
Anul XLV                                                                                                                2000 
 
  

S T U D I A 
UNIVERSITATIS BABEŞ-BOLYAI 

 

INFORMATICA 
 

1 
 

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300 
 
  
 
 

SUMAR – CONTENTS – SOMMAIRE 
 
 
  
D. Rădoiu, A.Roman, The Relaxation of the Fundamental Conditions of Scientific 
Visualisation Using Equivalence Classes ....................................................................  3 
 
R. L. Lupşa, A Compression Method for 3D Scenes ................................................  13 
 
A. Duda, G. Şerban, D. Tătar, Training Probabilistic Context-Free Grammars as 
Hidden Markov Models............................................................................................... 17 
 
M. Iuga, B. Pârv, A Java-Based Object-Oriented Infrastructure for HPCC .............. 31 
 
 
D. Dumitrescu, Genetic Chromodynamics ................................................................  39 
 
D. Dumitrescu, C. Groşan, M. Oltean, A New Evolutionary Approach for Multiobjective 
Optimization .............................................................................................................  51 
 
D. Tătar, D. Avram, Phrase Generation in Lexical Functional Grammars and  
Unification Gramars.................................................................................................... 69 
 
A. Oneţ, D. Tătar, Semantic Analysis in Dialog Interfaces ......................................  79 
 
F. M. Boian, C. Ferdean, New Interaction Mechanisms Between Java Distributed 
Objects......................................................................................................................... 89  
 
I. Ileană, R. Joldeş, On the Using of Artificial Neural Networks in Metallographic 
Analysis .................................................................................................................... 101  
 
  



RECENZII – REVIEWS – ANALYSES 
 
A. Vancea, Alain Darte, Yves Robert and Frederic Vivien, “Scheduling and Automatic 
Parallelization”, Birkhauser Boston, 2000, ISBN 0-8176-4149-1............................ 109  
 
T. Toadere, W. D. Wallis, “A Beginner's Guide to Graph Theory”, Birkhäuser,  
Boston-Basel-Berlin, 2000, ISBN 0-8176-4176-9, 230pp....................................... 111  



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000THE RELAXATION OF THE FUNDAMENTAL CONDITIONSOF SCIENTIFIC VISUALIZATION USING EQUIVALENCECLASSESDUMITRU R�ADOIU AND ADRIAN ROMANAbstrat. The paper addresses the issue of sienti� data visualization pro-ess validation. Three fundamental onditions for sienti� visualization areintrodued; one of them { the Preision Condition { is disussed in detail.The theory allows a better formal desription of the sienti� visualizationproess.Index terms { sienti� visualization, preision lasses, and sienti�visualization proess validation1. IntrodutionSienti� Visualization is a omputational proess that maps sienti� dataand its attributes into visual objets [1℄. Sienti� data an be obtained in manydi�erent ways, e.g. by running a simulation or by a DAQ proess. Usually, si-enti� data objets are �nite representations of omplex mathematial objets.We note by O the set of suh objets, o 2 O. During the visualization proess,initial data objets, o, are proessed through di�erent transformation funtionsMat(o) = o0, into a new set o0 2 O0. Objets o0 are then mapped Map(o0) = ginto a set of virtual geometrial objets g 2 G, through a set of graphialprimitives. Objets g usually are n-dimensional (nD), animated (t) and intera-tive.De�nition 1 A group of virtual geometrial objets, logially interonneted, isalled a logial visualization of that sene.Ideal geometrial objets g, nD, animated (t) and interative are usually repre-sented Rep(g) = g0 , g0 2 G0, on real 2D sreens.De�nition 2 The projetion of the logial visualization of a sene on a sreenis alled a physial visualization of that sene.The funtions Rep(g) = g0 implement lassial graphial operations suh asomposition of the sene, volume generation, isosurfae generation, simulation oftranspareny, reetivity and lighting onditions, nD ! 2D projetion, lipping,2000 Mathematis Subjet Classi�ation. 65D18.1998 CR Categories and Desriptors. I.3.6 [Computing Methodologies℄: ComputerGraphis { Methodology and Tehniques. 3



4 DUMITRU R�ADOIU AND ADRIAN ROMANhidden surfae removal, shading, animation (t), setting user interativity (zoom,rotate, translate, pan, et), et.De�nition 3. By interativity we understand the attributes of visual objets(logial and/or physial) whose setting allows nD ! 2D projetion (zoom, rotate,translate, pan, et), animation ontrol (t), ontrol of the objets omposing thesene and ontrol of the sene as a omposite objet.The sienti� visualization proess is desribed by the V is(o) = g0, V is(o) =Rep(Map(Mat(o))) = g0 funtion. The proess is desribed in �gure 1.

Figure 1. Desription of the sienti� visualisation proess2. Fundamental onditions of sientifi visualizationThere are many requirements onerning a ertain sienti� visualization pro-ess. We onsider three of them to be fundamental. The �rst one is the dis-tintiveness ondition. This ondition (although very weak) enables users todistinguish between di�erent data objets based on their display. The ondition isneessary as one an imagine many visualization funtions that generate imageswith no use, whih reveal none of the data objets harateristis/attributes.The seond ondition is the expressiveness ondition. This ondition assuresthat the attributes of the visual objet represent the attributes of the input dataset.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 5The third one is the preision ondition. This ondition insures that theorder among data objets is preserved among visual objets.The distintiveness ondition. Di�erent input data (di�erent mathematialobjets) are represented by di�erent visual objets.This ondition an be stated:o1 6= o2 ) V is(o1) 6= V is(o2)) Rep(Map(Mat(o1))) 6= Rep(Map(Mat(o2)))) g10 6= g20; for any o1; o2 2 O; g10; g20 2 G0The interpretation of this ondition is that V is(), Mat(), Map() and Rep()funtions are injetive.The expressiveness ondition. The visual objets express all and only theharateristis of the input data.It results that the visualization funtion should be one to one.The two onditions are neessary but not suÆient. Another ondition is neededto establish an order relation both among data and visual objets. This onditionould be seen as a preision relation.The preision ondition. For any objets o1; o2 2 O suh that o1 is \morepreise" than o2 we have that V is(o1) is \more preise" than V is(o2), with V is(o1),V is(o2) 2 G0.The preision ondition adds something new. If the visualization funtion iswell de�ned and the input data objets are stritly ordered, the visual objets anbe ordered by their \preision".The �rst two onditions introdue riteria of validation and ontrol of the visu-alization proess. The visualization funtion V is() ful�lling these riteria resultsin a sienti� visualization. The third ondition allows further developments byde�ning mathematial operations on the given ordering.3. Equivalene lassesWe introdue another approah to desribe formally the visualization proess.There are examples that prove that the above onditions are too \tight". Beausewe display the visual objets on real sreens (i.e. with �nite resolution) it is possiblethat two or more objets o to be mapped into idential visual objets. Thereforea more relaxed approah to formally desribe the visualization proess of sienti�data is neessary. In order to desribe the new approah some mathematialonepts are to be presented.We have already introdued the basi sets denoted by O, O0, G and G0. O repre-sents the set of the so alled \data objets". O0 is the set of the elements obtainedfrom \data objets" through di�erent transformation funtions. G represents theset of virtual geometrial objets, nD. Virtual geometrial objets beome realgeometrial objets (G0) by projetion/display (e.g. on 2D sreens).The visualization funtion an be desribed as the mapping of the set O intoG0.



6 DUMITRU R�ADOIU AND ADRIAN ROMANDe�nition 4. Let O and G0 be two sets and v be a binary relation. We allv a mapping of O in G0 if for eah element o 2 O, there is exatly one elementg0 2 G0 that satis�es ho; g0i 2 v.The element g0 is alled the image of the element o through v, and o is alledthe inverse image of g0 through v. For the mapping v we introdue the notationv : o ! g0 and the funtional notation v(o) = g0. We an write that v : O ! G0to show that v = V is() is a mapping of O into G0. O is alled the domain of v. Ifthe inverse relation is also a mapping, we will denote it by v�1.From the set theory we know that a partition � of a set O is a subset of P (O)(the power set of O) not ontaining �, satisfying the following property: everyo 2 O is an element of exatly one A 2 �. The elements of a partition are alledbloks. If � and �0 are partitions of O, we will write � � �0 if for every blok B 2 �there exists a blok C 2 �0 suh that B � C.We use the fundamental theorem of the equivalene relations in order to under-line some important aspets:Theorem 1. [10℄ (a) Let � be a partition of O and de�ne a binary relation �pon O by o1�o2 if and only if o1 and o2 are in the same blok of the partition �.Then �� is an equivalene relation on O.(b) If � is an equivalene relation over a set O, then there exists a partition ��over O suh that o1; o2 2 O are elements of the same blo of �� if and only if o1�o2.() If � � �0, then �� � ��0 . If � � �0, then �� � �0�.Theorem 1(a) shows that a binary relation is an equivalene relation if it \on-serves" the initial partitioning over the given set. Theorem 1(b) states that apartitioning of a set an be obtained starting from a given equivalene relation �.Theorem 1() introdues an order relation.The following remark has to be stated:Remark 1. If more than one element o is mapped into the same visual objetg0, then the set O an be partitioned into non-empty subsets that inlude all the oelements mapped into the same visual objet.Remark 1 introdues the idea of equivalene relations as the main tool in orderto obtain a more realisti desription of the visualization proess. A natural equiv-alene relation �v an be de�ned over O. The relation �v is alled the equivalenerelation indued by v over the set of objets O and it partitions the set O intosubsets of objets sharing the same visualization (see theorem 1). We denote by�v the indued partitioning over O.The proposed model is based on the onept of equivalene lasses.De�nition 5. [9℄ The equivalene lass of an element o 2 O, indued by theequivalene relation �, is the subset of those elements from O that are in the relation� with o.We denote by [o℄� the equivalene lass of o 2 O, indued by the equivalenerelation �. When the equivalene relation is impliit, we use the notation [o℄.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 7Further, another theorem is introdued in order for us to be able to formulatethe new visualization onditions.Theorem 2. [10℄ Any mapping v : O ! G0 an de represented as a produtof two mappings ' and �, v = '�, where ' is onto and � is one-to-one; if � isthe equivalene relation indued by v, then ' = '� : O ! Oj� and � : Oj� ! G0,where Oj� is the set of all equivalene lasses indued by � (Figure 2).

Figure 2. Shemati representation for Theorem 2So, if we have a well-de�ned equivalene relation over O, then we an onsiderinstead of v a produt of two mappings (Figure 3). This approah has the advan-tage that it redues the set of objets O to the set of lasses Oj�. Order relationsan be stated over the set of lasses.The presented theory is exempli�ed below. We onsider two data sets havingthe same format. The equivalene relation � imposes that the attributes of theobjets (element by element) have values between:(ai)1; (ai)2 2 (ai ��ai; ai +�ai);where (ai)1 are the attributes of the �rst objet, and (ai)2 those of the seondobjet. If the resolution of the sreen is small enough we observe that, for thesame visualization system, the two di�erent data sets will be represented on thesreen by the same visual objet.



8 DUMITRU R�ADOIU AND ADRIAN ROMAN

Figure 3. Desription of the visualization proess using equiva-lene lassesRemark 2. Assuming that the equivalene relations �0, �1, . . . , �n�1, de�nedover the same set exist, we onlude that the partitions �o, �1, . . . , �n�1 alsoexist.Theorem 1() and remark 2 introdue an order relation between the equiva-lene lasses, relation that an be regarded as \preision" relation. For the aboveexample, we onsider another equivalene relation �0 imposing that the attributesof the objets (element by element) have values between:(ai0)1; (a0i)2 2 (a0i ��a0i; a0i +�a0i);where (a0i)1 are the attributes of the �rst objet, and (a0i)2 those of the seondobjet, with �ai � �a0i. In this ase � � �0, where � and �0 represent thepartitions orresponding to the equivalene relations � and �0. From theorem 1.3it results that � � �0.4. The preision relation over the sientifi visualization proessAn order relation is neessary over the visualization proess. We have intro-dued the \preision relation" as a fundamental ondition of the sienti� visual-ization. Now, the equivalene lasses allow a further development of the idea. Weare espeially interested in the O (or Oj�), G and G0 sets.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 9De�nition 6. A lass of objets, de�ned by the equivalene relation � (seetheorem 1), is \more preise" than another one, de�ned by the equivalene relation�0, if � � �0.So, [o1℄� � [o2℄�0 (� desribes the preision relation) if � � �0.The set of virtual geometrial objets is denoted by G. A virtual geometrialobjet g an be regarded as a omposition of graphial primitives. We denote byP the set of all types of graphial primitives. Let us denote by SUM(N;P ) thesum Pni=1 pi: Then the virtual geometrial objet g an be desribed as:g = SUM(N;P ); where pi 2 P; for a �nite N:De�nition 7. 1. A virtual geometrial objet g1 = SUM(N1; P ) is said to be\stritly more preise" than another virtual geometrial objet g2 = SUM(N2; P )if N1 > N2.2. If N1 = N2, then a virtual geometrial objet g1 =Map(Mat(o1)), o1 � [o1℄�is said to be \more preise" than another objet g2 = Map(Mat(o2)), o2 � [o2℄�0if the lass [o1℄� is \more preise" than the lass [o2℄�0.Remarks. 1. An objet an be represented using several ways (Figure 4). Therepresentation onsidered \the most (stritly) preise" is the one that uses thehighest number of graphial primitives. We all this kind of preision represen-tation preision.2. If the representation uses the same number of graphial primitives then theset G onserves the preision relation over O. The preision indued over G isalled order preision.If di�erent numbers of graphial primitives are used, then the representationpreision is onsidered as order relation.De�nition 8. A visual geometrial objet g1 2 G is said to be \(stritly) morepreise" than another visual objet g2 2 G if g1 = Rep�1(g1) is \(stritly) morepreise" than g2 = Rep�1(g2).5. The relaxation of fundamental onditions of the sientifivisualizationThe fundamental onditions of the sienti� visualization an be restated:The distintiveness ondition. Di�erent equivalene lasses are mappedinto di�erent visual objets.Formally: [o1℄ 6= [o2℄) �([o1℄) 6= �([o2℄)) g01 6= g02[o1℄; [o2℄ 2 Oj�; g01; g02 2 G0.The expressiveness ondition. The visual objets express all the harater-istis of input equivalene lasses, and only those harateristis.Formally: 8g0 2 G0; 9[o℄ 2 Oj� suh that �([o℄) = g0.The distintiveness ondition and the expressiveness ondition impose the map-ping � to be one-to-one.



10 DUMITRU R�ADOIU AND ADRIAN ROMAN

Figure 4. Example of visualization pipelinesThe preision ondition beomes the preision theorem. The equivalene lassapproah redues the number of fundamental onditions and in the same timeallows the introdution of a well-de�ned order relation.Preision Theorem. 1. Let [o℄� 2 Oj� be a lass of objets and let theideal geometrial objets g1; g2 2 G, where g01 represents the physial visualizationof the the [o℄ lass using N1 graphial primitives, and g02 represents the physialvisualization of the [o℄ lass objet using N2 graphial primitives.i.: If N1 > N2 then g01 is \stritly more preise" than g02.ii.: If N1 = N2 then g01 is represented with the same preision as g02.iii.: If N1 < N2 then g02 is \stritly more preise" than g01.2. Let [o1℄�; [o2℄� 2 Oj� be two lasses of objets and let the ideal geometrialobjets g01; g02 2 G, where g01 represents the physial visualization of the the [o1℄�lass using N1 graphial primitives, and g02 represents the physial visualizationof the [o2℄� lass objet using N2 graphial primitives. We onsider that the lass[o1℄� is \more preise" than [o2℄�.i.: If N1 > N2 then g01 is \stritly more preise" than g02.ii.: If N1 = N2 then g01 is \more preise" than g02.iii.: If N1 < N2 then g02 is \stritly more preise" than g01.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 11Proof. 1. i. For the objets g1 = SUM(N1; P ) and g2 = SUM(N2; P ) we haveN1 > N2. From de�nition 7.1 it results that g1 is \stritly more preise" than g2.From de�nition 8 we onlude that g01 is \stritly more preise" than g02.ii. If N1 = N2 then g1 = g2 and g01 = g02.iii. The same proof as for i.2. ii. We assume that a lass of objets indued by an equivalene relation �,[o1℄�, is \more preise" than another one, [o2℄�, indued by the equivalene relation�. We have then [o1℄� � [o2℄�.From the de�nition of the preision relation for objet lasses from O, we on-lude that � � � as the result of the relation [o1℄� � [o2℄�. From theorem 1() wefurther onlude that � � �, where � and � are partitions of the set O. If � and� are partitions of O, we write � � � if for every blok B 2 � there exists a blokC 2 � suh that B � C.Then, the objets that belong to the equivalene lass [o1℄� are more exat thanthose from the lass [o2℄� and as a result their representations are more aurate.From de�nition 7.2 it results that g1 is \more preise" than g2.So, from de�nition 8, if g1 is \more preise" than g2 then g1 = Rep(g1) is \morepreise" than g2 = Rep(g2).For i. and ii. we use the de�nition 7.1.6. ConlusionsThis artile proves that a more \relaxed" approah of the mathematial de-sription of the proess is neessary. The �nite sreen resolution and the �niteauray of the system introdue visualization \error": di�erent data sets havesometimes the same display/visualization, i.e. are mapped into the same visualobjet. The introdued data models allow the de�nition of di�erent operationsbetween data sets and the de�nition of a preision relation.Referenes[1℄ Kaufman Arie, Nielson G., Rosenblum L. J., \The Visualization Revolution", IEEE Com-puter Graphis, July 1993, pp. 16{17[2℄ Williams L. Hibbard, Charles R. Dyer, Brian E. Paul, \Towards a Systemati Analysisfor Designing Visualizations", Sienti� Visualization, IEEE Computer Soiety, 1997, pp.229{251[3℄ MaKinlay, \Automating the Design of Graphial Presentations of Relational Information",ACM Transations on Graphis, Vol.5, Nr.2 1986, pp. 110{141[4℄ W. Hibbard, C. Dyer, B. Paul, \A lattie Model for Data Display", Proeedings of IEEEVisualization '94, 1994, pp. 310{317[5℄ Upson C., Faulhaber, Jr. T., Kamins D., Laidlau D., Shelgel D., Vroom J., Gurwitz R.,van Dam A., \The Appliation Visualization System: A Computational Environment forSienti� Visualization", Computer Graphis and Appliations, vol 9, nr.4, 1989[6℄ R�adoiu D., Roman A., \Modelarea proesului de vizualizare", in Tehnologii Avansate {Apliat�ii �̂n eduat�ie, Editura Universit�at�ii Petru Maior, 1999, p. 86{101



12 DUMITRU R�ADOIU AND ADRIAN ROMAN[7℄ R�adoiu D., Roman A., \A Component Based Approah for Sienti� Visualization of Ex-perimental Data", Studia Universitatis \Babe�s-Bolyai", Series Informatia, XLIV, 1999, no.2, pp. 50{64[8℄ R�adoiu D., \Vizualizarea S�tiinti��a a Datelor Experimentale", Editura Universit�at�ii PetruMaior, 2000[9℄ V. Crueanu, \Elemente de algebr�a liniar�a �si geometrie", Editura didati�a �si pedagogi�a,1973, pp. 12[10℄ Gratzer G., \Universal Algebra", Springer Verlag, New-York, Berlin, Heidelberg, 1979Petru Maior University of Tirgu MuresE-mail address: dradoiu�uttgm.roPolytehni University of Buharest



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000A COMPRESSION METHOD FOR 3D SCENESRADU-LUCIAN LUPS�AAbstrat. The artile presents a method for ompressing the representa-tions of 3D senes. It is a non-lossy ompression, based on a variation ofthe Hu�man algorithm and some ideeas taken from the LZ77 ompressionmethod. The method desribed has been suesfuly implemented and usedin a ommerial appliation.1. Introdution3D graphis appliations need a representation of 3D senes they work on, forstoring or transmitting the information about the objets. A 3D representationmust meet the following requirements:� it must be able to represent the 3D sene with enough auray for theappliation,� one must be able to onvert it fast enough to the representation requiredby the 3D engine or by other parts of the apliation,� it must be spae-eÆient.There are two basi methods for desribing 3D objets:(1) as geometri bodies(2) by voxelsAs the seond method leads to huge memory requirements, we will use the �rstone.In order to desribe the bounding surfae of a 3D body, two elements must bespei�ed:(1) the shape of that surfae(2) the optial properties of the surfaeA body surfae an be approximated by an union of elements (or pathes),eah path being a (�nite) fragment of a plane, of a Bezier surfae, or of a B-splinesurfae.The relevant optial properties of the pathes are:2000 Mathematis Subjet Classi�ation. 68T45.1998 CR Categories and Desriptors. I.2.10 [Computing Methodologies℄: Arti�ial In-telligene { Vision and Sene Analysis. 13



