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AN EFFICIENT WAY TO MODEL P SYSTEMS BY
X-MACHINE SYSTEMS

HORIA GEORGESCU

Abstract. Starting from the powerful concept of stream X-machine, the
author proposed in some previous papers an original way to integrate more
stream X-machines with ε-transitions into a system. The communication be-
tween the components is assured by means of a communication matrix, used
as a common memory. It was proved that by introducing an additional com-
ponent, it is possible to achieve communication in a structured way, namely
by channels, with select constructs appearing in each communicating state.
This model was used for proving that P systems may be modelled by com-
municating stream X-machine systems. Even if the proof is a constructive
one, it is not satisfactory due to its low level of concurrency. In this paper
a much more efficient construction, from the concurrency’s point of view, is
presented.

Keywords: P systems, Communicating X-machine systems, concur-
rent processes, communication using channels.

1. Introduction

The concept of X-machines was introduced by Eilenberg in [4] and used by
Holcombe [7] as a possible specification language. Afterwards, a lot of research
has been done in this field.

The new features which differentiate an X-machine from a finite-state one are:
a set of processing functions Φ, an input and an output tape and a set X which
characterizes the internal memory of the machine. The transitions between the
states are performed according to these functions. The X-machine evolves from
one state to another according to the current state, the content of the input tape
and internal memory and the function chosen to be applied. A new item may
be added to the output tape after a transition takes place. In this way both the
system data and the control structure are modelled, while allowing them to be
separated.

2000 Mathematics Subject Classification. 68N19, 94A40.
1998 CR Categories and Descriptors. B.4.4 [Hardware]: Input/Output and Data Com-

munication – Performance Analysis and Design Aids; D.1.3 [Software]: Programming Tech-
niques – Concurrent Programming.
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The research performed during the last years concerned mainly their generative
power and their possible use for testing. Very little attention has been paid to the
possible communication between these machines and consequently to their use for
specification of concurrent processes.

In [2] cooperating distributed grammar systems are used for modelling their
concurrent behaviour.

In [5] another approach was proposed, using a communication matrix for the
communication between the X-machines. Using this model, in [1] it was proved
that communicating stream X-machines systems are equivalent (from the genera-
tive power point of view) with a single X-machine.

A different approach from [5] is proposed in [3], where more powerful tools are
added. The new mode allows the use of channels as the mechanism for passing mes-
sages between the X-machines. It also allows implementation of specific constructs
for channels as select with an optional terminate clause. The main idea was to
introduce a new X-machine, called Server, for controlling the communication be-
tween the components of the system; the last column (the one corresponding to
the X-machine Server) of the communication matrix is used too. Following this
model, an automatic scheme for writing concurrent programs (in Pascal-FC or
Ada like style) was proposed.

Any non-trivial biological system is a hierarchical construct, made up of several
organs which are well defined and delimited from their neighbouring organs. Each
organ evolves internally, but also cooperates with neighbour organs in order to keep
alive the system as a whole; cooperation consists in a flow of materials, energy and
information, necessary for the functioning of the system.

A membrane structure is composed of regions delimited by membranes. A
region is a space enclosed by membranes. neighbour regions communicate through
the membranes separating them. The space outside the skin membrane is called
the outer region.

P systems have been studied mainly from the point of view of their computa-
tional power and it was shown that their generative power is that of the Turing
machines. The main results can be found in [8] and [9].

P systems were used also for solving NP-complete problems in polinomial time.
For this purpose, one approach is to allow the number of membranes to grow
dinamically (see [11]), while another approach is to count only the changes of
configuration (see [10]). Unfortunately, in the first approach the number of mem-
branes grows exponentially, while in the second approach the local time complexity
is exponential too.

In [6] it was shown that P systems may be modelled by communicating stream
X-machine systems.
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In Section 2 and Section 3, the basic results concerning communicating stream
X-machine systems (CSXMS) and P systems are reviewed. In section 4 it is
presented a new construction for modelling P systems by CSXMS; this construction
assures a high degree of concurrency.

