
Anul XLIV 1999

S T U D I A

UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

T. Jucan, C. Vidrascu, Concurency-Degrees for Petri Nets.......................................3

S. Motogna, F-Bounded Quantification and the Matching Relation.......................16

P.P. Blaga, A General Class of Nonproduct Quadrature Formulas………………23

T. Petrila, Complex Value Boundary Elements Methods (CVBEM) for Some
Mixed BVP………………………………………………………………..………..37

C. Popescu, Blind Signature and Blind Multisignature Schemes Using Elliptic
Curves……………………………………………………………………………..43

D. Radoiu, A. Roman, A Component Based Approach for Scientific Visualization
of Experimental Data……………………………………………………………...50

D.M. Suciu, Extending Statecharts for Concurrent Objects Modeling……………65

F.M. Boian, C. Ferdean, Half Synchronized Transition Systems………………….77

D. Dumitrescu, M. Oltean, An Evolutionary Algorithm for Theorem Proving in
Propositional Logic………………………………………………………………..87

A.Onet, D. Tatar, Semantic Representation of the Quantitative Natural Language
Sentences…………………………………………………………………………..99

ANIVERSARI – ANNIVERSARIES – ANNIVERSAIRES

E. Munteanu, M. Frentiu, Professor Grigor Moldovan at his 60th Anniversary….110

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

CONCURRENCY-DEGREES FOR PETRI NETS

TOADER JUCAN AND CRISTIAN VIDRAŞCU

Abstract. The goal of this paper is to extend some concepts (about concurrency-
degrees) from the class of Place/Transition Petri nets (PTN) to the class of
jumping Petri nets (JPTN). Also, we will present a simpler definition of
concurrency-degree for PTN. Moreover, we will point out how we can com-
pute these concurrency-degrees.

Keywords: distributed systems, concurrency, Petri nets, jumping Petri

nets, concurrency-degrees.

1. Introduction

A Petri net is a mathematical model used for the specification and the analysis
of parallel/distributed systems. It is very important to introduce a measure of
concurrency for parallel/distributed systems. What is the meaning of the fact
that in the system S1 the concurrency is greater than in the system S2 ? We
will study the problem of concurrency for Petri nets, but, since the Petri nets are
used as suitable models for real parallel/distributed systems, the results will be
applicable also to these systems.

It is well-known that the behaviour of some distributed systems cannot be
adequately modelled by classical Petri nets. Many extensions which increase the
computational and expressive power of Petri nets have been thus introduced. One
direction has led to various modifications of the firing rule of nets. One of these
extension is that of jumping Petri net, introduced in [TiJ94].

The notion of concurrency-degree for Petri nets was first introduced in [TJD93].
In this paper we will give a simpler definition of concurrency-degree for Petri nets,
and we will extend this notion for jumping Petri nets. Also, we will show how we
can compute these concurrency-degrees.

The paper is organized as follows. Section 2 presents the basic terminology,
notation and results concerning Petri nets and jumping Petri nets. In section 3,
and respectively 4, we present the definition of concurrency-degree for Petri nets,
respectively for jumping Petri nets, and we show how we can compute these

1991 CR Categories and Descriptors. D.2.2 [Software Engineering]: Tools and Tech-

niques – Petri nets; F.1.2 [Computation by Abstract Devices]: Modes of Computation –
Parallelism and concurrency .

3

4 TOADER JUCAN AND CRISTIAN VIDRAŞCU

concurrency-degrees. Finally, in section 5 we conclude this paper and formulate
some open problems.

2. Preliminaries

In this section we will establish the basic terminology, notation, and results
concerning Petri nets in order to give the reader the necessary prerequisites for
the understanding of this paper (for details the reader is referred to [BeF86],
[JuT99], [Rei85], [Rei87]). Mainly, we will follow [JuT99], [TiJ94], [TiM97].

2.1. Petri nets. A Place/Transition net, shortly P/T-net or net, (finite, with
infinite capacities), abbreviated PTN, is a 4-tuple Σ = (S, T ; F, W), where S and
T are two finite non-empty sets (of places and transitions, resp.), S ∩ T = ∅,
F ⊆ (S × T)∪ (T × S) is the flow relation and W : (S × T)∪ (T × S)→ N is the
weight function of Σ verifying W (x, y) = 0 iff (x, y) /∈ F .

A marking of a PTN Σ is a function M : S → N; it will be sometimes identified
with a vector M ∈ N|S|. The operations and relations on vectors are component-
wise defined. NS denotes the set of all markings of Σ.

A marked PTN, abbreviated mPTN, is a pair γ = (Σ, M0), where Σ is a PTN
and M0, called the initial marking of γ, is a marking of Σ.

In the sequel we often use the term “Petri net” (PN) or “net” whenever we
refer to a PTN (mPTN) γ and it is not necessary to specify its type (i.e. marked
or unmarked).

Let γ be a net, t ∈ T and w ∈ T ∗. The functions t−, t+ : S → N şi Δt, Δw :
S → Z are defined by t−(s) = W (s, t) , t+(s) = W (t, s), Δt(s) = t+(s) − t−(s)
and

Δw(s) =
{

0, if w = λ,∑n
i=1 Δti(s), if w = t1t2 . . . tn(n ≥ 1), for all s ∈ S.

The sequential behaviour of a net γ is given by so-called firing rule, which
consist of

• the enabling rule: a transition t is enabled at a marking M in γ (or t is
fireable from M), abbreviated M [t〉γ , iff t− ≤M ;
• the computing rule: if M [t〉γ , then t may occur yielding a new marking

M ′, abbreviated
M [t〉γM ′, defined by M ′ = M + Δt.

The notation “[.〉γ” will be simplified to “[.〉” whenever γ is understood from
context.

In fact, for any transition t of γ we have a binary relation on NS , denoted by
[t〉γ and given by: M [t〉γM ′ iff t− ≤M and M ′ = M + Δt. If t1, t2, . . . , tn, n ≥ 1,
are transitions of γ, [t1t2 . . . tn〉γ will denote the classical product of the relations
[t1〉γ , . . . , [tn〉γ , i.e. [t1t2 . . . tn〉γ = [t1〉γ ◦ . . . ◦ [tn〉γ . Moreover, we consider the
relation [λ〉γ given by [λ〉γ = {(M, M)|M ∈ NS}.

CONCURRENCY-DEGREES FOR PETRI NETS 5

Let γ be a marked Petri net, M ∈ NS and M0 its initial marking. The word
w ∈ T ∗ is called a transition sequence from M in γ if there exists a marking M ′ of
γ such that M [w〉γM ′. Moreover, the marking M ′ is called reachable from M in γ.
We denote by TS(γ, M) = {w ∈ T ∗|M [w〉γ} the set of all transition sequence from
M in γ, and by RS(γ, M) = [M〉γ = {M ′ ∈ NS |∃w ∈ TS(γ, M) : M [w〉γM ′} the
set of all reachable markings from M in γ.

In the case M = M0, the set TS(γ, M0) is abbreviated by TS(γ), and the
set RS(γ, M0) is abbreviated by RS(γ) (or [M0〉γ) and it is called the set of all
reachable markings of γ.

The marking M is coverable in γ if there exists a marking M ′ ∈ [M0〉γ such
that M ≤M ′.

Let γ be a P/T-net, and T ′ ⊆ T a set of transitions, which is called step. The
step-type concurrent behaviour of the net γ is given by so-called step firing rule,
which consist of

• the step enabling rule: a step T ′ is concurrently enabled at a marking M
in γ (or T ′ is fireable from M), abbreviated M [T ′〉γ , iff

∑
t∈T ′ t− ≤M ;

• the step computing rule: if M [T ′〉γ , then T ′ may occur yielding a new
marking M ′, abbreviated M [T ′〉γM ′, defined by M ′ = M +

∑
t∈T ′ Δt.

2.2. Jumping Petri nets. Jumping Petri nets ([TiJ94], [TiM97]) are an exten-
sion of classical nets, which allows them to do “spontaneous jumps” from a marking
to another one (this is similar to λ-moves in automata theory).

A jumping P/T-net, abbreviated JPTN, is a pair γ = (Σ, R), where Σ is a PTN
and R, called the set of (spontaneous) jumps of γ, is a binary relation on the set
of markings of Σ (i.e. R ⊆ NS ×NS). In what follows the set R of jumps of any
JPTN will be assumed recursive, that is for any couple of markings (M, M ′) we
can effectively decide whether or not (M, M ′) ∈ R.

A marked jumping net, abbreviated mJPTN, is defined similarly as an mPTN,
by changing “Σ” into “Σ, R”.

Let γ = (Σ, R) be a JPTN. The pairs (M, M ′) ∈ R are referred to as jumps
of γ. If γ has finitely many jumps (i.e. R is finite) then we say that γ is a finite
jumping net, abbreviated FJPTN.

We shall use the term “jumping net” (JN) (“finite jumping net” (FJN), resp.)
to denoted a JPTN or a mJPTN (a FJPTN or a mFJPTN, resp.) whenever it is
not necessary to specify its type (i.e. marked or unmarked).

Pictorially, a jumping Petri net will be represented as a classical net and, more-
over, the relation R will be separately listed.

The behaviour of a jumping net γ is given by the j-firing rule, which consist of
• the j-enabling rule: a transition t is j-enabled at a marking M (in γ),

abbreviated M [t〉γ,j, iff there exists a marking M1 such that MR∗M1[t〉Σ
(Σ being the underlying net of γ and R∗ the reflexive and transitive
closure of R);

6 TOADER JUCAN AND CRISTIAN VIDRAŞCU

• the j-computing rule: if M [t〉γ,j, then the marking M ′ is j-produced by
occurring t at M , abbreviated M [t〉γ,jM

′, iff there exists two markings
M1, M2 such that MR∗M1[t〉ΣM2R

∗M ′.
The notation “[.〉γ,j” will be simplified to “[.〉j” whenever γ is understood from

the context.
The notions of transition j-sequence and j-reachable marking are defined simi-

larly as for Petri nets (the relation [λ〉γ,j is defined by [λ〉γ,j = {(M, M ′)|M, M ′ ∈
NS , MR∗M ′}).

The set of all j-reachable markings of a marked jumping net γ is denoted by
RS(γ) or by [M0〉γ,j (M0 being the initial marking of γ).

The marking M is coverable in γ if there exists a marking M ′ ∈ [M0〉γ,j such
that M ≤M ′.

Some jumps of a marked jumping net may be never used. Thus we say that
a marked jumping net γ = (Σ, R, M0) is R-reduced ([TiJ94]) if for any jump
(M, M ′) ∈ R of γ we have M = M ′ and M ∈ [M0〉γ,j.

3. Concurrency-degrees for P/T nets

The notion of concurrency-degree for Petri nets was first introduced in [TJD93]
(that definition can be found also in [JuT99]). Here we will give a simpler definition
of this notion.

First, let us recall the definition of a (maximal) step:
Definition 3.1. Let γ = (S, T ; F, W) be a Petri net and M an arbitrary marking
of γ.
i) T ′ ⊆ T is called a set of transitions concurrently enabled at M (or, briefly, a
step at M) if

∑
t∈T ′ t− ≤M ;

ii) T ′ ⊆ T is called a maximal set of transitions concurrently enabled at M (or,
briefly, a maximal step at M) if T ′ is a step at M and, for each t ∈ T − T ′,
T ′ ∪ {t} is not a step at M .
Notation 3.1. Let γ = (S, T ; F, W) be a Petri net and M an arbitrary marking
of γ.
1) We denote by T (M) the set of all transitions enabled at the marking M , i.e.

T (M) = {t ∈ T | t− ≤M} ;

2) We denote by CT (M) the set of all subsets of transitions concurrently enabled
at M , i.e.

CT (M) = {T ′ ⊆ T |
∑
t∈T ′

t− ≤M} ;

3) We denote by MCT (M) the set of all maximal subsets of transitions concur-
rently enabled at the marking M , i.e.

MCT (M) = {T ′ ⊆ T |T ′ is a maximal step at M} .

CONCURRENCY-DEGREES FOR PETRI NETS 7

Generally speaking, there exist more maximal subsets of transitions concur-
rently enabled at a marking M . Moreover, the maximality of sets w.r.t. concur-
rency does not imply the maximality of sets w.r.t. cardinality of sets (i.e. we can
have two maximal steps at M , T1 and T2, with |T1| < |T2|).
Example 3.1. For the marked Petri net γ represented in figure 1, it is easy to
see that the subsets T ′ = {t1, t2, t3, t4} and T ′′ = {t1, t2, t5} are maximal steps at
the initial marking of γ, and, moreover, these are the only ones, i.e. MCT (M0) =
{T ′, T ′′}.

����
�

��

�

�

� �
�
���

�

�

���

s2 t2

� �

s1 t1
�
�
���

t5 s6

s3

��

t3 s4

��

t4 s5

�

�
�

�
��

3

2

Figure 1. the net from example 3.1

Definition 3.2. Let γ be a Petri net and M an arbitrary marking of γ. The
concurrency-degree at the marking M of the net γ is defined by:

d(γ, M) = max{ |T ′| | T ′ ∈MCT (M)} .

Definition 3.3. Let γ =(Σ, M0) be a marked P/T-net.
i) The inferior concurrency-degree of the net γ is defined by:

d−(γ) = min{ d(γ, M) | M ∈ [M0〉γ} ;

ii) The superior concurrency-degree of the net γ is defined by:

d+(γ) = max{ d(γ, M) | M ∈ [M0〉γ} .

Remark 3.1. Directly from definitions we have
1) 0 ≤ d−(γ) ≤ d+(γ) ≤ |T | ;
2) The inferior concurrency-degree of the net γ, d−(γ), represents the minimum
number of transitions concurrently enabled at any reachable marking of γ, and has
the property that there exists at least one reachable marking M ∈ [M0〉γ such that
there exists d−(γ) transitions concurrently enabled at M ;
3) The superior concurrency-degree of the net γ, d+(γ), represents the maximum
number of transitions concurrently enabled at any reachable marking of γ, and has
the property that there exists at least one reachable marking M ∈ [M0〉γ such that
there exists d+(γ) transitions concurrently enabled at M .

8 TOADER JUCAN AND CRISTIAN VIDRAŞCU

Definition 3.4. Let γ = (Σ, M0) be a marked Petri net. If d−(γ) = d+(γ), then
we denote this number with d(γ), i.e. d(γ) = d−(γ) = d+(γ), and we called it the
concurrency-degree of γ.

Example 3.2. For the marked Petri net γ represented in figure 2, it is easy to
see that transition t1 is fireable from any reachable marking, i.e. t1 ∈ T (M), for
all M ∈ [M0〉γ , which means that the inferior concurrency-degree is at least one:
d−(γ) ≥ 1. Let M1 be the marking produced by the occurence of t2 at the initial
marking, i.e. M0[t2〉γM1 ; M0 = (2, 1, 0, 0, 0) and M1 = (1, 0, 0, 1, 0). Since t1 is
the only transition fireable at M1, i.e. T (M1) = {t1}, we have that d(γ, M1) = 1,
and therefore the inferior concurrency-degree is d−(γ) = 1. Moreover, it is easy
to see that the transition t2 can occur at most one time in any transition sequence
starting from the initial marking, and that the transition t3 can occur also at most
one time, and only after the occurence of t2. This means that the set T = {t1, t2, t3}
cannot be a step at any reachable marking, thus we have d+(γ) < 3. Since the
subset T ′ = {t1, t2} is the only maximal step at M0, i.e. MCT (M0) = {T ′}, we
have that d(γ, M0) = 2. Thus, the superior concurrency-degree is d+(γ) = 2.

��

s2

�

t2

� �

s4

�
��

���
s1

�
	

	
	

	

t1

� � �

s3

	
	

t3

� �

s5

Figure 2. the net from example 3.2

In the sequel, we will show how we can compute the concurrency-degrees of a
Petri net.

First of all, we will present the algorithm for computing the concurrency-degree
at any marking of a Petri net.

Let γ be a Petri net, let M be an arbitrary marking, and let |T | = n. Obviously,
d(γ, M) ≤ n. The algorithm is the following:

Theorem 3.1. The concurrency-degree at a marking, d(γ, M), is computable for
any PTN γ and for any marking M .

Proof. It is easy to prove that the above algorithm is finite (i.e. it always stops)
and it computes exactly the concurrency-degree at the marking M of γ.

The complexity of the algorithm is O(2|T | · |S|).

CONCURRENCY-DEGREES FOR PETRI NETS 9

procedure concurrency degree at a marking (γ: PTN, M : marking);
begin

for i := n downto 0 do // where n = |T |
begin

// consider all the subsets of T with i elements

for each T ′ ⊆ T such that |T ′| = i do
begin

M ′ :=
∑

t∈T ′ t−; // M ′ is the smallest marking at which T ′ is concurrently

enabled

if M ′ ≤M then goto STOP;
end;

end;
STOP: d(γ, M) := i ;

return d(γ, M);
end.

Now, we will present the algorithm for computing the superior concurrency-
degree of a marked Petri net. Let γ = (Σ, M0) be a mPTN, and let |T | = n.
Obviously, d+(γ) ≤ n. The algorithm is the following:

procedure superior concurrency degree (γ: mPTN);
begin

for i := n downto 0 do // where n = |T |
begin

// consider all the subsets of T with i elements

for each T ′ ⊆ T such that |T ′| = i do
begin

M ′ :=
∑

t∈T ′ t−; // M ′ is the smallest marking at which T ′ is concurrently

enabled

if is coverable(γ,M ′) then goto STOP;
end;

end;
STOP: d+(γ) := i ;

return d+(γ);
end.

boolean function is coverable (γ: mPTN, M : marking);
begin

Let MCG(γ) be the minimal coverability graph of γ;
if (there exists at least one node M ′ in MCG(γ) such that M ≤M ′)

then return true else return false;
end.

10 TOADER JUCAN AND CRISTIAN VIDRAŞCU

Theorem 3.2. The superior concurrency-degree d+(γ) is computable for any
mPTN γ.

Proof. Since the coverability problem is decidable for mPTN ([KaM69]) (the
function is coverable solves this problem by using the minimal coverability graph,
[Fin93]), it is easy to prove that the above algorithm is finite (i.e. it always stops)
and it computes exactly the superior concurrency-degree of the net γ.

The complexity of the algorithm is O(2|T |) · O(CP), where O(CP) is the com-
plexity of the coverability problem solved using the minimal coverability graph
(for details, see [Fin93]).

Now, we will show how we can compute the inferior concurrency-degree of a
marked Petri net.

Let γ = (Σ, M0) be a marked Petri net. First, let us remark that if the
reachability set [M0〉γ is finite (this problem is decidable, [KaM69]), then we
can compute the inferior concurrency-degree of γ by using directly the defini-
tion: d−(γ) = min{ d(γ, M) | M ∈ [M0〉γ}, because the minimum is computed on
a finite set and d(γ, M) is computable, for each marking M (theorem 3.1).

Now, let us consider that the reachability set [M0〉γ is infinite. Then, there
exists a finite subsetM⊆ [M0〉γ such that

(∗) ∀M ∈ [M0〉γ , ∃M ′ ∈M such that M ′ ≤M.

Indeed, we can consider M as being the set of minimal reachable markings of γ,
i.e.

M = {M ∈ [M0〉γ | ∀M ′ ∈ [M0〉γ − {M} : M ′ ≤M}.
Then, we have the result:

Proposition 3.1. The following equality holds:

min{d(γ, M)|M ∈ [M0〉γ} = min{d(γ, M)|M ∈M}.
Proof. This equality follows easily from (∗) and from the fact that the concurrency-
degree at a marking is a monotone increasing function, i.e. M1 ≤ M2 ⇒
d(γ, M1) ≤ d(γ, M2).

The following result about the usual quasi-ordering (i.e. the quasi-ordering on
components) on Nk is well-known:

Lemma 3.1. (Dickson’s lemma, [Dic13])
The usual quasi-ordering on Nk is a well quasi-ordering (i.e. from every infinite
sequence of elements from Nk, we can extract an infinite increasing sequence).

Proceeding from Dickson’s lemma, it follows that any subset of Nk contains
only finitely many incomparable vectors. Since, by its definition, the elements of
M are incomparable, it follows that M is a finite set. Thus, since the set M of

CONCURRENCY-DEGREES FOR PETRI NETS 11

minimal reachable markings of the P/T-net γ is computable, from proposition 3.1
it follows that:
Theorem 3.3. The inferior concurrency-degree d−(γ) is computable for any mPTN
γ.

4. Concurrency-degrees for jumping Petri nets

A jumping Petri net is a classical net Σ equipped with a (recursive) binary
relation R on the markings of Σ. The meaning of a pair (M, M ′) ∈ R is that the
net Σ may “spontaneously jump” from M to M ′ (this is similar to λ-moves in
automata theory).

We presented the definitions regarding jumping Petri nets in section 2. Now,
we will present first an example of a jumping Petri net.
Example 4.1. Let us consider a system consisting of a producer and a consumer,
and a buffer with unlimited capacity, used for storing the products produced by the
producer and consumed by the consumer. Moreover, we assume that the producer
may take a break in any moment, and the consumer may take a break only when
the buffer is empty (i.e., only when there are no products to consume).

Such a system cannot be modelled by a classical Petri net ([JuT99]). A mod-
elling by an inhibitor Petri net was presented in [JuT99]. Here we will present a
modelling of this system by a jumping Petri net.

Let γ = (Σ, R, M0) be the marked jumping Petri net represented in figure 3.
The place s1 models the unlimited buffer, the transition t1 models the producing of
a product by the producer, and the transition t2 models the consuming of a product
by the consumer. The place s2 models the active state of the consumer, and the
place s3 models the inactive state of him (i.e., the consumer is in a break). The
fact that the consumer may take a break only when the buffer is empty, is modelled
by the jump of this net, from the initial marking M0 = (0, 1, 0) to the marking
M ′

0 = (0, 0, 1), and the resuming of its activity by the transition t3.

t1

� �

s1

�

t2

���

s2

t3

��

s3

�

R = {((0, 1, 0), (0, 0, 1))}

Figure 3. the jumping net from example 4.1

12 TOADER JUCAN AND CRISTIAN VIDRAŞCU

Now, we will extend the notion of concurrency-degrees from P/T-nets to jump-
ing Petri nets.
Definition 4.1. Let γ = (Σ, R) be a jumping Petri net, Σ being the underlying
P/T-net of γ, and let M be an arbitrary marking of γ. The concurrency-degree
at the marking M of the net γ is defined by:

d(γ, M) = max{ d(Σ, M ′) | MR∗M ′ } .

Definition 4.2. Let γ = (Σ, R, M0) be a marked jumping Petri net.
i) The inferior concurrency-degree of the net γ is defined by:

d−(γ) = min{ d(γ, M) | M ∈ [M0〉γ,j} ;

ii) The superior concurrency-degree of the net γ is defined by:

d+(γ) = max{ d(γ, M) | M ∈ [M0〉γ,j} .

Moreover, the remarks about concurrency-degrees of P/T-nets (remark 3.1) hold
for jumping Petri nets as well.
Definition 4.3. Let γ = (Σ, R, M0) be a marked jumping Petri net. If d−(γ) =
d+(γ), then we denote this number with d(γ), i.e. d(γ) = d−(γ) = d+(γ), and we
called it the concurrency-degree of the net γ.
Example 4.2. Let us recall the mFJPTN γ from example 4.1. We denote by
Mn, M ′

n the following markings: Mn = (n, 1, 0) , M ′
n = (n, 0, 1), for all n ≥ 0.

Thus, the set of jumps is R = {(M0, M
′
0)}, and it is easy to see that transition t1

is fireable from any j-reachable marking, transition t2 is fireable from all markings
Mn, n ≥ 1, and transition t3 is fireable from all markings M ′

n, n ≥ 0. Therefore,
the j-reachability set is [M0〉γ,j = {Mn|n ≥ 0}∪{M ′

n|n ≥ 0}, and the j-reachability
graph of γ, RG(γ) (defined in [ViJ99]), is shown in figure 4.

More precisely, M0RM ′
0 is the only jump in γ, and T (M0) = {t1}, with M0[t1〉ΣM1,

which means that d(Σ, M0) = 1. For all n ≥ 1 we have that T (Mn) = {t1, t2}, with
Mn[t1〉ΣMn+1 and Mn[t2〉ΣMn−1; moreover, Mn[{t1, t2}〉ΣMn and MCT (Mn) =
{{t1, t2}}. Therefore, d(Σ, Mn) = 2, ∀n ≥ 1. Also, for all n ≥ 0 we have that
T (M ′

n) = {t1, t3}, with M ′
n[t1〉ΣM ′

n+1 and M ′
n[t3〉ΣMn; moreover, M ′

n[{t1, t3}〉ΣMn+1

and MCT (M ′
n) = {{t1, t3}}. So, d(Σ, M ′

n) = 2, ∀n ≥ 0.
Now, let us compute the concurrency-degrees of the jumping net γ. Since

M0RM ′
0 is the only jump in γ, we have that d(γ, M0) = max{d(Σ, M0), d(Σ, M ′

0)} =
2, d(γ, Mn) = d(Σ, Mn) = 2, ∀n ≥ 1, and d(γ, M ′

n) = d(Σ, M ′
n) = 2, ∀n ≥ 0.

Therefore, d(γ) = d−(γ) = d+(γ) = 2, so the concurrency-degree of γ is 2.
Let us notice that the inferior, respectively superior concurrency-degree of the

underlying P/T-net of γ is d−(Σ) = 1, resp. d+(Σ) = 2; moreover, d(Σ) is
undefined, and the reachability set is [M0〉Σ = {Mn|n ≥ 0}.

In the sequel, we will show how we can compute the concurrency-degrees of a
jumping net.

CONCURRENCY-DEGREES FOR PETRI NETS 13

RG(γ) :

M0 M ′
0

�j
�

t3

M1 M ′
1

�
t1

t2

�
t1

�
t3

M2 M ′
2

�
t1

t2

�
t1

�
t3

M3 M ′
3

�
t1

t2

�
t1

�
t3

�

�

Figure 4. the j-reachability graph of the net γ

First of all, let us notice that the concurrency-degree at any marking of a JPTN
γ can be computed if γ has the property: {M ′ |MR∗M ′} is finite, for each marking
M (this follows easily from the definition 4.1 and the theorem 3.1, because we have
to compute a maximum on a finite set). Let us observe that any finite jumping
net has this property. Therefore, we have the result:

Theorem 4.1. The concurrency-degree at a marking, d(γ, M), is computable for
any FJPTN γ and for any marking M .

Now, let us notice that the algorithm for computing the superior concurrency-
degree of a marked Petri net from section 3 works also for marked finite jumping
Petri nets, because the coverability problem is decidable for mFJPTN ([TiJ94])
(the function is coverable from section 3 solves the coverability problem for mFJPTN
by using the minimal coverability graph, [ViJ99]). As a consequence, we have the
result:

Theorem 4.2. The superior concurrency-degree d+(γ) is computable for any
mFJPTN γ.

Now, we will show how we can compute the inferior concurrency-degree of a
marked finite jumping Petri net.

Let γ = (Σ, R, M0) be a mFJPTN. First, let us remark that if the reachability
set [M0〉γ,j is finite (this problem is decidable, [TiJ94]), then we can compute
the inferior concurrency-degree of γ by using directly the definition: d−(γ) =
min{ d(γ, M) | M ∈ [M0〉γ,j}, because the minimum is computed on a finite set
and d(γ, M) is computable, for each marking M (theorem 4.1).

14 TOADER JUCAN AND CRISTIAN VIDRAŞCU

Now, let us consider that the reachability set [M0〉γ,j is infinite. Then, there
exists a finite subsetM⊆ [M0〉γ,j such that

(∗) ∀M ∈ [M0〉γ,j , ∃M ′ ∈M such that M ′ ≤M.

Indeed, we can consider M as being the set of minimal reachable markings of γ,
i.e.

