section 5.

ROMANIAN QUESTION ANSWERING USING NEURAL NETWORKS 39

2. Related work

Artetxe et al. [1] introduced a new Cross-lingual Question Answering
Dataset (XQuAD) for a better understanding of the cross-lingual general-
ization ability of the models described in the paper. The XQuAD dataset
includes the translation of the paragraphs, questions, and answers from the
SQuAD v1.1 dataset [11] into ten languages. The authors also showed that
neither a shared vocabulary nor joint pre-training is necessary for multilingual
models.

In the work of Xue et al. [16], a new token-free, byte-to-byte pre-trained
model is proposed. The authors compared the new model, ByT5 with an-
other model that uses the T5 [10] framework, mT5 (the multilingual variant
of a T5 architecture), introduced by Xue et al. [17]. The T5 is a unified
framework that converts all text-based language problems into a text-to-text
format. These models were tested on multiple tasks included in the GLUE [14]
or SuperGLUE [13] benchmarks, as well as on a subset of tasks included in
the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME)
benchmark [8]. The XTREME multi-task benchmark is proposed for eval-
uating multilingual representations through their cross-lingual generalization
competencies for 40 languages and 9 tasks building upon existing benchmark
datasets such as XQuAD, XNLI [3], TyDi QA [2] and many others. The re-
sults favor ByT5 on small models and mT5 on large models for the XQuAD
dataset, the best scores are of the mT5 with an F1 of 85.2 and Exact Match
(EM) of 71.3.

Adrian et al. [9] developed a system used in the Question Answering com-
petition QA@CLEF for the ResPubliQA track in 2010. For their corpus,
the JRC-Acquis and Europarl corpora were indexed, both of them containing
documents in XML format. Their question analyzer performed 5 tasks: Noun
Phrase chunking and Named Entity extraction, question focus identification,
question type inferring, answer type identification, and identification of the
keywords of the sentence. The output of these tasks was then used to help the
following components: The Index Creation, Information Retrieval, and the
Answer Extractor. As for the results, they obtained an accuracy of 55% on
the Romanian language, 46% on English, and 30% on French. Our approach
is different from the one described in [9] as we use Transformers and a different
dataset.

Dumitrescu et al. [5] presents three new datasets: the Semantic Textual
Similarity (RO-STS), Question Answering (XQuAD-ro), and Language Mod-
eling (Wiki-ro) datasets. Together with five already existing datasets on the
Romanian language, the authors published an open-source benchmark and

40 DIACONU BOGDAN-ALEXANDRU AND LÁZÁR-LŐRINCZ BEÁTA

leaderboard platform for NLP tasks on Romanian language1. The benchmark
comprises ten tasks including text categorization by topic, question answer-
ing, sentiment analysis, etc. Each task is associated with baseline results, for
Question Answering, the mBERT and XLM-R Large models from [1] were
used, where the XLM-R Large achieves an F1 score of 83.56.

As the Romanian component of the XQuAD dataset2 is newly introduced,
to the best of our knowledge, notable work has not been published on the
XQuAD-ro.

3. Method overview

3.1. Dataset. The XQuAD is a benchmark dataset for evaluating cross-lingual
question answering performance. It consists of an English subset of 240 para-
graphs and 1190 question-answer pairs from the development set of SQuAD
v1.1 [11]. The XQuAD also contains the subset’s translation in eleven lan-
guages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai,
Chinese, Hindi, and the most recently added one, Romanian.

All files are in json format following the SQuAD dataset format. Every
paragraph consists of one title and a multitude of lists of questions and answers
related to the given context. The questions have a unique id and a text. The
answers have the text and also the position in the context where the answer
starts. Finally, context is represented by a text consisting of multiple sentences
related to the topic of the title. Table 1 shows an example in Romanian of
how the data is structured in the XQuAD dataset.

3.2. Training architecture. Because of time constraints and as well as lim-
ited hardware capacity, we decided to use a pre-trained BERT model, fine-
tuned on XQuAD like data (before Romanian was added)3 and further im-
prove it by training on the Romanian language as well. This model has been
trained on 104 languages, using 12 attention heads and it has 768 hidden neu-
rons and 110M parameters. The languages have been chosen based on their
wikipedia’s size. To avoid the overfitting of the model on languages that have
less content based on their wikipedia pages, the authors have performed an
exponentially smoothed weighting of the data during pre-training data cre-
ation. For tokenization, they used a 110k shared WordPiece vocabulary [15].
The word counts were weighted the same way as the data, so low-resource
languages were upweighted by a factor. Moreover, the model was fine-tuned
on a dataset created by using data augmentation techniques (scraping, neural
machine translation, etc.) to obtain more samples from the XQuAD dataset.

1https://lirobenchmark.github.io/ accessed in August 2021
2https://github.com/deepmind/xquad accessed in august 2021
3https://huggingface.co/mrm8488/bert-multi-cased-finetuned-xquadv1

https://lirobenchmark.github.io/
https://github.com/deepmind/xquad
https://huggingface.co/mrm8488/bert-multi-cased-finetuned-xquadv1

ROMANIAN QUESTION ANSWERING USING NEURAL NETWORKS 41

Context Questions Answer
text

Answer
start

Apărarea Panthers a cedat doar 308
puncte, clasându-se pe locul s,ase din
ligă, ı̂n timp ce au dominat NFL la
interceptări, ı̂n număr de 24 s, i s-au
putut lăuda cu patru select, ii la Pro
Bowl.

Câte interceptări
a avut apărarea
Panthers ı̂n se-
zonul 2015?

24 134

Jucătorul principal al apărării la
Pro Bowl, Kawann Short, a con-
dus echipa la numărul de sack-uri cu
11, fort, ând s, i trei fumble-uri s, i recu-
perând două.

Cine a avut cele
mai multe sack-
uri ı̂n echipa Pan-
thers?

Kawann
Short

233

Table 1. A sample of the context, questions and answers that
can be found in XQuAD-ro.

This increased the size of the dataset from a total of 13,090 question-answer
pairs to 58,000 samples. We will refer to this model in the experiments section
as XQuAD fine-tuned BERT.

Finally, our contribution to the model consisted in: splitting the dataset,
training the model on the new Romanian data with the same number of at-
tention heads and hidden neurons, respectively, and searching for the optimal
training arguments. The dataset explained in Section 3.1 has been randomly
shuffled and split into 952 question-answer pairs for training (80%), 119 for
evaluation (10%), and 119 for testing (10%).

The model trained on the dataset presented above for 10 epochs with a
checkpoint on every epoch. Afterward, the best model based on the perfor-
mance of the F1 score on the evaluation set has been selected. Due to hardware
limitations, we used 6 batches to train upon. We used a weight decay of 0.01
and 500 steps of warm-up. In the experiments section, we will refer to this
model as Romanian fine-tuned BERT.

4. Experiments and Results

The two most dominant metrics used in question answering tasks are the
F1 and EM scores. F1 is calculated by computing the harmonic mean of the
precision and recall. Precision is the number of shared words between the
prediction and the ground truth divided by the total number of words in the
prediction. Recall is the ratio of the number of shared words between the
prediction and the ground truth to the total number of words in the ground

42 DIACONU BOGDAN-ALEXANDRU AND LÁZÁR-LŐRINCZ BEÁTA

truth. Equation 1 represents the formula for calculating the F1 score. EM
(Exact Match) is the ratio of the number of predictions, that exactly match
the characters of the correct answer to the total number of predictions.

(1) F1 =
2

precision−1 + recall−1

We have used the sklearn4 library for calculating F1 and the necessary
scores used in its formula. The loading of models, training, and predictions
were facilitated by the transformers 5 library.

The experiments consisted in computing the accuracy, F1, and EM metrics,
the last two being the most important, for both the XQuAD fine-tuned BERT
and Romanian fine-tuned BERT models on the test set presented in 3.2. Table
4 presents the results.

Examining the results, there is not much of an improvement from the
XQuAD fine-tuned BERT to the Romanian fine-tuned BERT. Most likely,
that is caused by the small size of the dataset. Compared to the SQuAD
dataset [11] which has 100,000+ question-answer pairs, the XQuAD has only
one-hundredth of that amount for one specific language. As consequence, the
952 question-answers pairs are not enough to train the model for more than a
few epochs without overfitting.

Model Dataset Accuracy F1 EM
XQuAD
fine-tuned
BERT

XQuAD-ro 0.80 0.79 0.71

Romanian
fine-tuned
BERT

XQuAD-ro 0.80 0.80 0.73

Table 2. Models and their computed metrics

5. Conclusions

In this paper we have presented question answering experiments performed
on the newly published XQuAD-ro dataset. The first experiment evaluated the
model on the Romanian dataset without fine-tuning it on the Romanian lan-
guage, while the second experiment reports the results after fine-tuning with

4https://scikit-learn.org/ accessed in November 2021
5https://huggingface.co/transformers/ accessed in November 2021

ROMANIAN QUESTION ANSWERING USING NEURAL NETWORKS 43

the additional data. We plan to submit our models to the LiRo benchmark
after publication.