14 RADU-LUCIAN LUPS�A(1) the olor (or the texture of that surfae)(2) the reetion model(3) the refration modelThe last two properties are omitted from the less elaborated representations, asthey an be used for rendering by very ostly algorithms only (suh as ray-traing).If a path has only one olor, we an represent its omponents; if there isa texture, we represent thar texture as a 2D image (using a normal 2D imagerepresentation format) and that image is mapped onto the path.Having the pathes planar (that is, eah path is a polygon, and the bodyis therefore a polyhedron) simpli�es the omputations but the edges are far toovisible in the rendering. There are rendering methods for smoothing the rendering;the best known are the Gouraud or Phong methods [1℄ [7℄. Any of those requiresan approximation for the (real) normal vetor in eah of the verties. However,omputing the normals from the pathes orners only is peuliar beause some ofthe edges between the pathes are to be smoothed, and others are real edges. Forthat reason, some of the 3D representation formats expliitly represent the normalvetor of eah path in eah orner.2. Standard 3D formatsSeveral 3D formats (for instane, .obj (for a front end for OpenGL) and .3ds(3D Studio) are onstruted the following wayFirst of all, we have a list of 3D points, a list of 3D vetors, a list of 2D points,and a list of 2D images (the latter being represented using a standard 2D format| for instane, gif, jpeg, ti�, and may even be stored in di�erent �les). Next wehave the desription of the faets (pathes). Eah faet desription ontains:� the verties list� the list of the normals in eah vertex (in ase the fae is not planar sothe rendering should be smoothed)� the texturing image� the 2D points on the texturing image, orresponding to the faet vertiesEah of these piees of information are in fat the index, in the list at thebeginning of the �le, of the orresponding 3D point, 3D vetor, 2D image, or,respetively, 2D point. 3. Compressing the 3D seneThe methods desribed above still ontain a lot of redondany. Eliminating thisredondany would lead to a better ompression.In the following we will start from a .obj-like 3D format and will try to ompressit. The �rst soure of redondany onsists in the fat that a typial appliation willoutput the verties and vetors in approximatively the same order they are used



A COMPRESSION METHOD FOR 3D SCENES 15by the faet desriptions. This sugests us to write in the ompressed �le the list ofdi�erenes between the suesive vertex indies of eah fae, and to ompress thosedi�erenes using the Hu�man algorithm [4℄ [5℄, with some modi�ations inspiredfrom other ompression tehniques.The �rst hange will be to make an adaptative Hu�man algorithm. In theoriginal algorithm, the oding table is omputed in a �rst pass over the input �leand written into the ompressed �le; then the information is enoded using thattable.The modi�ed algorithm will start with a �xed enoding table. As it sees theinput data, it omputes the frequeny table. At some prede�ned moments (forinstane, when the number of already-proessed symbols is a power of 2), theenoding table is regenerated based onto the frequeny table.The deoder starts with the �xed enoding table. Relying on it, the deoder anread and deode the �rst symbols, till the �rst enoding table reomputing. Atthat time, the deoder will have exatly the same frequeny table as the enoder,and therefore it will generate the same enoding table, so it will be able to ontinuethe deoding proess.The seond modi�ation onerns the handling of rarely-used symbols. As wesaw earlier in this setion, the input symbols for the Hu�man ompression arethe di�erenes between the indies of two suesive points on a faet. Thesedi�erenes, if the indies are 32-bit integers, lay in the interval �231 + 1::231 � 1,but values above a few hundreds are rare. For that matter, statistial data areirrelevant for prediting future ourenes of those values. So, we will slightlyhange the Hu�man algorithm the following way: for the Hu�man algorithm, wewill onsider all values outside the interval, let's say, �127::127 as being equal.this way, the Hu�man part sees 256 distint symbols, one for eah number in theinterval �127::127 and one for all the other numbers. For the numbers outsidethe interval �127::127 we output the Hu�man ode of that symbol plus 32 bitsrepresenting the atual value.Sometimes we have a seond soure of redondany in the point and vetoromponents. Let's take the sequene of the x oordinates of the points. If thereare points grouped in planes orthogonal to the Ox axis, we get repeating values inthat sequene. So, instead of oding the atual values, we will ode the distanefrom the last appearane of that value.4. ConlusionsThe method desribed in the previous setion was implemented by the authorand is used in a ommerial appliation for sending desriptions of 3D senes overthe Internet. The senes are output by a CAD-like program and are between300kB and 5MB in obj format. A simple onversion from text to binary reduesthe size to one half, and a zip-like program redues it to 1=4::1=5 of the original



16 RADU-LUCIAN LUPS�Asize. The ompression ratio aquired by the program using the method desribedabove is 1=8::1=10. Referenes[1℄ P. Burger, D. Gilles. Interative Computer Graphis. Addison-Wesley Publishing Com-pany, 1990[2℄ F. Preparata, M. Shamos. Computational Geometry. Springer-Verlag, 1988[3℄ R. Gonzales, R. Woods. Digital Image Proessing. Addison-Wesley Publishing Company,1993[4℄ Al. Sp�ataru. Teoria transmisiunii informat�iei | Information Transmission Theory. Edi-tura Tehni�a, Buure�sti 1965[5℄ X. Marsault. Compression et ryptage de l'information | Information Compression andEnrypting.[6℄ R. Lups�a. A Method for Compressing Stati Images Using Spline Funtions. Proeedingsof the \Tiberiu Popoviiu" Itinerant Seminar of Funtional Equations, Approximation andConvexity, Cluj-Napoa, May 21{25, 1996[7℄ C. van Overveld, B. Wyvill Phong Normal Interpolation Revised. ACM Transations onGraphis, ot. 1997, vol. 16, no. 4[8℄ Hee Cheol Yun, Brian Guenter. Lossless Compression of Computer-Generated Anima-tion Frames ACM Transations on Graphis, Ot. 1997, vol. 16, no. 4[9℄ M. Lounsbery, T. D. DeRose, J. Warren. Multiresolution Analysis for Surfaes of Arbi-trary Topologial Type. ACM Transations of Graphis, Jan. 1997, vol. 16, no. 1Faulty of Mathematis and Computer Siene, \Babes�-Bolyai" University, Cluj-Napoa, RomaniaE-mail address: rlupsa�s.ubbluj.ro



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS ASHIDDEN MARKOV MODELSADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARAbstrat. It is onsiderred in this moment that the use of mathematialstatistis methods in natural language proessing represents a leading topi inNLP. Statistial methods have �rst been applied in the "speeh-reognition"area. While Hidden Markov Model (HMM) is unanimously aepted as amathematial tool in this area, its advantages have been less used in dealingwith understanding natural language. In this paper we propose a method forassoiation of a HMM to a ontext-free grammar (CFG). In this way, learninga CFG with a orret parsing tree will be realized by learning a HMM.Key words: probabilisti ontex-free languages, hidden Markov mod-els, natural language proessing.1. Hidden Markov Model (HMM).HMM model is a generalization of Markov hains, being possible that morearrows to go out for a given input. As in an HMM we an have more pathsoverred for the same input, it implies that P (w1;n) (whih is the probabilityto have as input a sequene made up of n words, w1 w2 � � �wn, shortly writtenas w1;n ) is alulated as the sum of the probabilities on all the possible paths.Probability on a given path is alulated by multiplying the probabilities on eahsegment (arrow) of that path.De�nitionAn HMM is a 4-element struture < s1; S;W;E > , where S is a (�nite) setof states, s1 2 S is the initial state, W is a set of input symbols (words), and Eis a set of transitions (labelled arrows). We onsider the following order of theelements of the sets S;W;E: S = (s1; � � � s�); W = (w1; � � �w!);E = (e1; � � � e�):Let us notie the di�erene between wi and wi: the �rst one means the i-thelement (word) of an input sequene, while the seond one is the i-th elementof the W set. A transition is de�ned as a 4-element struture: (si; sj ; wk ; p) ,2000 Mathematis Subjet Classi�ation. 68Q42, 65C40.1998 CR Categories and Desriptors. F.4.2 [Theory of omputation℄: MathematialLogi and Formal languages { Grammars and other rewriting systems; G.3 [Mathematis ofComputing Probability and Statistis℄: Markov proesses.17



18 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARrepresenting passing from state si to state sj for input wk , transition evaluatedas having the probability p. As for a given input sequene we have more possiblepaths, the states that it has been passed through is not dedutible from input, buthidden (this gives the name of the model we fous on). The sequene of statess1; s2; � � � ; sn+1 that it has been passed through for an input w1;n is marked by usshortly with s1;n+1.Algorithm to �nd the highest-probability-path. In the followings, we areusing Viterbi 's algorithm to �nd the most probable path. Formally written, wehave to �nd argmaxs1;n+1P (w1;n; s1;n+1)where w1;n is a sequene of input(entrane) words, and s1;n+1 is the set of statesthat has been passed through. The main idea of the algorithm is alulating themost probable path beginning with the empty input sequene, and proessing oneword at a time, then the next word that omes in the input sequene. At everystep, we alulate the most probable sequene of states whih ends up with thestate si, i = 1; � � � ; �, where � is the total number of states of the Markov model.Formally, we denote: �i(t + 1) is the most probable sequene of states when itwas given as input the sequene of words w1;t and the �nal state being si. Thehighest-probability-path we are looking for is�i(n+ 1) = argmaxs1;t+1P (w1;t; s1;t; st+1 = si)and has as �nal state si. Dynami programming priniple, that is fundamentalfor Viterbi's algorithm, allows us to make the following remarque: the highest-probability-path to a state si, when it is given as input the sequene w1;t, ismade up of the maximum-probability-path with the input w1;t�1, with the �nalstate (let us note) sk , whih is making the multipliation P (�k(t))P (sk wt! si)as maximal, and juxtaposing this so-obtained path with the state si. Saying theabove in another way, �i(t+ 1) is alulated like this:�i(1) = si; i = 1 � � �� �i(t+1) = �j(t)Æsi ; j = argmaxk=1;�(P (�k(t))P (sk wt! si)):In the above formula, "Æ" represents onatenation.Algorithm to alulate the probability of an input sequene. We arementioning here two algorithms to alulate the probability of an input sequene.Let us note by �i(t+1) the probability that the input sequene w1;t be aepted,and having si as the �nal state. In other words:�i(t+ 1) = P (w1;t; st+1 = si); t > 0 (1)Let us notie that having all �i(n+ 1) values alulated, the probability P (w1;n)is given by: P (w1;n) = nXi=1 �i(n+ 1):



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS19Considering that w1;0 is the empty word, whih has the aeptane probability 1,we have that �j(1) = 1:; if j = 1; and it is 0 otherwise, orresponding to the fatthat the initial state of every path is s1. Calulation of �j(t) is done starting with�j(1) , �j(2) and going until �j(n+ 1) , using the reursive relation:�j(t+ 1) = �Xi=1 �i(t)P (si wt! sj):The probabilities �i(t) are alled forward probabilities. It is also possible to alu-late bakwards probabilities, �i(t), with the following de�nition: �i(t) representsthe aeptane-probability of input wt;n, if the state at step t is si. So:�i(t) = P (wt;n j st = si); t > 1:The probability we are looking for will be�1(1) = P (w1;n j s1 = s1) = P (w1;n)Calulation of � funtion is done starting with values:�i(n+ 1) = P (� j sn+1 = si) = 1; i = 1; � � � ; �:For the reursive ase, we have:�i(t� 1) = P (wt�1;n j st�1 = si) == �Xj=1 P (si wt�1! sj)�j(t)Training Markov models. The training algorithm of a Markov model used inthis paper is the Baum-Welh algorithm (or forward-bakward). This one, havinggiven a ertain training input sequene, it ajusts the probabilities of transitions inthe HMM, so that the respetive sequene have an as big as possible aeptaneprobability. Appliation of the algorithm has as prerequisite an HMM struture al-ready having been de�ned, and only the probabilities of transitions still remainingto be established. The probabilities of transitions are alulated with the formula[2℄ P (si wk! sj) = C(si wk! sj)P�;!l=1;m=1 C(si wm! sl) (2)The C funtion in the above formula is alulated like this [2℄:C(si wk! sj) = 1P (w1;n) nXt=1 �i(t)P (si wk! sj)�j(t+ 1) (3):What an be immediately notied in this formula is that, for the alulationof C(si wk! sj) we need to know path-probabilities, and so, the probabilities oftransitions for the HMM model. Therefore, we start with some 'guessed' prob-abilities, alulated with the help of the formula (3) the new values of funtion



20 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARC(si wk! sj) and then we adjust the probabilities of transitions using the formula(2). The indiator showing the improvement level of probabilities is the growthof the probability of input sequene P (w1;n) ompared to the previous estima-tion. The proess of realulating transition probabilities is �nished when theseprobabilities no more su�ers modi�ations onsidered as important.2. Probabilisti ontext-free grammars.De�nition [3, 2℄A probabilisti ontext-free grammar (PCFG) is a 5-element struture< W;N;N1; R; P >where � W = fw1; : : : ; w!g represents a set of terminal symbols (we also allthem words);� N = fN1; � � � ; N�g represents a set of non-terminal symbols, and N1 isthe initial(start) symbol S;� R is a set of rules of form N i ! �j , where �j 2 (N [W )�;� P is a probability funtion assoiating to every rule N i ! �j a proba-bility P (N i ! �j) so that the sum of probabilities of the rules having asleft-side member (deploying) the same non-terminal is 1.The probability of a sequene w1;n is equal with to sum of the probabilities ofall possible syntatial trees for the analysis of w1;n. The probability of a treeis given by the multipliation of the probabilities of the used rules : P (T ) =Qrule r used in T P (r):2.1. Assoiating an HMM model to a PCFG grammar. In the followings,we are providing a way of assoiating an HMM model to a PCFG grammar, sothat eah derivation tree orespond to a path in HMM. This allows us to alulatethe probability of a sequene as the probability of an aepted sequene by anHMM. In order to desribe the algorithm of attahing a HMM to a PCFG, wesuppose that the PCFG is in Chomsky-normal-form, that is, all the rules have theform: X ! Y Z or X ! awhere X;Y; Z are non-terminals, and a is terminal. There are three possiblesituations to be disussed:Case I. A rule has the form pX : X ! Y Z and there exist the rules pY : Y ! aand pZ : Y ! b. A derivation tree using these rules looks like that given in the�gure 1.The orresponding path in an HMM is shown in the �gure 2.Case II. A rule has the form pX : X ! Y Z , and there exist the rulespY : Y ! U V , pU : U ! a , pV : V ! b, pZ : Z ! . A derivation tree usingthese rules looks like in the �gure 3.



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS21XY Zba Fig. 1
�̀��� -6���� -6?���� 6-����X � : pX a : pY b : pZY Z SfFig. 2 XY ZbVbUa Fig. 3The orresponding path in an HMM is shown in the �gure 4.Case III. The rule has the form pX : X ! Y Z , and there exist the rulespZ : Z ! U V , pY : Y ! a , pU : U ! b, pV : V ! . A derivation tree usingthese rules looks like in �gure 5.



22 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATAR�̀��� -6���� -6?���� 6-����X � : pX Y ?����?̀����Zsf
b : pV : pZ

� : pY a : pUU V
Fig. 4 XY Za Ub VFig. 5The orresponding path in an HMM is shown in the �gure 6.�̀��� -6���� -6?���� 6-����X � : pX Y ?����?̀����sf

a : pY � : pZZ Ub : pu : pVVFig. 6De�nitionA sequene w1;n 2 L(G) , where G is a PCFG, with the probability P (w1;n),if there is a parsing tree T with the root S and the produt of rules used for T isP (w1;n).



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS23De�nitionA sequene w1;n is aepted by a HMM H with the probability P (w1;n) if thereis a path from S ( the start node of HMM) to the �nal node sfin and the produtof probabilities on edges is P (w1;n).TheoremIf G is a probabilisti ontext-free grammar, H is the HMM assoiated with Gas above and the sequene w1;n 2 L(G) with the probability P (w1;n), then w1;n isaepted by H .Proof Let us onsider that w1;n 2 G, where G is in Chomsky normal form.We will prove by indution on the length m of the longest path in the parsingtree of w1;n that w1;n is aepted by H . If the length m is 1, then w1;n = a andin H there is a path (as in Case IV above) from S to sfin labeled by a , of thesame probability. We will suppose that the impliation is true for eah sequeneobtained by a parsing tree with the longest path m � 1 and let as suppose thatthe sequene w1;n is obtained by a parsing tree T with the longest path m. In thisparsing tree the �rst rule used is of the form pS : S ! Y Z . In the tree T Y andZ are roots of parsing tree T1 and T2, with the longest path at most m � 1 andwith the frontiers P1 and P2. The frontier of T is w1;n so w1;n = P1P2. Considerthat we are in the Case I (the others ases are proved analogously). In this aseP1 is a = w1 and P2 is w2;n. By indution hypothesis P2 is aepted by a HMMwith the start symbol Z. The situation in Case I is as in �gure 7.�̀��� -6���� -6?���� 6����a : pYY Z SfS -P2� : pS
Fig. 7So, H aepts aP2 = w1;n. The probability P (w1;n) in T is obtained as theprodut between pS , the probability of P1, and the probability of P2. In the CaseI the probability is: pS � pY � P2.3. Training PCFG - grammars.The training of the PCFG-grammars is obtained based on the training algorithmfor HMM, by passing from a grammar to an HMM, as in the above mentionedtheorem. As we have said, Baum-Velh algorithm for training an HMM needs



24 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARa given struture to be applied to. Just the same, for a PCFG, it is supposedthat the rules have already been de�ned. Let us onsider the phrases used forthe training proess as "parenthesis-ed", whih means, it is de�ned the way toobtain items from lower-level items (loser to the border of the derivation tree).In order to exemplify, look at the phrase: " Salespeople sold the dog bisuits"[2℄. Let us now desribe the needed steps when training a PCFG, and use theabove phrase for better understanding. Parenthesis-ing (Salespeople (sold (thedog bisuits))), generates the folowing rules: s ! np vp ; np ! noun ; np !det noun noun; vp ! verb np : A seond possible parenthesis-ing (inorret) is:(Salespeople (sold (the dog) bisuits)). Aording to this, we have the rules: s !np vp ; np! noun ; np! det noun ;vp! verb np np: The overall set of rules wehave obtained is shown below, where the sum of probabilities of the rules having thesame non-terminal in the left-side member is s ! np vp : 1:0; np ! noun : 0:5;np ! det noun noun : 0:25; np ! det noun : 0:25; vp ! verb np : 0:5; vp !verb np np : 0:5: We are transforming the so-obtained rules to be in Chomsky-normal-form, starting with the rule np ! noun : 0:5 and in the next step weare modifying the rules ontaining more than two non-terminals in their right-sidemember. After these being done, the �nal grammar beomes: s ! np vp : 0:50;s ! noun vp : 0:50; np ! det � n noun : 0:50; np ! det noun : 0:50; vp !verb np : 0:20; vp ! verb noun : 0:20; vp ! verb � np np : 0:20; vp ! verb �np noun : 0:20; vp! verb�n noun : 0:20; det�n! det noun : 1:0; v� np!verb np : 1:0; v � n ! verb noun : 1:0; noun ! salespeople : 0:35; noun !bisuits : 0:35; noun ! dog : 0:40; verb ! sold : 1:0; det ! the : 1:0: Let usnow onsider the �rst (orret) parenthesis-ing of the phrase: (Salespeople (sold(the dog bisuits))). The derivation-tree of �gure 8 orresponds to this situation.The path in the HMM is given in �gure 9.As far as onerns the seond (inorret) parenthesis-ing, its orrespondingderivation-tree looks like in �gure 10.Initially, both of the derivation trees have the same probability (0.00245). Afterthe grammar has been trained with the orretly paranthesised phrase, the orrettree has the probability 0.037037 while the inorret one has the probability 0.000.4. The appliation.The appliation is written in Borland Pasal. The appliation has three parts:� the �rst part(A) reads a HMM from a text �le� the seond part(B), having as input a HMM and a given entry sequene, �ndsthe probability and also the most probable paths for the entry sequene� the third part(C), exeutes the training of the given HMM, for a given entrysequene.



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS25Snounsalespoeple vpverbsold npdet� ndetthe noundog
nounbisuitsFig. 8

���� -���� -���� -���� - -���� -����& %����& ����
S � : 0:50noun salesp : 0:35 vp � : 0:20 verb np det� nsold : 1:0 � : 0:50� : 1:0the : 1:0 detsfinbisuits : 0:35--

����dog : 0:40
�6

Fig. 9
The algorithms used in the seond and the third part of the appliation aredesribed above.



26 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARSnounsalespeople vpverb� npverbsold npdetthe noundog
nounbisuitsFig. 10The appliation will be sent at request by the seond author. In the followingwe will desribe shortly this appliation.The input data are read from a text �le, whih ontains the given HMM, infat the number of states, the set of states, the initial state and the setof transitions. We have to speify that the number of entries and the set of theentries is not read from the input �le, but is automatially alulated from the setof transitions. We assume that eah transition is identi�ed by three omponentss1; p; s2, where s1 and s2 are states, and p is the probability of the transition froms1 to s2 and also, a state is identi�ed by a harater (of ourse, this assumption isnot restritive, if is neessary, a state ould be identi�ed by a string).Constants.�MaxNrStari = 25- the maximum number of states�MaxNrIntrari = 15- the maximum number of entries�MaxNrDrum = 10- the maximum number of pathsData types.sir=array[1..MaxNrStari℄ of har- de�nes the type of the set of states of the HMM (eah state is represented as aharater)tranzitii=array[1..MaxNrStari,1..MaxNrIntrari,1..MaxNrStari℄ of real



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS27- de�nes the type of the set of transitions (the struture of a transition was de-sribed above)mat=array[1..MaxNrStari,1..MaxNrIntrari℄ of real- de�nes the type of a matrix withMaxNrStari lines andMaxNrIntrari olumns,for representing the data type of the probabilities �i(t)sirs=array[1..MaxNrDrum℄ of string;- represents the type orresponding to the array of paths in the HMM (a path isrepresented as a string - an array of haraters).Global variables.�s - a variable of type sir; represents the set (array) of states�w - a variable of type sir; represents the set (array) of entries�p - a variable of type tranzitii; represents the set (array) of transitions�sigma- a variable of type integer; represents the number of states�ni - a variable of type integer; represents the number of entries�si - a variable of type integer; represents the index of the initial state in theset of states�alfa - a variable of type mat; represents the matrix ontaining as elementsthe probabilities �i(t) (for a given entry sequene)�beta - a variable of type mat; represents the matrix ontaining as elements theprobabilities �i(t) (for a given entry sequene)�y - a variable of type string; represents an entry sequene (we assume thatthe length of this sequene is less or equal than MaxNrIntrari)The algorithm performs the following steps:Part A� reads the input data(the HMM) from the text �le.Part B� reads an entry sequene� determines for the given entry y, the probabilities �i(t) and �i(t) (for alli 2 [1::sigma℄ and t 2 [1::length(y) + 1℄� using � and � (alulated at the preeding step), on determine the probabilityof the entry sequene y� determines and displays the most probable paths for the entry sequenePart C� reads the training entry sequene� trains the HMM for the entry sequene, using the Baum-Welh algorithmSubprograms used.