2. Communicating Stream X-machine Systems

Definition 1. A stream X-machine with ε-transitions is a tuple:

X = (Σ, Γ, Q,M,Φ, F, I, T,m0),

where:
• Σ and Γ are finite sets called the input and output alphabets, respectively;
• Q is the finite set of states;
• M is a (possibly infinite) set called memory;
• Φ is a finite set of partial functions of the form:

f : M × Σε → Γε ×M ;

• F is the next state function F : Q× Φ → 2Q;
• I and T are the sets of initial and final states;
• m0 is the initial memory value

together with an input tape and an output tape. F must be a total function.

We define a configuration of the X-machine by (m, q, s, g), where m ∈ M, q ∈
Q, s ∈ Σ?, g ∈ Γ?. A machine computation starts from an initial configuration
(m0, q0, s0, ε), where q0 ∈ I and s0 ∈ Σ? is the input sequence.

A change of configuration, denoted by ` : (m, q, s, g) ` (m′, q′, s′, g′) is possible
if:

• s = σs′, σ ∈ Σε;
• there is a function f ∈ Φ with F (q, f) 6= ∅ and q′ ∈ F (q, f) (in which

case we say that f may be applied, f emerges from q and reaches q′), so
that f(m, σ) = (γ, m′) and g′ = gγ, γ ∈ Γε.

The output corresponding to an input sequence s ∈ Σ?, is defined as:

X(s) = {g ∈ Γ?|∃m ∈ M, q0 ∈ I, q ∈ T, so that (m0, q0, s, ε)
?

` (m, q, ε, g)}

where
?

` denotes the reflexive and transitive closure of `.

Definition 2. A Communicating Stream X-machine System (CSXMS for short)
is a system

Sn = ((Xi)i=1,...,n, CMn, C0),

where:
• Xi = (Σi, Γi, Qi,Mi × CMn, Φi, Fi, Ii, Ti,m

0
i ) are X-machines;
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• M = M1 ∪ . . .∪Mn is the set of memory values and M̃ = M ∪SS is the
set of (general) values, where SS is a set of special strings of symbols
different from those in M .

• CMn is the set of all matrices of order n× n with elements in M̃ . This
set defines the possible values of the global memory of the system, which
is used for communication between the component X-machines; therefore
it is referred to as the communication matrix;

• C0 is the initial communication matrix;
• for any i and f ∈ Φi, f : Mi × CMn × Σε

i → Γε
i ×Mi × CMn.

Let Γ = Γ1 ∪ . . . ∪ Γn. A common output tape O is used by all components. It
is initially void and afterwards it contains sequences g ∈ Γ?.

We mention that each X-machine Xi can access (read from or write to) only
+i, where +i denotes the set of all elements in the ith line and ith column of the
communication matrix. An element Cij may receive the value @, meaning that the
connection from Xi to Xj is disabled. A disabled connection can not be enabled
later.

In each X-machine Xi there are two kinds of states: Qi = Q′
i∪Q′′

i , Q′
i∩Q′′i = ∅,

where Q′i contains processing states and Q′′i contains communicating states. The
final states are processing states; there is no function emerging from them.

The functions emerging from a processing state depend only on the local mem-
ory and on the local input tape and are meant to (partially) change the local
memory and possibly add some information to the output tape O.

The functions emerging from a communicating state depend on the local mem-
ory and on +i and are meant to move a value from the internal memory to the
communication matrix and viceversa, as well to assign a special value to the com-
munication matrix.

When an X-machine Xi moves to a final state, all elements in +i have to change
their values into @.

A configuration of a CSXMS system Sn has the form: z = (z1, . . . , zn, C),
where:

• zi = (mi, qi, si, gi), i = 1, . . . , n;
• mi is the current value of the memory Mi of Xi;
• qi is the current state of Xi;
• si ∈ Σ?

i is the current input sequence of Xi;
• gi ∈ Γ?

i is the current output sequence of Xi;
• C is the current value of the communication matrix of the system.