Comparing the zero-shot model used with the baseline offered by the XQuAD
official repository 6, we got a higher score on the EM metric, 0.71 compared
to their best model with 0.69, but we got a lower score on the F1 metric, 0.79
compared to their best model with 0.83.

The low difference in the F1 and EM metrics between the two models is due
to the small amount of data that the Romanian language has at its disposal
for the Question Answering task. To overcome this barrier, data augmentation
techniques could be used to enhance the size of the training set and reduce
overfitting. Machine translation could also be used on other datasets for a
higher training set. The issue with the latter option is that the accuracy of
the model is very dependent on the quality of the translation.

References

[1] M. Artetxe, S. Ruder, and D. Yogatama. On the Cross-lingual Transferability of Mono-
lingual Representations. arXiv preprint arXiv:1910.11856, 2019.

[2] J. H. Clark, E. Choi, M. Collins, D. Garrette, T. Kwiatkowski, V. Nikolaev, and J. Palo-
maki. TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologi-
cally Diverse Languages. Transactions of the Association for Computational Linguistics,
8:454–470, 2020.

[3] A. Conneau, G. Lample, R. Rinott, A. Williams, S. R. Bowman, H. Schwenk, and
V. Stoyanov. XNLI: Evaluating Cross-lingual Sentence Representations. arXiv preprint
arXiv:1809.05053, 2018.

[4] Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina.
Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[5] S. D. Dumitrescu, P. Rebeja, B. Lorincz, M. Gaman, A. Avram, M. Ilie, A. Pruteanu,
A. Stan, L. Rosia, C. Iacobescu, et al. LiRo: Benchmark and leaderboard for Romanian
language tasks. 2021.

[6] P. Gupta and V. Gupta. A Survey of Text Question Answering Techniques. International
Journal of Computer Applications, 53(4), 2012.

[7] L. Hirschman and R. Gaizauskas. Natural Language Question Answering: The View
from Here. natural language engineering, 7(4):275–300, 2001.

[8] J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson. XTREME: A Mas-
sively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization.
In International Conference on Machine Learning, pages 4411–4421. PMLR, 2020.

[9] A. Iftene, D. Trandabat, M. Husarciuc, and M. A. Moruz. Question Answering on Ro-
manian, English and French Languages. In CLEF (notebook papers/LABs/workshops),
2010.

[10] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv preprint arXiv:1910.10683, 2019.

6https://github.com/deepmind/xquad accessed in November 2021

44 DIACONU BOGDAN-ALEXANDRU AND LÁZÁR-LŐRINCZ BEÁTA

[11] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, Nov. 2016.
Association for Computational Linguistics.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention Is All You Need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[13] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman. SuperGLUE: A stickier benchmark for general-purpose language under-
standing systems. arXiv preprint arXiv:1905.00537, 2019.

[14] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task
benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[15] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144, 2016.

[16] L. Xue, A. Barua, N. Constant, R. Al-Rfou, S. Narang, M. Kale, A. Roberts, and
C. Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte models.
arXiv preprint arXiv:2105.13626, 2021.

[17] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, and
C. Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. arXiv
preprint arXiv:2010.11934, 2020.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

Email address: beata.lorincz@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 1, 2022
DOI: 10.24193/subbi.2022.1.04

MUSIC RECOMMENDATIONS BASED ON USER’S MOOD

USING CONVOLUTIONAL NEURAL NETWORKS

ANDREI PETRESCU

Abstract. This paper proposes a method for music recommendations

using emotions, using deep learning techniques. The method is composed

of two modules. The emotion detection module, which utilizes a hybrid

architecture involving a Convolutional Neural Network (CNN) and a Rec-

curent Neural Network using Long-Short Term Memory (LSTM) Cells.

We compared individual architectures of CNNs and LSTMs against our

hybrid approach, outperforming them during experiments. We evaluated

the modules on our own data set, created using Spotify’s API and contain-

ing 2028 songs from different genres and linguistic families, labeled with

valence and arousal values. The model also outperforms other related ap-

proaches, however we did not evaluate them on the same data set. The

predictions are used by the second module, for which we proposed a simple

method of ordering the results based on the similarity to user’s input.

1. Introduction

As the popularity of streaming services grows each year, a problem is raised

when it comes on which songs (besides the one he saves) should be delivered

to the final user. The focus on these services is to provide as much content as

possible for a large audience. The recommendations given by them are based

on user’s history of liked songs, genres, new songs which may be of interest

for him etc.

Received by the editors: 10 October 2021.

2010 Mathematics Subject Classification. 68T45.

1998 CR Categories and Descriptors. I.4.8 [Image Processing and Computer Vi-

sion]: Scene Analysis – Object recognition; I.2.6 [Artificial Intelligence]: Learning – Con-

nectionism and neural nets; I.2.10 [Artificial Intelligence]: Vision and Scene Understand-

ing – Intensity, color, photometry, and thresholding .

Key words and phrases. mood, emotion, valence, energy, convolutional neural network,

recurrent neural networks, long-short term memory, hybrid, regression, classification.

45

46 ANDREI PETRESCU

The task of music emotion recognition has been an area of interest for

many years. This subject was tackled from different perspectives. Music may

be annotated with emotion names (labels), or by expressing emotions using

continuous values. Most machine learning (ML) methods consider features

such as: pitch, beat, tempo, rhythm, melody or harmony. These were success-

fully utilized as inputs for Support Vector Machines and Naive Bayes models

[15]. However, traditional machine learning techniques under perform when

compared to deep learning methods. When working with high-dimensional

data, machine learning methods are usually insufficient to learn more complex

functions. For the task at hand, CNNs will be employed to extract abstract

features from two-dimensional data, in the form of audio spectrograms [3].

These features are further utilized in Deep Neural Network architectures to

predict the results. In most studies, deep learning approaches outperform

traditional machine learning models [1].

As mentioned, the task of emotion recognition may be viewed as a classifica-

tion problem. However, by using Russel’s circumplex model of affect [14], we

can define emotions using two continuous measures: valence and arousal (en-

ergy). This model allows us to reformulate it as a regression problem. Valence

is an indicator of “happiness”, which measures the positivity of an emotion.

Arousal or energy measures the intensity of that certain emotion.

In this paper, we propose a hybrid deep learning architecture for a rec-

ommendation system composed of two parts (modules): an emotion detection

module and a playlist generator. Using deep learning methods, we emphasised

the task of emotion detection, by creating and comparing the performance of

three neural network architectures. We first compared the performance of

Convolutional Neural Network and Recurrent Neural Networks (RNNs). This

approach was successfully used before for classification tasks in music rec-

ommendations systems based on genre [13], but, judging by our experiments,

these additionally perform well on regression tasks. The proposed CNN-LSTM

(Long-Short Term Memory) hybrid network achieves comparable results to

state-of-the-art approaches, having the potential to outperform them. In ad-

dition, we describe an easy method to generate a playlist based on user’s input,

by searching for the closest items to his emotion.

We organized the rest of the paper as follows. Section 2 describes the related

work utilized in creating and experimenting upon deep learning methods for

solving the task at hand. The methodology for representing the data (sound

and emotions) and the experimented neural network architectures are detailed

MUSIC RECOMMENDATIONS BASED ON USERS’S MOOD USING CNNS 47

in Section 3. We also discuss about the metrics used for the evaluation and

playlist generation. Section 4 contains details about the created data set for

our experiments and the results and comparison to related work. Finally,

Section 5 contains the conclusions and possible future work.

2. Related work

During the 20th century, music studies emerged with the work of Kate

Henver [5], who succeeds to unveil a correlation between emotions and music

characteristics. Taking in consideration the work done for audio-based mood

detection, in the last 20 years, different approaches have been developed. Such

works include Tao Li and Mitsumori Ogihara’s [7], in which they use audio

features as timbre, rhythm and pitch to detect emotions in music, or Geof-

froy Petter’s [11] Support Vector Machine. He used Mel-Frequency Cepstral

Coefficients as an input for his SVM.

As advancements in deep learning technology occurred, new models emerged

based on fewer feature engineering. Music Information Retrieval Evaluation

eXchange (MIREX) competition has unveiled the evolution of state of the art.

Thomas Lidy and Alexander Schindler’s work [8] shows the potential of audio-

based models, using CNNs. However, these approaches are based on labeling

music by their emotions. Two state-of-the-art methods using CNNs, that use

the same data representation as our work, consist in the works of Delbouys et

al. [3] and Bhattarai et al. [1]. These methods implement a fully-connected

network as the final layer, which will output the prediction.

Recent music recommendation systems utilize deep learning in order to

identify musical content [16]. Raju et al. utilize a hybrid network using a

CNN and an LSTM module for music genre classification [13]. This method

inspired our approach, which was further compared with other similar works

that implement this type of network for emotion recognition. A very similar

method was implemented by Malik et al. [10], who uses a bidirectional-GRU

module, instead of consecutive LSTM layers.