28 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARPart A(P) proedure itire(var sigma : integer; var s; w : sir; var p : tranzitii; var si :integer; var ni : integer)- reads the input data (the number of states, the set of states, the set of entries,the set of transitions, the initial state, the number of entries) from a text �lePart B(F) funtion apare(x : string; s : sir;ns : integer) : integer- determines the index of the string x in the array s having the dimension ns(F) funtion alfa j tplus1(alfa : mat; j; t : integer; y : string) : real- alulates �j(t+ 1) for the entry sequene y(F) funtion beta i tminus1(alfa; beta : mat; i; t : integer; y : string) : real- alulates �i(t� 1) for the entry sequene y(P) proedure alul alfa beta(var alfa; beta : mat; y : string)- using the two above desribed funtions, alulates the probabilities �i(t) and�i(t) (for all i 2 [1::sigma℄ and t 2 [1::length(y) + 1℄(P) proedure det prob intrare(y : string; var pro : real)- alulates the probability p of the entry sequene y, as the sum of the elementsfrom the last olumn (length(y)+1) of the matrix alfa(P) proedure det drum el mai probabil(y : string; var n : integer; var z :sirs; var max : real)- determines the most probable paths for the entry sequene y, eah path havingthe probability max (n represent the number of paths, z represent the array ofthe most probable paths)(P) proedure afisare drum el mai probabil(y : string;n : integer; z : sirs; pro :real)- displays the most probable paths for the entry sequene y (the paths retainedby the above desribed proedure)Part C.(F) funtion alul  i k j(i; k; j : integer; y : string) : real- alulates the value of the numbering funtion C for the states i, j and thetransition y[k℄ (y is the entry sequene), using the relation (3) given in subsetion1.1; this funtion uses the values �i(t) and �i(t) alulated in part B(P) proedure antrenare hmm- trains the HMM using a training entry sequene and the Baum-Welh algo-rithmExamples.Part B.Let us onsider the following input �le



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS293 - the number of statess - the �rst stateb - the seond statef - the third states - the initial states 0 s 0.05 - the following lines ontain the transitionss 1 s 0.05s 0 b 0.9b 1 s 0.3b 0 s 0.5s 1 f 0.1b 0 f 0.1b 1 f 0.1If the entry sequene is 001, then the results are� the probability of the entry sequene is 0.0859� the probability of the most probable path for the entry sequene is 0.0450� the most probable path for the entry sequene is sbsfPart C.Let us onsider the following input �le, whih odi�es the HMM desribed insetion 3.9s - the state "S"a - the state "noun"b - the state "vp" - the state "verb-np"d - the state "verb"e - the state "np"h - the state "det-n"g - the state "det"f - the �nal state "s-�n"s - the initial states l a 0.5 - the transitionsa d a 0.4 - "d" odi�es "dog"a S b 0.35 - "S" odi�es "Salespeople"a b f 0.35 - "b" odi�es "bisuits"b l  0.2 - "l" odi�es "�"b l d 0.2 l d 1.0d s e 1.0 - "s" odi�es "sold"e l h 0.5



30 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARe l g 0.5h l g 1.0g t a 1.0 - "t" odi�es "the"a S f 0.35d s f 1.0a d f 0.4s l e 0.5a d b 0.40The sequene whih odi�es the orret sentene (Salespeople(sold(the dog bis-uits))) (1) is lSlslltdb.The sequene whih odi�es the inorret sentene (Salespeople(sold(the dog)bisuits)) (2) is lSllsltdb.The sequene whih odi�es the inorret sentene (The dog(sold(the dog bis-uits))) (3) is lltdlslltdb.The results obtained for this HMM are the following� in the given HMM, without training, the sentenes 1 and 2 have the sameprobability 0.00245 and the sentene (3) has the probability 0.0014� after training the HMM for the �rst sentene (1), the probability for thesentene 1 is 0.037037, the probability for the sentene 2 is 0.00 and the probabilityfor the sequene (3) is 0.00 Referenes[1℄ J.Allen : " Natural language understanding", Benjamin/Cummings Publ. , 2nd ed., 1995.[2℄ E. Charniak: "Statistial language learning", MIT Press, 1996.[3℄ D. Jurafski, J. H. Martin: "Speeh and Language Proessing", Prentie Hall, 2000.[4℄ S.J.Russell, P.Norvig: "Arti�ial intelligene.A modern approah", Prentie-Hall Interna-tional,1995.[5℄ D. Tatar: "Uni�ation grammars in natural language proessing", in "Reent topis inmathematial and omputational linguistis", ed. Aademiei, Buuresti, 2000, pg 289-300.Faulty of Mathematis and Computer Siene, \Babes�-Bolyai" University, Cluj-Napoa, RomaniaE-mail address: gabis|dtatar�s.ubbluj.ro



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FORHPCCMARIN IUGA AND BAZIL PÂRVAbstrat. This paper present a Java-based objet-oriented infrastruturefor an High Performane Computing Center (HPCC). This infrastruturehas several funtional levels: user- and server-interation (at lient level),and identi�ating and getting all the relevant information (at ommuniationprotool level). The main funtionality of the server is to establish the linkbetween the algorithms requested by the lient and their storage environ-ment, by o�ering additional assistane to lients while browsing through thealgorithms olletion.Keywords: High performane omputing, Java tehnologies, lient-server arhiteture, objet-oriented infrastruture.1. The general struture of HPCCThis work is based espeially on [2℄, trying to onretize the abstrat spei�a-tion of a High Performane Computing Center (HPCC) given there. It ontinuesother works on the same topi (see [1℄ and [3℄).The HPCC appliation has several funtional levels. Figure 1 below presentsthe way these levels are strutured, taking into aount the funtional needs fordata manipulation, and the funtional dependenies between them.As we see in Figure 1, there are �ve signi�ant funtional levels, eah level usingextensively servies exposed by the previous ones. On its turn, eah funtional levelhas several setions, eah with its spei� servies.The �rst level (starting from top to bottom), AD user level, is user interfaeone; it allows the user to navigate, visualize, or searh data ontained in thealgorithm store. Usually, this level will be an applet running on lient mahine.This applet will ommuniate with the data server either using a spei� networkprotool, or RMI. At this moment, there is no �nal deision onerning this issue.The main task of this applet is to apture user's needs and to generate queriesfor the data server. On its turn this server will proess these queries by using the2000 Mathematis Subjet Classi�ation. 68N19.1998 CR Categories and Desriptors. D.2.2 [Software℄: Software Engineering { DesignTools and Tehniques. 31
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Figure 1. HPCC - Funtional levelsservies o�ered by the objet model. Also, the lient level will use the serviesexposed by the AD data objets level in order to manipulate those objets.The next level, AD management and data delivery, has two di�erent se-tions: AD server and AD management. The seond setion, AD management,is designed as a separate JAVA appliation. By using the servies exposed by ADdata objets level, its funtionality overs maintenane of data about algorithmsand lasses of algorithms.The �rst setion, AD server, deals with data transmission to lient applet.If a spei� network protool is used for lient ommuniation, AD server needsto be a daemon JAVA appliation running on server mahine. In this ase, theprotool for data transmission needs to be de�ned and implemented. In the seondase, whih uses RMI for data transmission, there will be a set of interfaes forensuring ommuniation between lient and server. In fat, AD server will be aolletion of suh interfaes and some additional lasses used to implement queriesfor algorithm store. This seond approah for the AD server has the advantage ofa simpler implementation, and the drawbak of working with JAVA lients only.The third level, AD data objets, is the ore part of all appliations whihonstitute HPCC. This level de�ne the struture of objets whih manipulate datareferring to algorithms and groups of algorithms and implements a series of usefuloperations on them. These issues are disussed in detail in Setion 2 and 3.



A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR HPCC 33The fourth level,AD objet networking/storage operations, is responsiblewith storing and transmitting the objets aross the network. It has two setions:AD networking and AD objet storage. The upper level will use the servies ofAD objet storage in order to store/retrieve objets, as we disuss in the thirdsetion. AD networking exposes servies for paking-transmission aross thenetwork-unpaking operations.The basi level of the HPCC appliation, AD low level operations, de�nessome primitive operations. Funtionality of this level has to be ful�lled by usingsome standard JAVA pakages, inluding JDBC, and the usual funtions of theoperating system.Note the pyramidal struture of the appliation, in whih eah level is usingextensively only the operations exposed by the level below. This struture wasdesigned keeping in mind the funtional deomposition of the task and using astepwise approah for abstrations.2. Algorithm Store data shemeData about algorithms and groups of algorithms are modeled via two objetualounterparts, whih use the relational paradigm for assuring their persistene.There are two levels of storing information:� identi�ation: map eah algorithm/group to its spei� main folder; thisinformation is kept in two relational tables;� data: data are stored in standardized struture of di�erent �les andfolders in the main folder (desription, soure ode Pasal and C++,JAVA applets).The information ontained in Algorithm Store is strutured in two organi-zational levels: the algorithm level, AlgorithmTable, and the algorithm grouplevel, GroupTable. Also, there are some internal tables.All the tables are managed by theAD objet storage setion fromAD objetnetworking/storage operations level, whih use JDBC and OS FileSystemoperations, loated on lowest level.This setion disusses the data sheme, while the next setion is disussing theorresponding objets.2.1. AlgorithmTable. Algorithm Store ontains data referring to algorithms andgroups of algorithms. Eah algorithm is haraterized by the following attributes:a name, a desription �le ontaining its goal, its parameters, and, in the ase offuntions, the result type. Other attributes inlude algorithm implementation,using a ommon programming language (C++, Pasal), and/or the orrespondingapplet, whih is exeuted on lient mahine (see Table 1).As we see in Table 1, the information ontained in eah line is a kind of diretoryinformation. The way this information is used to store all the data referring to analgorithm is as follows:



34 MARIN IUGA AND BAZIL PÂRVTable 1. The struture of AlgorithmTableAttribute DesriptionAlgorithmIndex integer representing the algorithm id in the algorithm tableGroupIndex integer representing the group id in the GroupTable (id ofthe lass the algorithm belongs)AlgorithmName string representing algorithm nameHasDesription boolean value: True if the algorithm has a desription �leand False otherwiseHasPasalCode boolean value: True if the algorithm has a Pasal imple-mentation and False otherwiseHasCPPCode boolean value: True if the algorithm has a C++ imple-mentation and False otherwiseHasApplet boolean value: True if the algorithm has a orrespondingJAVA applet and False otherwiseKeyWords string, a list of keywords, separated by ommas; the key-words are used in queries� all the information referring to an algorithm is stored in a folder, alledalgorithm main folder and named 00-AlgorithmIndex; its sub- foldersare disussed below� desription: ontains the �le desription.html, ontaining the algo-rithm desription (this subfolder exists only if HasDesription = True)� pasal: ontains the �le pasal.html ontaining the pasal soure ode(this subfolder exists only if HasPasalCode = True)� pp: ontains the �le pp.html ontaining the C++ soure ode (thissubfolder exists only if HasCPPCode = True)� applet: ontains the start �le applet.html and all the neessary JAVA�les for this applet (this subfolder exists only if HasApplet = True).Note that the �elds HasDesription, HasPasalCode, HasCPPCode, and HasAppletare redundant in the AlgorithmTable, beause one an test the existing sub-folders in the algorithm main folder. The reason is inreasing the speed of theappliations whih use this table.2.2. GroupTable. Eah algorithm belongs to a unique algorithm group (e.g.sorting algorithms, searhing algorithms, string pattern-mathing algorithms, nu-merial analysis algorithms and so on). On its turn, a group of algorithms anbe divided into subgroups in a tree fashion. The usual attributes for algorithmgroup are its name and a desription �le whih ontains the ommon features ofits algorithms.The struture of GroupTable, whih ontains data referring to algorithmgrouping is detalied in Table 2.



A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR HPCC 35Table 2. The struture of GroupTableAttribute DesriptionGroupIndex integer representing the group id in the group table. Rootgroup has the index 1UpperGroupIndex integer representing the id of the parent group in the grouptable. For the root group this index equals 0GroupName string representing group nameHasDesription boolean value: True if the group has a desription �le andFalse otherwise (usually this ag is True)KeyWords string, a list of keywords, separated by ommas; keywordsare using in queriesAll the information referring to a group of algorithms is stored in a folder, alledgroupmain folder and named 00-GroupIndex; it ontains the �le desription.html,i.e. the group desription (this �le exists only if HasDesription = True).2.3. Internal tables. Algorithm Store also ontains several internal tables, de-signed for a better implementation of its funtionality. By using these tables,Algorithm Store server builds several URLs and then sends them to the lientapplet. On its turn, the lient applet displays these URLs in the browser window.Thes internal tables are:UnusedAlgorithmIds: unused algorithm ids (due to algorithm delete op-erations)UnusedGroupIds: unused group ids (due to group delete operations)GlobalData: ontains ontext information: the root path for the �le andfolder struture and the pre�x used for building URLs.3. Algorithm Store Objet ModelBoth data and operations onerning algorithms and groups are modeled usingobjets. Both algorithms and groups are onsidered objets, whih are manipu-lated by using a spei� manager objet. The designed lasses are:AlgorithmInfo: models the algorithm objetGroupInfo: models the algorithm group objetObjetDBManager: models the objet manager, whih performs load/storeoperations on objets. Beause all objets are stored in a relational data-base, store and load operations need some spei� transformations (i.e.linearization).The objet model also ontains some support lasses, needed for objet propaga-tion aross network. These lasses are not full implemented. AlgorithmInfo andGroupInfo lasses belong to AD objet model level, while ObjetDBManager
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Figure 2. Class diagrams { AlgorithmInfo and GroupInfois the ore of AD objet storage setion of AD objet networking/storageoperations level.3.1. AlgorithmInfo and GroupInfo lasses. Figure 2 presents lass diagrams forAlgorithmInfo and GroupInfo. Both lasses are derived from java.lang.objetand implement the interfae InformationItem.Note the 1:1 mapping between their attributes and the struture of orre-sponding tables (AlgorithmTable and GroupTable). In order to speed updata manipulation and to derease memory usage, all attributes are onsideredpubli (instead of delaring them private and using get/set methods). TheInformationItem interfae ontains usual data manipulation operations: write,read, delete, and append. All these operations use a referene to an ObjetManagerobjet. The method isAlgorithmInfo is used in dynami identi�ation of the re-eptor type.3.2. ObjetManager lass. ObjetManager's objet main task is to make persis-tent AlgorithmInfo and GroupInfo objets. The roles of ObjetManager supportlass are:



A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR HPCC 37� to provide the infrastruture for storing/retrievig AlgorithmInfo andGroupInfo objets in/from a relational database (whih ontains thetables AlgorithmTable, GroupTable, UnusedAlgorithmIds, Un-usedGroupIds, and GlobalData)� to help AlgorithmInfo and GroupInfo objets in managing their ownpersistene� to support queries referring to an algorithm or group of algorithms.Figure 3 presents the diagram for ObjetDBManager lass.The ObjetDBManager objet does not interat diretly with the �les in themain folders. It is used by the server in order to know if these �les exist in thefolder struture. AD Management omponent is responsible with reation andupdating of these �les. 4. How HPCC worksThe AD management setion of AD management and data delivery level isresponsible with reating the standard struture of folders and �les. First, the ADserver setion of the same level, by using AD objet model, reates URLs for theroot group whih are sent to the lient. On his behalf, lient displays in a treeontrol the struture of HPCC Algorithm Store. When the user selets a spei�algorithm/group, the lient applet sends the algorithm/group id to the server, andthe server builds the orresponding URLs, whih are sent bak to the lient applet,whih displays them in a window.The user an speify queries by using keywords or algorithm/group names. Theparameters are direted to the AD server, whih builds the query string and usesObjetDBManager::doQuery to retrieve the results, onsidered as a heterogeneousolletion of AlgorithmInfo and GroupInfo objets. These results are sent bak tothe lient applet, whih displays them in a window.5. Conlusions and future workIn this moment, the ore part of HPCC appliation is already in plae. Theremaining omponents (as lient presentation, networking, AD management) willbe implemented soon. Referenes[1℄ Avram, D., M. Iurian, B Pârv, A High Performane Computing Center Based On A LoalNetwork, in SYNASC 2000, The Seond International Workshop on Symboli and NumeriAlgorithms for Sienti� Computation, West University, Timisoara, 4-6 Ot. 2000, 87-90.[2℄ Pârv, B., A Component-Based Model for Algorithms, Babe�s- Bolyai Univ., Fa. Math. Comp.Si. Res. Sem, Seminar on Computer Siene, 20 (1998), No. 2, 53-60.
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Figure 3. Class diagram { ObjetDBManager[3℄ Pop D., S. Iurian, M. Iurian, B. Pârv, C. Miho, Objetual Interfaes for AlgorithmDatabases, Babe�s-Bolyai Univ., Fa. Math. Comp. Si. Res. Sem, Seminar on ComputerSiene, 21 (1999), No. 2, 35-42.Faulty of Mathematis and Computer Siene, \Babes�-Bolyai" University, Cluj-Napoa, RomaniaE-mail address: marin|parv�s.ubbluj.ro



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000GENETIC CHROMODYNAMICSD. DUMITRESCUAbstrat. A new evolutionary searh and optimization metaheuristis, alledGeneti Chromodynamis (GC), is proposed. The GC-based methods use avariable sized solution population and a loal interation priniple. Loal in-terations indue a restrited mating sheme and permit detetion of multipleoptimal solutions.The main idea of the GC strategy is to fore the formation and main-tenane of stable sub-populations. Proposed loal interation sheme ensuressub-population stabilization in the early searh stages.Sub-populations o-evolve and eventually onverge towards several opti-mal solutions. The number of individuals in the urrent population dereaseswith the generation. Very lose individuals are merged. At onvergene thenumber of sub-populations equals the number of optimal solutions. Eah�nal sub-population hopefully ontains a single individual representing anoptimum point (a solution of the problem).The GC approah allows as solution representation any data strutureompatible with the problem and any set of meaningful variation operators.GC-based tehniques an be used to solve multimodal, stati and dy-nami, optimization problems.Keywords: Evolutionary algorithms, Geneti hromodynamis, Mul-timodal optimization 1. IntrodutionEvolutionary omputing (EC) deals with adaptive searh and optimization teh-niques that simulate biologial evolution and adaptation proesses. EC mainlyinludes Geneti algorithms (GAs), Evolution strategies, Evolutionary program-ming and Geneti programming. Geneti algorithms represent the most typialinstane of EC (see [4℄).Unfortunately standard GAs an not solve all kinds of optimization and searhproblems, like GA { hard or deeptive problems [8℄. While one of the main diÆ-ulties arises from the premature loal onvergene, other diÆulties onern themultimodal optimization problems. Standard GAs, as well as the other usualevolutionary proedures, generally fail to detet multiple optimum points.2000 Mathematis Subjet Classi�ation. 68T05.1998 CR Categories and Desriptors. I.2.8 [Computing Methodologies℄: Arti�ial In-telligene { Problem Solving, Control Methods, and Searh.39



40 D. DUMITRESCUSeveral methods have been proposed to solve premature onvergene and mul-timodal optimization problems.Virus-evolutionary geneti algorithm (VEGA) [10℄ has been onsidered to pre-vent the premature loal onvergene due to the lak of diversity in the solutionpopulation. The VEGA approah is based on the virus theory of evolution aord-ing to whih viruses transport segments of DNA aross the speies. The VEGAapproah implies two populations: a host population and a virus population. Thevirus population realizes a horizontal propagation of geneti information in thehost population. This propagation is realized by virus infetion, i.e. by aringsolution fragments (substrings) between the individuals in the host population.Therefore the VEGA tehnique simulates evolution with horizontal propagationand vertial (i.e. usual) inheritane of geneti information.Multimodal geneti algorithms generally use another biologial idea, namely thenihe onept [1, 2, 6, 7, 8, 9℄. Eah optimum region in the searh spae will beonsidered as a nihe. Nihing geneti algorithms are able to form and maintainmultiple, diverse, optimal solutions. Usually the nihe onept is implementedthrough the use of �tness sharing. The nihing proess is aomplished by degrad-ing the �tness of an individual aording to the presene of nearby individuals.The sharing funtions [6℄ are used to alulate the extent of sharing to beperformed between two individuals. For eah individual the value of the sharingfuntion is alulated with respet to the individuals in the population. The niheount of an individual is the sum of the orresponding sharing values. The �tnessof an individual is divided by its nihe ount. The obtained updated value is theshared �tness of that individual.The radius s of the estimated nihes is onsidered. The individuals separatedby distane greater than s do not degrade eah other's �tness.Sharing tends to spread the population over di�erent optima proportionally tothe values of these optima. Unfortunately the nihing methods do not guaranteean appropriate seletion of all useful solutions, for any situation [8℄. The detetionof the number of optimal solutions ould be a problem, as well.In this paper we onsider a di�erent, non-nihing, strategy to prevent prema-ture loal onvergene and to detet multiple optimal solutions. The proposedapproah is alled Geneti Chromodynamis (GC). Let us note that GC doesnot represent a partiular evolutionary tehnique but merely a metaheuristis forsolving (multimodal) optimization/searh problems.2. Geneti Chromodynamis priniplesGeneti Chromodynamis metaheuristis uses a variable sized population ofsolutions (hromosomes or individuals) and a loal mating sheme. Several solutionrepresentations an be onsidered. For instane solutions may be represented asreal- omponent vetors. Solution representation as binary strings an be also