The system starts with all X-machines in their initial states, C = C0 and
Mi = m0

i for all i ∈ {1, . . . , n}. The initial configuration of the system is z0 =
(z0

1 , . . . , z0
n, C0), where z0

i = (m0
i , q

0
i , s0

i , ε) with q0
i ∈ Ii.

We can think about a change of configuration z |= z′ as follows: let t be the time
when the system reached the configuration z and t′ the closest following moment
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Figure 1. The select construct for communicating states

of time at which a component terminates the execution of a function; then z′ is
the configuration of the system at time t′.

A change of configuration:

(1) z = (z1, . . . , zn, C) |= z′ = (z′1, . . . , z
′
n, C ′)

with zi = (mi, qi, si, gi), z′i = (m′
i, q

′
i, s

′
i, g

′
i), si = σis

′
i, σi ∈ Σε

i , g′i = giγi, γi ∈ Γε
i

for any i, may be described as follows. Let C0 = C. For i taking the values
1, 2, . . . , n in this order, there are two possibilities:

• either zi = z′i, or
• there exists a function f ∈ Φi emerging from qi and reaching q′i ∈

Fi(qi, f) and Ci ∈ CMn so that f(mi, Ci−1, σi) = (γi,m
′
i, Ci).

The X-machines act simultaneously. The system stops successfully when all
X-machines reach final states (i.e. all values in C are @).

Let
?

|= be the reflexive and transitive closure of |=. Then the output computed
by a CSXMS Sn corresponding to an input sequence s can be defined as follows:
X(s) = {g = (g1, . . . , gn) ∈ Γ?

1× . . .×Γ?
n |∃z0 an initial configuration and z a final

one, z0
?

|= z, with z = (z1, . . . , zn, C), C ∈ CMn and zi = (mi, qi, ε, gi) for any
i = 1, . . . , n}.

The mechanism introduced above assures only a low level of synchronization.
Therefore channels were intoduced as a higher level of synchronisation.

For this aim, in each communicating state of each X-machine Xi the classical
select construct with guarded alternatives and terminate clause was introduced,
as presented in Fig.1. The alternatives alts, s ∈ {1, . . . , k}, should have the
following forms:

1) [when condk =>] j ! val
2) [when condk =>] j ? v

with the following meanings:

1) if condk is fulfilled, then val has to be sent to the X-machine Xj (via Cij);
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Figure 2. A membrane structure

2) if condk is fulfilled, then v of Mi has to receive a value from the X-machine Xj

(via Cji).

The alternatives are macrofunctions; val is a memory value, conds depends only
on the local memory Mi and on the local input tape, and v is a variable of Mi.
As usual, the square brackets show that the information they include is optional.

The terminate clause acts as follows: if the other alternatives in the select
construct are false and will be false forever, then the X-machine stops. In other
words, if present, the terminate clause applies when all X-machines Xj to/from
which Xi tries to send/receive messages have stopped. Executing terminate
implies moving to a final state.

In the following, the form of functions emerging from a communicating state
can be only as in Fig. 1.

In [3] an implemetation of the select constructs was proposed and it was proved
that this implementation is a correct one.

The above results are important due to the well known power of communication
using channels. A first result appears in [3]: the authors present an automatic
scheme for generating a concurrent program, written in an Pascal-FC or Ada like
style, starting from an arbitrary CSXMS that uses in communicating states only
select constructs. Another result appears in Section 4.

3. P Systems - Membrane Computing

Let us consider the membrane structure in Fig. 2, where the outer region has
the label 0. Due to its intrinsic hierarchical type, a membrane structure may be
represented in a paranthesized form. For the example in Fig. 2, the corresponding
representation is: [1[2]2[3[5]5]3[4[6]6[7]7]4]1.