M = {M ∈ [M0〉γ,j |∀M ′ ∈ [M0〉γ,j − {M} : M ′ ≤M}.
Then, we have the result:
Proposition 4.1. The following equality holds:

min{d(γ, M)|M ∈ [M0〉γ,j} = min{d(γ, M)|M ∈M}.
Proof. This equality follows easily from (∗) and from the fact that the concurrency-
degree at a marking is a monotone increasing function, i.e. M1 ≤ M2 ⇒
d(γ, M1) ≤ d(γ, M2).

Proceeding from Dickson’s lemma (lemma 3.1), it follows that any subset of
Nk contains only finitely many incomparable vectors. Since, by its definition, the
elements ofM are incomparable, it follows thatM is a finite set.

Let us show how the set M can be constructed. Let γ = (Σ, R, M0) be a
mFJPTN, with R = ∅, i.e.

R = { (M ′
i , M

′′
i) |1≤ i≤n}, n ≥ 1,

such that M ′
i ∈ [M0〉γ,j (this can be done, see [TiJ94]). As in [TiJ94], we associate

to γ the following mPTNs:

γ0 = (Σ, M0) and γi = (Σ, M ′′
i), for each 1≤ i≤n,

and then, letMi be the set of minimal reachable markings of γi, for each 1≤ i≤n.
These sets are finite (it follows from Dickson’s lemma) and we have that:

M = {M ∈M′ | ∀M ′ ∈M′ − {M} : M ′ ≤M},
whereM′ = ∪{Mi|1≤ i≤n}. Thus, since the setsMi, 1≤ i≤n, are computable,
the set M is also computable, and from proposition 4.1 it follows that:
Theorem 4.3. The inferior concurrency-degree d−(γ) is computable for any mFJPTN
γ.

5. Conclusions

In this paper we have extended some concepts (mainly, concurrency-degrees)
from the class of Place/Transition Petri nets (PTN) to the class of jumping Petri
nets (JPTN). Also, we have presented a simpler definition of concurrency-degree
for PTN and we have shown how we can compute concurrency-degrees.

Many problems remain to be studied, for example:
• finding an efficient algorithm for computing the setM for Petri nets;

CONCURRENCY-DEGREES FOR PETRI NETS 15

• finding better algorithms for computing the concurrency-degrees for Petri
nets;
• extending the computability results regarding concurrency-degrees for

FJPTN for the larger class of jumping Petri nets.

References

[BeF86] E. Best, C. Fernandez: Notations and Terminology on Petri Net Theory, Arbeitspa-
piere der GMD 195, 1986.

[Dic13] L.E. Dickson: Finiteness of the odd perfect and primitive abundant numbers with n
distinct prime factors, American Journal of Mathematics 35, 1913, pp. 413-422.

[Fin93] A. Finkel: The Minimal Coverability Graph for Petri Nets, Advanced in Petri Nets
1993, LNCS 674, Springer-Verlag, 1993, pp. 210-243.

[JuT99] T. Jucan, F.L. Ţiplea: Reţele Petri. Teorie şi practică, The Romanian Academy Pub-
lishing House, Bucharest, 1999.

[KaM69] R.M. Karp, R.E. Miller: Parallel Program Schemata, Journal of Computing System

Science (4), 1969, pp. 145-195.
[Rei85] W. Reisig: Petri Nets. An Introduction, EATCS Monographs on Theoretical Computer

Science, Springer-Verlag, 1985.
[Rei87] W. Reisig: Place Transition Systems, Advanced in Petri Nets 1986, Part I, LNCS 254,

Springer-Verlag, 1987, pp. 117-141.
[TJD93] F.L. Ţiplea, T. Jucan, Şt. Dumbravă: Modeling Systems by Petri Nets with Different

Degrees of Concurrency, Proc. 14th International Symposium on Automatic Control
and Computer Science SACCS’93, 1993, pp. 48-54.

[TiJ94] F.L. Ţiplea, T. Jucan: Jumping Petri Nets, Foundations of Computing and Decision
Sciences, vol. 19, no.4, 1994, pp. 319-332.

[TiM97] F.L. Ţiplea, E. Mäkinen: Jumping Petri Nets. Specific Properties, in Fundamenta
Informaticae 32, 1997, pp. 373-392.

[ViJ99] C. Vidraşcu, T. Jucan: On Coverability Structures for Jumping Petri Nets, to appear
in Scientific Annals of the “Al. I. Cuza” University of Iaşi, Computer Science Section,
Tome IX, 2000.

Faculty of Computer Science, “Al. I. Cuza” University, Iaşi, România

E-mail address: {jucan,vidrascu}@infoiasi.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

F-BOUNDED QUANTIFICATION AND THE MATCHING
RELATION

SIMONA MOTOGNA

Abstract. The introduction of F-bounded polymorphism had proved to
have great benefits in specification of object oriented languages, and the most
important one, concerning binary methods and recursion definition, is also
presented here. Then many other systems had appeared, such as PolyTOIL,
based on the matching relation, and we prove that F-bounded quantification
and the matching relation are equivalent.

1. F-bounded polymorphism

The extension proposed by the Abel group [CHC90] is based on introducing
recursive types. The specification of polymorphic functions over objects cannot be
done correctly through bounded quantification, and the recursive functions give a
suitable solution. That’s why we will study their behaviour in the next paragraph.

1.1. Subtyping and recursion using bounded quantification. The bounded
quantification was introduced in the language Fun [CW85] in order to type poly-
morphic functions, that were defined over ”simple” objects, represented as records.
But in most cases, class definitions include the so called binary methods, namely
methods with parameters of type representing that class. This situation imposes
the condition that objects should be described as recursive records[CHC90], de-
stroying their ”simplicity”. We will see what happens with the behaviour of the
polymorphic functions over recursive objects and we will show that, in this case,
bounded quantification fail to produce a correct answer [Ghel93].

When describing the recursive types, the two possible situations can be specified
using the notion of polarity, that is ”borrowed” from logic [CCHOM89].

In a type expression s → t, the subexpression s occurs negatively, and the
subexpression t occurs positively.

Let’s consider a recursive type SortList, representing a sorted chained list,
whose elements are of an arbitrary type t. We have also defined a method for
inserting elements in the list, and the list is described as having a head (an element

1991 CR Categories and Descriptors. D.3.1 [Programming Languages]: Formal Defi-

nitions and Theory – Semantics; D.3.3 [Programming Languages]: Language Constructs and
Features – Recursion.

16

F-BOUNDED QUANTIFICATION AND THE MATCHING RELATION 17

of type t) and the rest of the list, the tail of type SortList. In addition, in order
to have a sorted list, it is necessary to have a total order relation defined between
the list elements, so the type t will be a subtype of the type:

TotalOrder = λσ.{smaller : σ → Bool, equal : σ → Bool}

(the method insert will be written knowing that each element is comparable with
the others).

So, the sorted chained list will have the following form:

SortList = ∀t ≤ TotalOrder.μsl.{insert : t→ sl, head : t, tail : sl}

If we want to have such a list of integer numbers, than the parameter t must
be replaced with Int:

SortIntList = μsil.{insert : Int→ sil, head : Int, tail : sil}

that seems to be intuitively correct.
But, if t was replaced by Int, then the following condition must be satisfied:

Int ≤ TotalOrder

and the type Int is, in general, defined as:

Int = μn.{smaller : n→ Bool, equal : n→ Bool, ...}

and if we decompose under the recursion variable, we obtain:

{ smaller : Int→ Bool, equal : Int→ Bool, ...} ≤
{smaller : TotalOrder → Bool, equal : TotalOrder → Bool}

In order to satisfy this equation, each common component from the two records
must obbey the subtyping rule for functions:

s ≤ s′, t′ ≤ t

s′ → t′ ≤ s→ t

and we obtain:

TotalOrder ≤ Int

which represents a contradiction of what we really want.
So, we notice that the only valid substituion for t is TotalOrder. We can end

with the following conclusion: bounded quantification does not specify correctly
the behaviour of the polymorphic function defined over recursive objects.

18 SIMONA MOTOGNA

1.2. F-bounded quantification. Definition 1.1: We say that a universal quan-
tified type is F-bounded if it has the following form:

∀t ≤ F [t].σ

where F [t] is an expression that, in general, contains the type variable t.
The F-bounded polymorphic types differ from the ordinary bounded types in

the sense that both the result type σ and the bound F [t] of the type depend upon
the type variable t.

If F [t] is a type of the form F [t] = {ai : σi[t]}, then the condition A ≤ F [A]
says, in fact, that A must contain all the methods ai and these methods should
have the arguments specified by σi[A], that are defined depending on A. In con-
clusion, A will often be a recursive type, suggesting that the functional bounded
quantification is strongly connected with type recursivity.

Intutively, F-bounded quantification characterizes the types that have a ”re-
cursive structure” similar to the type μt.F [t]. The type F [A] describes a set of
operations, which can accept values of type A as arguments and may return such
values as results. The elements of type A have these operations, if we consider
each element of type A as an element of type F [A], namely A ≤ F [A].

A type that always satisfies A ≤ F [A] is the recursive type A = μt.F [t]. More
generally, if G[t] is a type expression and G[t] ≤ F [t] for any t, then the recursive
type A = μt.G[t] satisfies A ≤ F [A].

The F-bounded quantification has a major impact upon the relation between
inheritance and subtyping in object oriented programming: two types t1 and t2
can satisfy a F-bound (t1 ≤ F [t1] and t2 ≤ F [t2]) but may not be in a subtyping
relation (t1 �≤ t2 and t2 �≤ t1). This means that a F-bounded function can be
applied to (or inherited by) an object with incomparable types, proving that the
inheritance hierarchy is different from the subtyping hierarchy.

The F-bounded polymorphism will allow, in general, to write functions that
work in the same time on objects belonging to classes that are in an inheritance
relation, in the same way in which bounded polymorphism allows to write functions
that work in the same time on types and their subtypes.

1.3. Subtyping and recursion using F-bounded polymorphism. In the first
paragraph we noticed that Int is not a subtype of the type TotalOrder. However,
the types Int and TotalOrder have the same binary operations: smaller and
equal. So, the expression x.smaller(y) is correctly typed if x and y have both one
of these two types and incorrectly typed if they have different types.

In the following, we will see that for such a behaviour the subtyping relation
between the two types is not necessary, and we can introduce another relation that
guarantees the desired behaviour.

This common structure of the two types can be described through a functional
type, derived from the recursive definition of the type TotalOrder. This functional

F-BOUNDED QUANTIFICATION AND THE MATCHING RELATION 19

type represents a F-bound. The ”F-” notation before the type indicates that it
represents a F-bound:

F − TotalOrder[t] = {smaller : t→ Bool, equal : t→ Bool}
Applying this function for Int we obtain:

F − TotalOrder[Int] = {smaller : Int→ Bool, equal : Int→ Bool}
and

Int ≤ F − TotalOrder[Int]

because the contravariance is respected for each component: Int ≤ Int.
We can now build the F-bounded polymorphic definition of the sorted chained

list:

SortList = ∀t ≤ F − TotalOrder[t].μsl.

{insert : t→ sl, head : t, tail : sl}
and then

SortIntList = μsil.{insert : Int→ sil, head : Int, tail : sil}
will be a valid definition.

Let’s notice that Int �≤ TotalOrder, but Int ≤ F − TotalOrder[Int] which is
enough.

As a conclusion we may say that F-bounded quantification allows us to use
generic polymorphism together with inheritance in object-oriented languages: we
have a generic class SortList that can be specialised substituting the parameter,
obtaining, for example, SortIntList. Also, the other operation for creating derived
classes, adding new characteristics, will function correctly. For example, if we want
to obtain a merged sorted list, we have:

MergedSortList = ∀t ≤ F − TotalOrder[t].μmsl.

{insert : t→ msl, head : t, tail : msl, merge : msl→ msl}
The recursion variable will ensure that the methods always return the desired

type, namely MergedSortList and any object of this class is a member of class
SortList.

2. The matching relation

Kim Bruce’s contribution to object oriented programming specification consists
in the description of the type systems and the semantics of several object oriented
languages, each of them introducing new elements: TOOPLE [Bruc93], TOIL
[BvG93] and the most remarkable one PolyTOIL [BSvG95].

PolyTOIL is an object oriented programming language, polymorphic, with
static typing, and its type system had been proved to be correct.

20 SIMONA MOTOGNA

Bruce’s idea that inovates this domain is the separation of the subtyping from
the inheritance definition, assigning name to the type of self and defining the type
checking rules. Inheritance is no longer expressed as subtyping (the system con-
tains two hierarhies, one for subtypes and one for subclasses) but as a matching
between the object types and is defined as follows:

Definition 2.1 ObjectT ype τ ′ matches (is in a matching relation) with ObjectT ype τ ,
denoted ObjectT ype τ ′ < # ObjectT ype τ , if for each method name m from τ
there exists a corresponding method in τ ′ and m’s type in τ ′ is a subtype of the
method type from τ ;

or (more formally)

ObjectT ype {mj : Sj}1≤j≤m < # ObjectT ype {mi : Ti}1≤i≤n

if and only if
n ≤ m and for every i ≤ i ≤ n, Si ≤ Ti

where ObjectT ype {mj : Sj} represents the type of objects that have methods mj

with type Sj .

We will notice that the definition doesn’t contain instance variables, since it is
assumed that they are not visible from outside and can be accessed only through
the object’s method.

The subtyping relation is denoted as S ≤ T . If SC is a subclass of the class C
then SCType < # CType.

The subtyping relation is defined as follows [BSvG95]:

Definition 2.2 ObjectT ype {mj : Sj}1≤j≤m ≤ ObjectT ype {mi : Ti}1≤i≤n if
and only if
1. n ≤ m and for every 1 ≤ i ≤ n, Si ≤ Ti

2. ∀Ti, 1 ≤ i ≤ n, Ti is NOT contravariant to MyType (there are no parameters
of type MyType, the type of the self variable, in supertypes).

Remark 2.1 : The only difference between subtyping and matching is the
second condition from the definition. So, if two object types are in a subtyping
relation then they are in a matching relation, but the reverse statement is false
[AC95].

3. The equivalence between the matching relation and F-bounded

quantification

Theorem 2.1 [Moto00] If there exists a matching relation between two object
types:

ObjectT ype t′ < # ObjectT ype t

F-BOUNDED QUANTIFICATION AND THE MATCHING RELATION 21

then ObjectT ype t is a F-bound for ObjectT ype t′ and the reverse statement is
also true, namely there exists a matching relation between an object type and its
F-bound.

Proof:
”⇒”
Let ObjectT ype t be the object type with the following form: {mi : Ti}1≤i≤n.

For every 1 ≤ i ≤ n, the type Ti has the following form: σi → τi, so they
are functional types, because mi represent methods (ObjectT ype t is an object
type, and the instance variables are hidden and only the methods are visible). In
addition, σi and/or τi can depend on MyType, which represents the self type of
the object. The self variable can be considered as a recursion variable and then
we can describe the object type as follows:

ObjectT ype t = μMyType.{mi : Ti[MyType]}1≤i≤n

If we create an object of type ObjectT ype t′ of the form: {mj : Sj}1≤j≤m, that
inherits from ObjectT ype t, then the two types are in matching relation and:

n ≤ m and Si ≤ Ti.

On the other hand, if we use F-bounded quantification, any object definition
based on the object type ObjectT ype t must respect the F-bound condition:

(1) ObjectT ype t′ ≤ F −ObjectT ype t[t′]

Using the model described in the paragraph 1.3, the computation of the F-
bound will produce the following result:

F −ObjectT ype t[MyType] = {mi : Ti}1≤i≤n

and the condition (1) is satisfied because ObjectT ype t′ has all the mi methods
(and probably more), and the arguments of these methods are correctly specified,
since Si ≤ Ti.

In conclusion, the proof of this implication consists in noticing that MyType
implies a recursive definition of the type.

”⇐”
According to the definition of F-bounded quantification, we have: if F [t] is a

type of the form F [t] = {ai : Ti[t]}1≤i≤n, then the condition A ≤ F [A] says, in
fact, that: [1] A must contain all ai methods and [2] these methods must have the
arguments specified by Ti[A], which are defined depending on A.

So, from the condition [1] we obtain that ObjectT ype t′ will have the form
{ai : Si, an+1 : Sn+1, ...}, and from [2] we can deduce that the types Si, for
1 ≤ i ≤ n, are obtained substituting the t parameter with the object type, so:

Si = Ti[t/ObjectT ype t′]

22 SIMONA MOTOGNA

and it is obvious that Si ≤ Ti.
So, if

ObjectT ype t′ ≤ F − ObjectT ype t[ObjectT ype t′]
then

ObjectT ype t′ < # F −ObjectT ype t[ObjectT ype t′]
Remark 2.2 : This implication can be proved easier if we use Remark 2.1,

that states that if two object types are in a subtyping relation, then they are also
in a matching relation and noticing that a F-bound respects the structure of an
object type.

References

[AC95] M Abadi, L Cardelli - On subtyping and matching, Proc. 9th European Conf.
Object-Oriented Prog., Aarhus, Denmark, 1995

[Bruc93] K.Bruce - Safe type checking in a statically-typed object-oriented programming lan-
guage, Proc. ACM Symposium on Principles of Programming Languages, 1992, pag.
316-327

[BSvG95] K.Bruce, A. Schuett, R. van Gent - PolyTOIL: A type-safe polymorphic object-
oriented language, ECOOP ’95 Proceedings, LNCS 952, Springer-Verlag, pag. 27-
51.

[BvG93] K. Bruce, R. van Gent - TOIL: A new types-safe object-oriented imperative lan-

guage, Technical Report, Williams College, 1993
[CCHOM89] P. Canning, W. Cook, W. Hill, W. Olthoff, J. Mitchell - F- bounded quantification

for object oriented programming, in Proc. Functional Programming Languages and
Computer Architectures, 1989, pag. 273-280

[CHC90] W. Cook, W. Hill, P. Canning - Inheritance is not subtyping, Proc. 17th ACM
Symp. Principles of Prog. Lang.,1990, pag. 125-135.

[CW85] L. Cardelli, P. Wegner - On understanding types, data abstraction and polymor-
phism, ACM Computing Surveys, 17(4),1985, pag. 471-521.

[Ghel93] G. Ghelli - Recursive types are not conservative over F≤, in Typed Lambda-
Calculus and Applications, ed. M. Dezani-Ciancaglini, G. Plotkin, Springer Verlag,
1993

[Moto00] S. Motogna - Formal approach to object oriented languages, Ph.D. Thesis,”Babes-
Bolyai” University, Cluj-Napoca, Romania, September 2000

Faculty of Mathematics and Informatics, “Babeş–Bolyai” University, 3400 Cluj–

Napoca

E-mail address: motogna@cs.ubbcluj.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

A GENERAL CLASS OF NONPRODUCT QUADRATURE
FORMULAS

PETRU P. BLAGA

Abstract. Abstract. A general class of fifth degree approximate integra-
tion formulas for hypercubes is constructed. If the integrand is a real function
of n independent real variables, then a 2n +

(n
k

)
2k +1 point class nonproduct

quadraturae is obtained. A lot of known multiple quadrature formulas are
included in this class. In the particular cases n = 2, 3, comparative numerical
examples are considered.

1. Introduction

Here we consider an approximate evaluation to the multiple definite integral

(1) In [f] =
∫ 1

−1

. . .

∫ 1

−1

f (x1, . . . , xn) dx1 . . . dxn.

A very wide class of 2n+
(
n
k

)
2k+1 point nonproduct quadrature rules of 5th degree

is obtained. The evaluation points of integrated function f are symmetrically
placed inside of the domain Sn = [−1, 1]n of the integral In [f]. As such the
rule is required to be exact for the monomials of degree 0, 2, 4. Constructed
approximate integration formulas extend the 2n+2n+1 point quadrature presented
in [2] and 2n + 2n−1n + 1 point quadrature considered in [3], and also that of
Das and Pradham [5] (see also Blaga [1]). For n = 2 and n = 3 other known
multiple quadrature formulas are obtained: Blaga [1],[2],[3], Burnside [4] (see also
Stroud [9], p. 248), Hammer and Stroud [8] (see also Stroud [9], p. 231), Mustard,
Lyness, Blatt [7], and product Gauss formula (see Stroud [9], p. 249).

2. Fifth Degree Integration Formula

Let us take the following N = 2n +
(
n
k

)
2k + 1 points: (β1, . . . , βn), (γ1, . . . , γn)

and (0, . . . , 0), where each βi (1 � i � n) is either −λα or +λα, i.e. the corners
of the hypercube [−λα, +λα]n, and n − k (and only n − k) of the γi (1 � i � n)
are zero and all the others k of γi equal either −α or α (1 � k < n). On the
one hand we have that the number of (β1, . . . , βn) type points is 2n, on the other
hand the number of (γ1, . . . , γn) type points is

(
n
k

)
2k, and the last type of points

1991 Mathematics Subject Classification. 65D32.

23

24 PETRU P. BLAGA

are situated at the corners of hypercubes [−α, α]k from the hyperplanes given by
xjs = 0 (s = 1, n− k), 1 � j1 < · · · < jn−k � n, respectively. Taking into
account that the center of the hypercube Sn is also considered it results that
N = 2n +

(
n
k

)
2k + 1. In order to all evaluation points belong to the hypercube

Sn the real positive parameters λ and α must satisfy the conditions α < 1 and
λα � 1.

We shall construct an approximate rule to In [f] of the following type

(2)
Qn,k [f] = A0f (0, . . . , 0) + A1

∑
1
f (γ1, . . . , γn)

+ A2

∑
2
f (β1, . . . , βn) .

As we have seen, in the formula (2) the the first sum,
∑

1, has
(
n
k

)
2k terms, and the

second sum,
∑

2, has 2n terms. Such that the quadrature (2) will be a 2n+
(
n
k

)
2k+1

point (generally) nonproduct formula.
The coefficients A0, A1, A2 and the parameters α and λ will be determined

such as to make the rule exact for all monomials of degree less or equal to five, i.e.

(3) Qn [f] = In [f] ,

for

(4) f = xk1
1 . . . xkn

n , where 0 � k1 + · · ·+ kn � 5.

We remark the exactness of the formula (3) for all monomials (4) containing at
least one odd power ki. On the other hand, taking into account that the formula
(2) has the evaluation points of the function f symmetrically situated over the
integration domain Sn (if α ∈ (0, 1) and λα ∈ (0, 1]), we have to require that (3)
to be exact only for the monomials

(5) f = 1, x2
1, x4

1, x
2
1x

2
2,

to obtain a fifth degree exactness quadrature formula.
The exactness conditions of the formula (3) for the monomials (5) give the

following nonlinear algebraic system in A0, A1, A2 and α, λ:

(6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A0 +
(
n
k

)
2kA1 +2nA2 = 2n

(
n−1
k−1

)
2kα2A1 +2nλ2α2A2 = 1

32n

(
n−1
k−1

)
2kα4A1 +2nλ4α4A2 = 1

52n

(
n−2
k−2

)
2kα4A1 +2nλ4α4A2 = 1

92n,

with
(
n−2
−1

)
= 0.

To obtain the solution of system (6), we must remark the special case 5n−9k+
4 = 0, i.e. (n, k) ∈ { (9� + 1, 5� + 1)

∣∣ � = 1, 2, . . .
}

. In this case, from the last

A GENERAL CLASS OF NONPRODUCT QUADRATURE FORMULAS 25

two equations of (6), it is obtained that A2 = 0, and the system (6) is equivalent
with

(7)

⎧⎪⎪⎨
⎪⎪⎩

A0 +
(
n
k

)
2kA1 = 2n

(
n−1
k−1

)
2kα2A1 = 1

32n

(
n−1
k−1

)
2kα4A1 = 1

52n.

From the last two equations of (7) results that α2 = 3
5 , and then

A1 =
5
9

2n−k(
n−1
k−1

) and A0 =
2n+2

9k
·

So, in this case we obtain the following
(
n
k

)
2k + 1 point 5th degree formula

(8)

Qn,k[f] =
2n−k

9

[
2k+2

k
f (0, . . . , 0)

+
5(

n−1
k−1

) ∑
1�i1<···<ik�n

f

(
0, . . . ,±

√
3
5

↑
i1

, . . . ,±
√

3
5

↑
ik

, . . . , 0
)]

.

One remarks that the smallest n dimensional formula is obtained for n = 10
(k = 6), and it is a 13341 point 5th degree formula.

In the following we consider that 5n− 9k + 4 �= 0.
From the fourth and third equations of (6) we get

A2 =
5n− 9k + 4

45 (n− k)λ4α4
,

and then taking into account the second equation of (6) we obtain the following
equivalent relations between the parameters λ and α:

α2 =
4 (n− 1)λ2 + 5n− 9k + 4

15 (n− k)λ2
, λ2 =

5n− 9k + 4
15 (n− k)α2 − 4 (n− 1)

·

Finally, we get the solution of the system (6)

(9)

A0 = 2n 5k (n− k)
(
9λ4α4 − 1

)− 4n (n− 1)λ4 + 4k (k − 1)
45k (n− k)λ4α4

= −2n+2 45k (k − 1)α4 − 30k (n− 1)α2 + (n− 1) (5n + 4)
45k (5n− 9k + 4)α4

,

A1 =
2n−k+2

45
(
n−2
k−1

)
α4

,

A2 =

[
15 (n− k)α2 − 4 (n− 1)

]2
45 (n− k) (5n− 9k + 4)α4

·

26 PETRU P. BLAGA

Thus we have obtained the following quadrature rule

(10)

Qn,k [f] =
1

45α4

[
− 2n+2 45k (k−1)α4−30k (n−1)α2+(n−1) (5n+4)

k (5n− 9k + 4)

× f (0, . . . , 0) +
2n−k+2(

n−2
k−1

) ∑
1
f (γ1, . . . , γn)

+

[
15 (n− k)α2 − 4 (n− 1)

]2
(n− k) (5n− 9k + 4)

∑
2
f (β1, . . . , βn)

]
.

In the following table we resume the conditions for α2 and λ2 such that all eval-
uation points in the quadrature formula (10) are placed inside of the domain Sn.

α2 λ2

5n + 4 > 9k

[
2 (n− 1)

5n− 3k − 2
; 1
) (

5n− 9k + 4
11n− 15k + 4

;
5n− 3k − 2

2 (n− 1)

]

5n + 4 < 9k

(
0;

2 (n− 1)
5n− 3k − 2

] (
9k − 5n− 4
4 (n− 1)

;
5n− 3k − 2
2 (n− 1)

]

For the first two values of n (n = 2,n = 3), the coefficients of quadrature
formula (10) and the relation between the parameters α and λ are given in the
following table

A0 A1 A2

n=2, k=1
32
(
15α2−7

)
225α4

8
45α4

(
15α2−4

)2
225α4

α2 =
4λ2+5
15λ2

n=3, k=1
32
(
30α2−19

)
225α4

16
45α4

(
15α2−4

)2
225α4

α2 =
4λ2+5
15λ2

n=3, k=2
32
[
1−5

(
3α2−2

)2]
45α4

8
45α4

(
15α2−8

)2
45α4

α2 =
8λ2+1
15λ2

3. Particular Cases

1. Generalized Das-Pradham quadrature formula [5] (see also [1],[2] and [3]).
This quadrature is obtained considering α2 = 2(n−1)

5n−3k−2 or equivalently λ2 = 5n−3k−2
2(n−1)

A GENERAL CLASS OF NONPRODUCT QUADRATURE FORMULAS 27

(λα=1). In this case from (9) we get

A0 = −2n 5n (5n− 9k − 4) + 4 (9k + 1)
45k (n− 1)

,

A1 = 2n−k (5n− 3k − 2)2

45 (n− 1)2
(
n−2
k−1

) ,

A2 =
5n− 9k + 4
45 (n− k)

,

and the corresponding quadrature formula is

(11)

Q
[1]
n,k [f]) =

1
45

[
− 2n 5n (5n− 9k + 4) + 4 (9k + 1)

k (n− 1)
f (0, . . . , 0)

+ 2n−k (5n− 3k − 2)2

(n− 1)2
(
n−2
k−1

) ∑
1
f (γ1, . . . , γn)

+
5n− 9k + 4

n− k

∑
2
f (β1, . . . , βn)

]
.