GENETIC CHROMODYNAMICS 41used. Proposed GC strategy allows any data struture suitable for a problemtogether with any set of meaningful variation/searh operators. Moreover theproposed approah is independent of the solution representation.The main idea of the GC strategy is to fore the formation and maintenane ofsub-populations of solutions. Sub-populations o-evolve and eventually onvergetowards several (loal and global) optimal solutions.The number of individuals in the population dereases with the generation.Very similar individuals (solutions) are merged. At onvergene the number ofsub-populations equals the number of optimal (loal and global) solutions. In thestandard ase eah �nal sub-population ontains a single individual representingan optimum point (a solution of the problem).A di�erent olor is assigned to eah solution in the initial population. In thestandard GC approah every solution in eah generation is seleted for reombi-nation or mutation. The reombination mate of a given solution is seleted withina determined mating region. Before reombination all solutions in a given matingregion will reeive the olor of the best individual within that region.A (2,1) reombination mehanism is used. The �rst parent is dominant and theseond one is reessive. The unique o�spring is labeled as the desendent of itsdominant parent. The o�spring will inherit its parent olor. It is expeted that atonvergene only di�erent olored solutions will remain in the population.Two sub-populations will generally have di�erent olor sets. The number ofolors per region tends to derease with the time. Hopefully a dominant olor willbe established in eah sub-population.We may onsider that the method enounters two interating dynamis: a miroand a maro dynamis. The system miro-dynamis is assoiated with solutionmodi�ations. The maro-dynamis is assoiated with sub-populations formation,modi�ation and stabilization. Maro-dynamis indues a dominant olor withineah sub-population.We may onsider eah of the miro and maro-dynamis as expressing a par-tiular aspet of the global system dynamis.As GC strategy uses a variable-sized solution population, the underlying popu-lation dynamis is more ompliated than in usual evolutionary algorithms. There-fore the orresponding searh proess may also be supposed to be more powerful.This feature makes GC-based searhing methods appealing for solving diÆulttasks, like time-dependent, multimodal and multiobjetive optimization problems.The maro-dynamis of a variable sized population seems to be adequate to dealwith a hanging environment. Hene the proposed approah is potential useful fortakling distributed AI appliations, like ooperative multi-agents.



42 D. DUMITRESCU3. Subpopulation emergeneGC-based optimization tehniques start with a large arbitrary population of so-lutions. Dimension of the solution population dereases at eah generation. Thereis a highly probability that eah new generation will ontain some individualsbetter than the individuals in the previous generation.Using a loal mating sheme the formation and maintenane of solution sub-population is favored or even fored.Sub-populations evolve towards ompat and well separated solution lusters.Sub- populations within eah generation P (t) indue a hard partition (or at leasta over) of the set P (t).In de�ning sub-populations we may onsider a biologial point of view. Re-ombination of individuals in the same sub-population is highly expeted. Theprobability of mating individuals belonging to the same sub-population is greaterthan the probability of mating individuals from di�erent sub-populations. Re-ombining individuals in di�erent sub-populations is not de�nitively forbiddenbut usually it is very improbable. Therefore we may say that sub-populations areomposed of highly ompatible (with respet to reombination) individuals.GC approah is essentially based on loal interations in a variable-sized pop-ulation. The role of loal mating sheme (loal solution interations) and that ofvariable sized population may be summarized as follows:(i) to ensure early sub-population formation and stabilization;(ii) to avoid massive migration between sub-populations approximating di�erentoptimum points (migrations ould a�et the quality of some already obtained'pure' or high quality solutions);(iii) to prevent destrution of some useful (high quality) sub-populations;(iv) to ensure a high probability of obtaining all useful problem solutions.Loal interation priniple needs a slight modi�ation of the variation searhoperators. 4. Mating regionLet us onsider a distane onept (a metri or a pseudo-metri) Æ de�ned onthe solution spae Y . Consider an initial population in whih eah solution has adi�erent olor. Let f be the �tness funtion. As usual f() evaluates the qualityof the solution .As only short range interations between solutions are allowed, the mate of eahsolution  has to belong to a neighborhood of . It is usually onvenient to onsiderthis neighborhood as the losed ball V (; r) of enter  and radius r.We may interpret the parameter r as the interation radius (or interationrange) of the individual . Short range (or loal) interations will ensure an ap-propriate o-evolution of the sub-populations.



GENETIC CHROMODYNAMICS 43All the individuals within the region V (; r) reeive the olor of the best indi-vidual in that mating region. The searh proess starts with a population whoseindividuals have all di�erent olors.An adaptation mehanism an be used to ontrol the interation range r, so asto support sub-population stabilization. Within this adaptation mehanism theinteration radius of eah individual ould be di�erent. In this way the exibilityof the searh proess may inrease signi�antly. Eah sub-population may havea more independent evolution (more freedom degrees of its behavior). To ontrolthe domain interations we an use a general (problem independent) method ora partiular heuristi. Problem dependent approahes seem to be appealing fordealing with some partiular situations.Let us note that the meaning of the mating region V (; r) is not that of anihe. The resoures of this region are not shared between its members, as in thenihe approah. It is more suitable to interpret the mating region V (; r) as theinteration domain of the individual .For some partiular problems we may admit migrations (meaning that reom-bination is permitted) between di�erent interation domains. Allowing permeableinteration domains may lead to better solutions by inreasing population diver-sity. 5. Termination onditionVarious termination onditions for the GC searh proess may be identi�ed.Some stopping onditions may be formulated aording to the partiular problemonsidered. Other stop onditions are problem independent. Here we are interestedin the seond lass.A good, general, problem independent heuristis is to stop the searh proessif the solution population remains unhanged for a �xed number of generations.This ondition represents a natural termination riterion ensuring that the searhproess ontinues only how long is neessary.6. Seletion and reombinationGeneti hromodynamis involves two types of seletion shemes. Global sele-tion supplies the parent population. Loal seletion is a mehanism for hoosinga mate of a solution in the respetive mating region.6.1. Global seletion. Within standard version of Geneti hromodynamis ap-proah eah solution  in the population P (t) will be onsidered for reombination.More sophistiated global seletion mehanisms may be used. Their eÆieny inthis ontext is questionable.



44 D. DUMITRESCU6.2. Loal seletion. Aording to the proposed loal interation sheme themate of the solution  will be hosen from the neighborhood (mating region)V (; r) of . Loal mate seletion is done aording to the values of the �tnessfuntion f .For seleting the mate of a given solution we may use proportional seletion. Letm be a solution in the interation domain (mating region) V (; r) of the solution. The probability that m is seleted as the mate of  is denoted by p(m) and isde�ned as p(m) = f(m)Pa2V (;r) f(a) :Any other type of seletion ompatible with the partiular onsidered problemis permitted. Tournament seletion is a very powerful mehanism and may besuessfully use for mate seletion.6.3. Reombination. Let a be the seleted partner of . The ordered pair (; a)generates by reombination a unique o�spring. The �rst parent is dominant,whereas the seond one is reessive.Let d be the o�spring generated by  and a. The o�spring d will inherit theolor of its (dominant) parent  and will be labeled as the desendent of  only.The form of the reombination operator will be hosen aording to the solutionrepresentation and the nature of the problem.For a real valued solution representation a onvex ombination of the genesin  and a an be used to obtain the omponents of d. In the ase of onvexreombination the ith position of the o�spring d has the expression:di = qi + (1� q)ai;where q is a real number in the unit interval [0,1℄.7. Mutation operatorIf the losed ball V (; r) { the interation domain of  { is empty then thesolution  will be seleted for mutation. In this way reombination and mutationare mutually exlusive operators. Mutation may be onsidered as ating mainlyon stray points.An additive normal perturbation seems to be appropriate for general optimiza-tion purposes. By mutation (stray) solutions are usually drawn loser to loaloptimum points of the objetive funtion. As a side e�et solutions are foredtowards one of the existing sub-populations.Various solution omponents may su�er perturbation with di�erent standarddeviation values. In every situation the mutated solution will inherit the olor ofits parent, as well.



GENETIC CHROMODYNAMICS 458. Mutation aeptane shemeWithin usual evolutionary algorithms generated mutations are generally un-onditionally aepted. Within Geneti hromodynamis based tehniques a moresophistiated aeptation mehanism will be onsidered.8.1. General aeptane mehanism. Standard GC approah onsiders thatin eah generation every solution is involved in reombination or mutation. Eahsolution will produe, and possibly be replaed by, an o�spring. Whihever isbetter between a dominant parent and its o�spring will be inluded in the newgeneration.Aording to the proposed mehanism a mutated solution (o�spring), whihis better than its parent, is unonditionally aepted. This aeptane shemeindues a rapid onvergene of the searh proess.It seems that no restrition on mutation parameter is needed if the best fromparent and o�spring survives. This strategy an be useful in the �rst stages of thesearh proess. In the last stages it may ause a drawbak of the searh proess.Let us onsider a solution representing an optimum point. Its desendant ob-tained by mutation ould belong to a region orresponding to a di�erent optimumpoint, having a higher �tness. The o�spring ould surpass its parent �tness. There-fore the o�spring will survive and a useful optimum point represented by its parentis lost.To prevent the extintion of some optimum points { espeially in the last searhstages - we may admit that a mutated o�spring have to belong to the interationrange of its parent. We may ful�ll this requirement by hoosing an appropriatevalue of the standard deviation parameter (whih ensures a high probability theo�spring belongs to the interation range). This strategy is another faet of theloal interations priniple.Aording to the partiular implementation or to the problem at hand otheraeptation mehanisms may be onsidered.We may also assoiate an aeptane probability p to eah o�spring worse thanits parent. A simulated annealing sheme (see [11℄) may be used to ontrol themutated solution aeptane aording to the probability value p.8.2. Simulated annealing aeptane. In some situations, it is important tohave an additional mehanism for preventing premature loal onvergene. Thistask may be aomplished by allowing an o�spring that is worse than its parentto be aepted in the new generation. In this regard, an aeptane mehanismanalogous to simulated annealing tehnique (see [11℄) may be used.The ost assoiated with the aeptane (maintenane) of a solution  in thenew generation is de�ned as: C() = K � f();



46 D. DUMITRESCUwhere the real onstant K is hosen suh that C() � 0, for eah solution .Remark. The higher the �tness of a solution, the lower the ost to keep thatsolution in the next generation.Let d be an o�spring (obtained by reombination or by mutation) whih is worsethan its parent , we have: f(d) < f():The assoiated ost variation is:�C = C(d) � C():It is easy to see that this ost is positive. The probability p of aepting theo�spring d in the new generation isp = e��CkT ;where k > 0, and T is a positive parameter signifying system temperature.The values of the parameter k and T ontrolling the aeptane probability arehosen depending on the spei� problem.By subsequently lowering the temperature, the aeptane probability dereasesover time. In the �nal searh proess stages very small aeptation probabilitiesof worse solutions are needed.By the proposed aeptane mehanism the solutions will generally get loser tothe points orresponding to small ost values (high �tness values). Let us observethat the onsidered aeptane mehanism does not ensure the system reahesthermodynami equilibrium at eah generation (for eah value of the parameterT ), like in Metropolis algorithm (see [11℄) normally used in simulated annealing.We may suppose the equilibrium will be ahieved only at the end of the searhproess.The equilibrium orresponds to slow temperature variations. We may onsidertemperature dereasing aording to the shedule:Tg = T11 + ln g ;where T1 is the initial temperature and g > 1 is the generation index.To implement the proposed mehanism a random number R having uniformdistribution in [0,1℄ is generated. If R < p then the o�spring (worst than itsparent) is aepted in the new generation. Otherwise its parent is aepted.9. Adapting mutation parameterAn important problem with respet to the proposed evolutionary tehniqueis to hoose an appropriate perturbation range for the mutation parameter. Arelated problem onerns the development of suitable adapting tehnique for thisparameter.



GENETIC CHROMODYNAMICS 47We may onsider several adaptation mehanisms for the perturbation standarddeviation (representing the perturbation amplitude).To ensure the �ne tuning of the searh proess in its �nal stages we may allowperturbation amplitude dereasing with time.Another strategy to ontrol the standard deviation parameter may be realizedby a self- adapting proess. In this ase the standard deviation is inluded inthe solution struture (genotype) and it is adapted by the e�et of the variationoperators. 10. Interation- range adaptationUsually the interation-range is the same for all the solutions. To ontrol sub-population stabilization we may use a mehanism to adapt the interation radiusdepending on the spei� problem under onsideration. Generally it seems usefulthe interation radius be a time dereasing parameter.A radius ontrol mehanism ould also ensure a supplementary tuning of thesearh proess right from the �rst stages.A possibility for evolving interation radius is to onsider a symbiosis of theurrent population P (t) and a seondary population whose individuals representinteration ranges.We also may onsider eah solution has its own interation radius. This param-eter may be inluded in the genotype and evolved during the searh proess.11. Population dereasing and stabilizationShort-range interations permit early solution lustering in sub-populations.Loal interations also favor sub-population stabilization. As a side e�et, aftera few generations, some solutions might overlap, or beome very lose, as two ormore sub- populations might evolve towards the same optimum point. To detetthe orret number of optima is neessary to have only one solution per optimum.To this end, the population size is subsequently redued by merging similar (losein terms of distane Æ) solutions.If distane between two solutions is less than an appropriate threshold, thenthe two solutions are merged. This veri�ation will be done at eah insertion of anew solution in the population.The searh proess stops if after a (previously �xed) number of generationsno signi�ant hange ours in the population. Here a signi�ant hange is theaeptation of a new generated o�spring.We obtain the number of optimum points as the number of solutions in the �nalpopulation. Eah solution in the �nal population gives the position of a global orloal optimum point.



48 D. DUMITRESCUTherefore we may onsider the CG approah as being merely a lass of optimi-sation and searh tehniques based on the loal interation priniple. Any usefulheuristi may be inorporated.12. Loal and infra-loal optimaBy maintaining a diversity of sub-populations the Geneti hromodynamissearh methods are expeted to avoid the problems due to loal premature on-vergene. The proposed approah seems also to be robust with respet to verylose optimum points. Close optima may not represent distint useful solutions,sine they are merely loal perturbations (due to noise, for instane) of a ertainoptimum point. We may all them infra-loal optima.For most pratial problems infra-loal optima are solutions of no interest. Loaloptima of fratal funtions may represent an interesting example of suh uselesssolutions. Infra-loal optima represent parasite solutions. Their detetion is atime-onsuming task. Furthermore parasite solutions an also generate onfusionin interpreting the results. 13. AppliationsGeneti hromodynamis is intended as a general optimization/searh teh-nique. GC-based methods are partiularly suitable for solving multimodal andmultiobjetive optimization problems.Geneti hromodynamis an also be used to solve mathematial problems thattraditionally are not treated by evolutionary approahes. Examples of suh prob-lems are: equation solving (algebrai, di�erential or integral equations), �xed pointdetetion and equation systems solving.The GC approah may be used to solve real - world optimization problems.Geneti hromodynamis avor methods an be also applied in various sienti�,engineering or business �elds involving stati or dynami (proess) optimization.Clustering, data ompression and other data mining problems are very suitablefor a GC treatment. Geneti hromodynamis lustering based methods an bepartiularly useful to detet the optimal number of lusters in a data set and theorresponding set of useful prototypes. The method is e�etive even for a veryfew number of data points (one data point per lass, for instane).14. ConlusionsAn evolutionary metaheuristis is proposed. This metaheuristis is alled Ge-neti Chromodynamis strategy. GC implementations generate a new lass ofsearh/optimization tehniques. The GC approah uses a variable-sized popula-tion and loal interations among solutions. Within the methods in theGC familysolutions are supposed to have di�erent olors. Population dynamis is aompa-nied by a olor dynamis. Short-range interations permit early sub-populations



GENETIC CHROMODYNAMICS 49emergene. The onsidered loal interations also guarantee the sub-populationsmaintenane and stabilization.The solution sub-populations evolve towards the loal and global optimumpoints. The �nal population ontains as many solutions as (global and loal)optimum points are deteted.Geneti Chromodynamis strategy is intended to prevent loal premature on-vergene and to solve multimodal optimization and searh problems. One of theimportant features of the GC-based tehniques is their robustness with respet toloal perturbations of the optimum points.Geneti hromodynamis is a exible method allowing the inorporation of dif-ferent general or problem-depending heuristis. We have already exempli�ed thisability by using a version of simulated annealing to ontrol the aeptane meha-nism of a new solution. A similar mehanism ould be used to ontrol the mutationproess. For some partiular problems onsidering elements of tabu searh (see[5℄) ould ameliorate the performane of the GC method.Therefore we an onsider the Geneti hromodynamis approah as beingmerely a lass of optimization and searh tehniques based on the priniple ofloal interations and using a variable- sized population. Eah partiular hromo-dynamis tehnique may also inorporate any useful heuristi.Referenes[1℄ Booker, L., Improving the performane of geneti algorithms in lassi�er system, J.J. Grefen-stete (Editor), Proeedings of the First International Conferene on geneti Algorithms,Lawrene Erlbaum Assoiates, 1985, pp 80-92.[2℄ Davidor, Y., A naturally ourring nihe and speies phenomenon: the model and the �rstresults, in R.K. Belew , L.B. Booker.(Editors), Proeedings of the Fourth InternationalConferene on Geneti Algorithms, Morgan Kaufmann, 1991, pp 257-273.[3℄ Dumitresu, D., Bodrogi, L., A new evolutionary method and its appliations in lustering,Babes-Bolyai University Seminar on Computer Siene, 2, 1998, pp. 127-134.[4℄ Dumitresu, D., Lazzerini, B., Jain, L.C, Dumitresu, A., Evolutionary Computation, CRCPress, Boa Raton, 2000.[5℄ Glover ,F., Laguna,.M., Tabu Searh, Kluwer Aademi, Publishers, Boston, 1997.[6℄ Goldberg, D., E., Rihardson J., Geneti algorithms with sharing for multimodal funtionoptimization, Pro. 2nd Conferene on Geneti Algorithms, 1987, 41- 49.[7℄ Goldberg, D. E., Geneti Algorithms in Searh, Optimization and Mahine Learning, Addi-son Wesley, Reading, MA, 1989.[8℄ Goldberg, D. E., Deb, K., Horn, J., Massive multimodality , deeption , and geneti algo-rithms , in R. Manner , B. Manderik (Editors) , Parallel Problem Solving from Nature,Elsevier,1992, 37-46.[9℄ Mahfoud, S.W., Nihing Methods for Geneti Algorithms Ph.D. Thesis, University of Illinois,1995.[10℄ Shimojima, K., Kubota, N., Fukuda, T., Virus-evolutionary geneti algorithms for fuzzyontroller optimization, in F. Herrera, J.L.Verdegay, Eds., Geneti Algorithms.[11℄ Van Laarhoven, P.J.M., Aarts, E.H.L., Simulated Annealing: Theory and Appliations, D.Reidel Publishing.1987.
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVEOPTIMIZATIOND. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANAbstrat. Several evolutionary algorithms for solving multiobjetive opti-mization problems have been proposed ([2, 5, 6, 7, 8, 9, 10, 12, 13℄, see alsothe reviews [1, 11, 14℄). All algorithms aim to give a disrete piture of thePareto optimal set (and of the orresponding Pareto frontier). But Paretooptimal set is usually a ontinuous region in the searh spae. It follows thata ontinuous region is represented by a disrete piture. When ontinuosdeision regions are represented by disrete solutions there is an informationloss. In this paper we propose a new evolutionary approah ombing a newsolution representation, new variation operators and a multimodal optimiza-tion tehnique. In the proposed approah ontinuous deision regions may bedeteted. A solution is either a losed interval or a point. The solutions inthe �nal population will give a realisti representation of Pareto optimal set.Eah solution in this population orresponds to a deision region of Pareto set.Proposed tehnique does not use a seondary population of non-dominatedalready founded.Keywords: evolutionary algorithms, multiobjetive optimization, Pa-reto optimal set, Pareto frontier, Geneti hromodynamis.Let f1; f2; : : : ; fN be N objetive funtions.fi : 
! R;
 � R:Consider the multiobjetive optimization problem:� optimize f(x) = (f1(x); : : : ; fN (x))subjet to x 2 
The key onept in determining solutions of multiobjetive problems is that ofPareto optimality.De�nition. (Pareto dominane) Consider a maximization problem. Let x, ybe two deision vetors (solutions) from 
. Solution x is said to dominate y (alsowritten as x�y) if and only if the following onditions are ful�lled:2000 Mathematis Subjet Classi�ation. 68T05.1998 CR Categories and Desriptors. I.2.8 [Computing Methodologies℄: Arti�ial In-telligene { Problem Solving, Control Methods, and Searh.51