Membrane structures may be represented also as a special kind of trees, which
we will call P-trees. A P-tree associated to a membrane structure is defined as
follows:
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Figure 3. The tree associated to the membrane structure in
Fig. 2

• each of the n + 1 nodes in the tree corresponds to a region in the mem-
brane structure; the nodes are labeled with 0, 1, ..., n, where 0 is always
the label of the outer region, and 1 is the label of the region just inside
the skin membrane;

• for each node i ∈ {1, ..., n}, edges diverge towards its father and its sons,
corresponding to the membranes which separate the respective region
from the neighbour regions;

• no edge diverges from node 0.

The edges show the way in which information may be sent from one node
(region) to another one.

The P-tree T associated to the membrane structure in Fig. 2 is shown in
Fig. 3. To each node (region in the membrane structure) i we associate a finite
languages Mi over an alphabet V . The elements of these languages are called
objects. Since the sets of objects are changing while the system evolves, we denote
by M0

i their initial content and by Mi their current content: (M0, ..., Mn) is the
current configuration of the system.

Generally, a membrane structure is dynamic: a region may be divided into
several regions or may be dissolved. In this paper we will consider only static
structures, in which their forms are never changed, i.e. no region can be divided
or dissolved.

Let Ri be the set of evolution (developmental, replicated rewriting) rules for
each region i = 1, 2, ..., n. They have the form:
a → (α1, t1) ‖ . . . ‖ (αk, tk)
for some k, where a ∈ V and α1, ..., αk ∈ V ∗, while tj , j = 1, ..., k indicate the
targets of the rule and can be only i, the father of i or one of its sons.

Such a rule can be applied to an object in Mi if the object has the form o = βaγ;
if the rule is applied, o is erased and the new objects βαjγ are created and added
to Mtj respectively.
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A computation starts from the initial configuration (M0
0 , M0

1 , ...M0
n): these sets

are initially associated to the nodes of the tree T .
At each step of the computation, the rules are applied to the objects in parallel;

for each object one of the rules (if any) that can be applied to it is chosen randomly
and the resulting objects are sent to their specified targets. All objects which do
not evolve are passed unchanged to the next step.

A computation is complete if it halts: no rule can be used in the current con-
figuration. In this case, the output of the system for this computation is M0 (the
language associated to the outer region).

We can now summarize the above disscussion concerning the (static) membrane
structure as follows:

Definition 3. A P system (membrane structure) is a construct

Π = (V, µ, (M0
0 ,M0

1 , ..., M0
n), R)

where:
• µ is the membrane structure. Let us consider that it is represented as a

P-tree with the nodes 0, 1, ..., n, where n + 1 is the number of the nodes
in the tree. The root of the tree is 0 and its son is 1;

• V is an alphabet;
• M0

0 ,M0
1 , ..., M0

n are the sets of objects initially associated to the nodes
0, 1, ..., n;

• R is the finite set of evolution (replicated rewriting) rules.
A change of configuration (M0,M1, ..., Mn) 7→ (M ′

0,M
′
1, ...M

′
n) is performed by

applying rules to the objects in M0, M1, ..., Mn in parallel, as described above, and
by sending the resulting objects to the specified targets.

The output of the system is the union L of all the languages M0 in final con-
figurations.

Remark 1. Many variants of the above definitions may be considered. Some of
them are presented below:

• a P system (membrane structure) may be dynamic, not only static. In
dynamic systems, the membranes may be divided, dissolved or thickened
(the communication through them is inhibited);

• priorities may be attached to the evolution rules;
• the membranes may have electric charges (+, - or 0); in this case the

evolution rules involve these electrical charges, too;
• the evolution rules may have more specific forms;
• the ouput can be related to an arbitrary node, not necessarily to the

root of the tree. Moreover, the output may be considered to be L ∩O∗,
where O is a given output alphabet;

• for each node i, a specific set of evolution rules may be considered;
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• the sets Mi may be replaced by multisets, i.e. an object may appear
more than once in Mi.

4. Implementing P systems using CSXMS

In [6] it was shown that a communicating X-machine system can be associated
to any P system, which simulates the behaviour of the P system:

Theorem 1. Any P system may be simulated by a CSXMS.