3. Methodology

This section will approach in multiple subsections the methodology used in

elaborating emotion detection method. First, it is discussed how the data is

represented in particularly the audio signal and the emotion model utilized.

In the following subsections, we will present the deep learning methods, which

48 ANDREI PETRESCU

form the hybrid architecture. These methods will also be individually imple-

mented for comparison. The final model consists in a combination of a CNN

module and a RNN using LSTM cells. The combination of these models was

created setting the goal to achieve better performance than state-of-the art

and to outperform the individual models.

3.1. Data Representation.

3.1.1. Emotion Representation. Russell’s valence-arousal (V-A) model [14] is

one of the most widely used models for describing emotions. Because people

experience interactions differently, this approach seeks to express emotions

objectively in a way that mere labels can not. Emotions are represented on

a two-dimensional space in this model. The positive effect of an emotion is

represented by valence. Valence levels can be interpreted as being negative

or positive, or low or high, depending on the scale employed. Happiness,

for example, might be classified as a positive or high-valence emotion. The

intensity of an emotion is represented by arousal. Anger, for example, is

a powerful emotion with a high arousal value. Therefore, the scale utilized

determines the representation. Valence and arousal are given values between

0 and 1 in our experiments. The V-A model describes happiness as having

high values, near to 1, for both components.

3.1.2. Mel-Spectrograms. The audio signal may be represented in the form

of an image in the form of a spectogram. Using spectrograms, we can take

advantage of CNN’s performance on multidimensional data [9]. Applying the

Short-Time Fourier Transform [9], we obtain the spectrogram.

Inspired by Delbouys et al [3], we took into consideration that the human

ear cannot differentiate sounds of low or high frequencies. Beginning from a

frequency f , we can re-scale the values to Mel Scale. The converted value m

is obtained applying the following formula [6]:

(1) m = 2595 ∗ log(1 + f

500
)

After converting all the frequencies using Formula. 1, we will obtain the

final mel-spectrogram. The output will be saved as a 128 x 128 px grayscale

image as shwon in Figure. 1.

MUSIC RECOMMENDATIONS BASED ON USERS’S MOOD USING CNNS 49

Figure 1. Example of a mel-spectogram

3.2. Proposed Architecture. In order to create a recommendation system

based on emotions for music, we divided it into two parts. The first part will

detect an emotion from a musical piece and the second will deliver the rec-

ommendations based on a user’s input (his emotion using the valence-arousal

model described in the Section. 3.1.1). This paper focuses on the emotion

detection, for which we created a hybrid neural network, that may outperform

state-of-the-art approaches. In the following sections we will present the ar-

chitecture, the performance metrics used for the evaluation and a proposal for

generating recommendations.

3.2.1. Convolutional Neural Network. These types of networks are known for

the capability of extracting abstract features from multidimensional data. Be-

ginning from a 128 x 128 matrix, representing the mel-spectrogram extract the

features, further processed. Each convolution layer multiplies parts of the last

layer’s output. The result may, or may not outline the important information

contained by the input matrix. Another type of layer, that CNNs use, is the

pooling layer. This study utilizes the Max-Pooling layers to down-sample the

the output of convolutions. Max-Pooling layers downsizes the input using the

maximum values from a stride. A stride is a portion from a matrix having a

fixed size [1].

The CNN module (Figure 2), utilized for the hybrid and individual archi-

tectures, will use multiple convolution and pooling layers. This architecture

was inspired from the works of Liu et al. [9], that used a CNN architecture

for music emotion recognition. Our CNN alternates between a convolution

layer and a max-pooling layer as shown in Figure 2. Between them, we use a

batch normalization layer to keep values under control and avoid over fitting.

For individual analysis during the experiments, we connected the module to

50 ANDREI PETRESCU

Figure 2. CNN module

a fully connected Deep Neural Network (DNN) (Figure 3). Its final layer has

only two neurons computing the values of valence and energy.

Figure 3. DNN module

3.2.2. LSTM-RNNs. The second method studied involves RNNs. This type of

architecture has proven its performance on solving emotion recognition prob-

lems. However, traditional RNNs suffer from what is known as “the vanish-

ing/exploding gradient” problem. This prevents RNNs from further learning.

To avoid this problem, we use LSTM Cells, described by formulas (2) and (3)

[4]:

MUSIC RECOMMENDATIONS BASED ON USERS’S MOOD USING CNNS 51

(2) ct = ft ⊙ ct−1 + it ⊙ c̃t

(3) c̃t = g(Wc∗xt + Uc ∗ ht−1 + bc)

(4) ht = ot ⊙ g(ct)

In Formulas (2) and (3), t is the current timestamp, ct is the current cell

value, c̃t is the proposed cell, ht is the hidden state, g is the activation func-

tion. W , U , b are the prior computed parameters, which are updated during

backpropagation. During the computations, LSTMs use three types of signal

gates: ft forget gate, ot output gate, it input gate. The formulas for computing

the gates are [4]:

(5) it = σ(Wi∗xt + Ui ∗ ht−1 + bi)

(6) ft = σ (Wf∗xt + Uf ∗ ht−1 + bf)

(7) ot = σ(Wo∗xt + Uo ∗ ht−1 + bo)

In Formulas (5), (6) and (7), the parameters Wi,f,o, Ui,f,o, bi,f,o correspond

to each gate for signal computations and are updated using backpropagation

during the training stage. Our two-dimensional input, may be divided in fixed

time-steps lengths. The module uses two LSTM layers with 40 and 2 units.

For individual comparison with the hybrid module, the module is connected

to a Dense layer, that will compute the output.

3.2.3. The proposed Hybrid Network. In the previous subsections we described

the individual modules, which combined will form the hybrid architecture. The

network begins with the CNN, reshaping the input by dividing it into time

steps. We used the following formula for shaping the input:

(8)

inputShapeHybrid = (no. of images, no. of t. steps, 128,
128

no. of t. steps
, 1)

The first parameter from Formula (8) represents the number of images pro-

cessed by the network. For each image the network outputs one prediction.

52 ANDREI PETRESCU

The second parameter is the number of time steps used. Controlling this pa-

rameter will affect the performance of the model. Last three parameters refer

the image’s sizes. The output of the CNN module is flattened and directed to

the LSTM module, which will predict the emotions.

3.2.4. Performance Evaluation. We compared our model with state-of-the-art

approaches that utilize CNNs or RNNs to detect emotions from music. These

approaches use different performance metrics specific for a regression model.

Therefore, we evaluated our models using all performance metrics met in the

compared papers. The performance metrics are:

• Mean Squared Error (MSE)

(9) MSE =
1

n
∗

n∑
i=1

(
Yi − Ỹi

)2

• Root Mean Squared Error (RMSE)

(10) RMSE =

√√√√ 1

n
∗

n∑
i=1

(
Yi − Ỹi

)2

• Mean Absolute Error (MAE)

(11) MAE =
1

n
∗

n∑
i=1

|Yi − Ỹi|

• R2 score (R2)

(12) R2 = 1−

∑n
i=1

(
Yi − Ỹi

)2

∑n
i=1

(
Yi − Y

)2
In Formulas (9), (10), (11) and (12) the expected value for the i-th input

is denoted by Yi. Ỹi represents the predicted value and Yi is the mean of

the expected values. To obtain a better performance, our models require, on

one hand to minimize MSE, RMSE and MAE values, on the other hand to

maximize the R2 score.

3.2.5. Recommendations. After using the model for predicting the valence and

arousal values for all input images, we can generate a list (playlist) of music

based on an user’s mood. The goal is to recommend music as close as possi-

ble to user’s emotions. A user may characterize his current mood using the

MUSIC RECOMMENDATIONS BASED ON USERS’S MOOD USING CNNS 53

valence-arousal model described in Section. 3.1.1. Each song is now char-

acterized by these values too, therefore we need to choose the most similar

songs for an user’s mood. The values range from 0 to 1 and the data can be

represented in a two-dimensional space. For computing the similarity we can

use a distance based metric. An example of such a metric is the Euclidian

distance computed using the following formula:

(13) Di =

√
(vi − vu)

2 + (ai − au)
2

In Formula (13), vi and ai are the valence and arousal values corresponding

to a song i. vu, au are the valence and arousal values from an user’s input.

For each song we will compute this distance Di and sort them from the lowest

to highest score. From the obtained list, we can extract first n songs, which

will form the playlist for a user.

4. Experimental Evaluation

This section presents the conducted experiments and the obtained results.

For testing the proposed methods, we created and utilized our own data set

containing the generated mel-spectrograms and corresponding values for va-

lence and arousal. In the following subsections we discuss the results for the

individual architectures (CNN and LSTM) and the novel hybrid approach for

solving this task.