52 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(i) fi(x) � fi(y), 8i = 1; 2; : : : ; n.(ii) 9j 2 f1; 2; : : : ; ng : fj(x) > fj(y).De�nition. Let S � 
. All solutions whih are not dominated by any vetorof S are alled nondominated with respet to S.De�nition. Solutions that are nondominated with respet to the entire searhspae 
 are alled Pareto optimal solutions.Pareto optimal set may onsist from deision regions represented as:(i) a set of points;(ii) a set of disjoint intervals;(iii) a set of disjoint intervals and a set of points.Usual multiobjetive optimization algorithms may deal with the �rst ase. Theseond ase is solved in a quite arti�ial manner. Obtained solutions representpoints in a set of non-disjoint intervals. It is problemati to obtain a realistirepresentation of a union of ontinuous Pareto optimal regions using suh a disretepiture.When ontinuous deision regions are modeled by disrete solutions there isan information loss due to �delity loss between ontinuous and disrete represen-tations. Any multiobjetive optimization problem being omputationally solvedsu�ers this fate. Methods for �nding Pareto optimal set and Pareto optimal frontusing disrete solutions are omputationally very diÆult. Moreover the resultingsets are still only a disrete representation of their ontinuous ounterparts. How-ever the results may be aepted as the `best possible' at a given omputationalresolution.In this paper we propose a new evolutionary approah ombing a non-standardsolution representation and a multimodal optimization tehnique. In the proposedapproah a solution is either a losed interval or a point. The solutions in the �nalpopulation will give a more adequate representation of Pareto optimal set.To evolve population we use a multi-modal optimization metaheuristi alledGeneti Chromodynamis ([4℄). Eah individual from the population is seletedfor reombination or mutation. A mate for an interval (individual) is anotherinterval that intersets it. If an individual has a mate then they are ombined.Otherwise it is mutated. Mutation onsists from normal perturbation of intervalextremities.A new variation operator alled splitting operator is onsidered. By splittingan interval-solution ontaining a dominated point is splitted. In this way sev-eral Pareto regions existing in the same solution are separated. Performing thisoperation population size is inreased.Two population dereasing mehanisms are used: merging (if an interval iswholly ontained in other interval, the �rst one is remove from the population)



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 53and vanishing (very bad intervals are removed from the population). The algo-rithm stops when the optimal number of solutions is ahieved. The evolutionarymultiobjetive proedure proposed in this paper is alled Continuous Pareto Op-timal Set (CPOS).1. Solution representation and dominationIn this paper we onsider solutions are represented as intervals in the searhspae 
.Eah interval-solution k is enoded by an interval [xk ; yk℄ � R. Degeneratedintervals are allowed. Within degenerate ase yk = xk the solution is a point. Todeal with this representation a new domination onept needed.De�nition. An interval-solution [x; y℄ is said to be interval-nondominated ifand only if all points of that interval [x; y℄ are nondominated.Remark. If x = y this onept redued to the ordinary non-domination notion.De�nition. An interval-solution [x; y℄ is said to be total dominated if and onlyif eah point within [x; y℄ is dominated (by a point inside or outside the interval).Remarks.(i) If no ambiguity arise we will use nondominated (dominated) instead of in-terval-nondominated (interval-dominated).(ii) An interval-solution may ontain dominated as well as nondominates points.A ommon approah of multiobjetive optimization is to use a Pareto-rankingmehanism for �tness assignment (see for instane). In our interval-representationthis approah is diÆult to be used diretly due to the in�nite member of pointsto be tested in eah interval. For this reason we propose a new approah. The ideais to approximate the onept of total domination. In this respet we introduethe notion of non-domination degree.A non-domination onept may be introdued by onsidering some randompoints in the solution interval. The number Kxy of random points is proportionalto the interval size jx� yj. We may de�ne Kxy asKxy = F (jx� yj);where F is a linear funtion.Let Sxy be a set of random numbers within the solution-interval [x; y℄. The sizeof the sampling set Sxy is equal to Kxy:ard Sxy = Kxy:De�nition. Non-domination degree of the interval-solution [x; y℄ is the numberNxy de�ned as follows:



54 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(1) x 6= y then Nxy = N1 �N2Kxk :where N1 (N2) is the number of non-dominated (dominated) points inthe set Sxy and Kxy � 1.(2) x = y then Nxy = � 1 if x is non-dominated0 otherwiseDe�nition. Solution [x; y℄ is said to be t-nondominated if the inequalityNxy � tholds. In this inequality t is a threshold, 0 � t � 1.2. Fitness assignmentWithin our evolutionary multiobjetive optimization proedure �tness assign-ment is realized using non- domination degree.Let [x; y℄ be a solution. Fitness of the solution [x; y℄ is denoted eval([x; y℄) andeval([x; y℄) = Nxy:Remark. Proposed �tness assignment sheme may supply di�erent �tnessvalues for several sampling sets Sxy. This is not a major drawbak. As a matterof fat, we may onsider the statistial harater of �tness assignment proessas an advantage. It may results in an inreasing exibility of the orrespondingsearh proedure.3. Population model and searh operators within CPOS proedureFor preserving all useful solutions in the population CPOS proedure use amulti?modal optimization tehnique. Our experiments emphasize that Genetihromodynamis meta?heuristi proposed in [4℄ outperforms other standard meth-ods like nihing, restrited mating or island models. Geneti hromodynamis usesa variable?sized population and a loal mating sheme.The method allows a natural termination ondition. Eah solution in the lastpopulation supplies a Pareto optimal region ontributing to the piture of Paretooptimal set.Most of the multiobjetive optimization tehniques based on Pareto rankinguse a seond population that stores nondominated individuals. Members of se-ond population Pseond may be used to guide the searh proess. As dimensionof seondary population may dramatially inrease several mehanisms to redue



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 55Pseond size have been proposed. In [13℄ and [14℄ a population dereasing teh-nique based on a lustering proedure is onsidered. We may observe that preserv-ing only one individual from eah luster implies a loss of information. Presentapproah does not use a seondary population. This makes CPOS proedure morerobust and less ostly. It does not imply a loss of information about Pareto optimalset during the searh proess.3.1. Seletion for reombination. Only most �t individuals are allowed to re-ombine. Aording to our elitist sheme only 1?nondominated individuals arereombined. Eah 1-nondominated solution is onsidered for reombination. Foreah parent a restrited mating sheme is used to �nd the other parent. Let [x; y℄be an 1?nondominated solution. If the solution is the degenerate interval x = ythen its mate is seleted from the losed ball V (x;R), where R is the mating range.R represents a parameter of the proedure.The mate of the one non-degenerate interval [x; y℄ is seleted from all one non-degenerate solutions [u; v℄ suh that they are not disjoint and do not inlude eahother. This means that the following onditions are have to be ful�lled for reom-bining interval solutions [x; y℄ and [u; v℄:(i) [x; y℄ \ [u; v℄ 6= ;;(ii) [x; y℄ \ [u; v℄ 6= [x; y℄;(iii) [x; y℄ \ [u; v℄ 6= [u; v℄.The individuals that an be seleted as mates of [x; y℄ represent the breederset of [x; y℄. From the breeder set the seond parent is seleted using a ertainproedure like a tournament or proportional seletion shemes.3.2. Reombination operator. Reombining the individual [x; y℄ and its se-leted mate it results a unique o�spring. The �rst parent [x; y℄ will be replaed bythis o�spring.If the parents are nondegenerated solutions the o�spring is the union of theparent intervals.For degenerated ase the o�spring may be, for instane, the onvex ombinationof its parents.Aording to the proposed reombination operator the mate of a (non) degen-erated solution has to be (non) degenerated too.3.3. Mutation operator. An individual [x; y℄ is mutated if and only if no matean be seleted for it. This happens when the breeder set of [x; y℄ is empty.3.3.1. Mutating an interval. There are several ways of realizing mutation. Thesepossibilities are:a) mutate the left extremity of the interval;



56 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANb) mutate the right extremity of the interval;) mutate the both extremities of the interval.Remarks.(i) For extremities perturbation we use an additive normal perturbation withstandard deviation �, where � is a parameter of the method.(ii) Degenerated?solutions mutation is inluded in the general sheme.(iii) Mutation type (a, b or ) is randomly hosen.3.3.2. Degenerated interval-solutions. By mutation an interval an be redued toa point. This may happen in the following situations:(i) mutation of the right (left) interval extremity is less (greater) than the left(right) interval extremity;(ii) if by mutation the interval extremities oinide (with respet to a given om-putational resolution).3.4. Splitting operator. For segregation two disjoint Pareto regions that arerepresented by the same interval-solution we introdue a new type of variationoperator alled splitting operator.Splitting operator is applied to an interval-solution and produes two o�spring.This operator inreases population size.Applying reombination or mutation to all individuals in the urrent populationP (t) a new intermediary population P 1(t) is obtained. Splitting operator is appliedto the intermediate population P 1(t).To apply splitting operator an interval-solution [x; y℄ is randomly hosen fromP 1(t). A ut-point p, x < p < y, is randomly hosen. If p is a dominated pointthen [x; y℄ may inlude disjoint Pareto regions. For separating these regions weapply the splitting operator.The o�spring resulted by splitting the solution [x; y℄ are [x; p℄ and [p; y℄. Wemay thus write split[x; y℄ = f[x; p℄; [p; y℄g:Splitting operator is not applied if the randomly generated point p is nondom-inated. 4. Population dynamis within CPOS algorithmTo detet the orret number of Pareto optimal regions it is neessary to haveonly one solution per Pareto optimal region. Using Geneti Chromodynamistehnique population size dereases during the searh proess suh that eventuallyequals the number of optimal solutions.Several population dereasing mehanisms may be used. In our implementa-tion we onsider two omplementary shemes. Two new operators implement the



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 57onsidered population dereasing mehanisms. The proposed operators are alledmerging and vanishing. They at only on nondegenerated solutions.(i) Merging operator. If an 1-nondominated solution T1 is ompletely in-luded in another 1- nondominated solution T2, then the solution are merged.The solution T1 is disarded.(ii) Vanishing operator. If a solution is (-1) nondominated then the solutionis disarded. This operation is very useful beause performing split mutationthe number of bad solutions may grow onsiderably.These veri�ations needed by the operators are done when a new solution isinluded in the population. 5. Stop onditionGeneti hromodynamis deals with a very natural termination ondition. A-ording to this stop ondition the hromosome population remains unhanged fora �xed number of generations (given by the parameter MaxIteration in our algo-rithm) then the searh proess stops.6. CPOS algorithmContinuos Pareto optimal set (CPOS) algorithm proposed in this paper maybe outlined as below:CPOS AlgorithmbeginPopulation initialization:generate randomly a interval population (P (0));t = 0;Evolving intervals:repeatfor eah individual  in P (t)if Has Mate() f has a possible mategthenselet b { a mate for ; fselet mate using proportional seletiongPerform reombination:z =Reombination(b; );else Perform mutation of individual :z =Mutate();endifadd z to intermediate population P 0(t);endforApply merging operator on individuals in intermediate population P 0(t):



58 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANP 00(t) =merge(P 0(t));Apply vanishing operator on individual on P 00(t):P 000(t) =vanish(P 00(t));P (t+ 1) = P 000(t); fnext generationgt = t+ 1;until MaxIterations is reahedend.Remark. Algorithm stops if there is no population modi�ation for a numberof MaxIterations suessive iterations.7. Numerial experimentsSeveral numerial experiments using CPOS algorithm have been performed.For all examples the deteted solutions gave orret representations of Pareto setwith an aeptable auray degree. Some partiular examples are given below.Example 1. Consider the funtions f1; f2 : [�4; 6℄! R de�ned asf1(x) = x2;f2(x) = (x� 2)2:Consider the multiobjetive optimization problem:� minimize f1(x); f2(x)subjet tox 2 [�4; 6℄Pareto optimal set for this multiobjetive problem is the interval [0, 2℄.The initial population is depited in Figure 1. For a better view the hromo-somes are drawn one above another.For the value � = 0:1of the standard deviation parameter solutions obtained after 10 generations aredepited in Figure 2.The population obtained after 24 generations is depited in Figure 3.The �nal population, obtained after 40 generations, is depited in Figure 4.Final population obtained after 40 generations ontains only one individual.This individual is: s = [0:01; 1:98℄;and represent a ontinuous Pareto optimal solution.
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Figure 1. Initial population

Figure 2. Population after 10 generationsThe obtained solution auray may be inreased, if neessary, by dereasingthe parameter standard deviation of normal perturbation. Of ourse the numberof iterations needed for onvergene inreases this ase.
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Figure 3. The population obtained after 24 generations

Figure 4. Final population obtained after 40 generationsFor example, if we onsider the value



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 61� = 0:01;the solution s = [0:004; 1:997℄;is obtained after 60 iterations.Example 2. Consider the funtions f1; f2 : [�10; 13℄! R de�ned asf1(x) = sin(x);f2(x) = sin(x+ 0:7):and the multiobjetive optimization problem:� minimize f1(x); f2(x)subjet tox 2 [�10; 13℄The initial population is depited in Figure 5.

Figure 5. Initial populationFor the value � = 0:1solutions obtained after 5 generations are depited in Figure 6.We may observe four distint, well-separated, subpopulations are already seg-regated after 5 generations. Therefore useful subpopulations are stabilized very



62 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANearly. Let us remark that, for the sake of larity, segments in the same lass areseparately represented. In reality they partially overlap.

Figure 6. The population after 5 generationsThe population after 10 generations is depited in Figure 7. Subpopulationsare well individualized and nested.The �nal population, obtained after 120 generations, is depited in Figure 8.Solutions in the �nal population are:s1 = [�8:47;�7:86℄;s2 = [�2:26;�1:56℄;s3 = [4:01; 4:69℄;s4 = [10:29; 10:99℄:Example 3. Consider the funtions f1; f2 : [�9; 9℄! R de�ned asf1(x) = x2;f2(x) = 9�p81� x2:and the multiobjetive optimization problem:� minimize f1(x); f2(x)subjet tox 2 [�9; 9℄The initial population is depited in Figure 9.
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Figure 7. Population after 10 generationsConsider the standard deviation parameter value� = 0:1;In this ase population obtained after 3 generations is depited in Figure 10.It is very interesting to observe that very early population stabilizes to a singleindividual. This individual will be improved at subsequent iterations.The population after 7 generations is depited in Figure 11.The �nal population, obtained after 120 generations, is depited in Figure 12.Final population obtained at onvergene after 120 generations ontains onlyone individual represented as degenerated interval (i.e. a point)s = �0:001:Therefore deteted Pareto optimal set onsists from a single point:Pdetet = f�0:001g:We may remark that deteted Pareto set represents a good estimation of theorret Pareto optimal set P = f0g:Auray of this estimation an be easy improved by using smaller values ofthe parameter ? (standard deviation). In this ase a larger number of generationsare needed for onvergene.
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Figure 8. Four solutions within the �nal population (obtainedafter 120 generations)

Figure 9. Initial population
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Figure 10. Population after 3 generations

Figure 11. Population after 7 generationsFor instane, if we put � = 0:01;
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Figure 12. Final population obtained after 120 generationsthe obtained solution is s = 0:0008:8. Conluding remarks and further researhesA new evolutionary tehnique for solving multiobjetive optimization problemsinvolving one variable funtions is proposed. A new solution representation is used.Standard searh (variation) operators are modi�ed aordingly. Three new searhoperators are introdued. The proposed evolutionary multiobjetive optimizationtehnique does not use a seondary population of non-dominated solutions.Proposed multiobjetive optimization method uses a new evolutionary meta-heuristi alled Geneti hromodynamis for maintaining multiple optimal solu-tions on the alulated Pareto set during the searh proess.All known multiobjetive optimization tehniques supply a disrete piture ofPareto optimal solutions and of Pareto frontier. But Pareto optimal set is usuallynon-disrete. Finding Pareto optimal set and Pareto optimal frontiers using adisrete representation is not a very easy omputationally task (see [11℄).CPOS tehnique supplies diretly a ontinuous piture of Pareto optimal set andof Pareto frontier. This makes our approah very appealing for solving problemswhere very aurate solutions detetion is needed.



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 67Another advantage is that CPOS tehnique has a natural termination onditionderived from the nature of evolutionary method used for preserving populationdiversity.Experimental results suggest that CPOS algorithm supplies orret solutions ina very few iterations.Further researh will onentrate on the possibilities to extend the proposedtehnique to deal with multidimensional domains.Another diretion is to exploit the solution representation as intervals for solvinginequality systems and other problems for whih this representation is natural.Referenes[1℄ Coello, C. A. C, A omprehensive survey of evolutionary- based multiobjetive optimizationtehniques, Knowledge and Information Systems, 1(3), 1999, 269-308.[2℄ Deb, K., Multiobjetive evolutionary algorithms: problem diÆulties and onstrution oftest problems, Evolutionary Computation, 7, 1999, 205-230.[3℄ Dumitresu, D, Lazzerini, B, Jain, L., C., Dumitresu, A., Evolutionary Computation, CRCPress, Boa Raton, 2000.[4℄ Dumitresu, D., Evolutionary Chromodynami, Studia Univ. Babe�s-Bolyai, Ser. Informat-ia, 2000.[5℄ Fonsea, C.M., Fleming, P.J., An overview of evolutionary algorithms in multiobjetiveoptimization, Evolutionary Computation, 3, 1995, 1-16.[6℄ Goldberg, D.E., Evolutionary Algorithms in Searh, Optimization and Mahine Learning,Addison Wesley, Reading, 1989.[7℄ Horn, J., Nafpliotis, N., Multiobjetive optimization using nihed Pareto evolutionary algo-rithms, IlliGAL Report 93005, Illionois Evolutionary Algorithms Laboratory, University ofIllinois, Urbana Champaingn.[8℄ Horn, J., Nafpliotis, N., Goldberg D. E. A nihe Pareto evolutionary algorithm for multiob-jetive optimization, Pro. 1st IEEE Conf. Evolutionary Computation, Pisataway, vol 1,1994, 82-87.[9℄ Sha�er, J.D., Multiple objetive optimization with vetor evaluated evolutionary algo-rithms, Evolutionary Algorithms and Their Appliations, J.J. Grefenstette (Ed.), Erlbaum,Hillsdale, NJ, 1985, 93-100.[10℄ Srinivas, N., Deb, K., Multiobjetive funtion optimization using nondominated sortingevolutionary algorithms, Evolutionary Computing, 2, 1994, 221-248.[11℄ Veldhuizen, D.A.V., Multiobjetive Evolutionary Algorithms: Classi�ation, Analyses andNew Innovations, Ph.D Thesis, 1999, Graduated Shool of Engineering of the Air ForeInstitute of Tehnology, Air University.[12℄ Veldhuizen, D.A.V., Lamont, G.B., Multiobjetive evolutionary algorithms: analyzing thestate-of-the-art, Evolutionary Computation, 8, 2000, 125-147.[13℄ Zitzler, E., Thiele, L, Multiobjetive evolutionary algorithms: A omparative study and thestrength Pareto approah, IEEE Trans on Evolutionary Computation, 3 (1999), 257-271.[14℄ Zitzler, E., Evolutionary Algorithms for Multiobjetive Optimization: Methods and Ap-pliations, Dotoral Dissertation, 1999, Swiss Federal Institut of Tehnology Zurih,Tik-Shriftenreihe nr. 30.
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000PHRASE GENERATION IN LEXICAL FUNCTIONALGRAMMARS AND UNIFICATION GRAMMARSDOINA T�ATAR, DANA AVRAMAbstrat. In this paper we ompare the proess of deriving a phrase stru-ture in a lexial funtional grammars with the proess of obtaining fea-ture struture for the symbol S of an uni�ation grammar. If the  �struture(D;C; e) generates the feature struture F , then F is the featurestruture obtained as MGSat( ), where  is a onjuntion of a set of de-sriptions from Des.1. Lexial Funtional Grammar-LFGLFG is a lexial theory, this means that the lexion ontains a lot of informationabout lexial entries. LFG grammars present two separate levels of syntatirepresentation: -struture, about onstituent strutures (in muh the same wayas derivation trees in CFG grammars) and f -struture , whih is used to holdinformation about funtional relations, enoded using equations between featurestrutures (see the next setion). We will introdue here the design of the grammarrules and the lexion, as well as the proess applied to derive a phrase.De�nitionA LFG grammar over a set Feats of attributes and a set Types of types is a5-uple (N,T,P,L,S) where:� N is a �nite set of symbols, alled nonterminals;� T is a �nite set of symbols alled terminals;� P is a �nite set of prodution rulesA0 ! A1; � � � ; AnE1; � � � ; En:where n � 1; A1; � � � ; An 2 N and Ei; 1 � i � n, is a �nite set ofequations of the forms: "j# � ="j# �02000 Mathematis Subjet Classi�ation. 68Q42.1998 CR Categories and Desriptors. F.4.2 [Theory of omputation℄: MathematialLogi and Formal languages { Grammars and other rewriting systems.69