The proof was a constructive one. Starting from a given P system, the corre-
sponding CSXMS was built as follows. An X-machine Pi was associated to each
node i ∈ {0, . . . n}. An additional X-machine Pn+1 was considered too. In order to
use communication through channels, the X-machine Server mentioned in Section
2 was added to the system.

The idea of this construct was quite simple. The process (X-machine) Pn+1

receives first from each of P1, ..., Pn the new created objects that are to be sent
to its neighbours together with their targets, as well as the number of the new
generated objects (including those which remain local) and afterwards sends to
P0, P1, ..., Pn the objects for which they are targets. These two steps are executed
repeatedly until the information which Pn+1 receives at the first step is void.

The above construction has a simple form and solves the problem. However it is
not satisfactory in real implementations, due to its very low degree of parallelism:
Pn+1 waits for all of the components P1, ..., Pn to send their information and only
afterwards executes the second step. Therefore we will present a second and much
more efficient way to associate a CSXMS to a P system.

We will omit some cumbersome details, as those concerning the form of the
local memories of the component of the system of X-machines. The stress will
be put on the actions performed by the components and on the communication
between them.

The components of the system are P0, P1, ..., Pn and Server. A channel is asso-
ciated to each edge of the P-tree. For each Pi let fi be the father of node i and Si

the set of the sons of this node (of course, if i is a leaf, then Si = ∅); Pi is linked
through channels in both directions to Pfi

and Ps, for all s in Si.

The basic idea of this new construct is that the nodes have to receive the new
objects sent to them in a postorder manner, i.e. an inner membrane always re-
ceives information before its enveloping membrane does it.

For this purpose each node, after generating new objects, performs the following
actions:

• sends to each of its sons the appropriate information
• receives information from its sons
• receives information from its father
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• sends to its father the appropriate information, together with the number
of new objects generated in the subtree for which it is the root

The new objects process P0 receives at each step are sent to the output tape. As
mentioned above, P0 receives also the total number of the new generated objects.
Only if this number is zero (no new objects were generated in the nodes of the
P-tree), it starts the halting procedure.

The halting procedure is done in a preorder manner, using (of course) the se-
lect construct with a terminate clause. Process P0 merely stops; in this way, the
channel linking him to it unique son is disabled. When the process associate to any
other node tries to receive information from its father and this father has already
stoped, it will stop too; this is ensured by including in the select implementing
this receive operation, the terminate clause. In this way, all channels having this
node as sender are disabled.

The component P0 sends to P1 the number 0 and receives from it the new gener-
ated objects for which it is the target, as well as the number k of all new generated
objects when passing from a configuration to the next one. If k = 0 then P0 halts.
nr ← −1
repeat

if nr = 0
then select

terminate
end

else -
nr ← 0
select

1 ! 0
end
select

1 ? J, k
end
nr ← k

until false

The processes P1, ..., Pn perform the actions described above:
repeat

nr ← 0
generate the new objects, update the current set Mi and collect in Jfi

and {Js|s ∈ Si} the information to be send to the neighbours
for all s ∈ Si

select
s ! Js
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end
endfor
for all s ∈ S

select
s ? J, k

end
Mi ← Mi ∪ J ; nr ← nr + k

endfor
select

fi ? J, k
or terminate
end
Mi ← Mi ∪ J ; nr ← nr + k
select

fi ! Jfi

end
until false

The number of the components in the system is n + 2. The number of chan-
nels used for communication is 4n+2: 2n channels linking the nodes in the P-tree
and 2(n + 1) channels linking these nodes to Server.

The communication matrix may be replaced by a matrix with 4 lines and n+1
columns.

The main enhancement of this new construct consists in the fact that the de-
gree of concurrency is much higher then in the former construct and in this way
corresponds to the model originally designed for P systems.

The halting of the whole CSXM system is ensured (as mentioned) in preorder,
so that some nodes may still perform some actions until they are ”announced” by
their father that they have to halt.