This formula has been constructed in [1].
We also remark that formula (11) gives the Das–Pradham quadrature formula

(see [5] and [3]), in the case k = n − 1, and Mustard–Lyness–Blatt quadrature
(see [7] and [2]), in the case k = 1.

2. Quadrature formula with the same coordinates of evaluation points . This
quadrature is obtained considering λ2 = 1 or equivalently α2 = 3

5 . In this case
from (9) we get

A0 = 2n+2 5 + 9k − 5n

81k
, A1 =

5
81

2n−k+2(
n−2
k−1

) , A2 =
5
81

5n− 9k + 4
n− k

,

and the corresponding quadrature formula is

(12)

Q
[2]
n,k [f] =

1
81

[
2n+2 5 + 9k − 5n

k
f (0, . . . , 0)

+ 2n−k+2 5(
n−2
k−1

) ∑
1
f (γ1, . . . , γn)

+
5 (5n− 9k + 4)

n− k

∑
2
f (β1, . . . , βn)

]
.

Cases k = 1 and k = n − 1 are presented in [2] and [3] respectively. In the case
n = 2 the product Gauss quadrature formula is obtained (see [9], p.249) which
is also a particular case of Hammer and Stroud quadrature formula (see [6] and
[9], p. 231).

Here is also included the quadrature formula (8) (5n− 9k + 4 = 0).

28 PETRU P. BLAGA

3. Quadrature formula with A0 = 0. This quadrature is a nonproduct
[
2k +

(
n
k

)]
2n−k

point of 5th exactness degree formula. From the condition A0 = 0, it results the
algebraic equation

(13) 45k (k − 1)α4 − 30k (n− 1)α2 + (n− 1) (5n + 4) = 0.

It must be considered the following two cases:
Case k = 1, when α2 = 5n+4

30 or equivalently λ2 = 10
5n−4 (λ2α2 = 5n+4

3(5n−4)). One
remarks that only for 2 � n � 5 all evaluation points are inside of Sn. Using
formulas (9) we have

A1 = 2n+3 5
(5n + 4)2

, A2 =
(

5n− 4
5n + 4

)2

.

The corresponding quadrature has been given in [2].
In the case 1 < k < n, the equation (13) with the unknown α2 has real solutions

only for 5n− 9k + 4 > 0, i.e. 2 ≤ k ≤ [5n+4
9

]
, and necessarily n > 2.

Using results of the two cases and the formulas (9), in Table 1 we give the
admissible solutions and the corresponding elements of Q

[2]
n,k [f] for n = 2, 9.

Cases n = 2 and n = 3 with k = 1 lead to the Burnside quadrature formula [4]
(see also [8], [9] p. 233 and p. 248, and [2], [3]), and respectively the Hammer–
Stroud quadrature formula [6] (see also [9], p.263 and [2]).

From the Table 1, we observe there are two formulas when n = 8, k = 4 and
n = 9, k = 5, and there not exists any quadrature when n = 9, k = 2.

One also remarks that in the two cases the coefficients A1 and A2 are positive.
4. Quadrature with positive coefficients . We observe that all the time the

coefficient A1 is positive. Consequently, in order to obtain quadrature formulas of
the type (10) with positive coefficients it must that A0 > 0 and A2 > 0.

Again, it must be considered the following two cases:
Case k = 1, when α2 > 5n+4

30 . One remarks that only for 2 � n � 5 all
evaluation points are inside of Sn. Using formulas (9) we have

A0 = 2n+2 30α2 − 5n− 4
225α4

> 0, A1 = 2n+1 1
45α4

> 0, A2 =
1

λ4α4
> 0.

Such a quadrature has been obtained in [2].
In the case 1 < k < n, from A2 > 0 and A0 > 0, it must be determined

α2 ∈
(

2(n−1)
5n−3k−2 ; 1

)
satisfying the inequality

45k (k − 1)α4 − 30k (n− 1)α2 + (n− 1) (5n + 4) < 0.

Using results of the two cases, in Table 2 we give the admissible intervals of
parameter α2 for n = 2, 9.

A GENERAL CLASS OF NONPRODUCT QUADRATURE FORMULAS 29

4. Error Analysis

If the integrated function f ∈ C6 (Sn), then the Taylor’s formula is valid:

f (x) =
5∑

i=0

1
i!

(
x1

∂

∂x1
+ · · ·+ xn

∂

∂xn

)(i)

f (0)

+
1
6!

(
x1

∂

∂x1
+ · · ·+ xn

∂

∂xn

)(6)

f (ξ) , ξ ∈ Sn.

Taking into account the error

Rn,k [f] = In [f]−Qn,k [f] = 0,

for all monomials f (x) = xk1
1 . . . xkn

n , 0 � k1 + · · ·+ kn � 5, it results that

Rn,k [f] =
1
6!

Rn,k

[(
x1

∂

∂x1
+ · · ·+ xn

∂

∂xn

)(6)

f (ξ)

]
.

Moreover, having the evaluation points symmetrically situated inside of Sn, we
obtain that

Rn,k [f] =
1
6!

{
Rn,k

[
x6

1

] n∑
i=1

∂6f (ξ)
∂x6

i

+ 15Rn,k

[
x4

1x
2
2

]∑
i�=j

∂6f (ξ)
∂x4

i ∂x2
j

+90Rn,k

[
x2

1x
2
2x

2
3

] ∑
i<j<�

∂6f (ξ)
∂x2

i ∂x2
j∂x2

�

}
,

and consequently

|Rn,k [f]| � 1
6!
{
L
∣∣Rn,k

[
x6

1

]∣∣+ 15M
∣∣Rn,k

[
x4

1x
2
2

]∣∣+ 90N
∣∣Rn,k

[
x2

1x
2
2x

2
3

]∣∣},
where

L = sup
x∈Sn

∣∣∣∣
n∑

i=1

∂6f (x)
∂x6

i

∣∣∣∣, M = sup
x∈Sn

∣∣∣∣
∑
i�=j

∂6f (x)
∂x4

i ∂x2
j

∣∣∣∣,

N = sup
x∈Sn

∣∣∣∣
∑

i<j<�

∂6f (x)
∂x2

i ∂x2
j∂x2

�

∣∣∣∣.
It must observe the last term in these formulas is zero when n = 2. The general
error bound of quadrature in this case is given by:

|R2,1 [f]| � 1
180

(∣∣∣∣17 −
4
45

α2 − 1
9
λ2α2

∣∣∣∣L +
∣∣∣∣1− 5

3
λ2α2

∣∣∣∣M
)

=
1

135 |15α2 − 4|
(

1
35

∣∣35α4 − 51α2 + 15
∣∣L +

∣∣5α2 − 3
∣∣M
)

,

30 PETRU P. BLAGA

and the corresponding error bounds for the quadrature formulas considered in the
previous section are:

∣∣∣R[1]
2,1 [f]

∣∣∣ � 1
270

(
1

175
L + M

)
,

(
α2 =

2
5
, λ2α2 = 1, see [5]

)
,

∣∣∣R[2]
2,1 [f]

∣∣∣ � 1
7875

L,

(
α2 =

3
5
, λ2α2 =

3
5

)

∣∣∣R[3]
2,1 [f]

∣∣∣ � 1
1215

(
53
525

L + 2M

)
,

(
α2 =

7
15

, λ2α2 =
7
9

)
,

∣∣∣R[4]
2,1 [f]

∣∣∣ � 1
2430

(
31
105

L + M

)
,

(
α2 =

2
3
, λ2α2 =

5
9

)
.

We also consider the error bounds for n = 3, (k = 1 and k = 2).
In the case k = 1 we have

|R3,1 [f]| � 1
90

(∣∣∣∣17 −
4
45

α2 − 1
9
λ2α2

∣∣∣∣L +
∣∣∣∣1− 4

3
α2 − 5

3
λ2α2

∣∣∣∣M
+ 10

∣∣∣∣13 − λ2α2

∣∣∣∣N
)

,

and in the particular cases from the previous section we get

∣∣∣R[1]
3,1 [f]

∣∣∣ � 1
45

(
1

525
L +

3
5
M +

10
3

N

)
,

(
α2 =

2
5
, λ2α2 = 1

)
,

∣∣∣R[2]
3,1 [f]

∣∣∣ � 2
225

(
1
35

L + M +
10
3

N

)
,

(
α2 =

3
5
, λ2α2 =

3
5

)
,

∣∣∣R[3]
3,1 [f]

∣∣∣ � 1
1485

(
587
1575

L +
199
15

M + 40N

)
,

(
α2 =

19
30

, λ2α2 =
19
33

)
,

∣∣∣R[4]
3,1 [f]

∣∣∣ � 1
405

(
31
315

L +
11
3

M + 10N

)
,

(
α2 =

2
3
, λ2α2 =

5
9

)
.

In the case k = 2 we have:

|R3,2 [f]| � 1
90

(∣∣∣∣17 −
8
45

α2 − 1
45

λ2α2

∣∣∣∣L +
∣∣∣∣1− 4

3
α2 − 1

3
λ2α2

∣∣∣∣M
+ 10

∣∣∣∣13 −
1
5
λ2α2

∣∣∣∣N
)

,

A GENERAL CLASS OF NONPRODUCT QUADRATURE FORMULAS 31

and in the particular cases from the previous section we get
∣∣∣R[1]

3,2 [f]
∣∣∣ � 1

135

(
1
35

L +
1
7
M + 2N

)
,

(
α2 =

4
7
, λ2α2 = 1

)
,

∣∣∣R[2]
3,2 [f]

∣∣∣ � 2
1125

(
1
7
L +

40
3

N

)
,

(
α2 =

3
5
, λ2α2 =

3
5

)
,

∣∣∣R[3]
3,2 [f]

∣∣∣ � 2
675

(
28
√

5− 55
315

L +
3
√

5− 5
3

M + 4
(
5−√5

)
N

)
,

(
α2 =

10+
√

5
15

, λ2α2 =
8
√

5−15
15

)
,

∣∣∣R[4]
3,2 [f]

∣∣∣ � 4
135

(
2

315
L + M

)
,

(
α2 =

2
3
, λ2α2 =

1
3

)
.

5. Numerical Examples

To compare the quadrature rules obtained in the previous sections, we have
considered the four quadratures when n = 2 (k = 1) and n = 3 (k = 1 and k = 2).

The values of parameters α, λ and the coefficients A0, A1, A2 are given in
Tables 3–5.

Table 6, Table 7 and Table 8 contain the exact and approximate values obtained
by the four quadrature formulas, and also the error bounds, for the following four
integrated functions:

(1) f (x, y) = 1
(3+x+y)2

, with I2 [f] = ln 9
5 = ln 1.8,

(2) f (x, y) = exy, with I2 [f] computed by series expansion,
(3) f (x, y) =

√
2 + x + y, with I2 [f] = 32

15

(
4−√2

)
,

(4) f (x, y) = 1√
3+x+y

, with I2 [f] = 4
3

(
5
√

5− 6
√

3 + 1
)
,

respectively
(1) f (x, y, z) = 1

(4+x+y+z)3
, with I3 [f] = 1

2 ln 189
125 ,

(2) f (x, y, z) = exyz, with I3 [f] computed by series expansion,
(3) f (x, y, z) =

√
3 + x + y + z, with I3 [f] = 64

35

(
9
√

6− 16 +
√

2
)
,

(4) f (x, y, z) = 1√
4+x+y+z

, with I3 [f] = 8
15

(
49
√

7− 75
√

5 + 27
√

3− 1
)
.

References

[1] Blaga, P. P., An Approximate Formula for Multiple Integrals, Facta Universitatis (Nǐs) (to
appear).

[2] Blaga, P. P., A Class of Multiple Nonproduct Quadrature Formulas, in “Analysis, Functional
Equations, Approximation and Convexity”, Carpatica, Cluj–Napoca, 1999, pp. 32–39.

[3] Blaga, P. P., A New Class of Multiple Nonproduct Quadrature Formulas, to appear.
[4] Burnside, W., An Approximate Quadrature Formula, Messenger of Math. 37 (1908), 166–167.

32 PETRU P. BLAGA

[5] Das, R.N. and Pradham, G., A Numerical Quadrature of Function of More Than One Real
Variable, Facta Universitatis (Nǐs) 11 (1996), 113–118.

[6] Hammer, P.C. and Stroud, A. H., Numerical Evaluation of Multiple Integrals II , Math.
Tables Aids Comput. 12 (1958), 272–280.

[7] Mustard, D., Lyness, J. N. and Blatt, J. M., Numerical Quadrature in N Dimensions, Com-
puter J. 6 (1963–1964), 75–87.

[8] Stroud, A.H., Some Fifth Degree Integration Formulas for Symmetric Regions, Math. of
Comput. 20 (1966), 90–97.

[9] Stroud, A.H., Approximate Calculation of Multiple Integrals, Prentice–Hall, Englewood
Cliffs, New Jersey, 1971.

Faculty of Mathematics and Informatics, “Babeş–Bolyai” University, 3400 Cluj–

Napoca

E-mail address: blaga@math.ubbcluj.ro

A GENERAL CLASS OF NONPRODUCT QUADRATURE FORMULAS 33

n=2 n=3 n=4 n=5

k=1 α2 7
15

19
30

4
5

29
30

α 0.68313 0.79582 0.89443 0.98319

λα 0.88192 0.75879 0.70711 0.67847

A1 0.81633 0.88643 1.11111 1.52200

A2 0.18367 0.33518 0.44444 0.52438

k=2 α2 10+
√

5
15

5−√
5

5
20−√

110
15

α 0.90318 0.74350 0.79632

λα 0.43883 0.85065 0.74595

A1 0.26716 0.58179 0.58947

A2 0.59926 0.12732 0.26316

k=3 α2 30+
√

30
45

α 0.88791

λα 0.45395

A1 0.19068

A2 0.52329

n=6 n=7 n=8 n=9

k=2 α2 5−2
√

2
3

10−√
35

5
35−√

455
15

α 0.85080 0.90376 0.95461

λα 0.70305 0.67850 0.66230

A1 0.67858 0.85273 1.14174

A2 0.36383 0.44039 0.50049

k=3 α2 15−√
21

18
15−√

30
15

105−√
1785

90
60−2

√
165

45
α 0.76075 0.79678 0.83500 0.87317

λα 0.81874 0.73528 0.69852 0.67680

A1 0.35384 0.35288 0.39008 0.46602

A2 0.11539 0.22808 0.31736 0.38835

k=4 α2 20+
√

10
30

35−√
70

45 ; 35+
√

70
45

40−√
130

45
α 0.87868 0.76932; 0.98168 0.79719

λα 0.46432 0.79396; 0.50845 0.72625

A1 0.11929 0.20301; 0.07657 0.20122

A2 0.47809 0.11185; 0.66501 0.20769

k=5 α2 10−√
2

15 ; 10+
√

2
15

α 0.75656; 0.87232

λα 0.98850; 0.47210

A1 0.12403; 0.07018

A2 0.02327; 0.44736

Table 1. Elements of quadrature formulas Q
[3]
n,k, n = 2, 9.

34 PETRU P. BLAGA

n k=1 k=2 k=3 k=4 k=5
2

(
7
15 ; 1

)
3

(
19
30 ; 1

) (
10+

√
5

15 ; 1
)

4
(

4
5 ; 1
) (

5−√
5

5 ; 1
)

5
(

29
30 ; 1

) (
20−√

110
15 ; 1

) (
30+

√
30

45 ; 1
)

6
(

5−2
√

2
3 ; 1

) (
15−√

21
18 ; 1

)
7

(
10−√

35
5 ; 1

) (
15−√

30
15 ; 1

) (
20+

√
10

30 ; 1
)

8
(

35−√
455

15 ; 1
) (

105−√
1785

90 ; 1
) (

7
13 ; 35−

√
70

45

)

∪
(

35+
√

70
45 ;1

)

9
(

60−2
√

165
45 ; 1

) (
40−√

130
45 ; 1

) (
4
7 ; 10−

√
2

15

)

∪
(

10+
√

2
15 ;1

)

Table 2. Admissible values of parameter α2, n = 2, 9.

Q
[1]
2,1 Q

[2]
2,1 Q

[3]
2,1 Q

[4]
2,1

α2 2
5

3
5

7
15

2
3

λ2 5
2 1

5
3

4
5

A0 − 8
9

64
81 0

24
25

A1
10
9

40
81

40
49

2
5

A2
1
9

25
81

9
49

9
25

Table 3. Elements of Q2,1 quadrature formulas

Q
[1]
3,1 Q

[2]
3,1 Q

[3]
3,1 Q

[4]
3,1

α2 2
5

3
5

19
30

2
3

λ2 5
2 1 10

11
5
6

A0 − 56
9 − 32

81 0
8
25

A1
20
9

80
81

320
361

4
5

A2
1
9

25
81

121
361

9
25

Table 4. Elements of Q3,1 quadrature formulas

A GENERAL CLASS OF NONPRODUCT QUADRATURE FORMULAS 35

Q
[1]
3,2 Q

[2]
3,2 Q

[3]
3,2 Q

[4]
3,2

α2 4
7

3
5

10+
√

5
15

2
3

λ2 7
4 1

√
5−2

1
2

A0
58
45

128
81 0

8
5

A1
49
90

40
81

8(21−4
√

5)
361

2
5

A2
1
45

5
81

109+48
√

5
361

1
5

Table 5. Elements of Q3,2 quadrature formulas

f(x,y)
1

(3+x+y)2
exy √

2+x+y
1√

3+x+y

I2[f] 5.87787E−01 4.22889E+00 5.51634E+00 2.38405E+00

Q
[1]
2,1[f] 6.06351E−01 4.24137E+00 5.48365E+00 2.38611E+00

Err
[1]
2,1 1.86E−02 1.25E−02 3.27E−02 2.06E−03

Q
[2]
2,1[f] 5.86676E−01 4.22897E+00 5.51752E+00 2.38394E+00

Err
[2]
2,1 1.11E−03 8.05E−05 1.18E−03 1.08E−04

Q
[3]
2,1[f] 5.93612E−01 4.23365E+00 5.51298E+00 2.38477E+00

Err
[3]
2,1 5.83E−03 4.76E−03 3.36E−03 7.24E−04

Q
[4]
2,1[f] 5.85275E−01 4.22800E+00 5.51830E+00 2.38376E+00

Err
[4]
2,1 2.51E−03 8.92E−04 1.96E−03 2.87E−04

Table 6. Numerical results (n = 2 and k = 1)

f(x,y,z)
1

(4+x+y+z)3
exyz √

3+x+y+z
1√

4+x+y+z

I3[f] 2.06717E−01 8.15085E+00 1.36405E+01 4.10778E+00

Q
[1]
3,2[f] 2.70857E−01 8.48274E+00 1.35969E+01 4.11385E+00

Err
[1]
3,2 6.41E−02 3.32E−01 4.35E−02 6.07E−03

Q
[2]
3,2[f] 2.12208E−01 8.27150E+00 1.36385E+01 4.10871E+00

Err
[2]
3,2 5.49E−03 1.21E−01 1.96E−03 9.34E−04

Q
[3]
3,2[f] 2.10618E−01 8.25999E+00 1.36390E+01 4.10850E+00

Err
[3]
3,2 3.90E−03 1.09E−01 1.41E−03 7.20E−04

Q
[4]
3,2[f] 2.09377E−01 8.25046E+00 1.36395E+01 4.10833E+00

Err
[4]
3,2 2.66E−03 9.96E−02 9.78E−04 5.47E−04

Table 7. Numerical results (n = 3 and k = 1)

36 PETRU P. BLAGA

f(x,y,z)
1

(4+x+y+z)3
exyz √

3+x+y+z
1√

4+x+y+z

I3[f] 2.06717E−01 8.15085E+00 1.36405E+01 4.10778E+00

Q
[1]
3,2[f] 2.12259E−01 8.09655E+00 1.36344E+01 4.10788E+00

Err
[1]
3,2 5.54E−03 5.43E−02 6.07E−03 9.88E−05

Q
[2]
3,2[f] 2.00868E−01 8.05430E+00 1.36426E+01 4.10692E+00

Err
[2]
3,2 5.85E−03 9.65E−02 2.11E−03 8.60E−04

Q
[3]
3,2[f] 2.00429E−01 8.01713E+00 1.36427E+01 4.10692E+00

Err
[3]
3,2 6.29E−03 1.34E−01 2.22E−03 8.64E−04

Q
[4]
3,2[f] 1.99127E−01 8.02972E+00 1.36432E+01 4.10668E+00

Err
[4]
3,2 7.59E−03 1.21E−01 2.71E−03 1.10E−03

Table 8. Numerical results (n = 3 and k = 2)

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

COMPLEX VALUE BOUNDARY ELEMENTS METHODS
(CVBEM) FOR SOME MIXED BVP

TITUS PETRILA

Abstract. This paper presents a method for setting up a CVBEM for some
mixed boundary value problem joined to the Laplace equation, in plane sim-
ply conected domains. The considered boundary value problems are met
in modelling of different fluid flows as well as in microelectronics, design of
electrical machines, magnetohydrodynamics, etc.

The existence and the uniqueness of the classical solutions of the bound-
ary value problems envisaged in this paper have been studied long time ago.
Since then such studies have stopped at the analytical stage without em-
phasizing efficient convergent calculation algorithms, these theoretical results
remained rather unusable to applied mathematics . That is why a convergent
BEM which is the main purpose of our work, seems to be an useful tool for
filling in the above mentioned gap. In the sequel we will foccuss on the Robin
problem, an important modified Volterra problem following as an particular
case. Some extension as well as some effective numerical approches of certain
particular problems will be considered in the future.

1. Let us consider the Robin(mixed, Dirichlet-Neumann) problem for the
Laplace operator in a disk Ω (centred at O, of radius R) with the boundary C.
With the form of complex functions, the problem leads to the determination of a
function f = u + iv holomorphic in Ω , continuous with its derivative in Ω ∪ C

such that its real part u satisfies the boundary condition

(1) αu + β
du

dni
|C = l,

where α , β ∈ R, while l is supposed to be a given continuous function on C and
du
dni

is the derivative along the unit inward normal direction �n . Of course for
β = 0 or α = 0 we get respectively the Drichlet and Neumann problems. In the
last case the compatibility condition requires that

∫
|z|=R

l
β df = 0. We remark that

37

38 TITUS PETRILA

in the case of a disk, the condition (1) can be replaced by

αRef − β

R
Re(z

df

dz
)||z|=R = l,

with a Dirichlet condition ReF (z)||z|=R = l for the holomorphic function

F (z) = αf(z)− β

R
z

df

dz

Using now a technique already built up by us [3, 4] f(z) is looked under the form
of F (z) = 1

2πi

∫
C

F (t)
t−z dt, forz ∈ Ω. But this Cauchy′s integral for our solution is,

in fact, the integral representation required by a BEM which, together with an
appropiate boundary integral equation provide the main tools for setting up a
BEM.

In our case we will manage to avoid the construction and the solution of any
boundary integral equation which, by elliminating of some involved approxima-
tions of both contour and itegrals simplifies essentialy our BEM.

Namely, considering a set of nodal points, z0, z1, . . ., zn (z0 = zn) on C,
disposed contour clockwise and separating the curve C into boundary elements
Cj = (zj−1zj), j ∈ {1, . . . , n}, the envisaged approximation F̃ (t) for the unknow
function F (t) is

F̃ (t) =
n∑

j=1

FjLj(t)whereFj = F (zj),

whileLj(t) are the interpolating Lagrange functions, constructed on each arc re-
spectively, i.e.

Lj(t) =

⎧⎪⎨
⎪⎩

t−zj−1
zj−zj−1

for t ∈ Cj .
t−zj+1
zj−zj+1

for t ∈ Cj+1

0 otherwise.

Accordingly, the approximation F ∗(z) of our unknown function F (z) in an
interior point z ∈ Ω will be defined by

F ∗(z) =
n∑

i=1

Fj L̃j(z)

where,

L̃j(z) =
1

2πi

∫ ′

C

Lj(t)
t− z

dt =
1

2πi
(

z − zj−1

zj − zj−1
ln

z − zj

z − zj−1
+

z − zj

zj − zj+1
ln

z − zj+1

zj − zj+1
)

COMPLEX VALUE BOUNDARY ELEMENTS METHODS 39

and where one choses the main (principal) determination of the complex logarithm.
The continuity of the approximation F ∗(z) allows us to write that

Uk + iVk = Fk ≈ F ∗(zk) =
n∑

j=1

FjL̃j(zk), k ∈ {1, . . . , n}

i.e. we are led to the following real linear system of 2n equations and 2n unknowns

Uk =
n∑

i=1

MkjUj −
n∑

j=1

NkjVjVk =
n∑

i=1

MkjVj −
n∑

j=1

NkjUj

By solving this system within the data of the Dirichlet boundary problem, we get
the looked approximation F̃ (t) of the function F (t) and, implicitely, via Cauchy′s
formula, the solution of the proposed boundary problem in all the points of the
domain D. Concerning the coefficients Lkj , for k �= j, they could be directly
calculated from the expresion of L̃j(z) using the equality

lim
z→zp

(z − zp) ln
zj − zj+1

zj − zj−1
= 0

in the case k = j − 1 or k = j + 1. For k = j we get

Ljj =
1

2πi
ln

zj − zj+1

zj − zj−1
,

the same principal determination of the logarithm being considered.
A division d := (z0, z1, . . . , zn), z0 = zn of the curve C will be called ”acceptable”
if for each t ∈ Cj , j ∈ {1, 2, . . . , n} the following condition is fulfilled

max{|t− zj |, |t− zj−1|} < |zj − zj−1|.
By introducing the concept of ”acceptable” division

d := (z0, z1, . . . , zn)

of the norm ||d|| and using a convergence theorem given by us [3, 4], we state that

lim
n→∞F ∗(z) = F (z)

for an acceptable division ||d|| → 0. At the same time the solution f∗(z) of the
following differential equation

αf∗(z)− β

R
z
df∗(z)

dz
= F ∗

i.e.

f∗(z) = K − R

β

∫
F ∗(z)

z
e−

Rα
β −4zdz]e

Rα
β ln z

40 TITUS PETRILA

where K is an determined constant, which will be fixed by the conditions associated
to the problem, and ln z means the principal (main) determination of the complex
logarithm, will converge to the exact solution f(z), due to the continuity of all the
functions involved. Summarizing the CVBEM just built up is convergent, i.e.

lim
n→∞ f∗(z) = f(z),

for any acceptable division d = (z0, . . . , zn) of norm ||d||, which ||d|| → 0. Obvi-
ously the above procedure can be also extended to the case when α and β are real
continuous functions. But despite that, the solution of the attached differential
equation will be not the same as before, the convergence of the corresponding
CVBEM is still valid. We remark that the initial Robin problem can be trans-
formed into a Dirichlet problem, using that du

dni
|C = dv

ds |C obvious extension of
Cauchy-Riemann relations (of course the validity of these relations on the bound-
ary is connected with the analycity of f(z) on C, which ensures that the image
F (C) is also an analytical curve). Hence

dv

ds
|C = −α

β
u− l

β
,

i.e.

v|C = −α

β
2πRu(0)−

∫
C

l

β
ds + k,

where k is an arbitrary constant while u(0) is the value of the function u at
z = 0 (the Gauss theorem). The equivalence of the mixed (Robin) problem with
a Dirichlet one can be established even in the case when Ω is an arbitrary, plane,
simply connected (bounded) domain, whose boundary C is an analytical curve.
Keeping the same requirements on the unknown function f(z), which also ensures
even the validity of Cauchy-Riemann relations on C, the Robin condition, with α

and β real continuous functions, can be replaced by

αu + β
dv

ds
|C = l

At the same time, supposing that β �= 0 and using the harmonicity of u, the initial
Robin condition leads ∫

C

α

β
uds =

∫
C

l

β
ds,

∫
C

du

dni
ds = 0,

for any harmonical function u. Immediately we can write that v|C = K, where K

is an undetermined constant, i.e. the mentioned equivalence has been proved.