70 DOINA T�ATAR, DANA AVRAM"j# �00 = vwith �; �0 2 Feats�; �00 2 Feats+ and v 2 Types;� L is a �nite set of lexion rulesA! tEwhere A 2 N; t 2 T [ " and E is a �nite set of equations of the form"j# � = vwith � 2 Feats+ and v 2 Types;� S 2 N is the start symbol.As an example let us onsider the rule:S ! NP V P" subj =#"=#The equations (or funtional shemes) are interpreted as referring to the featurestrutures (setion 2) assoiated, in the following way: the meta-variable " refersto the f-struture that is assoiated with the head of the rule, # refers to thef-struture assoiated with the daughter to whih the equation is attahed.The � struture based on a LFG grammar G is a tree, in muh the same wayas derivation trees in a CFG grammar, but the nodes are annotated not only withelements from N [ T but also with sets of equations E. More exatly:De�nitionA tree domain D is a set D � N�, (where N is the set of natural numbers, andN� is the Kleene losure of N) suh that if x 2 D then all pre�xes of x are also inD. The out degree d(x) of an element x in tree domain D is the ardinality of theset fi j xi 2 D; i 2 Ng. Let us denote by term(D) the set fx j x 2 D; d(x) = 0g.We an now de�ne a -struture based on a LFG grammar :De�nition[2℄A onstituent struture (-struture) based on a LFG grammarG = (N;T; P; L; S)is a triple (D;C; e) where� D is a �nite tree domain;� C is a funtion C : D �! N [ T [ f"g;� e is a funtion e : D n f"g �! � where � is the set of all equation sets inP and L, suh that C(x) 2 T [ f"g if x 2 term(D), C(") = S and forall x 2 (D � term(D)), if d(x) = n thenC(x) ! C(x1) � � �C(xn)e(x1) � � � e(xn)



PHRASE GENERATION IN LEXICAL FUNCTIONAL GRAMMARS AND UNIFICATION 71is a prodution or lexial rule in G.De�nitionA terminal string for a -struture is the string C(x1) � � �C(xn) , with x1; � � � ; xn 2term(D) and xi �lex xi+1 for i = 1; � � � ; n� 1.The existene of a -struture is a neessary but not suÆient ondition asterminal string belongs to the L(G). Nodes of the -struture are assoiatedwith feature strutures (denoted by fi), and the equations indue some equationsbetween fi as unknowns. The minimal solution of this set of equations ( if asolution exists) represents a feature struture F .De�nitionThe -struture(D;C; e) generates the feature struture F if F is the minimalsolution of the set of equations e. We denote this byF j=0 [x2D e(x):In the next setion we will present uni�ation grammars and will illustrate theonnetion between uni�ation grammars and LFG grammars.2. Unifiation Based Phrase Struture Grammars.The uni�ation grammars are phrase struture grammars in whih non-terminaland terminals symbols are replaed by feature strutures. Intuitively, a featurestruture (FS) is a desription of some linguisti objet, speifying some or all ofthe information that is asserted to be true of it [3, 5℄. We will present shortly twode�nitions of (untyped) feature strutures.De�nition:A feature struture over a signature Types and Feats is a labeled rooted diretedgraph represented by the tuple: F =< Q; �q; �; Æ >where :� Q is the �nite set of nodes of the graph;� �q 2 Q is the root node;� � : Q �! Type is a partial node typing funtion;� Æ : Feat �Q �! Q is a partial value funtion, whih assoiates with a nodei the nodes i1; � � � ; in if Æ(FEAT1; i) = i1; � � � ; Æ(FEATn; i) = in:In the rewriting relations two notions about FS's are important: subsumptionrelation and uni�ation operation.De�nitionA feature struture F subsumes another feature struture G or F v G i�:



72 DOINA T�ATAR, DANA AVRAM� if a feature f 2 Feat is de�ned in F then f is also de�ned in G and its valuein F subsumes the value in G;� if the values of two paths are shared in F , then they are also shared in G.Thus, F v G if G ontains more information than F or F is more general thanG.The notion of subsumption an be used to de�ne the notion of uni�ation, themain information ombining operation in uni�ation based grammars. Uni�ationonjoins the information in two feature strutures into a single result if they areonsistent and detets an inonsisteny otherwise.De�nitionThe result of the uni�ation of two FS's F and F 0 is an other FS (if it exists),denoted F tF 0 whih is the most general FS (in the sense of relation v) subsumedby both input FS's.Thus, F tF 0 is the l. u. b of F and F 0 , if it exists, on the ordering relation v.The FS's an be desribed, as an other modality, by a logial expression, whihis denoted "desription". The big advantage of this kind of representing FS's isthe linearity of displaying.De�nition [1℄ The set of desriptions over the set Types of types and Featsof features is the least set, Des, suh that:� 2 Des, if � 2 Types� : � 2 Des if � is a path, � 2 Des�1 := �2 2 Des, if �1 and �2 are paths� ^  ; � _  2 Des, if �;  2 DesThe priority among the operations is::=j :j ^ j _ jA satisfation relation between FS's and the set Des is de�ned as:De�nition The relation j= is the least relation suh that:F j= � if � 2 Types, � v �(q)F j= � : � if F�� is de�ned and F�� j= �F j= �1 := �2 if Æ(q; �1) = Æ(q; �2)F j= � ^  if F j= � and F j=  F j= � _  if FF j= � or F j=  .The following theorem establishes the duality between a (non-disjuntive) de-sription and the most general FS whih satis�es this desription:Theorem ([1℄). There is a partial funtion (algorithm)MGSat : Non�Disj �Des! T FSsuh that for eah � and F



PHRASE GENERATION IN LEXICAL FUNCTIONAL GRAMMARS AND UNIFICATION 73F j= � iff MGSat(�) v F:(MGSat(�) is onstruted as most general total well typed FS whih satis�es �.)Remark : The algorithm onsiders reursively the ases of desriptions: �, � : �,�1 = �2, � ^  and onstrut (learn) MGSat(�). The most important ase is:MGSat(� ^  ) =MGSat(�) tMGSat( ):The UBPSG's are phrase struture grammars in whih non-terminal or ategorysymbols are replaed by FS's in rewriting rules, the lexial entries are terminals,and an inheritane hierarhy < Types;v> is assoiated.UBPSG's was introdued by Shieber (1988) [5℄ , Gazdar and Mellih (1989) [4℄.De�nition. (UBPSG) For an inheritane hierarhy < Types;v> with anappropriateness spei�ation, a set Feats of features, a set Lex of terminals (lexialentries), a UBPSG is a set of rewriting rules:E0 ! E1 : : : En;where eah Ei is either a feature struture or a terminal (and in this ase n = 1).The interpretation of suh a rule is: the ategoryE0 an onsist of an expressionof ategory E1, followed by the ategory E2, et.Alternatively, the rewriting rule an be given as:D0 ! D1 : : : Dnwhere Di are desriptions, suh thatEi = Di; if Di is a terminal; Ei = (total well�typed )MGSat(Di); if Di 2 Des:Remarks:If the -struture(D;C; e) generates the feature struture F , then F is thefeature struture obtained as MGSat( ), where  is obtained as onjuntion ofthe set of Des as follows:� If an equation refers to a single unknown ( with the form: fi� = v,fi being an unknown, � being a path from Feats�, v 2 Types), then� : v 2 Des;� If two equations are as fi� = v and fi�0 = v0 then � : v ^ �0v0 2 Des;� If an equation is of the form fi = fj , and fi j= �i and fj j= �j , then�i ^ �j 2 Des.These remarks an be summarized in the following:TheoremIf F j=0 Sx2D e(x) then F j=  , where  = V�2Des �, and � are the desrip-tions obtained as above.



74 DOINA T�ATAR, DANA AVRAM3. ExampleThe lexial rules of this example from [3℄ are:N �!0 Ralua0" pred =0 Ralua0; " pers =0 30; " nr =0 sing0N �!0 marea0" pred =0 marea0; " pers =0 30; " nr =0 sing0V �!0 priveste0" pred =0 priveste0; " pers =0 30; " nr =0 sing0The nonlexial rules let be: S ! NP V P" subj =#; "=#V P ! V NP"=#; " obj =#NP ! N"=#We will onstrut the  � struture based on the above LFG grammar, thanwe will proeed to deorate the  � struture by names of feature strutures fiand will apply the equation between them. The deorated � struture with theinstantiated equations attahed to its nodes for the above example is also presentedas bellow.



PHRASE GENERATION IN LEXICAL FUNCTIONAL GRAMMARS AND UNIFICATION 75SNP(" subj =#)N( "=# )
'Ralua'(" pred =0 Ralua0, " pers =0 30, " nr =0 sing0)

VP("=#)����� QQQQQ���� QQQQV("=#)(" pred = priveste, " pers = 3, " nr = sing)'priveste' NP(" objet =#)N("=#)(" pred =0 marea0, " pers =0 30, " nr =0 sing0 )'marea'S f1NP f2 (f1subj = f2)N f3 (f2 = f3)
'Ralua'(f3pred =0 Ralua0, f3pers =0 30, f3nr =0 sing0)

VP f4 (f1 = f4)����� QQQQQ���� QQQQV f5 (f4 = f5)(f5pred = priveste, f5pers = 3, f5nr = sing)'priveste' NP f6 (f4 objet = f6)N f7 (f6 = f7)(f7pred =0 marea0, f7pers =0 30, f7nr =0 sing0 )'marea'We will proeed in the following to obtain the (minimal) solution of the set ofequation ( or to determining the unsolvability of it).The steps of this proedure are:1. Solving the set of equations referring to a single unknown ( with the form:fi� = v, fi being an unknown, � being a path from Feats�, v 2 Types).



76 DOINA T�ATAR, DANA AVRAM2. Interpreting equal unknowns with di�erent values as results of an uni�ation(fi�v and fi�0v0 indue the feature struture fi "� v�' v'#).3. Removing the unknowns whih are not used e�etively by their equals ( iffi = fj and fi is not de�ned, one use fj).4. Solving the equations with two feature struture names ( if fi = a fj , thenthe feature struture fi �a fj h i� is obtained).5. Solving the equations of the form fi = fj , where both feature struturesfi and fj are de�ned, by uni�ation of the values of fi and fj and denoting theresult as: fi fj h....i6. As f1 is assoiated with S , the feature struture for f1 (if exists), is thefeature struture of the entire orret phrase.For the above example, the set of equations is:f1subj = f2f1 = f4f2 = f3f3pred =0 Ralua0f3pers = 3f3nr = singf4 = f5f4objet = f6f5pred =0 priveste0f5pers = 3rdf5nr = singf6 = f7f7pred =0 marea0f7pers = 3rdf7nr = singBy exeution of the above alulus 1-4 steps we obtain the following featurestrutures:f1 hsubj: f2 if3 264pred: 'Ralua'nr: singpers: 3 375f4 hobjet: f6 i



PHRASE GENERATION IN LEXICAL FUNCTIONAL GRAMMARS AND UNIFICATION 77f5 264pred: 'priveste'nr: singpers: 3 375f7 264pred: 'marea'nr: singpers: 3 375From equations f1 = f4, f2 = f3, f4 = f5, f6 = f7, we obtain the followingfeature strutures:f1 2664subj: f2 f3 264pred: 'Ralua'nr: singpers: 3 3753775f4 2664objet: f6 f7 264pred: 'marea'nr: singpers: 3 3753775f5 264pred: 'priveste 'nr: singpers: 3 375For the equations f1 = f4, f4 = f5, we apply the step 5 as above and we obtain:
f1 f4 f5

266666666666664
pred: 'priveste'subj: f2 f3 264pred: 'Ralua'nr: singpers: 3 375objet: f6 f7 264pred: 'marea'nr: singpers: 3 375

377777777777775The same feature struture an be obtained from desriptions as at the end ofsetion 2. 4. Conlusions.In this paper we replae the onstrution of a feature struture, given as themost general satis�er of a onjuntion of desriptions, by obtaining the solutionof a set of lexial rules equations. The bases of this replaing are the remarksexpressed by the theorem at end of setion 2.
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000SEMANTIC ANALYSIS IN DIALOGUE INTERFACESADRIAN ONET�, DOINA T�ATARAbstrat. One ruial issue for the NL interfaes is the use of an "interme-diate meaning representation formalism" whih will support the semanti andpragmati reasoning proesses of the system. The paper presents a syntati-semanti analyzer based on the approah of lambda-alulus, realised by the�rst author, as a kind of syntax-driven, ontext independent and inferenefree approah. The �rst level of this appliation ontains the semanti engine(written in SWI-Prolog); the seond one ontains an interfae with the user(written in Delphi); the extra level is for the graphial representation of theparse tree (written in Visual Prolog).1. Dialogue interfaesA fundamental goal of arti�ial intelligene is the manipulation of natural lan-guages (NL's) using the tools of omputing siene. The mains hallenges raised byNL proessing arise at many levels: oneptual model, semanti theories, parsingtheories, user modeling. The NL phenomenon has some important haraterististhat must be onsidered when one implement an NLP system [15℄ :� Lak of an expliit de�nition;� Presene of inomplete and ill strutured sentenes, without preventing theunderstanding;� Inuene of the ontext;� Ambiguities .These few harateristis show that NLP requires tehniques di�erent from thetraditional tehniques. Several sienti� disiplines have made natural languagean objet of study: arti�ial intelligene, linguistis, philosophy, logi, psyhology.All these attempt to answer at the question of " automati NL understanding".The most used riterion now is the reasoning proess operating on some internalrepresentation of the meaning of the NL input.The �rst major suess for natural language proessing (NLP) was in the area ofdatabase aess. One �rst suh interfaes was Fernando Pereira's CHAT system2000 Mathematis Subjet Classi�ation. 68U35.1998 CR Categories and Desriptors. I.2.1 [Computing Methodologies℄: Arti�ial In-telligene { Apppliations and Expert Systems.79



80 ADRIAN ONET�, DOINA T�ATAR(1983) about a geographial database. Over the last deade, some ommerialsystems have built up large grammars and lexions to handle a wide variety ofinputs."The main hallenge for urrent systems is to follow the ontext of oninteration" ([10℄).One ruial issue for the NL interfaes is the use of an "intermediate meaningrepresentation formalism" whih will support the semanti and pragmati reason-ing proesses of the system. Suh of representation is alled "intermediate logialform" and it is the prinipal point through whih results oming from the �eld oflogi an be used in a NL proessing (NLP) system .The semantis of the phrases expressed in a natural language has two aspets:semantis and pragmatis. Semantis refer to those aspets of the meaning thatare not inuened by the ontext, and the pragmatis is onerned with the ontextand the intention of the speaker. Almost every approah for the semanti inter-pretation of a phrase is made with the priniple of ompositionality :the meaningof a phrase is a funtion of the meanings of its parts .The dialogue-based appliation inlude [1℄:� question-answering systems, where NL is used to query a database;� automated ustomer servie;� tutoring systems;� spoken language ontrol of a mahine;� general ooperative problem-solving systems.A dialog interfae does have to proess sequenes of sentenes exhanged be-tween a user and an appliation system. Eah of these sentenes has to be preiselyunderstood. The disourse domain of one interfae is usually restrited, and thuseasier to model from a semanti point of view. From a historial perspetive, anbe distinguished three generations of NL interfaes [14℄:� The "diret translation systems", performing a diret translation of the NLinput into an output string, suitable for the purposes of the appliation. Theparser of suh a system does not make use of a general meaning representationformalism. These systems are not portable and is diÆult to implement in themthe semanti inferenes.� The seond generation of NL interfaes separates the understanding proessinto two steps: in a �rst step an analyzer will proess the NL input and produea representation of its meaning in an intermediate meaning representation formal-ism, usually an intermediate logial form (ILF). In a seond step, an interpreterwill study this representation and will �nd out related ations, aordingly withthe appliation. Both analysis and interpretation are based on an expliit model



SEMANTIC ANALYSIS IN DIALOGUE INTERFACES 81of the disourse domain, as a knowledge base de�ning the ideas referred, pro-viding semanti and pragmati information and performing the logial inferenesneessary for understanding.� The third generation of NL interfaes inludes, besides the model of disoursedomain, an expliit model of user with "stati" information, suh as the level ofompetene possessed by a spei� user, and "dinami" information expressing theknowledge and beliefs of the user and the evolution of these knowledge and beliefswithin the dialogue. This kind of information an be used to improve the resolu-tion of ambiguities, the proessing of inomplete sentenes and the generation ofooperative responses.The study of intermediate meaning representation (IMR) formalism has beenthe subjet of large disputes. The question was of deiding whether IMR shouldbe "logial" or not (based on frames, semanti networks, oneptual dependenies,et) [13℄. Is it largely aepted that an IMR formalism must ombine di�erentkinds of elements, all of whih are neessary for the interpretation proess [15℄:� Logial struture;� Coneptual ontent: the variables and onstants of the logial notation appearas instanes of a lass system that provides a oneptual model of the disoursedomain. This lass struture an be organized hierarhially as a lattie and formsthe skeleton of the knowledge base used in NL interfae;� Speeh at indiation representing the expeted impat that the speaker triesto have on his inter loutor by uttering a proposition, depending on the natureof this utterane: request, order, information, et. This expeted impat an bemodeled in terms of "wants", "knowledge" and " beliefs" of the inter loutor.The primitives expressing this levels an be logially axiomatized and support areasoning proess improving the behavior of an NL interfae;� Pragmati annotations about determination of logial quanti�ers.The phase of interpretation of an ILF , after his prodution by the parser,is aomplished in some well de�ned steps [15℄. These steps inludes a set ofproesses as: resolution of anaphori referenes, resolution of soping ambiguitiesand other types of ambiguities whih ould not be solved in the parsing phase.Also, NL interfae that proess more than one isolated sentene needs a dialoguemanager and the possibility to ontrol interpretation, for example deteting wrongpresupposition. 2. Semanti analysis by lambda-alulusSemanti analysis (SA) is the proess whereby semanti representations areomposed and assoiated with a linguisti input. The soures of knowledge that areused are: the meanings of words, the meanings assoiated with the grammatial



82 ADRIAN ONET�, DOINA T�ATARstruture and the knowledge about the ontext in whih the disourse ours(semantis of the disourse).One approah of SA is by lambda-alulus and it is a kind of syntax-driven SA,ontext independent and inferene free. Suh approah is suÆient to produeuseful results. Others two approahes are semanti grammars and information ex-tration [6℄. The lambda-alulus SA is based on the priniple of ompositionalitywhih assert that the meaning of a sentene an be omposed from the meaningsof its parts. The input of a semanti analyzer is an output of a syntati analyzer, that means a parse tree or a feature struture, et. We will assume that it is aparse tree.In lambda-alulus approah of SA every ontext free grammar rule is aug-mented by a semanti rule whih speify how to ompute the meaning representa-tion of a onstrution from the meanings of its onstituent parts [6℄. An augmentedrule is :A �! �1�2 � � ��nfA:sem = f(�j :sem � � ��k:sem)g; 1 � j � k � nThe denotation A:sem = f(�j :sem; � � � ; �k:sem) means that the semantis ofA, A:sem, will be obtained as a funtion f on the �j :sem; � � � ; �k:sem.Let us onsider an example generated by a small subset of rules from ATISgrammar [6℄: Continental serves meat.The small subset of ATIS rules is:S �! NP V PV P �! V erb NPNP �! ProperNounNP �!MassNounV erb �! servesProperNoun �! ContinentalMassNoun �! meatThe augmented rules are:NP �! ProperNoun fNP:sem = ProperNoun:semgNP �!MassNoun fNP:sem =MassNoun:semgProperNoun �! Continental fProperNoun:sem = ContinentalgMassNoun �! meat fMassNoun:sem = meatgThese rules assert that the semantis of NP's are the same as the semantis oftheir individual omponents. In general will be the ase that for non-branhing



SEMANTIC ANALYSIS IN DIALOGUE INTERFACES 83grammar rules, the semantis assoiated with the hild will be opied unhangedto the parent.To ome up with the semantis for VP's, we will use a notational extensionto �rst order prediate alulus (FOPC) , lambda-alulus, (Churh , 1940) thatprovides the kind of formal parameter that we need.The ��expression �xP (x)must be understand as a formula (with P (x) a formula from FOPC), where thefree variable x is bound to the spei� terms in FOPC. The proess of bounding ofx with a spei� term in FOPC is a �� redution and is illustrate by the equality:�xP (x)(A) = P (A)The variables denoted by � an be in a arbitrary number and their order is thesame with the order of their binding to the terms.With � notation the augmented rule for V erb is:V erb �! serves fV erb:sem = �x�y9eIS �A(e; Serving)^Server(e; y) ^ Served(e; x)gand for V P is:V P �! V erb NP fV P:sem = V erb:sem(NP:sem)gThe alulus for V P:sem = V erb:sem(NP:sem) is :�x�y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e; x)(NP:sem) =�y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat):So, V P:sem = �y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat).With � notation the augmented rule for S is:S �! NP V PfS:sem = V P:sem(NP:sem)gThe alulus for S:sem is:S:sem = V P:sem(NP:sem) = �y9eIS �A(e; Serving)^^Server(e; y) ^ Served(e;Meat)(NP:sem)= �y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat)(Continental)= 9eIS �A(e; Serving) ^ Server(e; Continental) ^ Served(e;Meat):In the appliations is used another new notation that failitates the omposi-tional reation of the desired semantis: omplex-term. Formally, a omplex-termis an expression with the following three-part struture: hQuantifier V ariableBodyiThe formulas whih use omplex-terms usually refereed as quasi-logial forms.