4.1. Data Set. Using Spotify’s API [2], we collected the necessary audio files.

This API provides a 30 seconds mpeg-3 audio clip as a preview for the entire

song. This audio clip is the most meaningful and listened part of the song,

according to API documentation [2]. For creating this data set we collected

audio previews from the following genres: Jazz, Rock, Classical, Hip-Hop, Folk

and Electronic. The data set may include songs from one or more sub genres

from the ones mentioned above [12]. The music belongs to the following lin-

guistic families: Latin, Slavic, Germanic, Indo-Iranian and Japanic. Another

characteristic is that the data set contains instrumental and non instrumental

songs, because we require that our methods may focus on melody and not on

verses. The API also provides the valence and arousal (referred as energy)

values for each song.

The final data set [12] to be used during the training and testing phases

is composed of the generated mel-spectrograms (in the form of a gray scale

54 ANDREI PETRESCU

image) from the collected audio clips and contains 2028 entries. To each image,

we associate the values for emotion. The mean values for valence and arousal

are 0.476 and 0.526. The variance values for both features are 0.064 and 0.071.

4.2. Experimental Setup. As mentioned before, we trained and compared

the performance of the individual modules and the hybrid network in solving

the same task. We used k-fold cross-validation in order to detecting overfitting.

We chose k = 4 for our implementation and each model is trained for 5000

epochs. Multiple activation function were used in our models, however the

last layer of neurons is activated using the sigmoid activation. In case of the

CNN module, we used ReLU activation functions. For the LSTM module

we utilized hyperbolic tangent activation and sigmoid activation for recurrent

activation. The rest of hyperparameter values are presented in Table. 1. For

the hybrid network we took into consideration the possible effect of sequence

lengths. We tested the performance on lengths of 16 and 32 time steps.

Hyperparameter Value

Dropout β 0.2

Learning Rate 0.001

Data Set Split Ratio 80/20 (training/test)

Batch Size 50

No. of Epochs 3000
Table 1. Hyperparmeter values

4.3. Results and Discussion. The first experiment involves testing different

time sequence lengths to achieve a better performance for the hybrid model.

We will present the average results for the train and test data sets, but, in

order to compare our approach with the related work, we considered computed

the results for the entire data set (Table 4). The obtained results (Table 2)

point out that a smaller time sequence length improves the performance, when

applied on the testing data set. The performance increases for the training

data as well, but, for the most cases, it is similar. The length’s decrease has the

greatest impact on the coefficient of determination (R2 Score), which increases

for the testing data. If we compare the results to the individual modules,

the hybrid network obtains the best performance (Table 3). However, the

CNN module achieves close results and obtains a better RMSE score for the

testing data. The LSTM module performs the worst out of all three and

MUSIC RECOMMENDATIONS BASED ON USERS’S MOOD USING CNNS 55

has a tendency of over fitting. Therefore, the most impact on the overall

performance of the hybrid network it is due to the CNN module. Although,

the extracted abstract features are better utilized by the LSTM module in

order to predict the emotions, than the Deep Neural Network utilized for the

individual CNN. A graphical illustration of the performances of the considered

ML models on the testing data is illustrated in Figure 4.

Length
MSE RMSE MAE R2 Score

Train Test Train Test Train Test Train Test

16 0.001 0.031 0.027 0.178 0.022 0.139 0.996 0.413

32 0.001 0.038 0.028 0.196 0.022 0.152 0.995 0.292
Table 2. Performance results of the hybrid network for differ-

ent time sequence lengths

Architecture
MSE RMSE MAE R2 Score

Train Test Train Test Train Test Train Test

CNN 0.011 0.035 0.105 0.189 0.081 0.153 0.931 0.323

LSTM 0.007 0.061 0.029 0.247 0.020 0.195 0.854 0.234

CNN+LSTM 0.001 0.031 0.027 0.178 0.022 0.139 0.996 0.413

Table 3. Performance results for all the studied methods

Architecture R2 Score

CNN 0.849

LSTM 0.798

CNN+LSTM 0.901
Table 4. Performance results for the entire data set

4.4. Comparison to Related Work. Throughout the literature, the task of

predicting the mood from music was considered a classification problem. Data

was labeled with different emotion names, which, in our opinion, simplifies the

spectrum of existing emotions. By abstracting an emotion and quantifying it,

we used the valence/energy model, which can accommodate a larger scale of

emotions, without diminishing their complexity.

This approach was utilized before by other authors such as Delbouys et al.

[3], for predicting emotions using CNNs. Tables 5, 6 and 7 compare our results

56 ANDREI PETRESCU

Figure 4. Comparison between the performance of studied

methods (Table 3) on the testing data

to three similar approaches, those of Bhattarai et al. [1], aforementioned

Delbouys et al. [3] and Malik et al. [10]. The last approach is the most similar

to our hybrid network. Instead of two stacked LSTM layers, the authors use a

bidirectional GRU network. We wanted to compare the impact on performance

of a simpler recurrent network to a more complex one, in the form of Malik et

al.’s approach [10]. The works compared in our study evaluate their models

using parts (train/test) or entire data sets.

Approach Dataset size R2 Score

Bhattarai et al. [1] 1000 x 96 x 1360 85.61%

CNN

2028 x 128 x 128

84.90%

LSTM 79.80%

CNN + LSTM 90.10%

Table 5. Comparison between approaches using R2 for the

entire dataset

As shown in Tables 5 and 6, our hybrid approach achieves an R2 score

of 90.10% applied on the entire data set an a score of 41.30% for testing

data. These results outperform the the proposed methods of Bhattarai et

al. [1] and Delbouys et al. [3], that utilize CNNs to detect emotions. In

our individual experiments using only CNNs, we achieved close results to

MUSIC RECOMMENDATIONS BASED ON USERS’S MOOD USING CNNS 57

Approach Dataset size R2 Score

Delbouys et al. [3] 18644 x 40 x 1292 24.3%

CNN

2028 x 128 x 128

31.70%

LSTM 23.40%

CNN + LSTM 41.30%

Table 6. Comparison between approaches using R2 for the

test data

Approach Dataset size RMSE

Malik et al. [10] 431 x 60 x 260 0.255

CNN

2028 x 128 x 128

0.189

LSTM 0.247

CNN + LSTM 0.178
Table 7. Comparison between approaches using RMSE for

the test data

those approaches, even outperforming Delbouy’s method. When comparing

the two similar hybrid networks, our method obtained a RMSE value of 0.178,

outperforming the approach proposed by Malik et al. [10]. However, even if

we obtained better results than the compared related works, we cannot state

the superiority of our method, because we did not experiment upon the same

data sets. The data sets used by the authors are privately owned and cannot

be accessed without permission. Figure 5 visually represents the comparison

between our proposed hybrid method (CNN+LSTM) and the approaches of

Bhattarai et al. [1], Delbouys et al. [3] and Malik et al. [10], as represented

in Table 5, Table 6 and Table 7.

58 ANDREI PETRESCU

Figure 5. Performance comparison between the proposed hy-

brid method and the approaches of Bhattarai et al. [1], Del-

bouys et al. [3] and Malik et al. [10] (Table 5, Table 6, Table 7)

5. Conclusions and future work

In this study, we proposed a method for generating music recommenda-

tions based on emotions. Our approach consists of two modules: an emotion

recognition module and a recommendation generator based on an user’s in-

put. First, we introduced the valence and arousal method created by Russell

[14] for annotating data. Then, we studied different deep learning methods

for emotion detection, beginning from the mel-spectrogram of a song. These

methods are using CNNs, RNNs with LSTM cells and a hybrid network com-

bining a CNN and an LSTM module. Even if the paper focuses on emotion

recognition, we detailed a method to generate a personalized playlist, having

the music labeled with valence and arousal values. This method searches for

k-closest songs to a user’s emotion.

We experimented and evaluated all the studied methods and concluded that

combining CNN’s ability to extract abstract features from multidimensional

inputs and LSTM’s performance on sentiment analysis tasks, we can obtain a

model that outperforms both of them, when used individually. However, from

our experiments, it was indicated that the CNN module has the most impact

on the performance. Our work was compared to other similar approaches that

utilize CNN for music emotion recognition. Based on the results, our method

achieves better performance than the compared models. The experiments were

not conducted on the same data sets, therefore we are not able to state the

superiority of our approach.

MUSIC RECOMMENDATIONS BASED ON USERS’S MOOD USING CNNS 59

Even if the hybrid network achieves better performance, we need to take int

account the added computational expense. Using only a CNN module for this

task, achieves very close performance and, in future work, we need to further

experiment on different architectures, which may be able to achieve better

results. However, considering the work of Malik et al. [10], we may further

improve the performance using bidirectional RNN layers instead of sequential

LSTM layers. We shall further analyze other hybrid architectures involving

CNNs and forms of RNNs, that may be able to improve the prediction results.

References

[1] Bhattarai, B., and Lee, J. Automatic music mood detection using transfer learning

and multilayer perceptron. International Journal of Fuzzy Logic and Intelligent Systems

19, 2 (2019), 88–96.