5. Conclusions

In this paper we proposed a new construct for modelling P systems by CXSMS.
The implementation uses communication through channels between components,
as described in [3]. The CSXM associated to a P system has a high degree of
concurrency, which can be exploited when a multiprocessor device is available.
The new construct can be rather easily implemented in programming languages
like Java, so that the evolution of a membrane computing system may also be
implemented in such a language.

Further work includes the study of the different variants of P systems, as de-
scribed in the third section of this paper. A Java implementation of P systems,
using the tools presented in this paper, is in course of development.
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GENETIC CHROMODYNAMICS FOR OBTAINING
CONTINUOUS REPRESENTATION OF PARETO REGIONS

D. DUMITRESCU, CRINA GROŞAN, AND MIHAI OLTEAN

Abstract. In [5] an evolutionary algorithm for detecting continuous Pareto

optimal sets has been proposed. In this paper we propose a new evolutionary

elitist approach combing a non-standard solution representation and an evo-

lutionary optimization technique. The proposed method permits detection

of continuous decision regions. In our approach an individual (a solution) is

either a closed interval or a point. The individuals in the final population

give a realistic representation of Pareto optimal set. Each solution in this

population corresponds to a decision region of Pareto optimal set. Proposed

technique is an elitist one. It uses a unique population. Current population

contains non- dominated solutions already founded.

Keywords: evolutionary multiobjective optimization, Pareto set, Pa-

reto frontier, Pareto interval

1. Introduction

Several evolutionary algorithms for solving multiobjective optimization prob-
lems have been proposed ([2], [5]–[10], [12], [13]; see also the reviews [1], [11] and
[14]).

Usually Pareto evolutionary algorithms aim to give a discrete picture of the
Pareto optimal set (and of the corresponding Pareto frontier). But generally
Pareto optimal set is a continuous region in the search space. Therefore a con-
tinuous region is represented by a discrete set. When continuous decision regions
are represented by discrete solutions there is loss of information. Moreover re-
constructing continuous Pareto set from a discrete picture is not an easy task
[11].

In [5] an evolutionary algorithm for detecting continuous Pareto optimal sets
has been proposed. The method proposed in [5] uses Genetic chromodynamics
evolutionary technique [4] to maintain population diversity.

2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.8 [Computing Methodologies]: Artificial In-

telligence – Problem Solving, Control Methods, and Search.
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In this paper a new evolutionary approach, combing a non-standard solution
representation and a Genetic Chromodynamics optimization technique, is consid-
ered. Within the proposed approach continuous decision regions may be detected.
A solution (individual) is either a closed interval or a point (considered as a de-
generated interval). Mutation is the unique search operator considered.

The mutation operator idea is to expand each individual toward left and toward
right. In this respect both interval extremities are mutated. The left extremity is
mutated towards left and the right extremity is mutated towards right.

To reduce population size and to obtain the correct number of solutions within
the final population the merging operator introduced in context of Genetic Chro-
modynamics is used.

The solutions in the final population supply a realistic representation of Pareto
optimal set. Each solution in this population corresponds to a decision region (a
subset of Pareto set). A decision region will also be called a Pareto region.

The solutions are detected in two stages. In the first stage a Genetic Chromo-
dynamics technique is used to detect all (local and global) Pareto solutions. In the
second stage the solutions are refined. During the fine tunning the sub-optimal
regions are removed.

The evolutionary multiobjective technique proposed in this paper is called Con-

tinuous Pareto Set (CPS) algorithm.

2. Problem statement

Let Ω be the search space. Consider n objective functions f1, f2, . . . , fn ,

fi : Ω → R,

where Ω ⊂ R.
Consider the multiobjective optimization problem:

{
optimize f(x) = (f1(x), . . . , fn(x))
subject to x ∈ Ω

The key concept in determining solutions of multiobjective optimization prob-
lems is that of Pareto optimality. In what follows we recall some basic definitions.