COMPLEX VALUE BOUNDARY ELEMENTS METHODS 41

2. Let now Ω ⊂ R2 be a simply connected domain whose analytical boundary
C is divided into Cu and Cv so that Cu ∩Cv = ∅ and Cu ∪Cv = C. We intend to
determine the function u ∈ C2(Ω) ∩ C′(Ω ∪ C) which satisfies the conditions:

u = 0 in Ω

u|Cu = l1 on Cu

du

dni
|Cv = l2 on Cv,

l1 and l2 being two given real continuous functions, and d
dni

the derivative in the
direction of the inward normal ni. Of course this problem, which is considered
to be a ”modififed Volterra” problem [2], could be rewritten under the previous
(Robin) form if α and β are a couple of real continuous functions so that
αβ|C = 0, α|Cu �= 0 and β|Cv �= 0, l being now

l = α
l1
α

+ β
l2
β

.

It is obvious that this problem is also equivalent with a clssical Volterra problem.
Precisely the condition du

dni
|C = l2 can be replaced by v =

∫
l2ds + k, k being

an integration constant whose determination is accomplished within the frame of
the proposed problem. But this modified Volterra problem leads, using the same
technique as above, to a Dirichlet problem whose data on boundary can have a
finite number of singularities of first type. But the existence and the uniqueness
of the solution of this Dirichlet problem has been proved too (Fatou), so that,
the whole procedure for appropiate CVBEM envisaged before, can be developped
again.

References

[1] Caius Iacob, Introduction mathèmatique à la mécanique des fluides, Editions Gauthier-Villars
et L’Academie Roumaine, 1959

[2] Dorel Homentcovschi, On the mixed boundary-value problems for harmonic functions in plane
domains, Journal of Applied Mathematics and Physics (ZAMP), 31 (1980), p. 351–366

[3] Titus Petrila, On certain mathematical problems connected with the use of the complex vari-
able boundary element method to the problems of plane hydrodynamics. Gauss variant of the
procedure, The mathematical heritage of C. F. Gauss, World Scientific,Publishing Company,
Singapore, 1991, p. 585–604

[4] Titus Petrila, An improved CVBEM for plane hydrodynamics, Revue d’analyse numerique
et de la theorie de l’approximation, vol. XVI, fasc. 2 (1987), p. 149–157

42 TITUS PETRILA

“Babes-Bolyai” University, Faculty of Mathematics and Computer Science, RO-3400

Cluj-Napoca, Romania

E-mail address: tpetrila@cs.ubbcluj.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

BLIND SIGNATURE AND BLIND MULTISIGNATURE
SCHEMES USING ELLIPTIC CURVES

CONSTANTIN POPESCU

Abstract. Blind signature schemes and blind multisignature schemes are
useful in protocols that guarantee the anonymity of the participants. In this
paper we propose an elliptic curve blind signature scheme and an elliptic
curve blind multisignature scheme. The proposed schemes are described in
the group of points on an elliptic curve because it offer equivalent security as
the other groups but with smaller key size and faster computation times.

1. Introduction

The concept of blind signature schemes was introduced by Chaum in 1982 [2]. A
blind signature scheme allows to realize secure electronic payment systems protect-
ing customer’s privacy [1], [3], [5]. Recent anonymous prepaid electronic payment
systems, based on the blind signature technique, emulate physical cash. In these
systems, the users withdraw electronic coins which consist of numbers, generated
by users, and blindly signed by an electronic money issuer. Each signature repre-
sents a given amount. These coins are then spent in shops which can authenticate
them by using the public signature key of the bank. The users retain anonymity
in any transaction since the coins they use have been blindly signed.

In a blind multisignature scheme [8], [10] we have one owner Alice, who wants to
obtain a digital signature from several signers, so that each signer doesn’t know a
relationship between the blinded and unblinded message and signature parameters.
This means they cannot recognize the signature later, even if they all collude. A
blind multisignature scheme can be used as a building block in cryptographic
applications, e.g. in electronic voting schemes [4].

In this paper we propose an elliptic curve blind signature scheme and an elliptic
curve blind multisignature scheme. The schemes proposed are described in the
group of points on an elliptic curve defined over a finite field. Elliptic curve groups
are advantageous because they offer equivalent security as the other groups but
with smaller key size and faster computation times.

1991 Mathematics Subject Classification. 94A60.
1991 CR Categories and Descriptors. D.4.6 [Operating Systems]: Security and Protec-

tion – Authentication Cryptographic controls.

43

44 CONSTANTIN POPESCU

2. Elliptic Curves over Finite Fields

Many researchers have examined elliptic curve cryptosystems, which were firstly
proposed by Miller [15] and Koblitz [12]. The elliptic curve cryptosystems which
are based on the elliptic curve logarithm over a finite field have some advantages
over other systems: the key size can be much smaller over the other schemes since
only exponential-time attacks have been known so far if the curve is carefully
chosen [13], and the elliptic curve discrete logarithms might be still intractable
even if factoring and the multiplicative group discrete logarithm are broken.
Elliptic Curves over GF (2n): A non-supersingular elliptic curve E over GF (2n)
can be written into the following standard form

E : y2 + xy = x3 + ax2 + b, b �= 0, a, b ∈ GF (2n).

The points P = (x, y), x, y ∈ GF (2n) that satisfy this equation, together with
a “point at infinity” denoted O form an abelian group (E, +, O) whose identity
element is O.

Let P = (x1, y1) and Q = (x2, y2) be two different points on E and both P and
Q are not equal to the infinity point. Addition law for E non-supersingular is as
follow: For 2P = P + P = (x3, y3), if x1 �= 0

x3 = δ2 + δ + a

y3 = (x1 + x3)δ + x3 + y1, where δ = x1 + y1/x1.

If x1 = 0, 2P = O. For P + Q = (x3, y3), if x1 = x2, then P + Q = O. Otherwise,

x3 = λ2 + λ + x1 + x2 + a

y3 = (x1 + x3)λ + x3 + y1, where λ = (y1 + y2)/(x1 + x2).

Elliptic Curves over GF (pn): A non-supersingular elliptic curve E over GF (pn),
p > 2 can be written into the following standard form

E : y2 = x3 + ax + b, 4a3 + 27b2 �= 0, a, b ∈ GF (pn).

For the addition law, for the elliptic curve E over GF (pn), see more details in [15].

3. Elliptic Curve Blind Signature Scheme

In this section we describe the elliptic curve blind version of the Harn’s signature
scheme [7]. We will use the same setup as suggested in IEEE P1363 standard form
[11].

3.1. Key Generation. Firstly, we choose elliptic curve domain parameters:
(1) Choose p a prime and n an integer. Let f(x) be an irreducible polynomial

over GF (p) of degree n, generating finite field GF (pn) and assume that
α is a root of f(x) in GF (pn).

BLIND SIGNATURE AND BLIND MULTISIGNATURE SCHEMES 45

(2) Two field elements a, b ∈ GF (pn), which define the equation of the
elliptic curve E over GF (pn) (i.e., y2 = x3 + ax + b in the case p > 3),
where 4a3 + 27b2 �= 0.

(3) Two field elements xp and yp in GF (pn), which define a finite point
P = (xp, yp) of prime order in E(GF (pn)) (P �= O, where O denotes the
point at infinity).

(4) The order q of the point P .
(5) The converting function c(x) : GF (pn)→ Zpn which is given by

c(x) =
n−1∑
i=0

ckpi ∈ Zpn , x =
n−1∑
i=0

ckαi ∈ GF (pn), 0 ≤ ci < p.

The operation of the key generation is as follows:
(1) Select a private key d, a random integer, from the interval [1, q − 1].
(2) Compute the public key Q, which is a point on E, such that Q = dP .

3.2. Blind Signature Protocol. The following protocol is a blind version of the
Harn’s elliptic curve signature scheme.

(1) Alice generates a one-time key pair (k, R) in the following way: randomly
chooses k ∈ [1, q − 1] and compute R = kP = (xk, yk). She computes r
such that

r = c(xk) =
n−1∑
i=0

cikpi, where xk =
n−1∑
i=0

cikαi, 0 ≤ cik < p.

and sends r and R to Bob.
(2) Bob chooses blind factors a, b ∈ [1, q − 1], computes the point R on E

such that R = aR + bP = (xk, yk) and computes r = c(xk). He also
computes m = (H(m) + r)a−1 − r, where H(·) is a hash function, and
sends m to Alice.

(3) Alice computes s = d(m + r) + k (mod q) and sends s to Bob.
(4) Bob computes s = as + b.

The pair (r, s) is an elliptic curve signature of the message m.
Theorem 3.1. The pair (r, s) is a Harn elliptic curve signature of the message
m and the above protocol is an elliptic curve blind signature scheme.

Proof: The validity of the signature (r, s) of the message m follows from the
next steps:

(1) Compute a point on E such that sP − (H(m) + r)Q = (xe, ye).
(2) Use the converting function to compute the integer c(xe) and check if

r = c(xe)(mod q). If this equation is true, then (r, s) is accepted as a valid
signature of the message m. It is easy to verify that sP−(H(m)+r)Q =
R.

46 CONSTANTIN POPESCU

To prove that the above protocol is blind we show that for every possible signer’s
view there exists a unique pair (a, b) of blind factors, with a, b ∈ [1, q − 1]. Given
any view consisting of R, k, r, m, s and any valid elliptic curve signature (r, s) of a
message m, we consider

a = (H(m) + r)(m + r)−1(mod q)
b = s− as(mod q).

We have to show that R = aR + bP . We have aR + bP = akP + sP − asP =
akP + sP − aP (dm + dr + k) = sP − adP ((H(m) + r)a−1 − r) − adrP = sP −
dH(m)P − drP = sP − (H(m) + r)Q = R. �

4. Elliptic Curve Blind Multisignature Scheme

In this section we describe the elliptic curve blind version of the Harn’s mul-
tisignature scheme [8].

4.1. Key Generation. The elliptic curve domain parameters are the same as in
Section 3. We assume there are t signers Ui, i = 1, ..., t. The operation of the key
generation is as follows:

(1) Each signer Ui randomly selects his private key di, an integer, from the
interval [1, q − 1].

(2) The public key of the signer Ui is the point

Qi = diP = (xdi , ydi), i = 1, ..., t.

(3) The public key for all signers is

Q = Q1 + ... + Qt = dP = (xd, yd),

where d = d1 + ... + dt(mod q).

4.2. Blind Multisignature Protocol. The following protocol is a blind version
of the Harn’s elliptic curve multisignature scheme.

(1) The user Ui generates a one-time key pair (ki, Ri) in the following way:
randomly chooses ki ∈ [1, q − 1] and computes Ri = kiP = (xki

, yki
).

The user Ui computes ri, i = 1, ..., t, such that ri = c(xki
) and sends ri

and Ri to the clerk.
(2) The clerk chooses the blind factors a, b ∈ [1, q − 1], computes the point

R on E such that R = aR + bQ = (xk, yk), where R = R1 + ... + Rt

and Q = Q1 + ... + Qt. The clerk computes r = c(xk)(mod q) and
m = (H(m) + r + b)a−1 − r, where H(·) is a hash function, and sends
m and r to each signer Ui.

(3) The user Ui computes the signature si = di(m + r) + ki (mod q), i =
1, ..., t and sends si to the clerk.

BLIND SIGNATURE AND BLIND MULTISIGNATURE SCHEMES 47

(4) The clerk computes siP − (m + r)Qi = (xei , yei) and check ri = c(xei)
(mod q), i = 1, ..., t. The elliptic curve blind multisignature of the mes-
sage m can be generated as (r, s), where s = s1 + ... + st(mod q) and
s = sa(mod q).

The pair (r, s) is a elliptic curve multisignature of the message m.
Theorem 4.1. The pair (r, s) is a Harn elliptic curve multisignature of the mes-
sage m and the above protocol is an elliptic curve blind multisignature scheme.

Proof: The validity of the elliptic curve multisignature (r, s) of the message m
follows from the next steps:

(1) Compute a point on E such that sP − (H(m) + r)Q = (xe, ye).
(2) Use the converting function to compute the integer c(xe) and check if

r = c(xe)(mod q). If this equality is true, then (r, s) is accepted as a
valid elliptic curve multisignature of the message m. It is easy to verify
that sP − (H(m) + r)Q = R.

To prove that the above protocol is blind we show that for every possible signer’s
view there exists a unique pair (a, b) of blind factors, with a, b ∈ [1, q − 1]. Given
any view consisting of Ri, ki, ri, si, m, r and any valid elliptic curve multisignature
(r, s) of a message m, we consider

a = ss−1(mod q)
b = (m + r)a−H(m)− r(mod q).

We have to show that R = aR + bQ. We have aR + bQ = a(R1 + ... + Rt)+ ((m +
r)a−(H(m)+r))Q = a(

∑t
i=1 siP−

∑t
i=1(m+r)Qi))+a(m+r)Q−(H(m)+r)Q =

asP − (H(m) + r)Q = sP − (H(m) + r)Q = R. �

5. Security Considerations

Our elliptic curve blind signature and multisignature schemes are as secure as
the Harn schemes [7], [8]. But, our schemes is more efficient than Harn schemes
because the group of points on an elliptic curve offer smaller key size and faster
computation times. The signature schemes in [9] can provide similar elliptic curve
blind signature schemes and elliptic curve blind multisignature schemes. In order
to avoid the Pollard-rho [19] and Pohling-Hellman [18] algorithms for the elliptic
curve discrete logarithm problem, it is necessary that the number of Fq-rational
points on E, denoted #E(Fq), be divisible by a sufficiently large prime n. It is
commonly recommended that n > 2160. To avoid the reduction algorithms of
Menezes, Okamoto and Vanstone [14] and Frey and Ruck [6], the curve should be
non-supersingular. To avoid the attack of Semaev [20] on Fq-anomalous curves,
the curve should not be Fq-anomalous (i.e., #E(Fq) �= q).

A prudent way to guard against these attacks, and similar attacks against spe-
cial classes of curves that may be discovered in the future, is to select the elliptic
curve E at random subject to the condition that #E(Fq) is divisible by a large

48 CONSTANTIN POPESCU

prime - the probability that a random curve succumbs to these special purpose
attacks is negligible. A curve can be selected verifiable at random by choosing
the coefficients of the defining elliptic curve equation as the outputs of a one-way
function such as SHA-1 according to some pre-specified procedure.

6. Conclusion

In this paper we proposed an elliptic curve blind signature scheme and an
elliptic curve blind multisignature scheme. The proposed schemes are described
in the setting of the group of points on an elliptic curve because it offer equivalent
security as the other groups but with smaller key size and faster computation times.
Our elliptic curve blind signature and multisignature schemes are as secure as the
Harn schemes. These schemes are practical, requiring just a few exponentiations
or integer multiplications over a group.

References

[1] S. Brands, Electronic Cash Systems Based on the Representation Problem in Groups of
Prime Order, Advances in Cryptology-CRYPTO’93, Lecture Notes in Computer Sciences,
Springer-Verlag, 1993.

[2] D. Chaum, Blind signature systems, Advances in Cryptology-CRYPTO’83, Plenum Press,
1984, pp. 153.

[3] D. Chaum, Privacy Protected Payment, SMART CARD 2000, Elsevier Science Publishers
B.V., 1989, pp. 69-93.

[4] L. Chen, M. Burmester, A practical voting scheme with allows voters to abstain, Proceedings
of Chinacrypt’94, 1994, pp. 100-107.

[5] N. Ferguson, Single Term Off-line Coins, Advances in Cryptology-EUROCRYPT’93, Lecture
Notes in Computer Sciences, 765, Springer-Verlag, 1993, pp. 318-328.

[6] G. Frey, H. Ruck, A remark concerning m-divisibility and the discrete logarithm in the
divisor class group of curves, Mathematics of Computation, 67, 1998, pp. 353-356.

[7] L. Harn, A New Digital Signature Based on the Discrete Logarithm, Electronics Letters,
Vol. 30, No.5, 1994, pp. 193-195.

[8] L. Harn, Group-oriented (t, n) Threshold Signature and Multisignature, IEE Proceedings
Computers and Digital Techniques, Vol. 141, No.5, 1994, pp. 307-313.

[9] L. Harn, On the design of generalized ElGamal type digital signature schemes based on the
discrete logarithm, Electronics Letters, 1994.

[10] P. Horster, M. Michels, H. Petersen, Blind multisignature schemes and their relevance to
electronic voting, Proc. 11th Annual Computer Security Applications Conference, New Or-
leans, IEEE Press, 1995, pp. 149 - 155.

[11] IEEE P1363, Standard Specifications for Public Key Cryptography, The Institute of Elec-
trical and Electronics Engineers, 1998.

[12] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, 48, 1987, pp. 203-
209.

[13] N. Koblitz, CM-Curves with Good Cryptographic Properties, Proceedings of Crypto’91,
1992.

[14] A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve logarithms to logarithms in

a finite field, IEEE Transactions on Information Theory, 39, 1993, pp. 1639-1646.
[15] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.

BLIND SIGNATURE AND BLIND MULTISIGNATURE SCHEMES 49

[16] V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology, Proceedings of
Crypto’85, Lecture Notes in Computer Sciences, 218, Springer-Verlag, 1986, pp. 417-426.

[17] T. Okamoto, K. Ohta, Universal Electronic Cash, Advances in Cryptology-CRYPTO’91,
Lecture Notes in Computer Sciences, 576, Springer-Verlag, 1991, pp. 324-337.

[18] S. Pohling, M. Hellman, An improved algorithm for computing logarithms over GF (p) and
its cryptographic significance, IEEE Transactions on Information Theory, 24, 1978, pp.
106-110.

[19] J. Pollard, Monte Carlo methods for index computation mod p, Mathematics of Computa-
tion, 32, 1978, pp. 918-924.

[20] I. Semaev, Evaluation of discrete logarithms in a group of p -torsion points of an elliptic
curve in characteristic p, Mathematics of Computation, 67, 1998, pp. 353-356.

University of Oradea, Department of Mathematics, Str. Armatei Romane 5, Oradea,

Romania

E-mail address: cpopescu@math.uoradea.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

A COMPONENT BASED APPROACH FOR SCIENTIFIC
VISUALIZATION OF EXPERIMENTAL DATA

DUMITRU RADOIU AND ADRIAN ROMAN

Abstract. The paper addresses the issue of component-based scientific vi-
sualization systems as a solution to most of the standard/commercial visual-
ization system problems. The visualization process is requested to meet the
process validation criteria. The visualization system is requested to observe
a reference model. The benefits are discussed on a detailed component based
visualization system.

Keywords: scientific visualization, software components, visualization
reference model, and visualization process validation

1. Introduction

The commercial visualization systems, the so-called “turn key systems, are easy
to use but they have some disadvantages [1]:

• they are expensive;
• they run on pretentious platforms;
• they are “rigid, meaning that one can not use more than one instance of

a visualization module. Several instances of the same module allow the
simultaneous execution of several sets of input data;
• their modules can not be used to build other systems;
• the implemented algorithms are not always the algorithms desired by

the user;
• the functionalities of a turn key system are “fixed, they can not be

changed by the user.

This article proposes a new approach of the visualization field. Three goals are
to be reached:

a.: Description of a reference model for the visualization process;
b.: Formulation of some criteria for the validation of the scientific vi-

sualization process ;
c.: Description of a software component model used to build personal-

ized visualization systems. Such a model allows the rapid construction
of visualization systems using modules that implement the desired algo-
rithms.

50

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 51

The reference model represents an abstract view of the visualization process.
It uses the concept of level. A level is seen as a distinct stage of the process that
accepts data and services of a certain format as input. The result is a new set of
data and services offered as input to the next level.

The reference model also serves to standardize the terminology, as well as to
compare the visualization systems and to identify the constraints imposed by the
process.

The validation of the scientific visualization process determines whether
the process results in a scientific visualization.

The model of the component-based visualization systems is supposed to
suggest some formalization capable to offer proper answers to the following ques-
tions: How does a software component behave? How are the interfaces between
two components described? Which are the conditions that allow the composition
of two or more components?

The idea of the component-based visualization systems is to use independent
components to construct personalized visualization systems in order to obtain
optimum and flexible systems that include a large variety of functionalities. A very
important advantage introduced by this model is that the visualization systems
can include user-made components, implementing the desired algorithms. The
construction of components implies a large agreement upon the different data
models, upon a formal model for time-sometimes the time being a critical variable–,
upon a user model, etc.

2. Towards a reference model

In order to describe the reference model for the visualization systems a “de-
composition” of the visualization process is performed. The identification of the
“levels” used for the data processing allows a better understanding of the condi-
tions that must be imposed on the visualization function. The proposed model [2]
contains three levels: modeling level, logical visualization level and physical
visualization level.

The modeling level only “extracts” from the data set the information of
interest, allowing a global processing of the data. This level performs operations
such as extraction of the data geometry, sub-sampling or re-sampling, extraction
of the data set characteristics, etc.

The data objects are passed to the next level, the logical visualization level,
where they are “factorized” into primitive data and mapped to glyphs and graphic
primitives. A set of functionalities is implemented at this level, e.g. the choice of
the visualization primitives, of the optical characteristics of objects, the computa-
tion of the optical properties of scenes, the light settings etc. Interaction elements
are also present, performing rotations, translations, zooming.

52 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 1 The architecture of a visualization system for experimental data.

The physical visualization level includes the choice of visualization medium
and classical tools are available to perform the hidden surface removal, shading,
lightning, etc.

Figure 1 proposes the architecture of a visualization system for experimental
data following the above-described model.

3. Validation of the scientific visualization process

Scientific visualization is a computational process that transforms scientific
data in visual objects [3]. Not all visualizations are scientific ones. A scientific
visualization guaranties a certain degree of accuracy. In order to state conditions
to be fulfilled by a scientific visualization, some mathematical structures over data
sets are introduced.

3.1. Basic concepts and definitions. The idea of using the mathematical struc-
tures defined over data sets to find conditions imposed on the visualization function
has been promoted by many authors [4], [5], [6], [7], [8].

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 53

Scientific data can be obtained in many different ways, e.g. by running a simula-
tion or through a DAQ process. Usually, scientific data objects are finite represen-
tations of complex mathematical objects. We note by O the set of such objects,
o ∈ O. During the visualization process, initial data objects, o, are processed
through different transformation functions Mat(o) = o′, into a new set o′ ∈ O′.
Objects o′ are then mapped Map(o′) = g into a set of ideal geometrical objects
g ∈ G, through a set of graphical primitives. Objects g are usually n-dimensional
(nD), animated (t) and interactive. A group of g objects is usually called the
logical visualization of a scene.

Ideal geometrical objects g, nD, animated (t) and interactive are usually repre-
sented Rep(g) = g′, g′ ∈ G′, on real 2D screens. A group of g′ objects is usually
called a physical visualization of a scene. Functions Rep(g) = g′ implement
classical graphical operations such as composition of the scene, volume generation,
isosurface generation, simulation of transparency, reflectivity and lighting condi-
tions, nD → 2D projection, clipping, hidden surface removal, shading, animation
(t), setting user interactivity (zoom, rotate, translate, pan, etc), etc.

By interactivity we understand the attributes of visual objects (logical and/or
physical) whose setting allows nD → 2D projection (zoom, rotate, translate, pan,
etc), animation control (t), control of the objects composing the scene and control
of the scene as a composite object.

The scientific visualization process is described by the V is(o) = g′, V is(o) =
Rep(Map(Mat(o))) = g′ function.

The above concepts and notations are synthesized in the table 1 (see Appendix).

3.2. Fundamental conditions of scientific visualization. There are many
requirements concerning a certain process of scientific visualization. Here are the
three fundamental ones.

The first one is the distinctiveness condition. This condition (although
very weak) enables users to distinguish between different data objects based on
their display. The condition is necessary as one can imagine many visualization
functions that generate images with no use, which reveal none of the data objects
characteristics/attributes.

The second condition is the so called the expressiveness condition. It assures
that the attributes of the visual object represent the attributes of the input data
set.

The third one is the precision condition. This condition insures that the
order among data objects is preserved among visual objects.

The distinctiveness condition. em Different input data (different mathemat-
ical objects) have to be mapped into different visual objects.

This can be stated as: o1 �= o2 ⇔ V is(o1) �= V is(o2)⇔ Rep(Map(Mat(o1))) �=
Rep(Map(Mat(o2)))⇔ g′1 �= g′2 for any o1, o2 ∈ O, g′1, g

′
2 ∈ G′

54 DUMITRU RADOIU AND ADRIAN ROMAN

The interpretation of this condition is that V is(), Mat(), Map() and Rep()
functions are injective.

The expressiveness condition. The visual objects express all and only the char-
acteristics of input data.

It results that the visualization function should be bijective/one to one.
The two conditions are necessary but not sufficient. Another condition is needed

to establish an order relation, seen as a precision relation.

The precision condition. For any objects on, om ∈ O such that on is “more
precise” than om we have V is(on) ”more precise” than V is(om),with V is(on),
V is(om) ∈ G′.

The precision relation adds something new. If the visualization function is well
defined and the input data objects are strictly ordered, the visual objects can be
ordered by precision.

The first two conditions introduce criteria of validation and control of the visu-
alization process. The visualization function V is() fulfilling these criteria results
in a scientific visualization. The third condition allows further developments by
defining mathematical operations on the given ordering.

The mathematical structures and the other notions presented above are later
used to support the main ideas of this paper.

4. Component based visualization systems

The alternative to the acquisition of commercial visualization systems and their
parameterization to fit to the user’s problem is the use of components. These
are pre-made complex functional entities, that can be (re)used to construct the
desired architecture of a visualization system. A component performs a specific
visualization task, which can be isolated inside the system.

A component can be a class or a collection of classes. Unlike classes, a compo-
nent can be implemented using a technology that is completely different from the
object oriented one, e.g. an assembling language. Classes are some how similar to
components, but the object-oriented technology has not imposed or hasn’t been
able to impose components. One of the reasons is that the definition of the ob-
jects is a purely technical one. An object represents the encapsulation of a state,
of a behavior, polymorphism and inheritance. The definition does not include the
notions of independence and forward composition. Components as well as objects
are re-usable. Components’ description has to be more general in order to be capa-
ble to assure their independence and reusability. Finally, the interaction between
components has to lead to a functional system.

Considering the reference model introduced in the section 2, we conclude that
a component-based visualization system resembles figure 2, where each rectangle
represents a component.

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 55

Fig. 2 The architecture of a component based visualization system

Fig. 3 The graphical description of a software component

4.1. Software Components.

4.1.1. Basic Notions and Definitions. A software component is a binary program
that represents the physical encapsulation of related services according to a pub-
lished specification. [9]

A software component can be seen as an interactive system that communi-
cates asynchronously through channels. The services implemented can be accessed
through a consistent and published interface that includes an interaction standard.
A component has a black-box view captured by the published specification, and a
white-box view showing implementation details.

The interface defines a set of channels C, divided in a subset A = A1, A2, ..., An

of the input channels and a subset B = B1, B2, ..., Bm of the output chan-
nels, meaning that C = A

⋃
B. A component can be described graphically as in

figure 3.
Any component implements a function F :

F : Xn → Y m, (x1, x2, ..., xn)→ (y1, y2, ..., ym)

56 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 4 The way a software component works

which assigns an output on m channels to an input on n channels. In other words
it assigns the output data (y1, y2, ..., ym) to an input data (x1, x2, ..., xn). The
inputs are timed streams of messages. The component sends new outputs every
time the inputs change. This is why a software component can be seen as a system
that communicates asynchronously (the component waits for a message; when it is
received the component processes it and the result is sent to the output; then, the
component waits for the next message). A message can be a string of characters,
a binary number, a decimal number etc. Each channel has a stream of messages
attached, representing all the messages received (sent) through that channel.

A component needs a time t in order to process a message. We consider that the
inputs are introduced at the given moments: t0 = 0, t1 = τ , t2 = 2τ, ..., tn = nτ.
That means that the n-th message is accepted by the component only at the tn
moment.