[2] Clifton, A., Pappu, A., Reddy, S., Yu, Y., Karlgren, J., Carterette, B., and

Jones, R. The spotify podcast dataset. arXiv preprint arXiv:2004.04270 (2020), 1–4.

[3] Delbouys, R., Hennequin, R., Piccoli, F., Royo-Letelier, J., and Moussallam,

M. Music mood detection based on audio and lyrics with deep neural net. In Proceedings

of the 19th International Society for Music Information Retrieval Conference, ISMIR

2018, Paris, France, September 23-27, 2018 (2018), pp. 370–375.

[4] Dey, R., and Salem, F. M. Gate-variants of gated recurrent unit (GRU) neural net-

works. In IEEE 60th International Midwest Symposium on Circuits and Systems, MWS-

CAS 2017, Boston, MA, USA, August 6-9, 2017 (2017), IEEE, pp. 1597–1600.

[5] Hevner, K. Experimental studies of the elements of expression in music. The American

Journal of Psychology 48, 2 (1936), 246–268.

[6] Kamm, T., Hermansky, H., and Andreou, A. G. Learning the mel-scale and optimal

vtn mapping. In Center for Language and Speech Processing, Workshop (1997), pp. 1–8.

[7] Li, T., and Ogihara, M. Detecting emotion in music. CiteSeer (2003), 1–3.

[8] Lidy, T., and Schindler, A. Parallel convolutional neural networks for music genre

and mood classification. MIREX2016 (2016), 1–4.

[9] Liu, T., Han, L., Ma, L., and Guo, D. Audio-based deep music emotion recognition.

AIP Conference Proceedings 1967, 1 (2018), 040021.

[10] Malik, M., Adavanne, S., Drossos, K., Virtanen, T., Ticha, D., and Jarina,

R. Stacked convolutional and recurrent neural networks for music emotion recognition.

CoRR abs/1706.02292 (2017).

[11] Peeters, G. A generic training and classification system for mirex08 classification

tasks: audio music mood, audio genre, audio artist and audio tag. In Proceedings of the

International Symposium on Music Information Retrieval (ISMIR’08) (2008), Citeseer.

[12] Petrescu, A. Spotify dataset. https://github.com/AndreiPetrescu99/SpotifyDataset.git/,

2022.

[13] Raju, A., R.S, D., Gurang, D., Kirthika, R., and Rubeena, S. Ai based music

recommendation system using deep learning algorithms. IOP Conference Series: Earth

and Environmental Science 785 (06 2021), 012013.

60 ANDREI PETRESCU

[14] Russell, J. A. A circumplex model of affect. Journal of personality and social psychol-

ogy 39, 6 (1980), 1161.

[15] Tan, K., Villarino, M., and Maderazo, C.Automatic music mood recognition using

russell’s twodimensional valence-arousal space from audio and lyrical data as classified

using svm and näıve bayes. IOP Conference Series: Materials Science and Engineering

482 (03 2019), 012019.

[16] Yang, G. Research on music content recognition and recommendation technology based

on deep learning. Security and Communication Networks 2022 (03 2022), Article ID

7696840.

Department of Computer Science, Babeş-Bolyai University, 1, M. Kogalniceanu

Street, 400084, Cluj-Napoca, Romania

Email address: andrei.petrescu@stud.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2022
DOI:

A DYNAMIC APPROACH FOR RAILWAY SEMANTIC

SEGMENTATION

ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

Abstract. Railway semantic segmentation is the task of highlighting rail
blades in images taken from the ego-view of the train. Solving this task
allows for further image processing on the rails, which can be used for
more complex problems such as switch or fault detection. In this paper we
approach the railway semantic segmentation using two deep architectures
from the U-Net family, U-Net and ResUNet++, using the most compre-
hensive dataset available at the time of writing from the railway scene,
namely RailSem19. We also investigate the effects of image augmentations
and different training dataset sizes, as well as the performance of the mod-
els on dark images. We have compared our solution to other approaches
and obtained competitive results with larger scores.

1. Introduction

Railway transportation is one of the most efficient modes of moving people
and goods from one location to another [7]. The original train routes, which
consisted of a small number of stops connecting one point of interest to an-
other, were employed for industrial purposes. More stations were created to
assist railway transit as more enterprises saw it as a viable way of carrying
freight and passengers. As a result, there was a greater demand for routes
between stations.

While numerous advances in scene understanding for autonomous driving
have been made in recent decades, one subject has received little attention:
autonomous trains. Such systems should require as little human intervention
as possible. Although fully-autonomous metro systems exist in some modern
cities, smart systems for long distance cargo trains are still to be developed.

Received by the editors: 16 July 2022.
2010 Mathematics Subject Classification. 68T10, 68T45.
1998 CR Categories and Descriptors. I.4.8 [Image Processing and Computer Vi-

sion]: Scene Analysis – Object recognition; I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding – Intensity, color, photometry, and thresholding .

Key words and phrases. Binary Semantic Segmentation, Encoder-decoder, Railway
blades, Deep Learning.

61

62 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

At first glance, the task of building smart trains appears to be simpler to
solve than the problem of smart cars or trucks. Trains have a limited range
of motion due to the rails on which they travel, thus most of the autonomy
consists of adjusting the speed based on different factors such as rail topology
(curves, switches), obstacles or adverse weather conditions. In reality, it may
be as difficult to solve the task of railway scene understanding as it is to solve
the task for road scene understanding, since there are many different traffic
signs and lights located in various places along the rail track.

When building a fully autonomous train, the semantic segmentation of the
rails is an important aspect that must be considered. This task can be consid-
ered as a subproblem for more complex tasks such as detection of switches [12]
or anomalies [11], adapting the speed of movement based on the topology of
the rails or smart breaking in case of obstacles. It is critical to build a model
that can accurately highlight the rails in an image with as few incorrect pixels
as possible. This solution might be used in a safety-critical system where even
the tiniest mistake could result in derailment or even crashes.

Currently, the task of rails detection can be solved by using two different
approaches [22]. The first one implies using image processing techniques such
as image edge detection to search for rail features. The second one consists of
using deep convolutional neural networks with powerful semantic segmentation
potential. This approach can extract edges, colors or textures of rails in more
complex images with multiple rail intersections.

In this paper we propose an intelligent solution to the rails semantic seg-
mentation problem using deep neural networks, which leads to better results
when compared to the current literature on this problem using the most com-
prehensive dataset from the rail scene available. Our solution receives as input
an image taken from the egocentric point of view of the train containing one
or multiple rail tracks. The output is an image of the same size as the input
containing white pixels for the rail blades and black pixels for everything else.

The aim of this paper is to answer the following research questions:

• How reliable are the proposed methods for semantic segmentation
given a dynamic environment (i.e. the camera on the train)?

• How can we surpass the current state-of-the-art for the rails segmen-
tation problem?

The structure of the paper is the following: Section 2 describes related
methods used for solving this task, Section 3 presents the proposed approach
for the rails semantic segmentation task and Section 4 describes the experi-
ments and the obtained results. Section 5 concludes the paper by offering an
overview of the work and some future considerations.

A DYNAMIC APPROACH FOR RAILWAY SEMANTIC SEGMENTATION 63

2. Related Work

The task of rail semantic segmentation has received some attention in the
past years.

Wang et al. [24] developed an end-to-end model that combines feature ex-
traction using the ResNet-50 backbone [8], followed by a fully convolutional
network for detecting the railroad based on a custom Railroad Segmentation
Dataset (RSDS) consisting of 3000 images of size 1920x1080 divided as it fol-
lows: 2500 images for training, 200 for validation and 300 for test. They
achieve a reasonable inference time of 20FPS (Frames Per Second) by extract-
ing both the rails and their interior area, namely the sleeper. The weights
used by the ResNet50 backbone were trained on the ImageNet dataset [18] by
performing a fine-tuning process. They obtain a mean IoU of 0.898 and a Dice
score (F1 measure) of 0.868.

Zhen Tao et al. [22] use a deep neural network called RailNet for extracting
the rail lines features from an image. This network is trained to generate the
binary segmentation map of the rails, which is then processed together with the
orginal image using a line fitting algorithm based on a sliding window technique
(two-stage detector). Since the system will be used in real-time situations, the
inference time represents a key factor to be taken in consideration. In order
to obtain a fast inference time of 74FPS and allow the model to be used on
memory-constrained devices, they use Depthwise Convolutions, which were
initially introduced in [19]. They create a custom dataset called RAWRail
containing 3000 railroad tracks pictures of size 640x360 in which there may
be three different types of tracks: straight, curved to the left or curved to the
right, 1000 samples for each type. The images are grouped together with the
segmentation mask containing the two parallel rails as the positive class and
the background as the negative class. They divided the dataset into training,
validation and test sets following the ratio 0.9:0.05:0.05 and manage to obtain
an accuracy of 98.6% on the test set.