84 ADRIAN ONET�, DOINA T�ATARTo onvert a quasi-logial form in a FOPC formula we will use the followingshema of rewriting any prediate having a omplex-term argument:P (hQuantifier V ariable Bodyi) ^ U! Quantifier V ariable (Body Connetive P (V ariabila) ^ U):where Connetive is ^ for 9 and �! for 8.Let us onsider the sentene: A restaurant serves meat.The needed augmented rules are:Det �! a fDet:sem = 9gNominal �! Noun fNominal:sem = �xIS �A(x;Noun:sem)gNoun �! restaurant fNoun:sem = restaurantgNP �! Det NominalfNP:sem = hDet:sem x Nominal:sem(x)ig:The bottom-up alulus is:Nominal:sem = �xIS �A(x;Noun:sem) = �xIS �A(x;Restaurant)S:sem = V P:sem(NP:sem) = (V erb:sem(NP:sem))(NP:sem) =Using V P:sem as above we obtain:(�y)(9e)(IS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat))(NP:sem)) =(�y)(9e)(IS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat))(hDet:sem z (�x)IS �A(x;Restaurant)(z)i)(9e)(IS �A(e; Serving) ^ Server(e; hDet:sem z IS �A(z;Restaurant)i)^^Served(e;Meat))9e(IS �A(e; Serving) ^ (9z)(IS �A(z;Restaurant) ^ Server(e; z))^^Served(e;Meat))(9e)(9z)(IS �A(e; Serving) ^ IS �A(z;Restaurant) ^ Server(e; z)^^Served(e;Meat)):Let us observe that a sentene as: Every restaurant has a menu has two semantirepresentation, one whih orresponds to the ommon-sense interpretation (everyrestaurant has its own menu), but also the interpretation whih state that thereis one menu that all restaurants share.The two interpretation are obtained proessing the two omplex-term in thefollowing formula in a di�erent order:(9e)(IS �A(e;Having) ^Haver(e; hIS �A(x;Restaurant)i)^Had(e; h(9y)IS �A(y;Menu)i)



SEMANTIC ANALYSIS IN DIALOGUE INTERFACES 85If the �rst omplex-term is proessed �rst, then the obtained formula is:(9e)(8x)(IS �A(e;Having) ^ IS �A(x;Restaurant) �! Haver(e; x)^(9y)(IS �A(y;Menu) ^Had(e; y)))If the seond omplex-term is proessed �rst, then the di�erent formula is:(9e)(9y)(IS �A(e;Having) ^ IS �A(y;Menu)^Had(e; y) ^ (8x)(IS �A(x;Restaurant) �! Haver(e; x)):The same results will be obtained for the example in the next setion.3. Context independent sentenes mapping in logial form. Thesyntati-semanti analyzerSine the very beginning of omputer siene the natural language representedan important preoupation for the speialists. The appliations in this domainwant to resolve two essential issues: the voie reognition (if the user speaks) andtext proessing (its meaning).We provide in this paper an appliation whih begins with the semanti repre-sentation idea of the ontext independent sentenes in the natural language likeexpressions in extended �rst order prediate alulus. First of all we must speifywhat we mean by the extended �rst order prediate alulus. Starting with theFOPC we provide a new set of quanti�ers, among the existential and universalones, neessary for the representation of the quantitative sentenes semanti. Byusing this quanti�ers we will represent a quantitative sentene semanti like Mostpeople laugh as 9NX:(people(X) ^ laugh(X)^most(N));where 9N belongs to the new set of quanti�ers.This FOPC extension will be noted by FOPC/QS (�rst order prediate alulusfor quantitative sentenes). For further details see [9℄.Bak to our appliation, this will have as entry a natural language senteneintrodued from the standard input from whih it will result the FOPC/QS ofthis sentene and a graphial representation of its parse tree. It is very diÆult toompare the natural language funtionality and the omputer systems operation.Problems appear when we deal with semanti ambiguities resolved by the humanmind through ontext and onvention. We have tried to eliminate part of theseambiguities introdued by the domain of quanti�ers and of operators by the un-derspei�ed method. Thus for Every boy loves a dog the semanti representationswill be like in �gure 1:
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Figure 1The ambiguities given by the multiple sense of the words will be onsidered ina future upgrade of the appliation, whih ould use the semanti network rep-resentation of the Lexis. We must speify that the sentenes reognized by theappliation have to be introdued by an existent grammar. In other words, theuser an not modify in any way the existent grammatial rules, but the appliationould be improved by allowing the user to onstrut the grammar he needs. Thisappliation allows the Lexis entries atualization by an interative interfae. Theuser ould test, after resolving the problems whih permit the grammar modi�a-tions too, the appliation in every natural language whih desribes that grammar.Thus, for every natural language will exists a �le whih ontains its grammar, a�le with its lexial entries and also a �le whih will ontain the mapping of everyatom strutures of its sentenes into the semanti representation. For every givensentene the appliation also presents the advantage of the parse tree graphialrepresentation. Suh an example is given as follows: Every boy loves a dog. (See�gure 2)We must also say that in the present the appliation doesn't resolve yet totallythe parse of the sentene, more preisely, the gender, person and number agree-ment. This situation ould be improved by modifying the grammatial rules byadding new arguments whih represent these agreements. One advantage is thatthe appliation an help to design new appliations, suh as the natural languagefor querying knowledge bases, natural language onversation. For example, we anreate an algorithm whih will map every natural language sentene in an equiv-alent SQL statement in the �rst type appliations. Conerning the struture ofthis appliation, it is built on two levels, plus an extra level for the parse tree rep-resentation. The �rst level ontains the semanti engine (written in SWI-Prolog);the seond one ontains an interfae with the user (written in Delphi); the extralevel is for the graphial representation of the parse tree (written in Visual Pro-log). The ommuniation among these levels is done by the use of the Windows
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Figure 2Operating systems spei� DDE (dynami data exhange), we an also use forthese ommuniation more evolved tehniques suh as COM/DCOM.By its spei�, our appliation onstrution is based on more programminglanguages mixture; it also sueeds in taking advantages on these programminglanguages harateristis. We believe that this tehnique an be the starting pointfor resolving some natural language semanti problems.Referenes[1℄ J.Allen : " Natural language understanding", Benjamin/Cummings Publ. , 2nd ed., 1995.[2℄ C.Beardon, D.Lumsden, G.Holmes: " NL and omputational linguistis", Ellis HowoodSeries, 1991.[3℄ P.Flah: "Simply logial.Intelligent reasoning by example", John Wiley and Sons, 1994.[4℄ A. Flyht-Eriksson: "A domain knowledge manager for dialogue systems", Proeedingsof ECAI2000, pp 431-435.[5℄ A.Gaal , G.Lapalme, P.Saint-Dizier: "Prolog for NLP", 1991.[6℄ D.Jurafsky, J.H.Martin: "Speeh and language proessing", Prentie Hall, 2000.[7℄ R.Kasper, P.Davis, C.Roberts: "An integrated approah to referene and pressupositionresolution", The 37th Annual Meeting of ACL, june 1999.[8℄ I.A. Let�ia and all : " Multi-agent systems", Casa �art�ii de �stiinta, Cluj, 1999.[9℄ A. Onet: " Semanti representation of the quantitative natural language sentenes" toappear in Studia Universitatis "Babes-Bolyai", seria Informatia.[10℄ S.J. Russell, P.Norvig: "Arti�ial intelligene.A modern approah",[11℄ I. A. Sag, T. Wasow: "Syntati Theory:A formal introdution " 1997, http://ling.ohio-state.edu/HPSG[12℄ D. T�atar: "Uni�ation Grammars in Natural Language Proessing" , in "Reent topisin mathematial and omputational linguisti", ed. C. Martin-Vide, G. Paun, EdituraAademiei, 2000, pg 289-300.
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000NEW INTERACTION MECHANISMS BETWEEN JAVADISTRIBUTED OBJECTSFLORIAN MIRCEA BOIAN AND CORINA FERDEANAbstrat. This artile proposes some solutions to very ommon problemsand requirements onerning the interation between Java objets spreadaross several mahines. Thus, an objet should be able to aess another re-mote objet without knowing where that objet resides. This loation trans-pareny indues also migration transpareny, allowing objets to be foundand aessed by their lients, even if they are hanging their loation.Another extension, of the standard interating protools for the ollabo-ration between distributed objets, ould be the de�nition of patterns used tomath the remote objets, whih have ertain attributes or whih implementthe servies spei�ed in the pattern.1. IntrodutionBasially, every distributed system implies two or more ative entities (pro-esses, threads, running objets) performing omputations, in di�erent addressspaes, potentially on di�erent hosts. Also, these ative exeution entities shouldbe able to ommuniate.For a basi ommuniation mehanism, the Java programming language sup-ports the sokets, whih are exible and suÆient for general ommuniation.However, sokets require the lient and server to de�ne appliations-level proto-ols to enode and deode messages for exhange, and the design of suh protoolsis umbersome and sometimes error-prone. Besides, even if these protools al-lows the ommuniation between programs written in di�erent languages and onheterogeneous platforms, they are not exible and neither extensible.Another distane ommuniation mehanism, as an alternative to sokets, isRemote Proedure Call (RPC), whih abstrats the ommuniation interfae to thelevel of a proedure all. Instead of working diretly with sokets, the programmerhas the illusion of alling a loal proedure, when in fat the arguments of the allare pakaged up and send to the remote target of the all. RPC systems enode2000 Mathematis Subjet Classi�ation. 68M14.1998 CR Categories and Desriptors. C.2.4 [Computer Systems Organizations℄:Computer-Communiation Networks { Distributed Systems.89



90 FLORIAN MIRCEA BOIAN AND CORINA FERDEANarguments and return values using an external standard data representation, suhas XDR.However, the RPC mehanism is not suitable for the distributed objet systems,where ommuniation between program-level objets residing in di�erent addressspaes is needed. In order to math the semantis of objet invoation, distributedobjet systems require remote method invoation or RMI. In suh systems, a loalsurrogate (stub) objet manages the invoation on a remote objet.2. Java RMI mehanism and JRMP protoolJava RMI (Remote Method Invoation) o�ers a distributed objet model for theJava Platform. Thus, the Java RMI system assumes the homogeneous environmentof the Java virtual mahine (JVM), and it uses the standard Java objet model,extending it into a distributed ontext.RMI is unique in that it is a language-entri model that takes advantage ofa ommon network type system. In other words, RMI extends the Java objetmodel beyond a single virtual mahine address spae.The underlying ommuniation protool used in Java RMI mehanism is JRMP.This protool allows the objet methods to be invoked between di�erent VirtualMahines aross a network, and atual objets an be passed as arguments andreturn values during method invoation. The JRMP protool uses objet serial-ization to onvert objet graphs to byte-streams for transport. Any Java objettype an be passed during invoation, inluding primitive types, ore lasses, user-de�ned lasses, and JavaBeans. Java RMI ould be desribed as a natural progres-sion of proedural RPC (Remote Proedure Call), adapted to an objet-orientedparadigm for the Java platform environment.In the following we'll desribe shortly how a typial objet interation works inJava RMI.Any objet whose methods are available to be invoked by another Java ob-jet must publish these methods by implementing an interfae, whih extends thejava.rmi.Remote interfae.To make a remote objet aessible to other virtual mahines, a program typi-ally registers it with the RMI registry. The program supplies to the registry thestring name of the remote objet as well as the remote objet itself.A lient program, in fat a Java objet, whih wants to aess a remote objet,must supply the remote objet's string name to the registry that is on the samemahine as the remote objet.The string name aepted by the RMI registry has the syntax \rmi://hostname:port/remoteObjetName", where hostname and port identify the mahine andport, respetively, on whih the RMI registry is running and remoteObjetNameis the string name of the remote objet. hostname, port, and the pre�x, \rmi:"



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 91are optional. If hostname is not spei�ed, then it defaults to the loal host. If portis not spei�ed, then it defaults to 1099. If remoteObjetName is not spei�ed,then the objet being named is the RMI registry itself.The registry returns to the aller a referene, alled stub, to the remote objet.As it turns out, the ommuniation between Java objets is strutured in a layerhierarhy, depited in Figure 1.
Figure 1. RMI ArhitetureWhen the objet's methods are invoked remotely, its arguments are marshalledand sent from the loal virtual mahine to the remote one, where the argumentsare unmarshalled and used. When the method terminates, the results are mar-shalled from the remote mahine and sent to the aller's virtual mahine. Animportant observation whih worths mentioning here is that the remote objets(that implement the Remote interfae) are passed by referene, and the others ob-jets by value (also, they must implement the Serializable interfae). Anotherobservation is that passing by value a Java objet in a di�erent Java environmentis equivalent with a primitive form of objet migration, where the "mobile agent"(the objet passed by value) is stati, and an be alled when and if its destinationenvironment deides).3. Providing Java RMI with support for loation transpareny andfault-toleraneA natural question, whih arises in a Java RMI ommuniation ontext, is howit would be possible for a lient objet to aess a remote objet, without havingto know a priori the server objet loation. This feature of loation independenybeomes a fundamental requirement if it is assumed that Java server objets ouldhange their loation, migrating between di�erent hosts.



92 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN3.1. Using JNDI and LDAP. The �rst solution proposed for providing loationtranspareny is based on omplementary tehnologies like JNDI (Java NamingDiretory Interfae) and LDAP (Light Diretory Aess Protool).Our disussion begins with a brief desription of these tehnologies, followed bythe presentation of the support they provide for aessing Java objets transpar-ently.JNDI (Java Naming Diretory Interfae). The Java Naming and Diretory Inter-fae (JNDI) is an appliation programming interfae (API) that provides namingand diretory funtionality to appliations written using the Java programminglanguage [4, 5℄. This API is de�ned to be independent of any spei� diretory ser-vie implementation, allowing a variety of diretories to be aessed in a ommonway.The JNDI arhiteture onsists of an API and a servie provider interfae (SPI).The primary goal for Java appliations, that use the JNDI API, is to aess avariety of naming and diretory servies. The servies an be plugged in trans-parently, by using SPI [11℄. This interfae allows the developers of di�erent nam-ing/diretory servie providers to hook up their implementations so that the or-responding servies are aessible from appliations that use JNDI [4, 5℄.These implementations inlude those for the Initial Context and for its desen-dent ontexts that an be plugged in dynamially to the JNDI arhiteture to beused by the JNDI appliation lients.JNDI is inluded in the Java 2 SDK, v1.3 and later releases. It is also availableas a Java Standard Extension for use with the JDK1.1 and the Java 2 SDK, v1.2.As it turns out, in order to use the JNDI, besides the JNDI lasses, also, one ormore servie providers should be available. The Java 2 SDK, v1.3 inludes threeservie providers for the following naming/diretory servies:� Lightweight Diretory Aess Protool (LDAP);� Common Objet Request Broker Arhiteture (CORBA) Common Ob-jet Servies (COS) name servie;� Java Remote Method Invoation (RMI) Registry.In this survey, we use LDAP as a diretory servie that provides a repositoryfor the Java distributed shared objets.LDAP. LDAP was originally developed as a front end to X.500, the OSI diretoryservie. X.500 de�nes the Diretory Aess Protool (DAP) for lients to use whenontating diretory servers. DAP is a heavyweight protool that runs over a fullOSI stak and requires a signi�ant amount of omputing resoures to run. LDAPruns diretly over TCP and provides most of the funtionality of DAP at a muhlower ost [6℄.



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 93LDAP diretory servie is based on a lient-server model. One or more LDAPservers ontain the data making up the LDAP diretory tree. An LDAP lientonnets to an LDAP server and asks it a question. The server responds with theanswer, or with a pointer to where the lient an get more information (typially,another LDAP server). No matter whih LDAP server a lient onnets to, it seesthe same view of the diretory; a name, presented to one LDAP server, referenesthe same entry it would at another LDAP server. This is an important feature ofa global diretory servie, like LDAP [7, 8℄.In LDAP, diretory entries are arranged in a hierarhial tree-like struturethat reets politial, geographi and/or organizational boundaries. Entries rep-resenting ountries appear at the top of the tree. Below them, there are entriesrepresenting states or national organizations. Below them, might be entries rep-resenting people, organizational units, printers, douments, or any other entitiessomeone needs to de�ne.In addition, LDAP allows the ontrol and the on�guration of whih attributesare required and allowed in an entry, through the use of a speial attribute alledobjetlass. The values of the objetlass attribute determine the shemarules the entry must obey.Using LDAP and JNDI to extend Java distributed omputing. In the Java dis-tributed omputing ontext, LDAP provides a entrally administered and possi-bly repliated servie for use by Java appliations spread aross the network. Forexample, an appliation server might use the diretory for registering objets thatrepresent the servies that it manages so that a lient an later searh the diretoryto loate those servies as needed.The JNDI provides an objet-oriented view of the diretory, thereby allowingJava objets to be added to and retrieved from the diretory without requiring thelient to manage data representation or loation exeution issues.There are di�erent ways in whih Java appliations an use the diretory tostore and loate objets. Thus, an appliation might store (a opy of) the objetitself, a referene to an objet, or attributes that desribe the objet.In general terms, a Java objet's serialized form ontains the objet's stateand an objet's referene is a ompat representation of addressing informationthat an be used to ontat the objet. An objet's attributes are properties thatare used to desribe the objet; attributes might inlude addressing and/or stateinformation.Whih of these three ways to use depends on the appliation/system that isbeing built and how it needs to interoperate with other appliations and systemsthat will share the objets stored in the diretory. Another fator is the supportprovided by the servie provider and the underlying diretory servie.



94 FLORIAN MIRCEA BOIAN AND CORINA FERDEANTransparent Java remote objets ommuniation. In this survey, we will showhow Sun's LDAP servie provider supports the binding of java.rmi.Remote ob-jets into diretories. When java.rmi.Remote objets and/or RMI registries arebound into an LDAP enterprise-wide shared namespae, RMI lients an lookup java.rmi.Remote objets without knowing on whih mahine the objets arerunning [1, 9, 10℄.Instead of storing the entire serialized state of an objet, whih ould be toolarge, it is preferable to store, into diretories, a referene to that objet. Forthat purpose, JNDI o�ers the javax.naming.Referene lass. This lass makesit possible to reord address information about objets not diretly bound to thediretory servie. The referene to an objet ontains the following information[7℄: � The lass name of the referened objet;� A vetor of javax.naming.RefAddr objets that represents the addres-ses, identifying the onnetions to the objet;� The name and loation of the objet fatory to use during objet reon-strution.javax.naming.RefAddr is an abstrat lass ontaining information needed toontat the objet (e.g., via a loation in memory, a lookup on another mahine,et.) or to rereate it with the same state. This lass de�nes an assoiationbetween ontent and type. The ontent (an objet) stores information required torebuild the objet and the type (a string) identi�es the purpose of the ontent.