Definition1. (Pareto dominance) Consider a maximization problem. Let x, y

be two decision vectors (solutions) from Ω. Solution x dominate y (also written
as x Â y) if and only if the following conditions are fulfilled:

(i) fi(x) ≥ fi(y),∀i = 1, 2, . . . , n,
(ii) ∃j ∈ {1, 2, . . . , n} : fj(x) > fj(y).

Definition 2. Let S ⊆ Ω. All solutions, which are not dominated by any
vector of S, are called nondominated with respect to S.



GENETIC CHROMODYNAMICS FOR PARETO REGIONS 17

Definition 3. Solutions that are nondominated with respect to S, S ⊂ Ω, are
called local Pareto solutions or local Pareto regions.

Definition 4. Solutions that are nondominated with respect to the entire
search space Ω are called Pareto optimal solutions.

Let us note that when the search space is a subset of R, then Pareto optimal
set may be represented as:

(i) a set of points;
(ii) a set of disjoint intervals;
(iii) a set of disjoint intervals and a set of points.

Remark. In each of the cases (i), (ii) and (iii) a point or an interval represents
a Pareto region.

Evolutionary multiobjective optimization algorithms are intended for supplying
a discrete picture of Pareto optimal set and of Pareto frontier. But Pareto set is
usually a union of continuous set. When continuous decision regions are repre-
sented by discrete solutions there is some information loss. The resulting sets are
but a discrete representation of their continuous counterparts.

Methods for finding Pareto optimal set and Pareto optimal front using discrete
solutions are computationally very difficult. However the results may be accepted
as the ‘best possible? at a given computational resolution. Methods for obtaining
the continuous representation using discrete outputs of evolutionary techniques
are considered in Veldhuizen [11].

The evolutionary method proposed in this paper directly supply the true (i.e.
possibly continuous) Pareto optimal set.

3. Solution representation and domination

In this paper we consider solutions are represented as intervals in the search
space Ω.

Each interval-solution k is encoded by an interval [xk, yk] ∈ R. Degenerated
intervals are allowed. Within degenerate case yk = xk the solution is a point.

In order to deal with proposed representation a new domination concept is
needed. This domination concept is given by the next definition.

Definition 5. An interval-solution [x, y] is said to be interval-nondominated if
and only if all points of that interval [x, y] are nondominated point-wise solutions.
An interval-nondominated solution will be called a Pareto-interval. Remarks.

(i) If x = y this concept reduced towards ordinary non-domination notion.
(ii) If no ambiguity arise we will use nondominated instead of interval-nondomi-

nated.
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4. Mutation

Problem solutions are detected in two stages. In the first stage a Genetic
Chromodynamics technique is used to detect all (global and local) solutions. This
represent the evolution stage.

In the second stage (fine tuning or refinement stage) solutions that have been
detected in the first stage are refined. By using the refinement procedure sub-
optimal Pareto regions are removed from the final population.

Most of the multiobjective optimization techniques based on Pareto ranking
use a secondary population (an archive) denoted Psecond for storing nondomi-
nated individuals. Archive members may be used to guide the search process. As
dimension of secondary population may dramatically increase several mechanisms
for reducing archive size have been proposed. In [13] and [14] a population de-
creasing technique based on a clustering procedure is considered. We may observe
that preserving only one individual from each cluster implies a loss of information.

In our approach the population size does not increase during the search process
even if the number of Pareto optimal points increase. The population size is kept
low due to the special representation we consider.

When a new nondominated point is found it replaces another point solution in
the population or it is used for building a new interval solution with another point
in the population. This does not cause any information loss concerning Pareto
optimal set during the search process.

The algorithm starts with a population of degenerated intervals (i.e. a pop-
ulation of points). The unique variation operator is mutation. It consists of
normal perturbation of interval extremities. Mutation can also be applied to
point-solutions (considered as degenerated intervals). Each interval extremity is
mutated. The left extremity of an interval is always mutated towards left and the
right interval extremity is mutated only towards right.