Zendel et al. [26] have created the largest dataset presently available com-
prising annotated photos obtained from the egocentric perspective of trains,
called RailSem19. They have applied deep learning approaches to solve the
semantic segmentation task, employing the FRRN (Full-Resolution Residual
Network) architecture, which was pre-trained on the Cityscapes dataset [4]
and fine-tuned using 4000 training photos randomly selected from the dataset.
Based on the ResNet50 backbone, this architecture comprises of an end-to-
end model that combines feature extraction and semantic segmentation. The
FRRN architecture comes in two flavors: FRRN A and FRRN B, which differ
in terms of the input image size: FRRN A processes images of 256×512 pixels
and FRRN B processes images of 512×1024 pixels. They have used the FRRN

64 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

B version with a 512 × 512 input size because it has a larger receptive field,
performing better than FRRN A. For the semantic segmentation task, after
60 epochs of training, Zendel et al. have obtained an intersection over union
(IoU) of 71.5% for the rails class. The images were resized to 512 × 512 and
they used a batch size of 2 on a single RTX2080Ti GPU.

Li et al. [15] have also used the RailSem19 dataset for the semantic seg-
mentation task, but on another architecture named RailNet. The authors have
used a VGG-16 backbone [20] on top of which they have added an Information
Aggregation Module (IAM) that builds a relationship between each row and
column of pixels from the image to semantically segment the rail blades. The
weights of this module are acquired in two ways: by using simple learnable
weights (RailNet-LW) that get updated with the gradient descent process or
by using attention-based weights (RailNet-AW) that work better with the un-
balanced class distribution. They divided the RailSem19 dataset into 5000
images for training and 3500 for validation and managed to obtain a mean
IoU of 0.54 and a mean recall of 0.89 on the validation set using the attention-
based version. They have resized the images to 160x320 and have used an
extended version of the focal loss [1].

Jahan et al. [11] have also used the RailSem19 dataset to perform seman-
tic segmentation on the rails using deep learning architectures. They used a
U-Net type architecture in which the feature extractor backbone was changed
to either VGG [20] or ResNet [8] in order to increase its performance. The
weights of these networks were pre-trained on the ImageNet dataset [18]. They
also experimented with two types of loss functions: Weighted Binary Cross-
Entropy and Focal Loss. Instead of working with grayscale images, Jahan et
al. [11] used RGB images of size 892 × 596 with a batch size of 4 on two
NVIDIA GeForce GTX 1080 Ti GPUs. They made use of image augmenta-
tion techniques to increase the performance of the models by using horizontal
flipping, random noise, random brightness and random contrast. They obtain
the best mean intersection over union (mIoU) of 52.78% after 46 epochs when
training on 8390 images, validating on 60 samples and testing on 50 images.

3. Our Approach

In this section we present our approach for the rails semantic segmentation
problem using U-Net architectures. We describe the formalization of the task,
the chosen architectures, the dataset and the loss functions used for experi-
mentation.

3.1. Formalism. We define a two-dimensional image as a bidimensional ma-
trix with r rows and c columns with topology I = {1, ..., r}×{1, ..., c}. Define
img : I → O, where O has one of the following forms based on the image type:

A DYNAMIC APPROACH FOR RAILWAY SEMANTIC SEGMENTATION 65

• RGB image: O = {0, ..., 255}3;
• grayscale image: O = {0, ..., 255};
• binary image: O = {0, 1}.

Therefore, img(i, j) = o, o ∈ O, i ∈ {1, ..., r}, j ∈ {1, ..., c}, where (i, j) is
a pair of integers denoting the coordinates of the image and o represents its
value at that position.

We define the segmentation mask or the ground truth as YGT : I →
{0, ...,K − 1} where K represents the number of types of objects considered
for segmentation or the number of different segments considered. Therefore,
YGT (i, j) = k, k ∈ {0, ...,K − 1}. Similarly, the prediction given by the seg-
mentation model can be defined as Yp : I → {0, ...,K − 1}, Yp(i, j) = k, k ∈
{0, ...,K − 1}.

The semantic segmentation model considered in this paper can be formal-
ized as an algorithm that takes as input an image img and outputs an image
mask where img,mask : I → O.

3.2. Architectures. For the rails segmentation problem we have chosen mod-
els from the U-Net family, which feature an encoder-decoder architecture with
skip connections between distanced layers. Although these types of archi-
tectures were designed to solve the semantic segmentation task for medical
images, many studies have shown how well they work for other tasks as well
[2, 14]. In our experiments we have considered two model architectures: U-Net
[17] and ResUNet++ [13].

3.2.1. U-Net. This architecture has a U-like structure formed of a contracting
path and an expansive path [17]. The contracting path, otherwise known as
the downward or encoder path, is used to learn what features are present in
the image, while the expansive path, known as the decoder path, is used to
distinguish where the learnt features are located in the image. Between the
two parts of the network, skip-connections are used in order to concatenate
depthwise information from the downward path to the expansive path. In
2015, the ISBI cell tracking challenge1 was won by the U-Net architecture,
showing state-of-the-art performance at that time.

3.2.2. ResUNet++. This architecture, introduced in 2019 builds on top of
U-Net [13]. It adds the following: Squeeze and Excite blocks, Atrous Spatial
Pyramidal Pooling (ASPP), and attention blocks. The Squeeze and Excite
blocks [9] are used to recalibrate channel-wise feature responses by explic-
itly modelling interdependencies between channels. Atrous Spatial Pyramidal
Pooling [3] is used to capture contextual information at various scales. ASPP

1https://biomedicalimaging.org/2015/program/isbi-challenges/.

66 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

acts as a bridge between the encoder and the decoder part of the architecture.
Attention Units are used to enhance the weights of some layers by learning on
what parts of the image to focus more, i.e. to pay more attention to.

All of the mentioned architectures work with squared input images for which
we choose 512× 512 as size representation.

3.3. Dataset. RailSem19 [26] is the most extensive dataset from the railway
scene at the time of writing, and we have used it in our study to train models
that solve the rail blade semantic segmentation challenge. It consists of 8500
photos captured from the train’s ego-view, having the size of 1920× 1080 pix-
els. The images were captured in a variety of weather, lighting, and seasons
in 38 different countries. Ground-truth masks for the rails segmentation pro-
cedure and bounding boxes for various elements from the railway scene are
included in the samples. The dataset is imbalanced from the perspective of
rails:background pixels ratio. For each pixel annotated as rail, there are ≈ 37
pixels annotated as background.

3.4. Loss Functions. We have tried to use different loss functions during
the training step of our approach: Binary Cross-Entropy, Weighted Binary
Cross-Entropy, Tversky similarity index and Focal Tversky Loss function. In
the following we present the definitions of these functions.

Let y be the ground-truth and ŷ the value predicted by the model. For
the segmentation problem with two classes, rails and background, the Binary
Cross-Entropy [6] loss function is defined as:

(1) BCE(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− ŷ)).

Since the RailSem19 dataset used in our study is imbalanced, the Weighted
Binary Cross-Entropy version of the loss was also considered:

(2) WBCE(y, ŷ) = −(w ∗ ylog(ŷ) + (1− y)log(1− ŷ)),

where w is the weight represented by the ratio between background and
rails pixels. This way, the loss gives more weight to the positive class (i.e.,
rails class in our study) when y=1, thus leading to a higher value of the loss
function in cases the predicted value ŷ is off. This allows the optimizer to
improve the model predictions for the positive class.

The Tversky similarity index [23] was used to balance False Positives and
False Negatives. This index is a generalization of 4.1, expressed as:

(3) TIc =

∑N
i=1 picgic + ϵ∑N

i=1 picgic + α
∑N

i=1 picgic + β
∑N

i=1 picgic + ϵ
,

A DYNAMIC APPROACH FOR RAILWAY SEMANTIC SEGMENTATION 67

where pic is the probability that pixel i belongs to class c and pic is the prob-
ability that pixel i does not belong to class c. Conversely, the same is true for
gic and gic respectively.

Since small regions of interest (ROIs) do not contribute to the loss signif-
icantly, i.e. the value of the loss is smaller for such ROIs, the Focal Tversky
Loss function (FTL) was poposed in the work of Abraham and Khan [1]. It is
parametrized by γ to switch between easy background and hard ROI training
examples. The Focal Tversky Loss function is defined as:

(4) FTLc =
∑
c

(1− TIc)
1/γ ,

where γ varies in the range [1, 3]. Abraham and Khan [1] hypothesize that
using a higher α in the generalized loss function from Equation 4 improves
the model convergence by shifting the focus to minimize False Negative pre-
dictions. They also mention the values they used: α = 0.7 and β = 0.3.

3.5. Our Semantic Segmentation Process. The goal of our study is to
solve a real problem, automatic rails identification in images, thus the data
on which the chosen models will be used may come in different shapes and
forms. The associated software is supposed to operate on images retrieved
by a video camera placed on top of the train, aimed towards the upcoming
rail track portion. It can be assumed that the format of the images is 16:9,
however it is less likely that all of the feed of the cameras will be of the same
resolution. Thus, we must ensure that the proposed method can be adapted
to different resolutions.