Consider the input stream of messages x. The following notations are intro-
duced:

• x(n) - the string of the first n messages (until the moment tn) from x;
• xi

n - the input message on the channeli at the moment tn;
• F (x) - the stream of messages assigned to the output channels for the

input x;
• F (x)(n) - the first n messages from F (x);
• F i

n(x) - the output message on the channel i at the moment tn;
• Fx- the set of messages assigned to the output channels for the input x;
• Ax - the subset of the input channels for which the input is different

from zero, assigned to the input x(Ax ⊆ A);
• BF (x)- the subset of the output channels for which the output is different

from zero, assigned to the output F (x)(BF (x) ⊆ B).

The way a component works is described in Fig. 4, or simplified in Fig. 5.
The following definitions are introduced:

(a): The function F is consistent if forx = z ⇒ F (x) = F (z), for any
streams of messages x and z.

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 57

Fig. 5 A simplified scheme of the way a software component works

Fig. 6 A simplified scheme for a deterministic behavior of F

The function F is consistent if for identical inputs, identical outputs
are obtained.

(b): The function F is causal if for any n natural the following condition
is fulfilled: x(n) = z(n)⇒ F (x)(n) = F (z)(n).[9]

If the function F is causal then it is also consistent. The processing
time for a causal function is τ = 0. Such a component can not be
constructed. We call it ideal.

(c): The function F is strictly causal if for any n natural the following
condition is fulfilled: x(n) = z(n)⇒ F (x)(n + 1) = F (z)(n + 1).[9]

We consider F (x)(0) = F (z)(0).
A real component is always strictly causal, meaning that the output

at the moment tn+1 corresponds to the input at the moment tn. This
component can be implemented because the processing time is τ > 0.

(d): The function F is realizable if there is a function strictly f : Xn →
Y m such that for any input x we havefx ∈ Fx (the output determined
by f belongs to the set of the outputs determined by F).[9]

We denoted by fx the set of messages assigned by the function f to
the output channels, for the input x.

A function f with fx ∈ Fx for any input leads to a deterministic
behavior of the function F (Figure 6).

(e): The function F is fully realizable if it is realizable and for any input
x there are p functions strictly causal f i

x : Xn → Y m, i = 1, ..., p such
that [9] Fx = ∪p

i=1f
i
x

This property guarantees that for every output there is a strategy
(a deterministic behavior) that produces this output (Figure 7).

58 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 7 Graphical description of a fully realizable function F

Fig. 8 Two composed components

Fig. 9 Two composed components seen as one

(f): The functionF is time-independent if the timing of the messages in
the input streams does not influence the messages in the output streams
but only their timing. [9]

4.1.2. Composition Rules. Channels are assumed to have a type from a given set
of types T assigned. A type is a name for a set of data elements. We consider the
function type that assigns a corresponding type from the set T to each channel
from the set C (type: C → T).

Definition: Two components that implement the functions F1 and F2, are said
to be composed if output channels of the first component are used as input for
the second one (See Figure 8).

Remarks:
• Finally the two components can be seen as one (Figure 9).

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 59

Fig. 10 Three composed components

Fig. 11 A detailed view of two composed components

• The definition can be restated for more than two components (Figure
10).

We can say that the composition of two components is reduced to the existence
of common elements in the sets B1 and A2, where B1 represents the set of output
channels of the first component A2 represents the set of input channels of the
second component. We can state that two components are composed if B1

⋂
A2 �=

Φ.
Condition. Two channels, one output B1

n and one input A2
m, can be used for

the composition of the components if and only if type (B1
n) = type(A2

m).
Consider two composed components (Figure 11).
The following properties can be stated:
a) A = A1

⋃
(A1B1), B = B2

⋃
(B1A2) , C = A

⋃
B.

b) Considering that the processing time for the first component is τ1 and for
the second one τ2, the processing time of the composed component is, τ = τ1 + τ2,
for the worst case

F =

⎧⎨
⎩

F1, if Ax ⊆ AA1 and BF (x) ⊆ (BB2);
F2, if Ax ⊆ (AA1) and BF (x) ⊆ B2;
F1 ◦ F2, if AAA− x ⊆ A1 and BF (x) ⊆ B2.

c) Using the notations from the first part of the article we describe the function
that implements the composed component as follows:

60 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 12 A one input-one component

Fig. 13 Synthesis of the proposed visualization model

Remarks:

• F ◦
1 F2 means that for an input x we get: x→ F1(x)→ F2(F1(x)) ≡ F (x)

• The function described above does not include all cases. For example,
the function is not defined for Ax = A and BF(x) = B. These cases are
solved by decomposition, in order to fit into the given description.

4.2. The Visualization Pipeline Using Components. Consider the case of
one input -one output component. The function F describing the component is
considered to be time-independent (definition (f)). Two working steps can be
revealed: at moment t0 a message is introduced into the input channel and at
moment t1 the result is read from the output channel (Figure 12)

We considered that the implemented services are consistent (definition (a)).
The component is strictly causal (definition (c)) and fully realizable (defini-
tion (e)) because the strictly causal function needed is F .

The reference model introduced to describe the visualization process contains
three distinct steps (Figure 13).

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 61

Fig. 14 A component-based visualization system

Suppose that each step/function is performed by an independent component.
Then the visualization pipeline becomes the one in figure 14. The components
should take into account the scientific visualization criteria, meaning that the
Mat(),Map(),Rep() functions implemented by the components should be injective
and Vis() should be bijective.

A further decomposition can be performed. Each component can be obtained
from the composition of two or more components depending on the visualization
process. A personalized visualization system is obtained at this level.

4.3. Example: Visualization of natural gas reservoir using a component
based visualization system. In order to present a detailed component based
visualization system we consider the example of a natural gas reservoir. A nonuni-
form data set obtained using drills is visualized. The data set is processed using
two paths (Figure 15).

The filter component transforms the nonuniform input data into a uniform
data set using the geological characteristics of the underground and the methane
concentration. The filter also performs the sub-sampling of the data set. One of
the paths includes the intersection of the data set with a plane. The generation
of the isosurfaces represents another step of the modeling level.

The colors, the light, the position of the camera and other properties are set at
the logical visualization level. A human-computer interface (HCI) allows the user
to change the properties without interfering with the data flow.

Finally, two objects that can be rotated, translated and zoomed are obtained
(Figure 16): one used for the dimensional exploration of the deposit and another
for the visualization of the level lines. (The presented images were obtained using
the VTK library, and the components were implemented using Tcl/Tk)

5. Conclusion

The paper addresses the issue of component-based scientific visualization sys-
tems. The visualization process validation criteria are presented in detail and a
reference model for the visualization systems is proposed. The paper supports the
idea that a component- based architecture solves most of the standard/commercial

62 DUMITRU RADOIU AND ADRIAN ROMAN

Fig. 15 The architecture of a custom made system used to visualize a natural gas
reservoir

visualization system problems. It should be noted that the introduction of the
component-based technology does not solve lead automatically to the wide spread
of customizable scientific visualization systems unless a critical mass is reached.
The theory is supported by a detailed example of a visualization application of a
natural gas reservoir.

References

[1] Upson C., Faulhaber, Jr. T., Kamins D., Laidlau D., Schelgel D., Vroom J., Gurwitz R.,
van Dam A., The Application Visualization System: A Computational Environment for
Scientific Visualization, Computer Graphics and Applications, vol. 9, nr.4, 1989.

[2] Radoiu D., Roman A., Modelarea procesului de vizualizare, in Tehnologii Avansate Aplicatii
in educatie, Editura Universitatii Petru Maior, 1999, p.86-101

[3] Kaufman Arie, Nielson G., Rosenblum L. J., The Visualization Revolution, IEEE Computer
Graphics, July 1993, p. 16-17.

[4] Hibbard W., Dyer C., Paul B., A lattice Model for Data Display, Proceedings of IEEE
Visualization ’94, 1994, pp. 310 - 317.

[5] Hibbard Williams L., Dyer Charles R., Brian E. Paul, Towards a Systematic Analysis for
Designing Visualizations, Scientific Visualization, IEEE Computer Society, 1997, pp. 229 -
251.

[6] Radoiu D., Scientific Visualization of Experimental Data, Ph.D.Thesis, Universitatea Babes
Bolyai, 1999.

SCIENTIFIC VISUALIZATION OF EXPERIMENTAL DATA 63

Fig. 16 The visualization of the natural gas reservoir

[7] Radoiu D., On Scientific Visualization Systems Design, Studia, 1998.
[8] MacKinlay, Automating the Design of Graphical Presentations of Relational Information,

ACM Transactions on Graphics, Vol.5, Nr.2 1986, pp.110-141.
[9] M.Broy, Software Concept and Tools, Springer-Verlag, 1998, 57-59.

[10] D. Radoiu, Vizualizarea Stiintifica a Datelor Experimentale, Editura Universitatii Petru
Maior, 2000.

Petru Maior University of Tirgu Mures

E-mail address: dradoiu@uttgm.ro

Polytechnic University of Bucharest

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

EXTENDING STATECHARTS FOR CONCURRENT OBJECTS
MODELING

DAN MIRCEA SUCIU

Abstract. Object-oriented concurrent programming is a methodology that
seems to satisfy nowadays requirements for complex applications develop-
ment. The fundamental abstractions used in this methodology are concur-
rent (or active) objects and protocols for passing messages between them.
Statecharts seem to be one of the most appropriate ways of modeling the be-
havior of concurrent objects. Based on statecharts we defined an executable
formalism, called scalable statechart, for effective modeling of object-oriented
concurrent applications with respecting of homogeneous object model.

Key words: object-oriented concurrent programming, reactive sys-
tems, statecharts.

1. Introduction

Object-oriented concurrent programming is based on object-oriented program-
ming methodology, which is known at this moment as a top methodology for
developing reusable applications. This methodology is conceptually simple and
wide applicable and is based on two fundamental concepts:objects (that identify
knowledge) and message passing (that is an unified protocol for communicating
between objects).

The idea of building programming languages that can integrate the object- ori-
ented programming mechanisms with concurrency mechanisms is very attractive.
To achieve an optimal integration of these mechanisms is very useful to identify ob-
jects as activity units and to associate synchronizing code at the message passing
level. These objects are often called concurrent objects, active objects oractors.
The result of this unification is the integration of all the object-oriented program-
ming and concurrency concepts and it allow the programmer not to be explicitly
involved in establishing the synchronization discipline.

In section 2 we will describe and detail the key concepts of the object-oriented
concurrent programming. Section 3 contains the structural description of a general
concurrent (active) object that belongs to homogeneous object model, based on
studies realized on over 100 object-oriented concurrent languages [SUC98].

Statecharts represent a visual formalism for describing states and transitions
in a modular fashion, enabling nesting, orthogonality and refinement [HAR87],

65

66 DAN MIRCEA SUCIU

[OMG99]. Statecharts are used for specifying objects behavior in designing com-
plex systems. In section 4 we propose an extension of statecharts for modeling the
behavior of concurrent (active) objects. The formal description of our statechart,
called scalable statechart, proves its consistency and executability.

2. The context of object-oriented concurrent programming

In object-oriented concurrent programming a system is viewed as a physical
simulation model of real or conceptual world behavior. This physical model is
defined with a particular programming language and is materialized through an
application.

Objects are key elements of object-oriented concurrent programming and they
represent real or abstract entities with clear defined role into a system. An ob-
ject has identity, state and behavior. All that an object knows (state) and can
do (behavior) is expressed by sets of properties (orattributes) and operations (or
methods). The state of an object is given by the values of its properties. The
operations implement the object’s behavior and they are procedures or functions
that eventually modify the value of properties.

The object-oriented concurrent applications are composed by a set of objects
that interact and communicate between them through messages. A message is a
request for execution of an object’s operation and it is composed of three elements:
the identity of the receiver object, the name of the requested operation and a list
of parameters. The mechanism of message passing allows objects to comunicate
between them even if they are in different processes, contexts and/or computers.
Because the entire activity of an object is revealed by its operations, the mechanism
of message passing can express all the possible interactions between objects.

The process of identification of sets of objects with common properties and be-
haviors is called classification. The class is another key concept of object-oriented
concurrent programming and represents the abstraction of the common elements
(properties or operations) shared by a set of objects and describes their implemen-
tation.

The objects are concrete representations of classes and the process of building a
particular object based on its class definition is called instantiation. The concur-
rent feature of a programming language represents the capacity of that language
to express a potential parallelism. The object-oriented concurrent languages al-
low building applications where two or more operations are parallely executed, in
distinct threads.

Based on the nature of relation between objects and threads, the concurrent
object models can be classified in three categories: orthogonal, homogeneous and
heterogeneous [PAP89].

In orthogonal approach the objects and threads are viewed as independent con-
cepts. The objects are not implicitly protected by concurrent operation calls. Thus

EXTENDING STATECHARTS FOR CONCURRENT OBJECTS MODELING 67

the protection of the internal state is explicitly realized through low-level synchro-
nization mechanisms, like semaphores or conditional critical regions [PHI95].

The homogeneous approach introduces the concept of concurrent (or active)
object. An active object is an object that controls and schedules the execution of
its operations. Active objects own threads, which in most homogeneous object
models are implicitly created when a message is received. These objects may or
may not be implicitly protected by external concurrent calls and contain specific
mechanism for explicit protection of their internal state (method guards, behavior
abstractions, enable sets etc [PHI95]). The logical conditions used in synchronizing
the concurrent operations of active objects are called synchronization constraints.

In heterogeneous approach there are two kinds of objects: active and passive.
Passive objects not own threads, are not protected (implicitly or explicitly) by
external concurrent calls and their operations are executed in threads owned by
caller objects.

3. The homogeneous concurrent object model

As we stated in section 2, the active objects that belong to homogeneous con-
current object models can control and schedule the receiving messages to protect
their internal state by concurrent operation calls. The protection is implicit, when
mechanisms with external control are used (monitor-like mechanisms) or explicit,
in case of mechanisms with mixed or reflective control (method guards, enable sets
etc) [SUC98].

In figure 1 is presented the structure of a general active object. The inter-
face manager is a special entity located at each active object level. This entity
controls and schedules the received messages and is materialized into a particu-
lar programming language by a distinct thread, a locking mechanism or a special
object encapsulated in the kernel of active objects.

The interface manager controls the messages handling through asynchronous
executions of associated operations based on object’s state, synchronization con-
straints values and/or current executed operations. The messages scheduling is
achieved through a special structure called messages queue, which retains all re-
ceived and not handled messages. The interface manager, the messages queue, the
properties and the synchronization constraints are not externally visible. Further-
more, just a subset of operations is visible and this subset represents the interface
of the active object.

4. Scalable statecharts

In this section we define an extension of statecharts formalism for modeling
the behavior of active objects corresponding to homogeneous object model. We
define the scalable statecharts in an incremental way, starting from finite state ma-
chines (that we will call level 0 scalable statecharts) and adding elements to handle

68 DAN MIRCEA SUCIU

Figure 1. The structure of a general active object

the depth, orthogonality etc. For each intermediary statechart, the configuration
and execution notions will be defined. The approach of definitions is a composi-
tional one, where the execution of a statechart can be expressed by the executions
of its components. The scalable statecharts represent an original way of model-
ing active objects behavior. They are closely related with particular concurrent
object-oriented concepts, like messages, operations, properties orsynchronization
constraints. Therefore, the scalable statecharts are specialized versions of state-
charts used in reactive systems modeling and they extend UML statecharts with
specific elements of homogeneous object model presented in section 3.

4.1. Level 0 scalable statecharts (SS0). Definition 1. A level 0 scalable
statechart of a class K is a tuple: SS0

K = (M, S, s0, SF , T ; saC), where:

• M - is a finite set of messages. We will consider, without affecting the
generality, that the messages signature do not contain parameters. The
generalization of statecharts considering messages parameters is imme-
diately and does not affect the semantics of statecharts execution. We
will use ⊥ to symbolize the empty message.
• S - is a finite, non-empty set of states,
• s0 ∈ S - is the initial state,

EXTENDING STATECHARTS FOR CONCURRENT OBJECTS MODELING 69

• SF is a finite set of final states. When SF is empty, the modeled objects
can not destroy themselves.
• T ⊆ S × M × (S ∪ SF) is a finite set of transitions. A transition

(s′, m, s′′) ∈ T means that if an object is in state s′ and receives the
message m then, after handling of message m (in fact, after terminating
of execution of the attached operation), the object will be in state s′′.
• sa ∈ S - the active state of the statechart in a given moment,
• C ∈M∗ is a finite sequence of messages, and models the messages queue

of an active object. We will figure with C = m0̂ Cr, where m0 is the
first message of the sequence and Cr represents the rest of sequence (the
symbol ̂ denotes the operation of concatenation).

Figure 2 contains an example of a SS0 statechart and its visual representation.
The structure of the modeled class (Bottle) is defined in the same figure using
UML notation.

The first five elements of SS0 form the static component and they describe
the structure of the statechart. These five elements are shared by all objects of
class K for which SS0

K is defined and they are not modified by objects execution.
The dynamic component consists of active state sa and messages queue C and
not describes the objects behavior. We will use the dynamic component for the
execution of statechart.

Definition 2. The configuration of a SS0 statechart is a tuple: (s,a m 0̂Cr) ∈
S ×M∗, where sa is the active state and m0 is the first message from queue C at
a given moment. The initial configuration of a SS0 statechart is given by tuple
(s0,⊥).

The execution of an active object modeled with a SS0 statechart lay in sequen-
tial interpretation of messages from the queue C. The interpretation of a message
implies the modifying of statechart configuration or the returning of that message
in the queue C.

Definition 3. The interpretation of a SS0 statechart configuration is a func-
tion: δ0 : S ×M∗ → (S ∪ SF)×M∗,

δ0(sa, m0̂ Cr) =

⎧⎨
⎩

(s′, C′
r), if ∃(sa, m0, s

′) ∈ T
(sa, C′

r), if there is no (s1, s2 ∈ S : (s1, m0, s2) ∈ T
(sa, C′

r̂m0), otherwise

In parallel with the interpretation of a configuration, the queue C may suffer
some modifications. In the above definition of function δ0 it is possible that Cr �=
C′

r (in general, C′
r = CR

r , where R ∈ M∗ represents the sequence of messages
received by an object in the time of interpretation).

The interpretation of a SS0 configuration models the functionality of the in-
terface manager of active objects. A message will be accepted and its attached
operation is executed if the message labels a transition that leaves the active state
or if it does not appear in any transition label. Otherwise, the message is returned

70 DAN MIRCEA SUCIU

Figure 2. Graphical representation of SS0statecharts

in the message queue. When it exists more than one transition labeled with the
same message which leaves the active state, the selection of the interpreted tran-
sition is non- deterministic. To avoid the non-determinism from statecharts is
possible to attach priorities to transitions.

Definition 4. The execution of a SS0 statechart is a finite or infinite sequence
of configuration interpretations, starting from the initial configuration, and it is
denoted by:

(so,⊥) δ0−→ (s1, m1̂ Cr1)
δ0−→ ...

δ0−→ (sk, mk Ĉrk) δ0−→ ...,

where s0, s1, , sk, .. ∈ S, m1, ..., mk, ... ∈ M and Cr1, ..., Crk, ... ∈ M∗. The execu-
tion is finite if a final state becomes an active state.

A possible execution of an object of class Bottle defined in figure 2 is:

EXTENDING STATECHARTS FOR CONCURRENT OBJECTS MODELING 71

(Empty,⊥) δ0−→ (Empty, < Fill >< Fill >< Capacity >) δ0−→
(Full, < Fill >< Capacity >< Break >) δ0−→
(Full, < Capacity >< Break >< Fill >) δ0−→
(Full, < Break >< Fill >) δ0−→ (F, < Fill >).
The message queue C described in definition 1 models a particular mechanism

for choosing the next handled message. This mechanism was selected to sim-
plify the description of interpretation and execution notions. In general, the syn-
chronization mechanisms used in object-oriented concurrent languages are more
complex, and allow attaching priorities to messages or have particular policies
of selecting of the right message. These mechanisms can be modeled by replac-
ing the queue C with the pair (C′, pol), where C′ ∈ M∗ and pol is a function
pol : M∗ → M that describes the choosing policy of a message from the set of
received messages, modeled by C′. In this case, in all previous expressions the
message m0 will be replaced with pol(C′).

4.2. Level 1 scalable statecharts (SS1). We will attach to SS0 statecharts the
notions of depth and orthogonality introduced in [HAR87]. Because these exten-
sions allow objects to be in more than one state, in distinct orthogonal compo-
nents, we will extent the definitions of configuration, interpretation and execution
of statecharts.

The notions of depth and orthogonality are modeled in SS1 through a hetero-
geneous tree. The root of the tree and the intermediary nodes from even levels are
states and the nodes from odd levels are orthogonal components (figure 3). We
consider that all states have at least one orthogonal component and each orthogo-
nal component can have zero or more states. The three types of states introduced
in [HAR87] can be unitary modeled in this way:

• the simple states are states that have only one empty orthogonal com-
ponent,
• the composed states (OR-states) are states that have only one non- empty

orthogonal component,
• the orthogonal states (AND-states) are states that have more than one

non-empty orthogonal components.

Definition 5. A level 1 scalable statechart of a class K is a tuple: SS1
K =

(M, S, O, sR, SF , (stSucc, stInit, ortSucc), T ; Sa, C), where:

• M - is a finite set of messages,
• S - is a finite, non-empty set of states,
• O - is a finite, non-empty set of orthogonal components,
• sR ∈ S - is the root of the states hierarchy,
• SF is a finite set of final states. To preserve the consistency of our

model we will presume that all the final states will be successors of

72 DAN MIRCEA SUCIU

Figure 3. Graphical representation of SS1 statechart

EXTENDING STATECHARTS FOR CONCURRENT OBJECTS MODELING 73

orthogonal components from the root state sR. Thus we will eliminate
the termination transitions proposed in UML [OMG99] without affecting
the modeling power of the statecharts.
• functions that defines the states hierarchy:

– stSucc : O → ℘(S ∪ SF), where stSucc(o) = s1, s2, ..., sn is the set
of sub-states of the orthogonal component o, with the restriction
that ∀o1, o2 ∈ O if we have stSucc(o1) ∩ stSucc(o2) = φ;

– stInit : O\{o : stSucc(o) = φ} → S, stInit(o) = s0 ∈ stSucc(o),
the initial sub-state of the orthogonal component o (stSucc is de-
fined only for non-empty orthogonal components);

– ortSucc : S → ℘(O)\{φ}, where ortSucc(s) = o1, o2, ..., om is the
set of the orthogonal components owned by the state s, with the
restriction that ∀s1, s2 ∈ S we have ortSucc(s1) ∩ ortSucc(s2) = φ
(a state has at least one orthogonal component);

• T ⊆ ℘(S\{sR})×M × ℘(S\{sR}) is a finite set of transitions. A tran-
sition (s′1, ..., s′i), m, s′′1 , ..., s′′j) ∈ T means that if an object is in source
states s′1, ..., s

′
i ∈ S\{sR} (each source state is located in distinct orthog-

onal components of a state from S) and receives a message m then, after
executing the operation associated with m, the object will enter in des-
tination states s′′1 , ..., s′′j ∈ S\{sR}. The root state can’t be source nor
destination for a transition and the sets of source states and destination
states do not contain states that include each other.
• Sa ⊆ S ∪ SF - is the set of active states of the statechart in a given

moment with the restriction that ∀sa ∈ Sa, ortSucc(sa) = φ,
• C ∈M∗ is a finite sequence of messages, and models the messages queue

of an active object.

If an instance of class Bottle (modeled in figure 3) is in state Full then, cor-
responding to the states hierarchy, the instance it is in states Normal and Bottle
too. To define in a unique way the configuration of a SS1 statechart we extended
the notion of active state. In definition 5 an active state of a SS1 statechart has
the property that is a simple state (has only one empty orthogonal component).
Corresponding to definition 5, for the example from figure 3 the only states that
can become active are Empty, Full and F .

Definition 6. A pseudo-active state is a composed state that contains an active
sub-state. We denote with Spa ⊆ S the finite set of pseudo-active states of a SS1

statechart in a given moment.
A SS1 statechart can have more than one active state, each located in distinct

orthogonal components of a pseudo-active state. It is obviously that the root state
sR is always pseudo-active.

If a composed state is a destination state of a transition and the transition is
triggered, then its initial sub-states will be activated. We will define a recursive

74 DAN MIRCEA SUCIU

function that will be used to determine the active states when a statechart enters
in a composed state.

Definition 7. The activation function is a function that associates to each
state s ∈ S its simple or final sub-states that will be implicitly activated when an
SS1 statechart enters in state s. We will denote this function: activ : S ∪ SF →
℘(S ∪ SF),

activ(s) =
{

s, if (s ∈ S, ortSucc(s) = 0, stSucc(0) = Φ)0rs ∈ SF⋃
0∈ortSucc(s) activ(stInit(0)), otherwise

The global activation function, denoted by:

Activ : ℘(S
⋃

SF)→ ℘(S
⋃

SF), Activ(S′) =
⋃
s∈S

activ(s),

associates to a set of states their implicitly activated sub-states.
Definition 8. A configuration of a SS1 statechart is a tuple (Sa, m0̂ Cr),

where Sa ⊆ S is the finite set of active states and m0̂ Cr ∈ M∗ represents the
content of the messages queue C in a given moment. The initial configuration of
a SS1 statechart if given by (active(sR),⊥).

Definition 9. The interpretation of a SS1 statechart configuration is a func-
tion: δ1 : ℘(S)×M∗ rightarrow℘(S

⋃
SF)×M∗,

δ1(Sa, m0̂ Cr) =

⎧⎨
⎩

(Activ(S”), C′
r), if(S′, m0, S”) ∈ TsiS′ ⊆ Sa ∪ Spa

(Sa, C′
r), if∃S1, S2 ⊆ S : (S1, m0, S2) ∈ T

(Sa, C′
r̂m0), otherwise

Definition 10. The execution of a SS1 statechart is a finite or infinite sequence
of configuration interpretations, starting from the initial configuration, and is de-
noted:

(active(sR),⊥) δ1→ (S1, m1̂ Cr1)
δ1→ ...(Sk, mk Ĉrk) δ1→ ...,

where S1, ..., Sk, .. ⊆ S, m1, ..., mk, ... ∈ M and Cr1, ..., Crk, ... ∈ M∗. The execu-
tion is finite if the set of activated states contains at least a final state.

A possible execution of the statechart for an object of Bottle class (figure 3) is:

(Empty,⊥) δ1→ (Empty, < Empty >< Fill >< Capacity >) δ1→
(Empty, < Fill >< Capacity >< Empty >) δ1→
(Full, < Capacity >< Empty >< Break >) δ1→
(Full, < Empty >< Break >) δ1→ (Empty, < Break >) δ1→ (F,⊥).

5. Conclusions

In the third section we ascertained a general structure of active objects. The
implementation of this model is retrieved in most concurrent object-oriented lan-
guages that use synchronization mechanisms that belong to homogeneous concur-
rent object models. In section four we propose a formalism for modeling of active

EXTENDING STATECHARTS FOR CONCURRENT OBJECTS MODELING 75

objects behavior, called scalable statechart, that is based on statecharts visual for-
malism described by Harel in [HAR87]. The executability of scalable statecharts is
a fundamental feature for automatization of active objects implementation. More-
over, the executability allows testing, simulating and debugging of active objects at
the same level of abstraction as their behavioral model. In this way the conceptual
gap between the formal models of active objects behavior and debugging at their
source code level is avoided. Because the scalable statechart was defined having
in mind a general model of active objects, it can be used for code generation in
any concurrent object-oriented programming language that contains communica-
tion and synchronization mechanism belonging to homogeneous approach. This
property gives more flexibility in translation of behavioral models in source code.