Figure 2. The relation between a Referene, RefAddr, Type,and Content



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 95RefAddr also overrides the methods java.lang.Objet.equals(Objet obj)and java.lang.Objet.hashode() to ensure that two referenes are equal ifthe ontent and type are equal. RefAddr has two spei� sublasses, namely,javax.naming.StringRefAddr and javax.naming.BinaryRefAddr, whih storestrings, and respetively arrays of bytes. For example, a string referene addressould be an IP, URL, hostname, et.4. ExampleIn the following, we'll give a simple example of storing referenes to Java remoteobjets in a LDAP diretory. We mention that it is also possible to store opies ofobjets as streams of bytes, but this alternative requires muh more spae, and itisn't exible, as it is not possible to hange an objet implementation one it wasbound in the diretory servie. Using referenes to objets provide this exibility,and besides it saves a lot of spae in the diretory tree.Our example is onstruted onforming to the following steps, performed ondi�erent mahines:(1) We de�ne on the mahine ronos..ubbluj.ro a Java shared ob-jet HelloImpl, whih implements a Remote interfae alled Hello. Weregister this objet with the rmiregistry name servie, on the samemahine.import java.rmi.*;publi interfae Hello extends Remote fpubli String sayHello() throws RemoteExeption;g Program 1. Hello.javaimport java.rmi.*;import java.rmi.server.*;publi lass HelloImpl extends UniastRemoteObjetimplements Hello fpubli HelloImpl() throws RemoteExeption fgpubli String sayHello() throws RemoteExeption freturn ("Hello, the time is " + new java.util.Date());gg Program 2. HelloImpl.javaimport java.rmi.*;publi lass ServHello f



96 FLORIAN MIRCEA BOIAN AND CORINA FERDEANpubli stati void main(String args[℄) ftry fSystem.setSeurityManager(new RMISeurityManager());// reate a registry if one is not running already.try fjava.rmi.registry.LoateRegistry.reateRegistry(1099);g ath (java.rmi.server.ExportExeption ee) f// registry already exists, we'll just use it.g ath (RemoteExeption re) fSystem.err.println(re.getMessage());re.printStakTrae();gNaming.rebind("rmi://ronos..ubbluj.ro/hello",new. HelloImpl());g ath(Exeption e) fSystem.out.println("Error: "+e.getMessage());e.printStakTrae();ggg Program 3. ServHello.java(2) On another mahine, hermes..ubbluj.ro, we reate a referene oftype StringRefAddr to the HelloImpl objet, whih ontains an RMIURL of the form rmi://ronos..ubbluj.ro/RemoteObjetNameandit is bound to a name into a LDAP diretory. We also de�ne a value forthe javaodebase attribute, whih will be used by the servie providerto �nd the stub lass for the remote objet.import java.util.Hashtable;import javax.naming.*;import javax.naming.diretory.*;import java.rmi.*;publi lass HelloServ fpubli stati void main(String argv[℄) fString rmiurl = "rmi://ronos..ubbluj.ro/hello";// Set up environment for reating the initial ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,"om.sun.jndi.ldap.LdapCtxFatory");



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 97env.put(Context.PROVIDER URL,"ldap://rave.ss.ubbluj.ro:389/n=CORI,o=CCUBB,=RO");try f// Create the initial ontextDirContext tx = new InitialDirContext(env);// Create the referene ontaining the (future) loation of the objetReferene ref = new Referene("Hello",new StringRefAddr("URL", rmiurl));BasiAttributes battr = new BasiAttributes("javaCodebase","http://www.s.ubbluj.ro/�ori/t/");// Bind the objet to the diretorytx.rebind("n=RefHello", ref);tx.lose();g ath (NamingExeption e) fSystem.out.println("Operation failed: " + e);g Program 4. HelloServ.java(3) We �nally invoke the remote objet from a lient resident on mahinenessie.s.ubbluj.ro. As we proposed from the beginning, the lientmakes the remote invoation without knowing the server objet address,whih allows the latter to hange its loation, without a�eting the po-tential lients.import java.util.Hashtable;import javax.naming.*;import javax.naming.diretory.*;import java.rmi.*;publi lass HelloCl fpubli stati void main(String argv[℄) fString rmiurl = "rmi://ronos..ubbluj.ro/hello";// Set up environment for reating the initial ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,



98 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN"om.sun.jndi.ldap.LdapCtxFatory");env.put(Context.PROVIDER URL,"ldap://rave.ss.ubbluj.ro:389/n=CORI,o=CCUBB,=RO");try fDirContext tx = new InitialDirContext(env);// lookup the objetHello h = (Hello)tx.lookup("n=RemoteHello");System.out.println(h.sayHello());tx.lose();g ath (NamingExeption e) fSystem.out.println("Operation failed: " + e);g ath (RemoteExeption e1) fSystem.out.println("Operation failed: " + e1);ggg Program 5. HelloCl.javaThe method that we presented uses the information stored in the diretory.This information, represented by the Referene objet, is atually a pointer tothe information stored in another naming servie (the RMI registry), whih inturn, ontains the referene to the java.rmi.Remote objet.Even if, in the simple example presented above, this level of indiretion seemsto be overheading, besides loation transpareny, it has important appliationslike providing fault-tolerane to distributed Java objets.We use fault-tolerane to refer to the situation when a server objet isn't avail-able anymore (it was stopped or its host rashed), its servies are being provided byother idential bakup server objets. This is the traditional method of providingfault-tolerane by repliation of the servies that require high availability. In ourase, a fault-tolerant Java server objet is registered with di�erent rmiregistries,and the orresponding rmi objet's identifying URLs are stored as a Referene ina LDAP diretory.A lient invoation uses one of the available server objets (in fat, the �rstavailable server in the stored addresses referenes order), without being aware ofthe dupliation. The management of the dupliated objets is done totally trans-parent for the potential lients, and is ompleted by repliation servie providedby LDAP (for example slapd { Stand-alone LDAP Daemon { an be on�gured to



NEW INTERACTION MECHANISMS BETWEEN JAVA DISTRIBUTED OBJECTS 99provide repliated servie for a database with the help of slurpd, the standaloneLDAP update repliation daemon) [12℄.5. ConlusionsIn the artile we presented the standard RMI mehanism available on the Javaplatforms, and some possible extensions to its basi features.Within the Java language domain, Java RMI o�ers powerful new features forremote objet distribution. Besides the powerful objets interation failities thismehanism provides, it an be extended with features that respets new on-straints and requirements like loation and migration transpareny of the serverobjets. Also, the basi distributed systems requirement of fault-tolerane an besuessfully integrated into the Java RMI mehanism.Referenes[1℄ Diretory Exampleshttp://java.sun.om/produts/jndi/tutorial/getStarted/examples/diretory.htmlhttp://java.sun.om/produts/jndi/tutorial/objets/storing/sr/RemoteObj.java[2℄ Filterfresh: Hot Repliation of Java RMI Server Objetshttp://www.usenix.org/publiations/library/proeedings/oots98/full papers/baratloo/baratloo html/baratloo.html[3℄ Java IDLhttp://sophia.dtp.fmph.uniba.sk/javastu�/tutorial/idl/summary/[4℄ JNDI APIhttp://sunsite.u.edu.tw/java/jdk1.3/api/javax/naming/InitialContext.html# ENVI-RONMENThttp://java.sun.om/produts/jndi/[5℄ JNDI Tutorialhttp://java.sun.om/produts/jndi/tutorial/[6℄ LDAP: A Next Generation Diretory Protoolhttp://www.intranetjournal.om/foundation/ldap.shtml[7℄ LDAP and JNDI: Together foreverhttp://www.javaworld.om/javaworld/jw-03-2000/jw-0324-ldap p.html[8℄ RFC LDAPhttp://www.ietf.org/rf/rf2713.txt[9℄ RMI and Java Distributed Computinghttp://java.sun.om/features/1997/nov/rmi.html[10℄ RMI Registry Servie Provider JNDIhttp://sunsite.u.edu.tw/java/jdk1.3/guide/jndi/jndi-rmi.html#USAGE[11℄ SLAPD Daemonhttp://www.umih.edu/ dirsvs/ldap/do/guides/slapd/1.html#RTFToC1[12℄ SPIhttp://java.sun.om/j2se/1.3/dos/guide/jndi/spe/spi/jndispi.fm.html#1005286Servie Provider Pakagehttp://java.sun.om/produts/jndi/tutorial/getStarted/overview/provider.html
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000ON THE USING OF ARTIFICIAL NEURAL NETWORKS INAUTOMATIC METALOGRAPHIC ANALYSISIOAN ILEAN�A AND REMUS JOLDEAbstrat. This paper presents several onsiderations and preliminary re-sults in implementing an automati metallographi analysis system using ar-ti�ial neural networks. The optial mirosope images of speial preparedsamples of metals and alloys may be lassi�ed by a neural network trainedwith standards. We present some of the results and problems we enoun-tered in our work. Our ontribution mainly onsist in analysis system design,images preproessing and network training.Keywords: metallographi analysis, pattern reognition, arti�ial neu-ral network, preproessing. 1. IntrodutionOne of the important investigation methods used by the physial metallurgy isoptial metallography, whih also onerns mirographi analysis using the optialmirosope (magnifying rate up to 2000:1). The images obtained by mirosopegive diret indiations on the hemial and strutural omposition, also indiretlyinforming on the physial and mehanial properties of the metalli alloys. Onean as well get data on the strutural hanges ourred under the inuene ofvarious mehanial proessing previously applied to the alloy.When onsidering pure metals or monophasi alloys, mirographi analysis al-lows observing the size and the orientation of the rystalline grains, the partiu-larities of the dendriti struture, even the repartition of the disloations. As forpolyphasi alloys, whih present more omplex strutural aspets, one an deter-mine the nature, quantity, shape, size and repartition of the various phases in thestruture.Mirosopi analysis is an important information soure. Its eÆieny is partlyinuened by the plae where the samples are olleted and the olleting manner,as well as the skills and experiene of the speialist performing the analysis. Figure1 presents images of samples taken from di�erent materials.It is to be notied that the information is \oded" in graphial patterns-images(using gray tones or olors) that have to be interpreted by the person that does2000 Mathematis Subjet Classi�ation. 68T10.1998 CR Categories and Desriptors. I.5.1 [Computing Methodologies℄: PatternReogniton { Models. 101
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Figure 1. Metalli surfaes viewed through optial mirosope:a) steel with 0.08{0.15% C, rolled at warm; b) steel with 0.16{0.25% C normalized at 880degC; ) bronze with biphasi astaluminium. Soure: [8℄.the analysis. This operation is diÆult, demanding a lot of time and experiene.Therefore a very useful improvement would onsist in the automation of theseanalysis by reating a system that is able to lassify and reognize, possibly in realtime, in the images obtained by mirosope strutures, aws, previous proessing.2. Automati Metallographi Analysis SystemOur team, in ollaboration with the industrial partner \SC SATURN SA"AlbaIulia, has started a projet onerning the implementation of an automati sys-tem for metallographi analysis (�g. 2), where the reognition and lassi�ationfuntions are performed by a neural network.

Figure 2. Automati metallographi analysis systemDuring the urrent stage of the projet, our attention has been foused on theinterpretation and lassi�ation of the material samples images.The interpretation of mirographi images is part of the larger area of patternlassifying and reognition. As it is shown by the example in �gure 1, identi-fying rather simple patterns an require the interpretation of mega-dimensionaldatabases, with ompliated struture and unknown topologial relations. In gen-eral there aren't known possible transformations that ould simplify this strutureand a multilevel hierarhy system of feature extration beomes neessary.Another general issue in model based pattern reognition onsists in orret in-put image identifying, even when the image is a geometrially transformed version



ON THE USING OF ARTIFICIAL NEURAL NETWORKS IN METALOGRAPHIC ANALYSIS103of the model. The invariant reognition an be ahieved using, instead of the ini-tial pattern, the result of a mathematial transformation, that neessarily assuresa ertain invariane (Fourier transform, Mellin transform et.). Unfortunately thismathematial pattern preproessing implies a great omputing e�ort in eletroni(hardware and software) implementations. Optial and optoeletroni systems anbypass this drawbak due to the parallel omputing.In our ase, for metallographi optial analysis, we an assume that the pro-totype (standard) images and those to be reognized and interpreted, will havethe same sale fator, so that the system must be only translation and rotationinvariant.We intend to use for image interpretation a software simulated arti�ial neuralnetwork (ANN), therefore we have evaluated several ANN ategories and severalpreproessing tehniques, in order to �nd an aeptable solution. The followingsetion present some preliminary results of our work.3. Neural Network ModelIn our work we used two kinds of arti�ial neural ntworks: a reurrent networkand then a feed forward neural network, trained with bakpropagation method.The proessing unit (arti�ial neuron) used in the two ases is displayed in �gure3. In this �gure x1; x2; : : : ; xn are neuron inputs, w1; w2; : : : ; wn are the interon-netion weights, � is the neuron threshold, f() is ativation funtion and y isneuron output.We note: x = [x1; x2; : : : ; xn℄T the input vetor, w = [w1; w2; : : : ; wn℄T synaptiweights vetor,(1) net =Xi wixi = wTx

Figure 3. The proessing unit used



104 IOAN ILEAN�A AND REMUS JOLDEThen the neuro output may be writen:(2) y = f(net� �) = f(wTx� �)A) For the reurrent neural network, the model is presented in �gure 4. Let'sonsider the single-layer neural network built from totally onneted neurons,whose states are given by xi 2 �1; 1, i = 1; 2; : : : n, (�g.4).

Figure 4. The reurrent network modelWe denote: W = [wij : 1 � i; j � n℄ the weights matrix, � = [�1; : : : ; �n℄T 2 Rnthe thresholds vetor, x(t) = [x1(t); : : : ; xn(t)℄T 2 �1; 1n the network state vetor.The evolution in time of the network is desribed by the following dynamiequation:(3) xI (t+ 1) = sgn24 nXj=1wijxj(t)� �i35 ; i = 1; 2; : : : ; nwith the onvention:(4) nXj=1 wijxj(t)� �i = 0; xi(t+ 1) = xi(t)where:(5) sgn(x) = � 1 if x > 0�1 if x < 0Notes:(1) We may onsider networks where the neurons' state is not bipolar: -1,1,but binary: 0,1. A relation between the two representations an be easilyfound.(2) In many situations we may give up the neural network threshold zi andwe'll do this whenever it doesn't a�et the results.



ON THE USING OF ARTIFICIAL NEURAL NETWORKS IN METALOGRAPHIC ANALYSIS105For the autoassoiative memory desribed in this paper, the weight matrixW will be built as follows: given a set of n-dimensional prototype vetors X =[�1; �2; : : : ; �p℄, we establish the synapti matrix W and the threshold vetor �, sothat the prototype vetors beome stable points for the assoiative memory, i.e.:(6) �i = sgn(W�i � �); i = 1; 2; : : : ; pwhere the sgn funtion is applied to eah omponent of the argument.Several lassial rules for determining the weights matrix proved suessful intime: � the `Hebb' rule� the projetion rule� the delta projetion rule (the gradient method)B) In the seond approah we used a feed forward network with three layers,trained with bak propagation method. The number of neurons in the �rst layeris determined by the dimension of the input image. The number of neurons in theoutput layer depends on the number of lasses in whih the input images must belassi�ed. In the hidden layer we tried several on�guration and the �nal networkused the best struture. For the neurons in hidden and output layer we used asativation funtion the sigmoid funtion.4. Preliminary ResultsBeause of our industrial partner's interest in the metallographi analysis of astiron (its �eld of prodution) samples, we've studied the synthesis of an ANN thatould allow the reognition and lassi�ation of real samples reported to standards.Some standards used for these experiments are shown in �gures 5 and 6.
Figure 5. Standard strutures of ast iro with nodule graphite:a) below 3%; b) 3{5%; ) 5{8%; d) 8{12%; e) over 12%. Soure:[8℄Using samples taken from these standard images, we investigated the trainingmethods for various types of ANN in order to perform mirographi images las-si�ation. The images used as prototypes have been preproessed as to enhanetheir spei� features (�g. 7).



106 IOAN ILEAN�A AND REMUS JOLDE
Figure 6. Stabdards for gray ast iron with lamellar graphite: a)isolated separations; b) agglomerations with low isolation degree;) puntiform graphite net; d) lamellar graphite net. Soure: [8℄

Figure 7. Some preproessed prototypesA.One �rst tested ANN ategory was a reurrent network used to implement anassoiative memory. We used as prototypes 32�32 pixels images randomly seletedfrom the standard images. Rotation and translation invariane has been obtainedby storing several images of the same prototype, randomly transformed [6℄. Theassoiative memory thus built has been veri�ed with a great number of test images.The statistial results were very good in what noise ontamination is onerned(up to 50% noise ontamination). As for geometrial transforms invariane, theresults were rather unsatisfatory; the orret reognition rate would be from 40%up to no more than 80%, depending on the prototype image.B. A seond simulation ategory onsisted in the setup of a feed-forward ANN,trained with the same input data used in the previous approah. We investigatedseveral feed-forward topologies, with 2 and 3 layers. Within the limits of availableinput data, the 3 layers struture provided aeptable results. We faed somediÆulties when using 32�32 pixels images, therefore we had to work with 16�16pixels images.C. In order to obtain rotation and translation invariane, we also tried to useinvariant moments, as presented in [1℄. The diÆulties we enountered in thisapproah are onneted to the large omputation volume and to the neessity



ON THE USING OF ARTIFICIAL NEURAL NETWORKS IN METALOGRAPHIC ANALYSIS107for these desriptors to be di�erent enough as to separate the di�erent standardlasses. For the 5 standards lasses in �g. 5 and the 4 standard lasses in �g.6, the above mentioned desriptors are shown in �g. 8 and 9, respetively. Onemay notie a rather insigni�ant di�erene, whih leads to diÆulties and errorsin data interpretation. We urrently work on �nding more eÆient preproessing,that ould lead to stronger disrimination among invariant desriptors of di�erentlasses.

Figure 8. Moment invariants for images in �g. 35. ConlusionsThe implementation of an automati system for optial metallographi imagesanalysis is an important objetive for the laboratories where suh tasks are per-formed. Moreover, suh a system one implemented, it ould be used in awanalysis and even in biologial tissue analysis.This paper has presented some preliminary results obtained by our team inusing ANN to perform the reognition and lassi�ation of optial mirographiimages of material samples, as reported to standards.The main diÆulties we had to overome were the following:� The neessity of using relatively large images (over 32 � 32 pixels) inorder to extrat signi�ant features out of the sample struture; onse-quently troubles in training and simulating the ANN were onneted tothe required memory spae, as well as to the omputation speed.
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Figure 9. Moment invariants for images in �g. 4� The neessity of reognition immunity, regarding the noise ontamina-tion of the images, and also their various geometrial transforms.We investigated several methods to build a system that would aomplish theserequirements and we may onlude that ANN do o�er a realist perspetive, ifsolving the above mentioned diÆulties. The solutions we urrently have in viewpartly refer to using a faster and more powerful omputer for network trainingand simulation, and partly onsist in using more eÆient preproessing methodsfor the input images. Referenes[1℄ Alastair, M. Aulay: Optial omputer arhitetures: the appliation of optial onepts tonext generation omputers, John Wiley & Sons, In, 1991.[2℄ Cojo D�anut�-Adrian: Apliat�ii ale orelat�iei optie �̂n reunoa�sterea formelor, Tez�a de do-torat, Universitatea \Politehnia", Buure�sti.[3℄ Dumitresu D., Hariton Costin: Ret�ele neuronale. Teorie �si apliat�ii, Ed. Teora, 1996.[4℄ Jianhang Mao, Anil K. Jain: \Arti�ial neural Network for Features Extration and Mul-tivariant Data Projetion", IEEE Transations on Neural Network, vol. 6, Nr. 2, marh1995.[5℄ Ilean�a Ioan, Ianu Ovidiu Corneliu: \Optoeletroni assoiative neural network for somegraphial patterns reognition", Proeedings of SPIE, SIOEL '99, Volume 4068, p.733{739.[6℄ Ilean�a Ioan, Ianu Ovidiu Corneliu, Jolde�s Remus: \Reunoa�sterea invariant�a la translat�ia,rotat�ia sau salarea formelor", Annales Universitatis Apulensis, Series Eonomia, Tom 1,2000, p. 175{185.[7℄ Nedevshi Sergiu: Prelurarea imaginii �si reunoa�sterea formelor, Editura Albastr�a, Cluj-Napoa, 1998.[8℄ R�adulesu M., Dr�agan N., Hubert H., Opri�s C.: Atlas Metalogra�, Ed. Tehni�a, 1971.\1 Deembrie 1918" University of Alba Iulia



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000ALAIN DARTE, YVES ROBERT AND FREDERIC VIVIEN,\SCHEDULING AND AUTOMATIC PARALLELIZATION",BIRKHAUSER BOSTON, 2000, ISBN 0-8176-4149-1ALEXANDRU VANCEA
This book o�ers a detailed and self-ontained presentation for studying looptransformations, the detetion of parallel loops, and how to use them to detetparallelism in a spei� program. It provides areful explanation and expositionfor all parallel-loop algorithms that have been designed reently in a framework ofsheduling algorithms on yli graphs, primarily task graph sheduling and loopnest sheduling perspetives.Program restruturing tehniques are important optimization methods used inparallelizing ompilers. The fous is on loop transformations, beause there iswhere a program spends most of its exeution time. The authors, well known inthe parallelizing ompilers ommunity, have original ontributions regarding looprestruturing based on unimodular transformations and general aÆne transforma-tions.Sheduling and Automati Parallelization o�ers an explanation of how to in-orporate these transformations in algorithms, whih transformations to apply,and how to optimize them. It provides a full study of loop transformations, andalgorithms for parallel loop detetion in a sheduling perspetive, making the linkwith yli sheduling and systems of uniform reurrene equations.One of the main ontributions of the book is building a unifying theory of loopnest sheduling. This theory is developed based upon the previous work of Karp,Miller, Winograd and Lamport and it relies on sophistiated mathematial tools: unimodular transformations, parametri integer linear programming, Hermitedeomposition, Smith deomposition et.The book is an essential referene for the latest developments in automati par-allelization methods used for sheduling, ompilers, and program transformations.It is intended for graduate and postgraduate students interested in automati par-allelization tehniques, researhers interested in sheduling, ompilers and programtransformations. Software engineering and omputer engineering professionals will109



110 ALEXANDRU VANCEA�nd it a very good resoure and referene. It is also suitable for self-study purposesby pratitioners.Department of Computer Siene, Faulty of Mathematis and Computer Siene,\Babe-s�-Bolyai" University, Cluj-Napoa, RomaniaE-mail address: vanea�s.ubbluj.ro



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000WALLIS, W.D., \A BEGINNER'S GUIDE TO GRAPHTHEORY", BIRKHUSER, BOSTON-BASEL-BERLIN, 2000, ISBN0-8176-4176-9, 230PP.TEODOR TOADEREThis is a very good ourse on graph Theory for students in mathematis, om-puter siene, engineers and psyhologists. The author has taught "graph theoryourses at the University of Newastle and Southern Illinois University over thepast 30 years".It is a luid book and has attained a balane between the theoretial and pra-tial approahes.The book is divided into 13 hapters and two appendies: Hint & Answers andSolutions.Eah hapter presents theoretial notions, examples and exerises.The �rst four hapters introdue the reader in graph theory (it is presented theonepts of graphs, walks, paths, yles, uts, onnetivity and tree).The �fth hapter deals with the appliation of several vetor spaes oneptsgraphs theory.The next four hapters presents: fatorizations, graph oloring, planarity andRamsey theory.Chapter 10 introdues direted graphs. The two following hapters are devotedto two important appliation areas: ritial paths and network ows. The lasthapter is dediated for omputational onsiderations.The book has 109 referenes ited in text.We think that this is a very good book, whih an be useful to any person whowants to introdue himself in the graph theory or to deepen its study.Department of Computer Siene, Faulty of Mathematis and Computer Siene,\Babe-s�-Bolyai" University, Cluj-Napoa, RomaniaE-mail address: toadere�s.ubbluj.ro
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