In order to address this issue without changing the shape of the rails upon
resizing the images to the appropriate sizes that can be fed into the network,
an offline pre-processing step is performed on the semantic segmentation data.

As the original size of the images from the RailSem19 dataset is 1920×1080
and the chosen models work with squared images, the proposed crop area is a
1080× 1080 square in the center of the image. An example of such a cropping
can be seen in Figure 1.

This offline step allows for using images of different sizes for the inference
time, which are resized to size 1080× 1080 without changing the aspect ratio
of the objects of interest (i.e. rails). The downside is that part of the image
is left out, however the most important part containing the rails on which the
train is moving on is preserved.

The images are then resized to 512 × 512 in order to be given as input to
the models to be trained. The output will be an image of size 512x512 with
black and white pixels where white pixels represent the rails and black pixels
denote the background.

68 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

Figure 1. Example of cropping an image of size 1920× 1080.
The red square contains the cropped 1080× 1080 area.

The ratio between background and rail annotated pixels for the cropped
dataset is 36.09 : 1, which is similar to the one obtained for the normal
dataset that was 37 : 1. Knowing this, the weight for the loss function will
not be changed since the difference between 36.09 and 37 is not large.

4. Results

In this section we present the experiments performed during our study for
the rails semantic segmentation problem in order to answer the research ques-
tions. First, we describe the metrics used for the evaluation. Afterwards we
present the overfitting procedure performed to check the correctness of the
selected architectures. Lastly, we describe the settings for each experiment
and the obtained results.

4.1. Metrics. In order to evaluate the obtained results, the following metrics
were used:

• Intersection over Union (IoU) also known as the Jaccard metric [10],
is the most used evaluation metric in object segmentation. It is
used to determine True Positives and False Positives in a given set
of predictions. True positives (TP) represent those data samples
that were predicted correctly by the classifier to be a positive class,
while false positives (FP) represent the samples that were incorrectly
labeled as positive by the model.

A DYNAMIC APPROACH FOR RAILWAY SEMANTIC SEGMENTATION 69

Considering an input image X, its corresponding ground-truth
mask Y , and the model Mseg, we can obtain Yp as Mseg(X) = Yp. In
order to define the mean IoU, denoted as mIoU , Y and Yp are used
as follows:

(5) mIoU =
|Y ∩ Yp|
|Y ∪ Yp|

.

This formula computes the mean IoU by considering all K types
of objects to be segmented. In order to compute the IoU for a single
class, the following formalism can be applied. Let k, k ∈ {0, 1, ...,K−
1} be the class for which we wish to compute the IoU score, then:

(6) IoUk =
|{(i, j)|i, j ∈ N∗, Y (i, j) = Yp(i, j) = k}|

|Y ∪ Yp|
,

where the tuple (i, j) can be interpreted as an (x, y) coordinate in a
two-dimensional image.

We have defined two metrics, one for each class: the IoU Rail
for the rails and IoU Background for the background. All of the
IoU metrics range from 0 to 1, where 0 means no intersection and 1
means perfect overlap.

• Dice (F1) Score is based on the Dice coefficient, which was first in-
troduced in [5]. This metric is used to measure the overlap between
two samples and is equivalent to the F1 score in a binary context.
The metric ranges from 0 to 1 where 1 denotes the absolute complete
overlap. Using the previously defined notations, the Dice Coefficient
can be expressed as in Equation 7:

(7) DC = 2
|Y ∩ Yp|
|Y |+ |Yp|

.

4.2. Experiments. In order to check the appropriateness of the chosen ar-
chitectures for the rails semantic segmentation problem we have performed
different experiments. We wanted to compare the results obtained by our
models with the ones available in the literature (experiments A and B) which
use the RailSem19 corpus on similar data distributions. We have also tested
the performance of the U-Net model on dark images and tried to enhance the
performance by adding random brightness augmentations (experiment C).

The tables with results follow a similar column structure: Model denotes
the model used for experimentation, Parameters denotes the number of
learnable parameters corresponding to each model, mIoU represents the mean
IoU score, IoU Rail and IoU Bg denote the IoU scores for the rails and back-
ground classes, and column Dice contains the Dice scores.

70 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

Experiment A. In the first experiment, we have compared the results obtained
by our models with the ones obtained by Zendel et al. [26] in their study.
Zendel et al. used a data distribution of 4000 samples, 3000 for training, 500
for validation, and 500 for testing. We did not approach the problem using
this three-way split. However we have split 3500 samples selected randomly
into 3000 samples for training and 500 samples for validation, and we report
the results on the validation dataset. The results obtained using U-Net and
ResUNet++ are showcased in Table 1.

Column Model contains the model trained and validated. Our models have
either the w1 or w5 suffix, denoting the used weight value for the Weighted
Binary Cross-Entropy loss.

Table 1. Rail semantic segmentation results with a 3000:500
random data distribution.

Model Parameters mIoU IoU Rail IoU Bg Dice
U-Net w1 30 M 0.81 0.63 0.98 0.77
U-Net w5 30 M 0.80 0.61 0.98 0.76

ResUNet++ w1 14 M 0.80 0.61 0.98 0.76
ResUNet++ w5 14 M 0.78 0.59 0.98 0.74
FRRNB [26] 16 M 0.71 - - -

In Table 1, it may be observed that the results obtained did manage to
surpass the results obtained by Zendel et al., which are included in Table 1 in
the last row. The architectures considered in our study function in a similar
way to FRRNs [16] by exploiting residual connections for helping localization
of pixels. Despite this, U-Nets lead to better results. Moreover, we have ob-
tained these results without pre-training the networks on CityScapes [4]. Both
U-Net and ResUNet++ surpass Zendel et al.’s results, with ResUNet++ hav-
ing the least number of parameters. The U-Net model obtains slightly better
results, however it utilizes approximately double the number of parameters.
A size-performance trade-off must be made between the two.

For this experiment, the images size was 512×512, similar to the ones used
in Zendel et al’s study. The weight decay was set to 1e−3 and dropout layers
were used with probability 0.2. Although counter-intuitive, the unweighted
loss function with a weight of 1 leads to slightly better results in less time.
An explanation for this might be that using a larger weight for the rails class,
the loss is penalised harder, thus decreasing the learning speed. The models
were trained for 32, 36, 22, 38 epochs respectively in the order presented in
Table 1. These values were chosen after training until reaching a plateau
in the loss value, meaning that no further improvements could be obtained.

A DYNAMIC APPROACH FOR RAILWAY SEMANTIC SEGMENTATION 71

The ResUNet++ architecture takes longer to reach the performance of U-Net
because it has more complex components.

Experiment B. In the second experiment, we have compared our selected mod-
els to the RailNet architecture from Haoran Li et al. [15]. For this, 5000 images
were randomly sampled for training, while the remaining 3500 were used for
validation. The outcome of this experiment is given in Table 2.

Table 2. Rail semantic segmentation results on a 5000:3500
random data distribution.

Model Parameters mIoU IoU Rail IoU Bg Dice
U-Net w1 30 M 0.81 0.64 0.98 0.78
U-Net w5 30 M 0.70 0.44 0.97 0.61

ResUNet++ w1 14 M 0.79 0.60 0.98 0.75
ResUNet++ w5 14 M 0.78 0.58 0.98 0.74
RailNet [15] 138 M 0.54 - - -

Surprisingly, the results obtained using the 5000:3500 data distribution are
considerably larger than the ones obtained by Haoran Li et al. [15]. These
results were obtained using the same random distribution of samples. All
models were trained with a batch size of 4 for 20 to 40 epochs. Similar to
previous experiments, the models trained with a loss function weight of 1 lead
to better results. The best results were selected. Resulting samples are visible
in Figures 2 and 3, for U-Net and ResUNet++ respectively.

The encoder-decoder architecture with skip connections that is represented
by U-Net and ResUNet++ appears to be performing better on this task than
the VGG architecture combined with an Information Aggregation Module used
by Haoran Li et al. [15]. It also has fewer parameters.

Experiment C. The last experiment was performed in order to better under-
stand how the model behaves in dark conditions. For the training set, both
daylight images and dark images were considered. To be more precise, a total
of 3500 images were selected consisting of 3095 day images and 405 dark im-
ages. The train:validation split was 80:20. The training set consists of 2467
day images and 619 dark images, while the validation set contains 324 day
images and 81 dark images.

Three different validation sets were considered: the one previously detailed,
one with day images exclusively and one with dark images only. The results
of these experiments are given in Table 3, where DN denotes day and night
samples, D denotes day only samples, and N denotes night only samples.

72 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

Figure 2. U-Net results on the 5000-3500 distribution.

Table 3. Results for the rails semantic segmentation task on
dark images with and without augmentations.