References

[BAR98] F. Barbier, H. Briand, B. Dano, S. Rideau, The Executability of Object-Oriented Finite
State Machines, Journal of Object-Oriented Programming, SIGS Publications, 4(11),
pp. 16-24, jul/aug 1998.

[BEE94] Michael von der Beeck, A Comparison of Statecharts Variants, Formal Techniques
in Real-Time and Fault-Tolerant Systems,, L. de Roever & J. Vytopil (eds.), Lecture
Notes in Computer Science, vol. 863, pp. 128-148, Springer-Verlag, New York, 1994.

[COO94] S. Cook, J. Daniels, Designing Object Systems - Object-Oriented Modelling with Syn-
tropy, Prentice Hall, Englewood Cliffs, NJ, 1994.

[DOR96] Dov Dori, Unifying System Structure and Behavior Through Object-Process Analysis,
Journal of Object-Oriented Programming, SIGS Publications, 4(9), pp. 66-73, jul/aug
1996.

[DOU99] Bruce Powel Douglas, UML Statecharts, Embedded Systems Programming, jan. 1999,
available at http://www.ilogix.com/fs prod.htm.

[GAN93] D. Gangopadhyay, S. Mitra, ObjChart: Tangible Specification of Reactive Object Be-
havior, Proceedings of ECOOP’93, Oscar M. Nierstrasz (ed.), Lecture Notes in Com-
puter Science, vol 707, pp. 432-457, Springer-Verlag, 1993.

[HAR87] David Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Com-
puter Programming, vol.8, no. 3, pp. 231-274, June 1987.

[HAR96] D. Harel, A. Naamad, The STATEMATE Semantics of Statecharts, ACM Transactions
on Software Engineering and Methodology, 5(4), pp. 293-333, 1996.

[HAR97] D. Harel, E. Gery, Executable Object Modeling with Statecharts, IEEE Computer,
30(7):31-42, Jul. 1997.

[MAN74] Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974.
[OMG99] Object Management Group, OMG Unified Modeling Language Specification, ver. 1.3,

June 1999 available on Internet at http://www.rational.com/.
[PAP89] Michael Papathomas, Concurrency Issues in Object-Oriented Programming Lan-

guages, in D. Tsichritzis, editor, Object Oriented Development, pg. 207-245, University
of Geneva, Switzerland, 1989.

[PHI95] Michael Phillipsen, Imperative Concurrent Object-Oriented Languages, Technical Re-
port TR-95- 049, International Computer Science Institute, Berkeley, aug. 1995.

[SCU97] Marian Scuturici, Dan Mircea Suciu, Mihaela Scuturici, Iulian Ober, Specification of

active objects behavior using statecharts, Studia Universitatis ”Babes Bolyai”, Infor-
matica, Vol. XLII, no. 1, pp.19-30, 1997.

76 DAN MIRCEA SUCIU

[SUC98] Dan Mircea Suciu, Reuse Anomaly in Object-Oriented Concurrent Programming, Stu-
dia Universitatis ”Babes-Bolyai”, Informatica, Vol. XLII, no. 2, pp. 74-89, 1997.

“Babes-Bolyai” University, Faculty of Mathematics and Computer Science, RO-3400

Cluj-Napoca, Romania

E-mail address: tzutzu@cs.ubbcluj.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

HALF SYNCHRONIZED TRANSITION SYSTEMS

FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

Abstract. In a distributed system, defined as a collection of interconnected
nodes, the underlying role is taken by the communication subsystem. It func-
tions using common protocols which addresses the problem of heterogeneity
and homogeneity of the participants nodes, and contributes to the perfor-
mance of the whole system. No matter what type: synchronous orasynchronous,
the communication software has to be flexible, reusable and adaptable. The
formal methods used to model these protocols should reflect these qualities.
In this paper, we extend the classical, synchronous and asynchronous mes-
sage passing models, proposing an intermediary class of models, starting from
some limitations, in time and space, imposed upon the entities involved. We
named the new model, half-synchronized transition systems.

Keywords: distributed systems, distributed algorithms, transition sys-
tems, synchronous, asynchronous message passing

1. Introduction

In a distributed system, defined as a collection of interconnected nodes, the
underlying role is taken by the communication subsystem. We cannot have dis-
tributed computing if there is no communication. Also, the communication proto-
cols addresses the problem of heterogeneity and homogeneity of the participants
nodes, and together with the communication media, have a profound influence on
the performance of the whole system. These observations lead to the conclusion
that the communication software, used to design distributed applications, must
have important qualities, among which we mention: flexibility, efficiency, reusabil-
ity, adaptability.

Also, the communication medium and applications domain properties have a
major influence on designing the communications protocols. These protocols can
be selected as a compromise between some competing properties. In order to
achieve its main purposes, as the underlying system for collaborating between
distributed applications, the communication protocols take many forms and they
can be modelled in different ways, using abstract languages.

Besides the introduction, this paper is structured in two main parts. The first
part presents the two major ways synchronous and asynchronous-, of modeling
communication, between distributed processes, using transition systems. In the
second part, the paper extends the models mentioned above and proposes an

77

78 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

intermediary class of models, starting from some limitations, in time and space,
imposed upon the entities involved. We named the new model, half-synchronized
transition systems, and we will describe it both intuitively and formally.

We begin the presentation with the definitions of some background terms, that
we will use in describing the models.

Definition 1.1. A distributed system is an interconnected collection of autonomous
nodes, which can be computers, processes or processors [7]. The nodes must at least
be equipped with their own private control and they are capable of exchanging in-
formation. A more restrictive definition [6] considers a system to be distributed
only if the existence of autonomous nodes is transparent to users of the system.

We consider a sequence of processes P = (p1, p2, ..., pN), Spi the set of the
possible states associated with the process pi, Ipi the initial states of the process
pi(∀i ∈ 1, ..., N) and a set of messages M , which can be transmitted (sent and
received) between the processes.

In the following, the relations ” >I ”, ” >S ”, ” >R ” associated with the
internal, send, respectively receive events, will be presented.

Definition 1.2. The binary relation ” >I ” defined on Spi × Spi , contains the
following pairs of states of the process pi: (spi , upi), which means that an internal
event of the process pi is produced, the process pi changes its state from spi to upi ,
but the communication subsystem remains unchanged.

Definition 1.3. The ternary relation ” >S ” defined on Spi ×M × Spi , contains
the following triples: (spi , m, upi), where the process pi executes a send event with
the message m and changes its state from spi to upi .

Definition 1.4. The ternary relation ” >R ” defined on Spi ×M × Spi , contains
the following triples: (spi , m, upi), where the process pi executes a receive event
with the message m ∈M and changes its state from spi to upi .

Definition 1.5. The local algorithm of a process pi is a quintuple
(Spi , Ipi , >

I , >S , >R), where all the 5 elements were defined above .

Definition 1.6. A distributed algorithm is defined as a collection of local algo-
rithms, for the sequence of processes P = (p1, p2, ..., pN) and the set of messages
M . These messages can be exchanged between processes, using pairs of send-receive
events with the same message m ∈M .

Definition 1.7. A configuration is an N + 1-uple of the following form: C =
(sp0, ..., spi , ..., spN , M ′), where ∀i ∈ {1, ..., N} spi is a state from Spi , and M ′ ⊆M
is a queue associated with the messages sent, but not received yet (messages which
are in transit [1]).

Definition 1.8. An initial configuration is a configuration of the following form:
I = (sp0 , ..., spi , ..., spN , M), where spi ∈ Ipi∀i ∈ {1, ..., N} and the messages queue
M is empty.

HALF SYNCHRONIZED TRANSITION SYSTEMS 79

In the following, the transition relations “→pi” and “→pipj ” on C ×C, will be
defined:
Definition 1.9. The transition relation “→pi” is defined as the set of the following
pairs of configurations: ((sp0 , ..., spi , ..., spN , M1), (sp0 , ..., spi , ..., spN , M2)), where
one of the following conditions take place:

• (spi , upi) ∈>I and M1 = M2,
• ∃m ∈M such that (spi , m, upi) ∈>S and M2 −m = M1.
• ∃m ∈M such that (spi , m, upi) ∈>R and M1 −m = M2.

Definition 1.10. The transition relation “→pipj”, is defined as the set of the
following pairs of configurations: ((sp0 , ..., spi , ..., spj , ...), (sp0 , ..., upi , ..., upj , ...)),
where ∃m ∈ M , (spi , m, upi) ∈>S ∧(spj , m, upj) ∈>R. In this case, there is an
exchange of messages from the process pi to the process pj. The process pi produces
the message m, initiating a send event, and the process pj consumes the message,
which leads to a receive event.

2. Synchronous and asynchronous transitions systems

Definition 2.1. The behavior of a distributed algorithm can be described using a
transition system, defined as a triple T = (C,→, I), where:

• C is the set of the possible configurations.
• “→” is a binary relation from C × C, called transition relation, and it

is defined as a reunion of the transition relations “→pi”, associated with
the N processes.
• I is the set of initial configurations.

Definition 2.2. We define a terminal configuration, a configuration c ∈ C which
doesn’t have a successor configuration (there is no configuration c1 ∈ C which
verify c→ c1).
Definition 2.3. An execution of T is defined as a maximal sequence
E = (c0, c1, c2, ...), where c0 ∈ I and ∀i, ci → ci+1.

Putting it into words, the execution of a transition system can be defined as
a sequence of transitions between related configurations, sequence which can be
infinite or ended with a terminal configuration. The transitions are the events
associated with processes, events that don’t affect only the states of the processes,
but also they influence and can be influenced by the queue of messages.

The transitions systems allow modeling the transmission of messages between
distributed processes, in two possible ways: synchronous and asynchronous trans-
missions. We will describe each of the two models textually and formally.

Transition systems with asynchronous message passing. In the asynchro-
nous messages transmission, each send event and its corresponding receive event
are independent. It means that a process initiates a send event, without waiting

80 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

for a process to receive the produced message. On the other hand, a process ini-
tiates a receive event, without knowing which process produced the message (see
[1,3,7]).

We consider a collection of processes P = (p1, p2, ..., pN) which collaborate using
a distributed algorithm A.

Definition 2.4. The transition system induced by the distributed algorithm, using
a communication model based on asynchronous message passing, is the system
T = (C,→, I), constructed according to the following steps:

(0) The local algorithms are: pi = (Spi , Ipi , >
I
pi

, >S
pi

, >R
pi

)
(1) The set of configurations are N-tuples of the following form:

C = (sp0 , ..., spi , ..., spN , M ′)

, where ∀i ∈ {1, ..., N}, spi ∈ Spi , M
′ ⊆M

(2) The transition relation ”→ ” is defined as in the general case of transi-
tion systems.

(3) The set of initial configurations I is composed of N + 1-tuples of the
form: I = (sp0 , ..., spi , ..., spN , M ′), where spI ∈ Ipi∀i ∈ {1, ..., N}. The
message queue M ′ is empty.

In this model, only the process which initiates the send event, respectively the
process which initiated the receive event changes its state.

Transition systems with synchronous message passing. In the synchro-
nous message passing, each send event and its corresponding receive event are
coordinated so as they form a single transaction of the system. In this scenario a
process can transmit a message only if the destination process is ready to accept
the message (see [4,5,7]).

This transition systems model also uses a collection of processes P = (p1, p2,
..., pN) which collaborate using a distributed algorithm A.

Definition 2.5. The transition system induced by the distributed algorithm, using
a communication model based on synchronous message passing, is the system T =
(C,→, I), constructed according to the following steps:

(0) The local algorithms are: pi = (Spi , Ipi , >
I
pi

, >S
pi

, >R
pi

)
(1) The set of configurations are N -tuples of the following form:

C = (sp0 , ..., spi , ..., spN),

where ∀i ∈ {1, ..., N}, spi ∈ Spi

(2) The transition relation “→” is defined as a reunion of the transition
relations “→pi” and “→pi,pj”, ∀i, j ∈ {1, ..., N}.

(3) The set of initial configurations I is composed of N -tuples of the form:
I = (sp0 , ..., spi , ..., spN), where spi ∈ Ipi∀i ∈ {1, ..., N}

HALF SYNCHRONIZED TRANSITION SYSTEMS 81

In the configuration obtained after processing the transition of the system, both
the process which initiated the send event and the process which got the receive
event, change their states.

3. Transition systems with half-synchronous message passing

3.1. Overview. This paper proposes a new communication model, which repre-
sents an intermediary class between the synchronous and asynchronous communi-
cation models. We call this new model half-synchronized transition system and we
will describe it using both a formal and a textual definition.

This new communication protocol also uses a transition system as the underly-
ing modeling instrument, but the model imposes some constraints on the transition
system’s entities.

Thus, the message queue M is considered to be limited in space and time. The
limitation in space means that the queue has a limited size, which coincides with
the maximum number of messages that can be queued.

On the other hand, the limitation in time imposes that a message can be kept
in the queue only for a certain period of time.

We consider that the process, which initiated the send event, establishes this
period of time, because, as a ”creator” of the message, it knows how important
the message is. If the message is not consumed, during the given period of time,
by another process, the message is automatically destroyed by a manager process,
associated with the queue.

We represent the messages queue as a 4-tuple: (M, ds, dm, mq), where dm is the
maximum size of the queue, ds is the current size of the queue (dm ≥ ds), and M
contains the messages: M = {m1, m2, ..., mds}. Each message is characterized by
a “type” id, a “content” ct and a maximum period of life-time t, ∀i ∈ {1, ..., N},
mi = (idi, cti, ti). The receiving processes can retrieve the expected messages,
using the type information, which could abstract different characteristics of a mes-
sage, as well as its source or its destinations.

If the first three components of the queue are passive entities, the fourth ele-
ment, noted with qm (queue manager) is an active process, which controls events
like sending or receiving messages, as well as the life- time of the messages (de-
stroying them, when their life-time period expires).

The queue manager have 3 possible states:

• qmw waiting for a connection of client process (a sending or receiving
process)
• qmrwaken-up by a request of a client process
• qme processing a request of a process or destroying expired messages.

The main difference between the half-synchronized and the previous two mod-
els, is that the functionality of the new model comprises the interaction between

82 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

the distributed processes and the queue manager and the activity of the queue
manager.

Another important difference of this new model, compared with the preceding
two, concerns the events of the communication subsystem. Thus, the send and
receive events presume new scenarios and new events like connect, acknowledge,
wait, store, retrieve and destroy are added. These events concern either the inter-
action between the distributed processes and the queue manager or the activity
of the queue manager. They are also associated with binary relations between
related configurations of the system.

3.2. Events describing the interaction between the distributed processes
and the queue manager.
Definition 3.1. The relation “→C

pi
” is defined as the set of the following pairs of

configurations:

((sp0 , ..., spi , ..., spN , (M1, ds, dm, qmw)), (sp0 , ..., upi , ..., spN , (M1, ds, dm, qmr))),

where the process pi is executing a connect event to the message queue: ∃m ∈ M
of type connect-send or connect-receive, (spi , m, upi) ∈>S and (qmw, qmr) ∈>I .

Definition 3.2. The relation “→A
pi

” is defined as the set of the following pairs of
configurations:

((sp0 , ..., spi , ..., spN , (M1, ds, dm, qmr)), (sp0 , ..., upi , ..., spN , (M1, ds, dm, qme))),

where the queue manager qm acknowledges the process pi that it can initiate a
send or receive event: ∃m ∈ M of type acknowledge, (qmr, m, qme) ∈>S and
(spi , m, upi) ∈>R.
Definition 3.3. The relation “→W pi” is defined as the set of the following pairs
of configurations:

((sp0 , ..., spi , ..., spN , (M1, dm, dm, qmr)), (sp0 , ..., upi , ..., spN , (M1, dm, dm, qmw))),

where the queue manager qm execute a wait event, announcing the process pi that
the queue is full: ∃m ∈M of type wait, (qmr, m, qmw) ∈>S and (spi, m, upi) ∈>R.
Definition 3.4. The relation “→S

pi
” is defined as the set of the following pairs of

configurations:

((sp0 , ..., spi , ..., spN , (M1, ds, dm, qme)), (sp0 , ..., upi , ..., spN , (M1, ds, dm, qm′
e))),

where the process pi initiates a send event with the message m and qm starts
processing it: ∃m ∈M , (spi , m, upi) ∈>S, (qmp, m, qm′

e) ∈>R .

Definition 3.5. The relation “→R
pi

” is defined as the set of the following pairs of
configurations:

((sp0 , ..., spi , ..., spN , (M1, ds, dm, qme)), (sp0 , ..., upi , ..., spN , (M2, ds2, dm, qm′
e))),

where the process pi initiates a receive event with the message m and qm starts
processing it: ∃m ∈M1, (qmp, m, qm′

e) ∈>S and (spi , m, upi) ∈>R.

HALF SYNCHRONIZED TRANSITION SYSTEMS 83

3.3. Events describing the activity of the queue manager.

Definition 3.6. The relation “→S
qm” is defined as the set of the following pairs

of configurations:

((sp0 , ..., spi , ..., spN , (M1, ds, dm, qme)), (sp0 , ..., spi , ..., spN , (M2, ds+1, dm, qmw))),

where qm store the received message m in the queue: M2 − {m} = M1 and
(qme, qmw) ∈>I .
Definition 3.7. The relation ”→R

qm ” is defined as the set of the following pairs
of configurations:

((sp0 , ..., spi , ..., spN , (M1, ds, dm, qme)), (sp0 , ..., spi , ..., spN , (M2, ds−1, dm, qmw))),

where qm retrieves the expected message m from the queue: M1 − {m} = M2 and
(qme, qmw) ∈>I .
Definition 3.8. The relation ”→D

qm is defined as the set of the following pairs of
configurations:

((sp0 , ..., spi , ..., spN , (M1, ds, dm, qme)), (sp0 , ..., spi , ..., spN , (M2, ds−1, dm, qmw))),

where qm destroys a message m ∈M1, whose life-time expired (m = (id, ct, t) and
t = 0): M1 − {m} = M2and(qme, qmw) ∈>I .

Now, we are ready to define the half-synchronized transition systems.

3.4. Definition of the half-synchronized transition system. As in the pre-
vious models, we also consider a collection of processes P = (p1, p2, ..., pN) which
collaborate using a distributed algorithm A.
Definition 3.9. The transition system induced by the distributed algorithm A,
using a communication model based on half-synchronous message passing, called
half-synchronous transition system is the system S = (C,→, I), constructed ac-
cording to the following steps:

(0) The local algorithms are: pi = (Spi , Ipi , >
I
pi

, >S
pi

, >R
pi

)
(1) The set of configurations are N -tuples of the following form:

C = (sp0 , ..., spi , ..., spN , (M ′, ds, dm)),

where ∀i ∈ {1, ..., N}, spi ∈ Spi , M ′ ⊆ M , where the messages queue
was defined above

(2) The transition relation ”→ ” is defined as a reunion of a transition rela-
tions “→C

pi
”, “→A

pi
”, “→W

pi
” “→S

Pi
”, “→R

pi
”, “→S

qm”, “→R
qm”, “→D

qm”,
associated to the corresponding events, which comprise the functionality
of the system.

3.5. Space and time limitations scenarios. The following scenarios describe
the half-communication model defined above:

84 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

Time limitation.
1.

(sp0 , ..., spi , ..., spN , (M1, ds, dm, qmw))→C
pi

(sp0 , ..., upi , ..., spN , (M1, ds, dm, qmr))→A
pi

(sp0 , ..., vpi , ..., spN , (M1, ds, dm, qme))→S
pi

(sp0 , ..., zpi , ..., spN , (M1, ds, dm, qm′
e))→S

qm

(sp0 , ..., zpi , ..., spN , (M1 ∪ {m = (id, ct, t)}, ds + 1, dm, qmw))
and
(sp0 , ..., spj , ..., spN , (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qmw))→C

pj

(sp0 , ..., upj , ..., spN , (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qmr))→A
pi

(sp0 , ..., vpj , ..., spN , (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qme))→R
pi

(sp0 , ..., vpj , ..., spN , (M2 ∪ {m = (id, ct, t′)}, ds2, dm, qm′
e))→R

qm

(sp0 , ..., zpj , ..., spN , (M2, ds2 − 1, dm, qmw)) and t′ < t,
or
2.

(sp0 , ..., spi , ..., spN , (M1, ds, dm, qmw))→C
pi

(sp0 , ..., upi , ..., spN , (M1, ds, dm, qmr))→A
pi

(sp0 , ..., vpi , ..., spN , (M1, ds, dm, qme))→S
pi

(sp0 , ..., zpi , ..., spN , (M1, ds, dm, qm′
e))→S

qm

(sp0 , ..., zpi , ..., spN , (M1 ∪ {m = (id, ct, t)}, ds + 1, dm, qmw))
and
(sp0 , ..., spN , (M2 ∪ {m = (id, ct, t′), t′ = 0}, ds2, dm, qme))→D

qm

(sp0 , ..., spN , (M2, ds2 − 1, dm, qmw)).
The first scenario refers to the case where a send event has a corresponding

receive event with the same message m ∈M .
In the following, we will enumerate the sequence of transitions, described for-

mally above. The process pi initiates a connect event to the queue, the queue
manager returns an acknowledge that the queue can store new messages, the pro-
cess pi sends its message m (whose life-time is t) and continues its job and the
queue manager stores the received message in the queue. Later (t′ < t), a process
pj initiates a connect event, and after being acknowledged by the queue manager,
it initiates a receive event with the message m, and the queue manager retrieves
this message from the queue.

The second scenario differs from the first, in that the message m is not re-
trieved from the queue for a receiving process, hence the queue manger destroys
the message, when its life-time period expires.

Space limitation.
(sp0 , ..., spi , ..., spN , (M1, dm, dm, qmw))→C

pi

(sp0 , ..., upi , spj , ..., spN , (M1, dm, dm, qmr))→W
pi

(sp0 , ..., vpi , ..., spN , (M1, dm, dm, qmw))

HALF SYNCHRONIZED TRANSITION SYSTEMS 85

The space limitation scenario is similar to the producer-consumer problem. A
process pi tries to connect to the queue in order to receive the message m, but the
queue manager initiates a wait event, telling the process, that the queue is full.
So, the process waits until some free space will be available in the queue.

3.6. An example. We give an example of a real problem, which can be solved
using the half-synchronous model. The problem concerns the activity -supplying-
storing-selling merchandise- of a store of perishable nutriments.

In order to give a formal model to this problem, we consider only two processes:
P = (p1, p2), where p1 is a ”supplier” and p2 is a ”buyer”. The messages set M
contains the products prod1, prod2, ... (for simplicity, we consider that prodi

includes a given quantity of the product i) and a subset M ′ of internal, protocol
messages. Hence, M = {prod1, prod2, ...} ∪M ′. The configurations, used in this
particular model, take the following form: (sp1 , sp2 , (M1, dc, dm, qm)) , where sp1

and sp2 are the current states of the ”supplier”, respectively ”buyer” processes,
M1 contains the products from the store, dc is the number of the products and
dm is the maximum capacity of the store and qm is the manager & seller of the
store.

Now, let’s detail the two scenarios starting from the general case, for the “store
model”:

Time limitation
1. (sp1 , sp2 , (M1, ds, dm, qmw))→C

pi

(up1 , sp2 , (M1, ds, dm, qmr))→A
pi

(vp1 , sp2 , (M1, ds, dm, qme))→S
pi

(zp1 , sp2 , (M1, ds, dm, qm′
e))→S

qm

(zp1 , sp2(M1 ∪ {m = (id, ct, 20d)}, ds + 1, dm, qmw))
and (sp1 , sp2 , (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qmw))→C

pj

(sp1 , up2 , (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qmr))→A
pi

(sp1 , vp2 , (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qme))→R
pi

(sp1 , vp2 , (M2 ∪ {m = (id, ct, 10d)}, ds2, dm, qm′
e))→R

qm

(sp1 , zp2 , (M2, ds2 − 1, dm, qmw)) and t′ < t,
or
2. (sp1 , sp2 , (M1, ds, dm, qmw))→C

pi

(up1 , sp2 , (M1, ds, dm, qmr))→A
pi

(vp1 , sp2 , (M1, ds, dm, qme))→S
pi

(zp1 , sp2 , (M1, ds, dm, qm′
e))→S

qm

(zp1 , sp2 ,(M1 ∪ {m = (id, ct, 20d)}, ds + 1, dm, qmw))
and
(zp1 , sp2 , (M2 ∪ {m = (id, ct, 0))}, ds2, dm, qme))→D

qm

(zp1 , sp2 ,(M2, ds2 − 1, dm, qmw)).

86 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN

The first scenario corresponds to the situation when a provided product m is
bought, before its life-time period expires. The supplier offers a product m to the
store, which expires after t = 20 days. The communication protocol (connect-
acknowledge-send-store, respectively connect-acknowledge-receive- retrieve), be-
tween the supplier p1 or the buyer p2 and the store manager qm, conforms to the
general case, but with particular participants.

The second scenario models the situation when the availability period for the
product m expires before anyone have bought it. So, the store manager throws
away this product.

Space limitation
(sp1 , sp2 , (M1, dm, dm, qmw))→C

pi

(up1 , sp2 , (M1, dm, dm, qmr))→W
pi

(vp1 , sp2 , (M1, dm, dm, qmw))
Finally, if there is no more free space in the store, the supplier p1 should wait

until someone buys something from the store, in order to make its own offer.
As a final remark, we point out that, this particular model can be enhanced, in

order to filter the products offered by the suppliers. In this case, the store manager
decides if a provided product suits its needs.

4. Conclusion

The communication subsystem constitutes the main part of any distributed
system. The protocols models, used to describe the functionality of the communi-
cation software, should be flexible, reusable, adaptable. In the first part, the paper
presents the two most important possibilities synchronous and asynchronous-, of
modeling communication between distributed processes, using transitions systems.
In the second part, the paper extends the models mentioned above and proposes an
intermediary class of models, called half-synchronized transition systems, starting
from some limitations, in time and space, imposed on the entities involved.

References

[1] Andrews G.R. Synchronizing Resources, ACM Transactions on Computer Systems, Number
4, October, 1981, pp. 305-330

[2] Boian F.M., Programare distribuită ı̂n Internet, Editura Albastra, 1998
[3] Fred B. Schneider, Synchronization in Distributed Programs, ACM Transactions on Computer

Systems, Volume 4, Number 2, April, 1992, pp. 125-148
[4] Lamport L., Time, clocks, and the ordering of events in a distributed system, Communica-

tions of the ACM, 21, 7, july 1978, pp. 125-133

[5] Spirakis G.P. Real-Time Synchronization of Interprocess Communications, ACM Transac-
tions on Computer Systems, Volume 6, Number 2, April, 1994 pp. 215-238

[6] Tannenbaum A.S. Distributed Operating Systems, Prentice Hall, 1995
[7] Tel G. Introduction to Distributed Algorithms, Cambridge Press, 1994

“Babeş-Bolyai” University of Cluj-Napoca, Department of Computer Science

E-mail address: {florin,cori}@cs.ubbcluj.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

AN EVOLUTIONARY ALGORITHM FOR THEOREM PROVING
IN PROPOSITIONAL LOGIC

D. DUMITRESCU AND M. OLTEAN

Abstract. Standard theorem proving algorithms normally have exponential
complexity. This drawback could be eliminated within the Evolutionary com-
putation framework. In this paper an evolutionary theorem proving method
is proposed. The method is designed for propositional logic but may be ex-
tended to first order logic.

The proposed evolutionary approach represents a new paradigm of au-
tomated theorem proving. Method complexity is polynomial. Reducing time
complexity with respect to non-evolutionary methods is an important feature
of the proposed approach.

A population of theorems is evoluated using two search operators: re-
combination and mutation. Recombination operator implements Modus Po-
nens inference rule. Mutation corresponds to the substitution operation.

1. Introduction

It is well known (see [3, 4, 5]) that the problem of deciding a given formula in
propositional logic is (or not) a theorem in an NP problem. As we do not know if
there exists a polynomial algorithm for solving NP problems they are considered
as hard problems.

Many algorithms for automated theorem proving have been proposed. Robin-
sons resolution method ([7]) is one of the most powerful methods. However, res-
olution has the great disadvantage of being NP complete. This means that on
a standard (sequential) computer the algorithms run a time that is bound by an
exponential function of the input sequence length.

Evolutionary Algorithms (EAs) (see [1, 2]) are useful tools for solving complex
optimization and search problems. EAs can also be successfully used to solve NP
problems.

In this paper we propose an evolutionary algorithm, called ETP, for automated
theorem proving within the propositional logic.

A model of propositional calculus consisting from three axioms and two infer-
ence rules is considered. The inference rules of the model are Modus Ponens (MP)
and substitution. Our goal is to determine if a given well-formed formula R is (or
it is not) a theorem. To solve this problem the ETP algorithm will be used.

87

88 D. DUMITRESCU AND M. OLTEAN

A substitution operation by which every variable from an axiom is replaced
by a well-formed formula is used to obtain theorems from axioms. The replacing
formulae in a substitution are generally different. In what follows by a substitution
we designate the formulae used for replacement in an axiom or in a theorem.

2. Evolutionary model for theorem proving

Within a generation t a population S(t) of substitutions is used to obtain the-
orems from the system axioms. These substitutions may remain constant during
the search process or may be evoluated by an evolutionary procedure. In the first
case we have:

S(t) = S, t = 1, 2, ...,

where t is the generation index.
Each substitution population S(t) generates a theorem population T (t).
Theorems from T (t) will be modified using variation operators. In our model

considered variation operators are recombination and substitution. Recombination
operator corresponds to the application of Modus Ponens rule and substitution
plays the role of mutation operator.

Using MP from two parent theorems an offspring is obtained. As usual parent
recombination is guided by a fitness function.

For a given theorem T all the possible mating candidates are established. A
candidate partner TP of T has to have the form

TP = T → A,

where A is a well formed formula.
Let us note that the Modus Ponens rule can be applied only for pairs of theorems

having a particular form.
Tournament selection, or other selection procedures may be used to find the

mating partner of T . Let T ′ be the tournament winner. From T and T ′ an
offspring is obtained applying MP inference rule. Parent T ′ is considered to be
dominant.

Within survival dominant parent is compared with its offspring. The winner
will enter the new generation.

3. Evolutionary algorithm

Let R be a formula representing a target (or tentative) theorem. Our aim is to
decide if R is a theorem or it is not.

Evolutionary theorem proving (ETP) algorithm starts with an arbitrary pop-
ulation of substitutions. At the first step we randomly make substitutions in the
axioms. A substitution operator realizes this operation. Performing substitution
operation an initial population of theorems is obtained.

EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 89

In the next phase the theorem population is evolved. New theorems are obtained
using MP inference rule. The obtained theorems are modified via a mutation
operator (i.e. by performing substitutions in theorems).

As MP rule implies two theorems, we can assimilate MP inference rule with
recombination operator. Theorems obtained by recombination are subsequently
modified by the effect of substitution operator.

After a number of generations the algorithm stops with the answer “Yes” or
“No”. Yes means that that the target formula R exists in the last theorem pop-
ulation. Therefore R is a theorem. No means either that the formula is not a
theorem, or our algorithm fails to determine it. The algorithm may fail to prove
either due to a bad chosen population of substitutions, or due to an incomplete
exploration of solution space by search operators.

If the algorithm result is Yes then the deduction chain representing the proof
of theorem R may be established.

When the output of the procedure is No then we may restart the algorithm
trying to prove the theorem T , where

T =∼ R.

If the new output is Yes then definitively R is not a theorem. Otherwise we can
not make a decision about the truth value of the assertion R is a theorem.

4. Individual representation

Each well-formed formula of propositional logic can be represented as a tree.
The non-terminal nodes contain logical connectives and the terminal ones contain
the propositional variables. Each node has maximum two descendants. If the
node contains the connective “→” then the node has two descendents. If the node
contains the negation connective “∼” then it has to have just one descendent. If a
node contains a propositional variable, then it is a leaf and it has no descendents
at all.

In our approach axioms, substitutions and theorems will be represented as trees.
Therefore the search space for our problem is the set of trees describing well-formed
formulae. This representation is similar to that used in Genetic Programming (see
[6]).

To limit the dimension of the search space we have to reduce the tree depth and
the number of propositional variables used in substitutions. However, the number
of the propositional variables in a substitution must be higher than the number of
propositional variables in the target theorem R.

Denote by h(R) the target theorem height.
As by recombination the height of the trees decrease, the height of a substitution

tree must be no less than h(R)− 1. Therefore we have

h(s) + 2 ≥ h(R),

90 D. DUMITRESCU AND M. OLTEAN

Figure 1 Tree for formula (A→∼ (B → A))

Figure 2 Tree for axiom A1 A→ (B → A)

for each substitution s. (We added two because the axioms have the height one or
two.)

Example. Let us consider the formula F = (A →∼ (B → A)). The tree corre-
sponding to formula F is depicted in Figure 1.

Let us denote by A the system axioms. We may interpret each axiom as a
potential solution of the problem (an individual in the search space).

The system axioms are:
A1:: A→ (B → A).
A2:: (A→ (B → C))→ ((A→ B)→ (A→ C)).
A3:: (A→ B)→ (∼ B →∼ A).

The three system axioms are represented by the trees as depicted in Figures
2-4.

We may assume the set A contains three particular candidate solutions (or
individuals) corresponding to the three axioms from propositional logic. We may
consider A as a static solution population.

Moreover two different evolving populations S and T will be considered where:
• S is a substitution population. It contains some randomly generated

formulae.

EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 91

Figure 3 Tree for axiom A2 (A→ (B → C))→ ((A→ B)→ (A→ C)))

Figure 4 Tree for axiom A3 (A→ B)→ (∼ B →∼ A)

• T is a theorem population. Each individual in this population is a theo-
rem. Each population member will be obtained by a substitution or by
a crossover operation performed on another two theorems.

Remark. By an axiom, substitution or theorem we will generally mean the
corresponding trees representation.

5. Selection and Search Operators

We use two search (variation) genetic operators: MP recombination and sub-
stitution. Let us observe that the substitution operator may be interpreted as a
special, problem-dependent type of mutation.

5.1. Selection. Each member of theorem population is selected for recombina-
tion. Each individual x in the theorem population is considered as a recessive
parent. The corresponding dominant parent is chosen from the possible candi-
dates using a tournament selection procedure.

92 D. DUMITRESCU AND M. OLTEAN

Figure 5 Substitution S1

5.2. MP Recombination Operator. MP recombination operator implements
the Modus Ponens rule. We recall that Modus Ponens may be expressed as

A, A→ B � B

Let us consider two theorems A and A− > B represented as trees. Performing
crossover (which corresponds to Modus Ponens rule) the offspring B is obtained.
Of course B it is also represented as a tree.

From a biological point of view we may consider the first parent (theorem A)
as the recessive parent. This interpretation is justified because no part of the first
parent is present in the offspring. The second parent (namely A → B) is the
dominant one. The offspring is a part of its dominant parent.

5.3. Substitution Operator. Substitution (or mutation) operator implements
the substitution inference rule. Substitution combines an individual from the
substitution population with an individual from the axiom set or from the theorem
population. The obtained offspring is a theorem and it may be added to the
theorem population.

5.4. Survival. Several survival mechanisms may be considered (see [1]). Some
survival strategies are generational and some are steady-state. In this paper we
consider a steady-state survival mechanism. Each offspring is compared with its
dominant parent. The best from the parent and offspring will become a member
of the new population.

6. Example

Let us consider a substitution S1 where propositional variables are replaced as
follows:

• A: is replaced by the formula A.
• B: is replaced by the formula B → A.
• C: is replaced by A.

EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 93

Figure 6 Substitution S2

Figure 7 Tree of theorem T1

The trees describing substitution S1 are represented in Figure 5.
Consider also a substitution S2 specified as follows:

• A: is replaced by the formula A.
• B: is replaced by the formula B
• C: is replaced by A.

The trees describing substitution S2 are depicted in Figure 6.
Let us consider the target theorem R is

R : A→ A.

Our aim is to prove the target theorem R using the substitution S1 and S2 only.
In this respect S1 and S2 will be applied to the axioms.

By using substitution S1 in axiom A we obtain the theorem T1. The tree
representing this theorem is depicted in Figure 7.

By using S1 and A2 we obtain a theorem T2. The corresponding tree is depicted
in Figure 8.

By using substitution S2 in axiom A1 we obtain a theorem T3. The correspond-
ing tree is depicted in Figure 9.

94 D. DUMITRESCU AND M. OLTEAN

Figure 8 Tree of theorem T2

Figure 9 Tree of theorem T3

MP recombination of theorems T2 and T1 produces the offspring theorem T4.
The process is depicted in Figure 10.

By MP recombination of theorems T3 and T4 we obtain the target theorem R.
The corresponding recombination process is depicted in Figure 11.

Therefore we have obtained a complete proof of theorem R.

7. Fitness Function

From the previous example we may observe that the target theorem R can be
proved if and only if in the theorem population arises an individual T such that
R may be reached from the root of the tree T by following the right sub-trees of
T only.

Fitness of a theorem T may be defined by using the tree representing this
theorem.

We may define the handle H(T) of a theorem T by the distance from the root
node (of the tree representing T) to the right sub-tree representing the target
theorem R. Our aim is to minimize the theorem handle.

EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 95

Figure 10 MP recombination of theorems T1 (recesive) and T2 (dominant)

Figure 11 MP recombination of theorems T3 (recesive) and T4 (dominant)

96 D. DUMITRESCU AND M. OLTEAN

Fitness f(T) of a theorem T may be defined as

f(T) =
1

H(T) + 1
.

The fitness is to be maximized.
The fitness of a theorem that does not contains the target theorem R as a right

(sub)sub-tree is considered to be zero.

Examples. For the theorem T1 represented in Figure 10 has the handle

H(T1) = 2.

The fitness of T1 is
f(T1) = 1/3.

For the theorem T4 (the offspring depicted in Figure 10) has the handle

H(T4) = 1.

The fitness of T4 is
f(T4) = 1/2.

For the target theorem R has the handle

H(R) = 0.

The fitness of Ris
f(R) = 1.

For the theorems T2 (Figure 8) and T3 (Figure 9) has the handle

H(T2) = H(T3) =∞.

The fitness of T2 and T3 is

f(T2) = f(T3) = 0.

8. ETP procedure

In this section an evolutionary theorem proving method based on previous con-
siderations rule is presented. The method uses a function ETPF that evolves a
population of candidate theorems. If the function output is Yes i.e. R is a theorem
then the ETP algorithm stops. Otherwise we try to prove the formula ∼ R is a
theorem. For this respect function ETPF is used again.

Evolutionary theorem proving (ETP) algorithm may be outlined as below:

EVOLUTIONARY ALGORITHM FOR THEOREM PROVING 97

ETP ALGORITHM
begin

if ETPF (R) = Y es {R is a theorem}
then print deduction chain;
else if ETPF (∼ R) = Y es {R is not a theorem}

then print R is not a theorem
else {we can not say if R is or is not a theorem}

print we can not make a decision about R
endif

endif
end

Function ETPF is outlined as follows:

function ETP F(R theorem); {returns Yes if R is theorem otherwise return No}
begin

Initialization:
generate randomly a substitution population (S);
generate a theorem population T (t) using substitutions from S;
{apply substitutions from S}
Evolving theorems:
t = 0;
while t <= MaxGen do

for each individual c in T (t)
find b - the best mate for c;
z = crossover(b, c);
if fitness(z) > fitness(c)
then discard c from the theorem population T (t);

add z to the theorem population T (t)
endif

endfor
Mutate chromosomes from the current theorem population T (t);
t = t + 1;

endwhile
end

9. Concluding remarks and further research

A new evolutionary approach of automated theorem proving is proposed. The
method is designed for propositional logic. This algorithm illustrates a new phi-
losophy of theorem proving: According to our knowledge a similar approach does
not exist in the literature.

We consider that using the proposed method some well-known drawbacks of
classical method may be eliminated.

98 D. DUMITRESCU AND M. OLTEAN

Numerical experiments have shown the effectiveness of the proposed algorithm.
The method uses a heuristic fitness function.
The proposed approach will be extended for the first order logic.

References

[1] Bck, T., Fogel, D.B., Michalewicz, Z. (Eds.), (1997), Handbook of Evolutionary Computa-
tion, Institute of Physics Publishing, Bristol, and Oxford University Press, New York.

[2] Dumitrescu, D., Lazzerini, B., Jain, L.C., Dumitrescu, A., (2000) Evolutionary Computa-
tion, CRC Press, Boca Raton, FL.

[3] Fitting, M., (1990), First-Order Logic and Automated Theorem Proving, Springer-Verlag,
New- York.

[4] Gallier, J.H., (1986), Logic for Computer Science, Foundation of Automatic Theorem Prov-
ing, Harper and Row.

[5] Garey, M.R., Johnson, D.S., (1978), Computers and Intractability: A Guide to NP- com-
pleteness, W.H. Freeman and Company, New York.

[6] Koza, J.R., (1992), Genetic Programming, MIT Press, Cambridge, MA.
[7] Robinson, J.A., (1965), A Machine-Oriented Logic Based on the Resolution Principle, Jour-

nal of ACM, vol 12, pp 23-41.

Acknowledgments

The authors thank the anonymous reviewer for pertinent observations.

“Babeş-Bolyai” University of Cluj-Napoca, Department of Computer Science

E-mail address: {ddumitr,moltean}@cs.ubbcluj.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

SEMANTIC REPRESENTATION OF THE QUANTITATIVE
NATURAL LANGUAGE SENTENCES

ADRIAN ONET AND DOINA TATAR

Abstract. In this paper we propose the description of two methods of quan-
titative natural language sentences representation with the use of the first
order logic. Both of these methods extend the classic first order logic. One
of these two methods was introduced by J. Allen [4] who extends the clas-
sic logic by admitting sets as objects (method 2). The other method, more
restrictive, (introduced by the authors of this paper) extends the quantifier
semnification - specially the existential one - thus the quantifier would be
able to express exact quantities (method 1). This method is a specialization
of Allen’s method.

In the second part of this paper we describe an implementation of the
first method by the lambda calculus and also the transformation of these
expressions in first order formulas using Prolog predicates.

1. First order predicate logic as representation language for

quantitative natural language sentences

Among the most used methods in natural language representation is the classic
first order predicate logic, but unfortunately not all natural language sentences
can be represented using the classic first order predicate logic. This is the case
of quantitative sentences. For instance, a sentence like “Three men entered the
room” is quite difficult to represent by using the first order logic, because there are
more quantifiers in natural language that the universal and existential quantifiers.
A representation like:

∃X.(men(X) ∧ (∃Y.room(Y) ∧ enter(X, Y))

would not mean the same thing semantically speaking, there is no information in
this formula concerning the number of persons which entered the room.

We will describe two methods of extension for the classic first order logic in
order to allow the representation of the quantitative aspects in natural language.
The first method is weaker (it does not allow the representation of all quantitative
aspects) but its implementation is easier (one of its implementations is given in the
second part of this paper), and a second method which extends the representation
ontology in order to allow sets as objects.

99

100 ADRIAN ONET AND DOINA TATAR

1.1. First method. Let L = (Σ, F, A, R) be a first order predicate logic [3]:

Σ = V ∪ C ∪ (∪Fi) ∪ (∪Pi) ∪ {(,), ∀, ∃,∧,∨,→}
where V represents a set of symbols called variables, C represents a set of symbols
called constants, Fj represents a set of function symbols with the arity j, Pj

represents a set of predicate symbols with the arity j, {�, (,),∧,∨,→} represents
logic operators and ∃ and ∀ represent the logic quantificators, F represents a set
of well-formed formulas, A represents a set of axioms over L and R a set of rules
over L.

We can extend this logic by introducing a pair (M, R) where M represents a set
of numbers and R represents the order relation “<” over M . If E is the domain
of the logic and |E| is finite then M can be the set {1, ..., n} where |E| = n. If E
is infinite then we will create M such as |M | = |E|.

We introduce a new set of quantificators, {∃n|n ∈M} where ∃nx.(p(x)) means
that there exists exactly n x in E such that p(x). If we introduce the exclusive or
operator ⊗(p⊗ q ↔ (¬p ∧ q) ∨ (p ∧ ¬q)) we have:

∃x.p(x)↔ ⊗j∈M∃jx.p(x),

and it can also be proved that ∃nx.p(x)→ ∃x.p(x) is a theorem ∀n ∈M .
In addition, we introduce the following predicates to describe the relation be-

tween the elements of M:
p < q ← Rpq

greater(p, q)← ¬p < q
most(p)← |E|/2 < n
some(n) iff n ∈M
In actual discourse, the interpretation of the most will usually be relative to

some previously defined context. The most predicate can be rewritten to represent
the most concept in the natural language.

With this extension, a sentence like “Three men enter the room” would be
interpreted like

∃3X.(man(X) ∧ (∃1Y.room(Y) ∧ enter(X, Y))),

where the first quantificator ∃3 means that there is exactly 3 men who enter the
room and the second quantificator ∃1 means that the three men enter exactly one
room.

With this extension of the first order logic we can also represent inconsistent
knowledge expressed in natural language sentences. A sentence like “At least five
men walk” has the following interpretation:

∃nX.(man(X) ∧ (walk(X)) ∧ greater(n, 3)).

The disadvantage of this method is that it cannot represent sentences that
involve the interaction of two (or more) elements of the quantified set (for example

SEMANTIC REPRESENTATION OF THE NATURAL LANGUAGES SENTENCES 101

“Three men meet at four” – we will see that this kind of sentence can be represented
using the second method).

Even with this disadvantage this method can be used successfully to represent
quantitative sentences thanks to the easy implementation (see section 2).

1.2. Second method. This method has been introduced by J. Allen [4] and ex-
tends the ontology of the first order predicate logic to allow sets as objects. While
sets in general may be finite (such as the set consisting of John and Mary) or
infinite (such as the set o numbers greater then 7). In this method we will only
use finite sets. We also allow constants to denote sets. Thus S1 might be the set
S1 = {John, Mary}. The sets will be written in the form {y|P (y)}, which is the
set of all object that satisfy the expression P (y). The set of all men is {y|Man(y)}.
In addition, we introduce the following predicates to relate sets and individuals:

S1 ⊂ S2 iff all elements of S1 are in S2
x ∈ S iff x is a member of the set S

With setlike objects in the representation, we can produce an interpretation for
“Some men meet at four” as follows:

∃M : (M ⊂ {x|Man(x)} ∧Meet(M, 4PM))

that is, there is a subset of men M that met at three. In principle, sets are
allowed in all situation where individuals have been allowed. In practice certain
verbs require only sets or only individuals in certain argument positions. For
example, the verb meet requires its agent to be a set with more than one element,
as a single individual cannot meet. Other verbs require individuals and exclude
sets, and others allow both sets and individuals as arguments.

Consider the different formulas that arise from the collective/distributive read-
ings. There are two representation of the sentence ”Some men bought a suit”.
The collective reading would map to:

∃M1 : (M1 ⊂ {z|Man(z)} ∧ ∃s : (Suit(s) ∧Buy1(M1, s)))

that is there is a subset of the set of all men who together bought a suit. The
distributive reading involves some men individually buying suits and would be
represented by:

∃M2 : (M2 ⊂ {z|Man(z)} ∧ ∀m : (m ∈M2 ∧ ∃s : (Suit(s) ∧Buy1(m, s))))

Note that with the first method described earlier we have:

∃nX.(man(X) ∧ (∃1Y.(suit(Y) ∧ buy(X, Y)))),

which describes the distributive reading.
Note that the distributive and collective readings both involve a common core

meaning involving the subset of men. The only difference is weather you use the
set as a unit or quantify aver all members af the set.

102 ADRIAN ONET AND DOINA TATAR

The set-based representation can also be used to ensure that more that one
man bought a suit. To do this we introduce a new function that returns the
cardinality of set. For any given set S, let |S| be the number of elements in S.
Using arithmetic operators, we can now encode constraints on the size of sets. For
example, the meaning of “Three men entered the room” would be as follows (with
tense information omitted):

∃M : ((M ⊂ {y|man(y)} ∧ |M | = 3) ∧ ∀m : (m ∈M ∧ enter(m, room)))

by changing the restriction to |M | ≥ 3, we get the meaning of “At least three
men entered the room”, and so on. More problematic quantifiers can also be given
an approximate meaning using sets. For example we can use the most definition
from the first method (i.e. most is true if more than half of some set has a given
property), then “Most men smoke” might have the meaning:

∃M : ((M ⊂ {y|man(y)} ∧ |M | ≥ |{y|man(y)}|
2

) ∧ ∀m : (m ∈M ∧ smoke(m)))

In actual discourse, the interpretation of the quantified terms will usually be
relative to some previously defined set. For example the sentence “Most men
smoke” typically will refer to most of the men in a previously mentioned set rather
than to most of the men in the world. In other words, the sentence would not
claim that more than half of all men smoke, but that more than half the men in
a certain context (say in a railway station) smoke.

If we compare the previous two methods, we can observe that the second method
extends the first one, i.e. the first method works just at cardinality level of the
sets. That is the first method specifies only those aspects which can be represented
with the cardinality function in the second method, and the elements of the set
doesn’t interact with each other. For example the sentence “Mary eat two apples”
can be represented using both methods, with the first method, its interpretation
will be:

∃2X.(apple(X) ∧ eat(mary, X),

using the second method the sentence will be mapped as follows:

∃M : (M ⊂ {y|apple(y)} ∧ |M | = 2)∀m : m ∈M.eat(mary, m)

But the following sentence “Four men meet” have the following interpretation
using the second method:

∃M : (M ⊂ {x|Men(x)} ∧ |M | = 3) ∧Meet(M),

but it can not be represented using the first method, because this method doesn’t
introduce the set concept. In the next section we introduce an automate pro-
cess which associates semantic representation (first order predicate logic with the
extension introduced by the first method) for quantitative natural language ex-
pression.

SEMANTIC REPRESENTATION OF THE NATURAL LANGUAGES SENTENCES 103

2. An automate process for associating semantic representation of

quantitative natural language sentences

In this section we will use the lambda calculus as a national extension of first
order logic with the extension discussed in the first method and then we will give
an implementation of this lambda calculus in Prolog. In this section we use the
notation given by P. Blackburn and J. Bos in [2,3].

2.1. The Lambda Calculus. The lambda calculus is a natural extension of the
first order logic that allows us to bind variable using a new binding operator λ.
Occurrences of variables bound by λ should be thought of as placeholders for
missing information. An operation called β-conversion performs the required sub-
stitutions. The lambda operator marks missing information by binding variables.
Here is a simple lambda expression:

λx.man(x)

Here the prefix λx. binds the occurrence of x in man(x). In this example,
the binding of the free x variable in man(x) explicitly indicates that man has an
argument slot where we may perform substitutions.

Concatenation indicates that we wish to perform substitution. We’re using a
special symbol “@” to indicate concatenation. The following expresion:

λx.man(x)@vincent,

yields man(vincent).
The lambda expressions λx.man(x) and λy.man(y) are equivalent, all these

expressions are functors which when applied to an argument, replace the bound
variable by the argument. No matter which argument A we choose, the result of
applying any of the two expression to A and then β-converting is man(A). The
process of relabeling bound variables is called α-conversion. Consider the following
grammar:

s → np, vp.
np → det, noun.
det → ′every′.
noun → ′men′.
vp → ′cry′.

Now we can build the semantic representation for our first sentence “Every man
cries”. For this purpose we assign lambda expressions to different basic syntactic
categories, i.e.

′every′ : λP.λQ.∀x.(P@x→ Q@x)
′man′ : λY.man(Y)
′cries′ : λX.cry(X)

According to our grammar, a determiner and a common noun can combine to
form a noun phrase. For our analysis we will associate the NP node with the

104 ADRIAN ONET AND DOINA TATAR

Figure 1

functional application that has the determiner representation as functor and the
noun representation as argument, and then associate that with the verb phrase
(VP). Using a graphic representation this will look as the Figure 1 presents.

Now let’s take a look at how we represent quantitative sentences with lambda
calculus.We will give three examples of DCG (which will bind four general situ-
ations) to do this transformation for particular quantitative sentences (according
to the first method described in the previous section).

2.1.1. Definite quantity sentences. For the definite quantity sentence we will have
to represent with the lambda calculus the ∃n quantifier. This quantifier is mapped
by the following predicate: exists(n, X, formula(X)) where n represents the quan-
tity (as it’s described in the first method), X is a variable and formula(X) is a
formula which contains the variable X . The representation for the ∀ quantifier is
forall(X, formula(X)), where X and formula(X) have the same meaning as it
was shown.

Lambda expressions will be represented in Prolog as follows: lambda(L,F), where
L is intended to be a Prolog variable, while F is a first order formula or the Pro-
log representation of a lambda expression. For example the lambda expression
λA.men(A) will look in Prolog: lambda(A,men(A)). The concatenation will be rep-
resented in Prolog with the Prolog operator @ defined as:

:- op(950,yfx,@).

The indefinite sentences are given by the following determinants: one, two,
three, four, ..., three and half, etc. Each of this determinant will be replaced
by an expression ∃n where n represents the number denoted by the determinant.
For example ∃3.5 represents the determinant three and half. Let be the following
sentence “Three men enter the room”. In the following we describe a DCG who
will take such sentences (which describe definite quantities) and will give us the

SEMANTIC REPRESENTATION OF THE NATURAL LANGUAGES SENTENCES 105

lambda expression corresponding to that sentence:

s(NP@V P)→ np(NP), vp(V P).
np(Det@Noun)→ det(Det), noun(Noun).
vp(NP@IV)→ iv(IV), np(NP).

with lexical entries
noun(lambda(A, man(A))→ [men].
iv(lambda(B, lambda(C, enter(C, B)))→ [enter].
noun(lambda(C, room(C))→ [room].
det(lambda(D, lambda(E, exists(3, X, D@X&E@X))))→ [three].
det(lambda(F, lambda(G, exists(1, X, D@X&E@X))))→ [the].

where enter(A, B) express that A enter in B.
The construction of the first three lexical entries are obvious. Let’s now have a

look at the construction of the fourth clause:

det(lambda(D, lambda(E, exists(3, X, D@X&E@X))))→ [three].

These constructions yield that for any determinant which indicates a number, the
lambda expression corresponds to ∃n quantifier where n represents that number
(in our case n=3). In the last clause the determinat “the” denotes quantity equal
to 1, so it is processed like its predecessor clause.

So if we have the following goal (in Prolog):
?-np(Sem,[three men enter the room],[]).

the Sem will be bounded to (we used bracket for a clear see):
Sem=(lambda(D,lambda(E,exists(3,X, D@X&E@X)))@lambda(A,man(A))) @

(lambda(F,lambda(G,exists(1,X, F@X&G@X)))@lambda(C,room(C))) @

lambda(C,lambda(B,enter(B,C)))

In last section we will give a method to apply the β-conversion to a lambda ex-
pression and transform to a first order formula. Next we will show this mechanism
of β-conversion on the expression Sem.
1. Sem=(lambda(D,lambda(E,exists(3,X, D@X&E@X)))@lambda(A,man(A))) @

((lambda(F,lambda(G,exists(1,X, F@X&G@X)))@lambda(C,room(C))) @

lambda(C,lambda(B,enter(B,C))))

2. Sem=(lambda(E,exists(3,X, lambda(A,man(A))@X&E@X)))) @

((lambda(G,exists(1,X, lambda(C,room(C))@X&G@X)))) @

lambda(C,lambda(B,enter(B,C))))

3. Sem=(lambda(E,exists(3,X, man(X)&E@X)))) @

((lambda(G,exists(1,X, room(X))&G@X)))) @

lambda(C,lambda(B,enter(B,C))))

4. Sem=(lambda(E,exists(3,X, man(X)&E@X)))) @

((exists(1,X, room(X)& lambda(C,lambda(B,enter(B,C)))@X))))

5. Sem=(lambda(E,exists(3,X, man(X)&E@X)))) @

((exists(1,X, room(X)& lambda(B,enter(B,X))))))

// with an ?-conversion we will transform X in Y

6. Sem=(lambda(E,exists(3,X, man(X))&E@X)))) @

((exists(1,Y, room(Y)& lambda(B,enter(B,Y)))))

106 ADRIAN ONET AND DOINA TATAR

7. Sem=(exists(3,X, man(X)& (exists(1,Y, room(Y)& lambda(B,enter(B,Y))) @X)))

8. Sem=(exists(3,X, man(X)& (exists(1,Y, room(Y)& enter(X,Y)))

which represents the formula:

∃3X.(man(X) ∧ ∃1Y.(room(Y) ∧ enter(X, Y)))

which is (in the Skolem normal form)

∃3X.∃1Y.(man(X) ∧ room(Y) ∧ enter(X, Y))

With this method we can represent sentences like “John eats one and half apple”
and “The suit costs 400$”. But it cannot represent sentences like “Two men look
the same” and “Four kids fight with each other”.