Val. Distribution Model mIoU Rail IoU IoU Bg Dice
DN U-Net 0.77 0.57 0.97 0.72
DN U-Net Aug 0.77 0.57 0.97 0.72
D U-Net 0.77 0.57 0.97 0.73
D U-Net Aug 0.77 0.57 0.97 0.73
N U-Net 0.75 0.53 0.97 0.69
N U-Net Aug 0.76 0.54 0.97 0.70

In order to address the issue of poor luminosity, one more training attempt
was made with augmentations, which would randomly decrease the brightness
of the grayscale images by decreasing from each pixel value a constant in order
to make them darker. This constant was set to 80 after manually testing
multiple values. This augmentation can be interpreted as transforming day
images into night images.

As expected, the results are not as high as those for the previous experiments
using approximately 3500 images in total. One of the reasons for this low

A DYNAMIC APPROACH FOR RAILWAY SEMANTIC SEGMENTATION 73

Figure 3. ResUNet++ results on the 5000-3500 distribution.

performance is due to the nature of the task: it is more difficult to segment
rails in poor luminosity conditions.

An increase of 1.3 percentages in the Rail IoU score is observed when per-
forming the evaluation on night-only images using random brightness augmen-
tations. This outcome was expected since this type of augmentation helps the
model learn better representations for darker images.

4.3. Analysis. We have observed that the U-Net architecture leads to better
results than ResUNet++, although the latter uses more advanced features
designed to improve its performance. Nevertheless, both architectures are ap-
propriate for obtaining usable results for the rail semantic segmentation task.
We have also observed that a smaller weight term for the Binary Cross-Entropy
loss function leads to better results in less training time. This was expected
since a smaller weight means a lower penalisation when the background class
is predicted for a pixel instead of the rails class.

Since the variation between the results obtained using U-Net and ResUNet++
is quite small, it is difficult to proclaim a definitive winner. The decisive fac-
tor one could consider when comparing two network architectures would be
the size of the network. From this perspective, ResUNet++ is deemed to

74 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

be better, having fewer trainable parameters. In the end, both architectures
accomplish the task of semantic segmentation on rails well enough.

To answer the first research question, we may assume that using the Re-
sUNet++ architecture, which has less parameters (14M) than U-Net (30M),
is suitable for a dynamic environment such as the camera on the train. To
add to this, the dataset used for training contains images in multiple weather
conditions (snow, rain, smog) and at different times of day and night, thus
increasing the usability of the trained models.

Using U-Net like architectures is the answer to the second research question,
since we obtained better numerical results than three other works from the
literature that aim to solve the same task. On top of the original architecture
implementations, we added Dropout layers [21] and considered weighted loss
functions for optimizing the models.

5. Conclusions and Future Considerations

In this article, an efficient solution was presented for solving the rails se-
mantic segmentation task using deep architectures from the U-Net family
on images taken from the perspective of the train. The considered architec-
tures, namely U-Net and ResUNet++, led to some competitive results when
compared to a selected range of related works. Our results surpassed the
state-of-the-art on this task by 9 percentages.

Despite this, the task is still challenging for fine-grained semantic segmen-
tation of rails that are further away from the camera. Other issues that are
still open for research include segmenting rails in dark places (night, tunnels)
or avoiding False Positives such as shadows or other objects similar to rails.

In the future, multiple aspects can be improved:

• The dataset aggregated by Zendel et al. [26] contains some images
that lack proper annotations for the rails class, meaning that some
rails are not annotated correctly. An improvement would be to anno-
tate these missing rail blades and to increase the number of samples.

• From the perspective of the considered architectures, more tests can
be performed with even more semantic segmentation architectures
in order to compare them and select the most appropriate one for
the rails semantic segmentation problem. Maybe even try a novel
architecture designed especially for this task.

• Since the images of the rails are provided by a camera placed on top
of the train, there is a high similarity between each frame: the rail
blades are almost in the same position, but slightly shifted between
consecutive frames. For this reason, an architecture that considers
the previous pixels classified as rails might perform better on this
task. An example of such an architecture is introduced in [25].

REFERENCES 75

• It would be useful to measure the FPS of the mentioned methods and
analyze what would be the most suitable hardware to be used on a
real train from the perspective of power consumption and feasibility.

References

[1] Nabila Abraham and Naimul Mefraz Khan. “A novel focal tversky loss
function with improved attention u-net for lesion segmentation”. In: In-
ternational Symposium on Biomedical Imaging. IEEE. 2019, pp. 683–
687.

[2] Rytis Augustauskas, Arūnas Lipnickas, and Tadas Surgailis. “Segmen-
tation of Drilled Holes in Texture Wooden Furniture Panels Using Deep
Neural Network”. In: Sensors 21.11 (2021), p. 3633.

[3] Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully connected crfs”.
In: TPAMI 40.4 (2017), pp. 834–848.

[4] Marius Cordts et al. “The cityscapes dataset for semantic urban scene
understanding”. In: CVPR. 2016, pp. 3213–3223.

[5] Lee R Dice. “Measures of the amount of ecologic association between
species”. In: Ecology 26.3 (1945), pp. 297–302.

[6] Irving John Good. “Rational decisions”. In: Breakthroughs in statistics.
Springer, 1992, pp. 365–377.

[7] Christian Growitsch and Heike Wetzel. “Testing for economies of scope
in European railways: an efficiency analysis”. In: Journal of Transport
Economics and Policy (JTEP) 43.1 (2009), pp. 1–24.

[8] Kaiming He et al. “Deep residual learning for image recognition”. In:
CVPR. 2016, pp. 770–778.

[9] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In:
CVPR. 2018, pp. 7132–7141.

[10] Paul Jaccard. “The distribution of the flora in the alpine zone. 1”. In:
New phytologist 11.2 (1912), pp. 37–50.

[11] Kanwal Jahan, Jeethesh Pai Umesh, and Michael Roth. “Anomaly De-
tection on the Rail Lines Using Semantic Segmentation and Self-supervised
Learning”. In: SSCI. IEEE. 2021, pp. 1–7.

[12] Kanwal Jahan et al. “Deep Neural Networks for Railway Switch Detec-
tion and Classification Using Onboard Camera Images”. In: SSCI. IEEE.
2021, pp. 01–07.

[13] Debesh Jha et al. “Resunet++: An advanced architecture for medical
image segmentation”. In: 2019 IEEE International Symposium on Mul-
timedia (ISM). IEEE. 2019, pp. 225–2255.

76 REFERENCES

[14] Martin Kolař́ık et al. “Optimized high resolution 3D dense-U-Net net-
work for brain and spine segmentation”. In: Applied Sciences 9.3 (2019),
p. 404.

[15] Haoran Li et al. “RailNet: An Information Aggregation Network for Rail
Track Segmentation”. In: 2020 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2020, pp. 1–7.

[16] Tobias Pohlen et al. “Full-resolution residual networks for semantic seg-
mentation in street scenes”. In: CVPR. 2017, pp. 4151–4160.

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convo-
lutional networks for biomedical image segmentation”. In: International
Conference on Medical image computing and computer-assisted interven-
tion. Springer. 2015, pp. 234–241.

[18] Olga Russakovsky et al. “Imagenet large scale visual recognition chal-
lenge”. In: International journal of computer vision 115.3 (2015), pp. 211–
252.

[19] L Sifre and Stéphane Mallat. “Rigid-motion scattering for texture clas-
sification”. In: Phd. Thesis (2014).

[20] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: International Conference
on Learning Representations. 2015.

[21] Nitish Srivastava et al. “Dropout: a simple way to prevent neural net-
works from overfitting”. In: The journal of machine learning research
15.1 (2014), pp. 1929–1958.

[22] Zhen Tao et al. “Accurate and Lightweight RailNet for Real-Time Rail
Line Detection”. In: Electronics 10.16 (2021), p. 2038.

[23] Amos Tversky. “Features of similarity.” In: Psychological review 84.4
(1977), p. 327.

[24] Yin Wang et al. “RailNet: A segmentation network for railroad detec-
tion”. In: IEEE Access 7 (2019), pp. 143772–143779.

[25] Rui Yao et al. “Video object segmentation and tracking: A survey”. In:
ACM Transactions on Intelligent Systems and Technology (TIST) 11.4
(2020), pp. 1–47.

[26] Oliver Zendel et al. “Railsem19: A dataset for semantic rail scene under-
standing”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2019, pp. 32–40.

Department of Computer-Science, Faculty of Mathematics and Computer Science,
Babes,-Bolyai University, Cluj-Napoca, Romania

Email address: andrei.alexandrescu@stud.ubbcluj.ro
Email address: alexandru.manole@stud.ubbcluj.ro

	1. Introduction
	2. Related work
	3. Method overview
	3.1. Dataset
	3.2. Training architecture

	4. Experiments and Results
	5. Conclusions
	References
	1. Introduction
	2. Related Work
	3. Our Approach
	3.1. Formalism
	3.2. Architectures
	3.3. Dataset
	3.4. Loss Functions
	3.5. Our Semantic Segmentation Process

	4. Results
	4.1. Metrics
	4.2. Experiments
	4.3. Analysis

	5. Conclusions and Future Considerations
	References