2.1.2. Indefinite quantity sentences. In this part we’ll describe how indefinite quan-
tity sentences can be represented using the lambda calculus. The indefinite sen-
tences are given by the following determinants: most, number of, lot of ... For each
of this determinant we must construct a special predicate like the most predicate
which we defined in the previous section.

Let be the following sentence “Most people laugh”. In the following we’ll de-
scribe a DCG who will take such sentences (which describe indefinite quantities)
and will give us the lambda expression corresponding to that sentence:

s(NP@V P)→ np(NP), vp(V P).
np(Det@Noun)→ det(Det), noun(Noun).
vp(V)→ v(V).

with the lexical entries

noun(lambda(A, people(A))→ [people].
v(lambda(B, laugh(B)))→ [laugh].
det(lambda(C, lambda(D, exists(N, X, C@X&D@X&most(N)))))→ [most].

where the predicate most is defined in the previous section and laugh(B) express
that B laugh. Note that in this case (i.e. for indefinite quantity) we need a variable
N instead of a constant. N will denote the number and the predicate most will
tell us if that number is enough to represent the most concept.

So if we have the following goal (in Prolog):
?-np(Sem,[Most people laugh],[]).

the Sem variable will be bounded to:
Sem=(lambda(C,lambda(D,exists(N,X,C@X&D@X\&most(N))))@

lambda(A,people(A))@lambda(B,laugh(B))

The β-conversion on the expression Sem will be:
1. Sem=(lambda(C,lambda(D,exists(N,X,C@X&D@X\&most(N))))@

lambda(A,people(A))@lambda(B,laugh(B))

2. Sem=(lambda(D,exists(N,X,people(X)&D@X&most(N))) @lambda(B,laugh(B))

3. Sem=(exists(N,X,people(X)&laugh(X)&most(N))

SEMANTIC REPRESENTATION OF THE NATURAL LANGUAGES SENTENCES 107

which represents the formula:

∃NX.(man(X) ∧ laugh(X)∧most(N))

With this method we can represent sentences like “A number of people reads”,
“A lot of apples are green”, etc. But we cannot represent sentences like “Most
people meet at three”.

2.1.3. Restrictive quantity sentences. The restrictive sentences are given by the
following determinants: at least, minimum, maximum, at the most. For each of
this determinant we must construct a special predicate like the least/2 predicate
which we defined as follows:

Least(N, M)← N > M.

Let be the following sentence “At least four men cry”. The DCG is:

s(NP@V P)→ np(NP), vp(V P).
np(Det@Noun)→ det(Det), noun(Noun).
det(NP@Numeral)→ np(NP), numeral(Numeral).
np(Prep@Noun)→ prep(Prep), noun(Noun).
vp(V)→ v(V).

with the lexical entries
noun(lambda(A, man(A))→ [men].
v(lambda(B, cry(B)))→ [cry].
prep(lambda(C, C)→ [at]
noun(lambda(D, lambda(E, lambda(F, exists(N, X, E@X&
F@X&least(N, D))))))?[least]
numeral(lambda(G, G)@4)→ [four].

where cry(B) expresses that B cry.
So if we have the following goal (in Prolog):
?-np(Sem,[At least four men cry],[]).

the Sem variable will be bounded to (we used bracket for a clear see):
Sem=(((lambda(C,C)@ lambda(D,lambda(E,lambda(F,exists(N,X,E@X&F@X&least(N,D))))))

@ lambda(G,G)@4) @ lambda(A,man(A))) @ lambda(B,cry(B))

The β-conversion on the expression Sem will be:
1. Sem=((lambda(D,lambda(E,lambda(F,exists(N,X,E@X&F@X&least(N,D)))))

@ lambda(G,G)@4) @ lambda(A,man(A))) @ lambda(B,cry(B))

2. Sem=((lambda(D,lambda(E,lambda(F,exists(N,X,E@X&F@X&least(N,D)))))

@ 4) @ lambda(A,man(A))) @ lambda(B,cry(B))

3. Sem=(lambda(E,lambda(F,exists(N,X,E@X&F@X&least(N,4))))

@ lambda(A,man(A))) @ lambda(B,cry(B))

4. Sem=lambda(F,exists(N,X, lambda(A,man(A))@X&F@X&least(N,4)))@

lambda(B,cry(B))

5. Sem=lambda(F,exists(N,X, man(X)&F@X&least(N,4)))@ lambda(B,cry(B))

6. Sem=exists(N,X, man(X)& lambda(B,cry(B))@X&least(N,4))

7. Sem=exists(N,X, man(X)& cry(X))&least(N,4))

108 ADRIAN ONET AND DOINA TATAR

which represents the formula:

∃NX.(man(X) ∧ cry(X) ∧ least(N, 4))

With this method we can represent sentences like “At the most three men”, “John
eats maximum three apples”, etc.

2.2. Implementing Lambda Calculus. Of course, now we want to reduce this
complicated lambda expressions into readable first order formulas by carrying out
β-conversion. The following code does this (see [1, 2]):
betaConvert(Var,Result):- var(Var),!, Result=Var.

betaConvert(Functor@Arg,Result):-

compound(Functor),

betaConvert(Functor,ConvertedFunctor),

apply(ConvertedFunctor,Arg,BetaConverted),!,

betaConvert(BetaConverted,Result).

betaConvert(Formula,Result):-

compose(Formula,Functor,Formulas),

betaConvertList(Formulas, ResultFormulas),

compose(Result,Functor,ResultFormulas).

The first clause of the betaConvert/2 simply records the fact that variable cannot
be further reduced. The second clause does the most important things: it checks
whether the functor is complex term and then reduces it to a lambda expression.
If that succeeds, it applies the converted functor to Arg using apply/3.

The third and final clause breaks down formulas and predicates and reduces
their arguments of subformulas. This is done by the help of:
betaConvertList([],[]).

betaConvertList([Formula|Others],[Result|ResultOthers]):-

betaConvert(Formla,Result),

betaConvertList(Others,ResultOthers).

In order to define the apply/3 we first define the substitute/4 predicate:
substitute(Term,Var,Exp,Result):-

Exp=Var, !, Result=Term.

substitute(_Term,_Var,Exp,Result):-

\+ compound(Exp) , !, Result=Term.

substitute(Term,Var,Exp,Result):-

compose(Formula,Functor,[Exp,F]),

member(Funcotr,[lambda, forall, exists]), !,

(

Exp=Var, !,

Result=Formula

;

substitute(Term,Var,F,R),

compose(Result, Functor, [Expr,R])

).

substitute(Term, Var, Formula, Result):-

Compose(Formula, Functor, ArgList),

SEMANTIC REPRESENTATION OF THE NATURAL LANGUAGES SENTENCES 109

substituteList(Term, Var, ArgList, ResultList),

compose(Result, Functor, ResultList).

substituteList(Term, Var, [], []).

substituteList(Term, Var, [Exp|Others], [Result| ResultOthers]):-

substitute(Term,Var, Exp, Result),

substituteList(Term, Var, Others, resultOthers).

Here is an example about the functionality of this predicate.
?-substitute(A,B,love(C,B), Result).

Result=love(C,A)

then apply/3 will be
apply(lambda(X,Formula), Argument, Result):-

substitute(Argument, X, Formula, Result).

To finish off, we define a driver predicate that calls the parser to analyze a
sentence, reduces the resulting lambda expression into a first order formula, and
directs the result to the standard output:
parse:-

readLine(Sentence),

s(LambdaExpression, Sentence,[]),

normalform(LambdaExpression, NormalLambdaExpression),

betaConvert(NormalLambdaExpression, Formula),

printRepresentation(Formula).

Here the predicate normalform(LambdaExpression, NormalLambdaExpression) transform
a LambdaExpression into a normalform labda expression, i.e. if we have the LambdaExpression:
exists(1,X,lambda(A, man(A))&room(X))@vincent in normal form it will be lambda(A,

exists(1,X,man(A)&room(X))@vincent.

References

[1] P. Blackburn, J. Bos, Representation and Inference for Natural Language. A first Course
in Compuational Semantics, Volume I Working with first oreder logic. Computerlinguistik,

Universitt des Saarlandes, September 1999.
[2] P. Blackburn, J. Bos, Representation and Inference for Natural Language. A first Course

in Compuational Semantics, Volume II Working with discourse representation structures”.
Computerlinguistik, Universitat des Saarlandes, September 1999.

[3] D. Tatar ,Bazele matematice ale calculatoarelor, Curs lito. Universitatea ”Babes-Bolyai”
Cluj- Napoca, Facultatea de Matematica si Informatica, 1993.

[4] J. Allen, Natural Language Understanding, The Benjamin/ Cumings Publishing Company,
Massachusetts, 1995

[5] D. Tatar, A. Onet, Automated definite clause grammars compiling, Presented at ROSYCS’
98 at the ”Alexandru Ioan Cuza” University of Iasi, 1998.

“Babes-Bolyai” University, Faculty of Mathematics and Computer Science, RO-3400

Cluj-Napoca, Romania

E-mail address: {adrian,dtatar}@cs.ubbcluj.ro

STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIV, Number 2, 1999

ANNIVERSARIES

PROFESSOR GRIGOR MOLDOVAN AT HIS 60TH
ANNIVERSARY

E. MUNTEANU AND M. FRENTIU

Professor G. Moldovan was born on December 29, 1939 in Vadu Izei, Mara-
mures. After finishing secondary school in 1956, he took up a teacher career
in his native village. Two years later, in 1958, he arrived in Cluj and stud-
ied Mathematics at “Babeş-Bolyai” University. In 1963, after his graduation, he
was named assistant at the Department of Computation, Faculty of Mathematics,
“Babeş-Bolyai” University of Cluj. Since 1963 Professor G. Moldovan gave many
courses and seminars on Numerical Analysis, Fundamentals of Computer Science,
Computer Architecture, Data Structures, Formal Languages and Automata, Dis-
tributed Data Base Systems, etc. In 1975 he became an assistant professor, and
in 1990 a full professor of this faculty.

Simultaneously with his pedagogical work, Professor G. Moldovan has devel-
oped an appreciated research work in numerical analysis and computer science.
He received his Ph. D. degree in 1972, in Approximation Theory, under the super-
vision of Acad. T. Popoviciu and then Prof. D. D. Stancu. Since 1971, when the
first students in Computer Science had begun their studies, he became interested
in this new field of activity. In these topics he has written a lot of books and
research papers, mentioned in the Abstract.

Two events, that changed his entire research activity, must be mentioned. The
first is the one already mentioned above, the birth of Computer Science Section in
our Faculty, in 1971, and the second, in 1975, is the foundation of our University
Computer Centre (with a Felix C-256 computer). And Professor G. Moldovan was
the head of the Computer Center since its very beginning.

Professor G. Moldovan was a tenacious and consistent director of Computer
Center, a very good organiser, a hard worker man, a valuable teacher, a very good
colleague, and an important PhD supervisor.

Now, on celebrating his 60-th birthday, we wish him Many Happy Returns of
the Day and a long life in health and happiness.

110

PROFESSOR GRIGOR MOLDOVAN AT HIS 60TH ANNIVERSARY 111

ABSTRACT
of the Scientifical Work of Professor Grigor MOLDOVAN

(1) G. MOLDOVAN, Asupra unui procedeu de integrare numerică a unei
ecuaţii diferenţiale de ordinul ı̂ntâi. G.M. Seria A (nr. 5), 69, 1964,
161-166.

(2) D. D. STANCU, G. MOLDOVAN, Proiect de terminologie românească
pentru limbajul ALGOL-60 cuprinzând şi terminologia corespunzătoare
ı̂n limbile: engleză, franceză, germană, rusă. Litografiat, Universitatea
din Cluj, 1965.

(3) G. MOLDOVAN, Asupra aproximării funcţiilor continue prin polinoame
Bernstein. Studia Univ. ”Babeş-Bolyai”, Seria Math.-Physica, 11(1),
1966, 63-71.

(4) G. MOLDOVAN, I. RâP: Asupra unei inegalităţi din teoria aproximării
funcţiilor de doua variabile prin polinoamele lui Bernstein. St. Cerc.
Mat. 18 (nr. 6), 1966, 845-853.

(5) G. MOLDOVAN, O problemă de aproximare prin polinoamele lui Bern-
stein. Studia Univ. ”Babeş-Bolyai”, Seria Math.-Physica, 12(2), 1967,
51-57.

(6) G. MOLDOVAN, Aproximarea funcţiilor continue prin polinoamele lui
Bernstein generalizate. Volum: Lucrările Colocviului de teoria aproximării
funcţiilor, Cluj, 15-20 septembrie 1967, 139-140.

(7) G. MOLDOVAN, Comportarea soluţiilor sitemelor de ecuaţii diferenţiale
cu coeficienţi constanţi care depind de un parametru mic. Studia Univ.
”Babeş-Bolyai”, Seria Math.-Physica, 1968, 21-30.

(8) G. MOLDOVAN, Asupra unor operatori de tip Bernstein. Studia Univ.
”Babeş-Bolyai”, Seria Math.-Physica, 14(2), 1969, 59-64.

(9) G. MOLDOVAN, Asupra ordinului de aproximare al unui operator a lui
V. A. Baskakov. Studia Univ. ”Babeş-Bolyai”, Seria Math.-Physica,16(1),
1971, 69-71.

(10) G. MOLDOVAN, Sur la convergence de certains operateurs convolutifs
positive. C. R. Acad. Sci. Paris, Serie A-B,272, 1971, A 1311-1313

(11) G. MOLDOVAN, Generalizări ale polinoamelor lui S.N. Bernstein. Teză
de doctorat, Cluj, 1971

(12) G. MOLDOVAN, Discrete convolutions and linear positive operators I.
Annales Univ. Sci. Budapesta de Rolando EOtvOs nomin., Section
Math.,15, 1972, 31-44

(13) G. MOLDOVAN, Asupra unor relaţii convolutive. Studia Univ. ”Babes-
Bolyai”, Seria Math.-Physica, 1972, 67-72.

(14) E. DANI, G. MOLDOVAN, A. MURESAN, Asuprea clasificarii dru-
murilor in teoria grafelor. Studia Univ. ”Babeş-Bolyai”, Series Oeco-
nomica, f.1, 1972, 137-142.

112 E. MUNTEANU AND M. FRENTIU

(15) G. MOLDOVAN, Convergenţa şirurilor valorilor unor operatori convo-
lutivi in Rm. Studia Univ. ”Babeş-Bolyai”, Seria Math.-Mech., 1973,
69-80.

(16) P. T. MOCANU, G. MOLDOVAN , M. O. READE, Numerical compu-
tation of the a-convex Koebe function. Studia Univ. ”Babes-Bolyai”,
Seria Math.-Mech., 1974, 37-46.

(17) G. MOLDOVAN, Convoluţii discrete relative la funcţii de mai multe
variabile şi operatori liniari. Studia Univ. ”Babeş-Bolyai”, Seria Math.-
Mech., 1974, 51-57.

(18) G. MOLDOVAN, Operateurs convolutifs positifs. Seminaire d’Analyse
Numerique de Grenoble, 1974, 1-31(14.02.1974).

(19) G. MOLDOVAN, Quelque proprieté algebrique des opérateurs convo-
lutifs positifs. Seminaire d’Analyse Numerique de Grenoble, 1974, 1-
31(14.03.1974).

(20) G. MOLDOVAN, G. MURESAN, T. TOADERE, Asupra unui sistem
informatic privind evidenţa studenţiilor. Studia Univ. ”Babes-Bolyai”,
Seria Math.-Mech., 1979, 46-50.

(21) G. MOLDOVAN, L’evolution de l’erreur de l’ approximation d’ une fonc-
tions continue par certaine operateurs linears positifs. Mathematica,
22(45), nr. 1, 1980, 85-95.

(22) G. MOLDOVAN, Proprietăţi algebrice ale unei clase de operatori con-
volutivi pozitivi. Studia Univ. ”Babes-Bolyai”, Seria Mat -Mech., 1981,
9- 14.

(23) G. MOLDOVAN, Modelul relaţional pentru baze de date. Metodologii
si tehnici moderne de proiectare si scriere a programelor. Bucuresti,
Tipografia Universităţii Bucureşti, 1981, 348-352.

(24) G. MOLDOVAN, P. POP, R. POP DELEAN: Pachet de programe pentru
exploatarea bazei de date personal MEI la nivelul şi necesităţile Inspec-
toratelor Şcolare Judeţene. Informatica ı̂n ı̂nvăţământ. Nr.5, 1981, 3-6.

(25) G. MOLDOVAN, G. MURESAN, C. POPESCU, T. TOADERE,
T. TOKES, Simularea procesului de dizolvare in sonde. Lucrările Institu-
tului de cercetări miniere pentru substanţe nemetalifere, 1983, 347-348.

(26) T. TOKES, G. MOLDOVAN, G. MURESAN, T. TOADERE, Elaborarea
modelului matematic pentru calculul pierderilor de presiune pe reţele
tehnologice. Lucrările Institutului de cercetări miniere pentru substanţe
nemetalifere, 1983, 349-351.

(27) G. MOLDOVAN, Reorganization of a distributed data base. Univ. of
Cluj-Napoca, Fac. Math. Res. Sem.Preprint no. 5, 1984, 3-10.

(28) I. GARBACEA, G. MOLDOVAN, Distributed data bases. Univ. of Cluj-
Napoca, Fac. Math. Res. Sem.Preprint no. 5, 1984, 70-91.

PROFESSOR GRIGOR MOLDOVAN AT HIS 60TH ANNIVERSARY 113

(29) G. MOLDOVAN, G. MURESAN, T. TOADERE, T. TOKES, Two Math-
ematical Models for Salt Layer Working. Univ. of Cluj-Napoca, Fac.
Math. Res. Sem. 5, 1984, 117-127.

(30) G. MOLDOVAN, G. MURESAN, T. TOADERE, Sistem informatic
privind ı̂nscrierea şi evidenţa studenţilor. Volumul cu lucrarile Sim-
pozionului : ”Informatica şi aplicaţiile sale”, Zilele Academice Clujene,
3-7 decembrie 1985, p.159-162

(31) G. MOLDOVAN, O problemă privind bazele de date distribuite. Volum
cu: Lucrarile prezentate la a VIII-a consfătuire a lucrătorilor din unităţile
de informatică , Centrul de calcul coordonator al MEI, Institutul de
Construcţii Bucureşti, 1985, p.102-103.

(32) G. MOLDOVAN, G. MURESAN, T. TOADERE, T. TOKES: Model
matematic şi programe privind exploatarea sării prin dizolvare. Volu-
mul cu lucrarile Simpozionului: ”Informatica şi aplicaţiile sale”, Zilele
Academice Clujene, 3-7 decembrie 1985, 153 - 158.

(33) G. MOLDOVAN, Caracterisation des fonctions convexes a l’aide des op-
erateurs convolutifs positifs. Studia Univ. ”Babeş-Bolyai”, Seria Math.,
1986, 47-51.

(34) G. MOLDOVAN, O problemă de optimizare ı̂ntr-un sistem de baze de
date distribuite. Volumul cu lucrăriele Simpozionului: ”Informatica şi
aplicaţiile sale”, Zilele Academice Clujene, 20 noiembrie 1986, p.13-19.

(35) G. MOLDOVAN, S. DAMIAN, On some generalization of on optimiza-
tion problem for distributed data bases. Studia Univ. ”Babeş-Bolyai”,
Seria Math., 1987, 64-69.

(36) G. MOLDOVAN, An automorfism property of a class of polinomial type
positive convolutive operators. Studia Univ. ”Babeş-Bolyai”, Seria Math.,
1987, 70-72.

(37) G. MOLDOVAN, Asupra unei probleme de optimizare pentru baze de
date distribuite. Volum: Lucrarile sesiunii de cercetări ştiinţifice a Cen-
trului de calcul al Universităţii din Bucureşti, 20-21 februarie 1987, 368-
373.

(38) G. MOLDOVAN, B. PâRV, Biblioteca dBase II application for biblio-
graphical documentation. Univ. of Cluj-Napoca, Fac. Math. Res. Sem.
5, 1987, 36-45.

(39) G. MOLDOVAN, S. DAMIAN, On an optimization problem for dis-
tributed data bases. Analele Univ. Bucuresti, Math.-Info, 37, 1988, f. 2,
82-87.

(40) G. MOLDOVAN, I. RâP, Asupra unor probleme de asteptare in retele de
calculatoare. Lucrarile conferinţei de matematică aplicată şi mecanică,
Cluj-Napoca, 21-23 oct. 1988, 493-501.

114 E. MUNTEANU AND M. FRENTIU

(41) G. MOLDOVAN, S. DAMIAN, O problemă de optimizare locală pentru
redistribuirea bazelor de date ı̂ntr-o reţea de calculatoare. INFO Iasi ’89,
19-21 oct. 1989, 289-300

(42) G. MOLDOVAN, S. DAMIAN, A local optimization problem for data
base redistribution in a computer net. Studia Univ. ”Babes-Bolyai”,
Mathematica, 34, f.3, 1989, 3-16.

(43) G. MOLDOVAN, Reorganizarea unei baze de date distribuite. Univ. Cluj
- Napoca, Fac. Mate-Info. Res. Sem. Preprint no.5, 1992, 116-123

(44) G. MOLDOVAN, I. RâP, Files d’attente dans des systems distribuees ses
services. Studia Univ. ”Babeş-Bolyai”, Math., 37, f.3, 1992, 69-74.

(45) C. BOBOILĂ, G. MOLDOVAN,: Modélisation des objets complexes avec
identité d’objet. An. Univ. Craiova Ser. Mat.-Inform. 21,1994, 89-98.

(46) G. MOLDOVAN, C. BOBOILA: Un modle de représentation d’ objets
complexes avec identité d’objet. Studia Univ. ”Babeş-Bolyai”,Series
Math., 40(3), 1995, 67 - 80.

(47) G. MOLDOVAN, C. BOBOILA, Une approche sur la modelisation d’ob-
jets complexes dans un systeme oriente-objet. An. Univ. Craiova Ser.
Mat.-Inform. 22(1995), 98-106.

(48) G. MOLDOVAN, C. BOBOILA, L’objet actif base d’un modele de donees
oriente objet. University of Cluj-Napoca, Fac. of Math. and Computer
Science, Research Seminaris, Preprint no. 2, pp. 43-52, 1995

(49) G. MOLDOVAN, C. BOBOILA, Un modele a objets complexes avec
identite d’objet. Univ. ”Babeş-Bolyai”, Cluj - Napoca, Fac. of Math.
and Computer Science, Research Seminaris, Preprint no. 2, pp. 53-60,
1995

(50) G. MOLDOVAN, C. BOBOILA, Un modle de définition et représentation
des objets complexes pour les bases de données. Proceedings of ROSYCS’
96, Iaşi, mai, 1996. 229-240.

(51) G. MOLDOVAN, V. VARGA, Theoretical Problems of Distributed Da-
tabases Fragmentation. Univ. ”Babeş-Bolyai”, Cluj - Napoca, Fac. of
Math. and Computer Science, Research Seminaris, Preprint no. 2, pp.
79-84, 1996

(52) G. MOLDOVAN, M. MOLDOVAN, S. MOLDOVAN, Sisteme şi posi-
bilităţi de modelare a lor. Volum: Lucrările Sesiunii de Comunicări
Ştiinţifice a Universităţii ”Bogdan Vodă” Baia Mare, martie 1997, Ed.
Risoprint, Cluj-Napoca, 1997 (ISBN- 973-9298-IS- 4) p.121-135.

(53) G.MOLDOVAN, A. VANCEA, M. VANCEA, Data dependence testing
for automatic parallelization. Studia Univ.”Babeş-Bolyai”, Informatica,
2(1), 1997, pp3-18.

(54) G. MOLDOVAN, Catalan Numbers and binary recursive defined objects.
Univ. ”Babeş-Bolyai”, Cluj - Napoca, Fac. of Math. and Computer
Science, Research Seminars, Preprint no. 2, pp. 189-200, 1998.

PROFESSOR GRIGOR MOLDOVAN AT HIS 60TH ANNIVERSARY 115

BOOKS
(55) Gr. MOLDOVAN, Scheme logice şi programe FORTRAN, Litogr. Univ.

din Cluj-Napoca, 1973, 178 pag.
(56) Gr. MOLDOVAN, Scheme logice şi programe FORTRAN, Ed. Didactic

şi pedagogică, Bucureşti, 1976, 188 pag.
(57) Gr.MOLDOVAN, L. TAMBULEA, F. LANDA, D. OPREAN, Scheme

logice şi programe COBOL. Culegere de probleme, Litogr.Univ.”Babeş-
Bolyai”, Cluj- Napoca, 1979, 205 pag.

(58) Gr. MOLDOVAN, Bazele informaticii II, Litogr.Univ. Cluj-Napoca,
1985, 286 pag.

(59) Gr. MOLDOVAN, F. Boian şi alţii, MATH-I. Biblioteca de programe
ştiinţifice pentru calculatoarele personale româneşti, ITCI Software,1987,
129 pag.

(60) Gr. MOLDOVAN, Elemente de informatică, Litogr.Univ. Cluj-Napoca,
1985, 86 pag.

(61) F. BOIAN, D. CHIOREAN, S. DAMIAN, Gr. MOLDOVAN, I. PAR-
PUCEA, Minicalculatoru CORAL şi sistemul de operare MIX, Univ.
Cluj-Napoca, 1986, 80 pag.

(62) Gr. MOLDOVAN, V. CIOBAN, M. LUPEA, Probleme pentru progra-
mare ı̂n limbajul C, Litogr. Univ. ”Babeş-Bolyai” Cluj-Napoca, 1995,
151 pag.

(63) Gr.MOLDOVAN, V. CIOBAN, M. LUPEA, Limbaje formale şi teoria
automatelor. Culegere de probleme, Litogr.Univ. ”Babeş-Bolyai” Cluj-
Napoca, 1996, 148 pag.

(64) Gr. MOLDOVAN, R. JOLDEŞ, Descrierea algoritmilor. Teorie şi apli-
caţii, Univ. ”1 Decembrie 1918”, Alba Iulia, 1996, 139 pag.

(65) Gr. MOLDOVAN, V. CIOBAN, M. LUPEA, Limbaje formale şi teoria
automatelor. Culegere de probleme, Ed. Mesagerul, Cluj-Napoca, 1997,
150 pag.

(66) Gr. MOLDOVAN, Limbaje formale şi tehnici de compilare, Univ. ”Ba-
beş- Bolyai” Cluj-Napoca, Centrul de formare continuă şi ı̂nvăţământ la
distanţă, Cluj-Napoca, 1999, 106 pag.

“Babeş-Bolyai” University of Cluj-Napoca, Department of Computer Science

E-mail address: mfrentiu@cs.ubbcluj.ro

	00contents
	1-Jucan
	2-Motogna
	3-Blaga
	4-Petrila
	5-Popescu
	6-Radoiu
	7-Suciu
	8-Boian
	9-Dumitrescu
	10-Onet
	11-Frentiu