For mutation two cases are to be considered.

a) Degenerated interval: The individual is mutated towards left or right
with equal probability. The obtained point represents the offspring. Par-
ent and offspring compete for survival. The best, in the sense of domi-
nation, enter the new population.

If parent and offspring are not comparable with respect to domina-
tion relation then the two points defines an interval solution. The new
interval solution is included in the new generation. The point solution
representing the parent is discarded.
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b) Nondegenerated interval: (i) Firstly the left extremity of the in-
terval [u, v] is mutated towards left. A point-offspring u′ is ob-
tained. Consider the case when the offspring u′ and the parent u

do not dominate each other. In this situation a new interval solu-
tion [u′, v] is generated. The new solution has the offspring u′ as
its left extremity and v as its right extremity. If the offspring u′

dominates the parent u, then the interval solution [u, v] enters the
new population.

(ii) A similar mutation procedure is applied to the right interval ex-
tremity of the previously obtained solution ([u, v] or [u′, v]).

5. Population model

For each generation every individual in the current population is mutated. Par-
ents and offspring directly compete for survival. The domination relation guides
this competition.

For detecting the correct number of Pareto optimal regions it is necessary to
have, in the final population, only one solution per Pareto optimal region.

In this paper we consider the merging operator of Genetic Chromodynamics
for implementing the population decreasing mechanism. Very close solutions are
fused and population size decreases accordingly.

In the framework of this paper the merging operator is described as bellow:

(i) if two interval solutions overlap the shortest interval solution is discarded.
Degenerated interval- solution included into non-degenerated interval-solu-
tions are removed too;

(ii) if two degenerated solutions are closer than a fixed threshold, then the worst
solution is discarded.

The merging operator is applied each time a new individual enters the popula-
tion.

The method allows a natural termination condition. The algorithm stops when
there is no improvement of the solutions for a fixed number of generations. Each
solution in the last population supplies a Pareto optimal region contributing to
the picture of Pareto optimal set.

6. Fine tuning

During the fine tuning stage sub-optimal solutions (regions) are removed. For
this aim each continuous Pareto region is transformed into a discrete set. Dis-
cretized version is obtained considering points within each interval solution at a
fixed step size.
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Let us denote by ss the step size. Consider an interval solution [x, y]. From
this solution consider the points xj fulfilling the conditions:

• xj = x + j · ss, j = 0, 1, . . .;
• xj ≤ y.

These points represent the discretized version (denoted D) of the interval solu-
tion [x, y].

Each point xj within the interval solutions is checked. If a point from the
discretized set D dominates the point xj then xj is removed from the Pareto
interval [x, y] together with a small neighboring region. The size of the removed
region is equal with ss.

The intervals obtained after this stage are considered as the true Pareto sets.

7. Algorithm Complexity

The complexity of the proposed algorithm is low. Let m be the number of
objectives and N the population size. The first stage requires

K1 = O(m ·N · IterationNumber)

operations.
Denote by Imax is the longest interval solution in the population. Consider a

function
F : R×R → N.

Admit that F fulfills the following conditions:

(i) F is a linear function,
(ii) F ([a, a]) = 1, for each a ∈ (?∞,∞).

Second stage (fine tuning) requires

K2 = O(N2 · F (Imax)2)

operations.

8. CPS Algorithm

Using the previous considerations we are ready to design a new multiobjective
optimization algorithm.

The evolution stage of the CPS algorithm is outlined as bellow:

Algorithm CPS:
generates an initial population P(0) {all intervals are degenerated i.e. xk = yk}
t = 0;
while not (Stop Condition) do
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begin
for each individual k in P (t) do
begin

p = random {generate a random number between 0 and 1}
if p < 0.5
then

Left offspr = MutateTowardsLeft(xk);
if dominate(Left offspr, xk)
then

if xk = yk

then xk = yk = Left offspr
else

if nondominated(Left offspr, xk)
then xk = Left offspr;

else
Right offspr = MutateTowardsRight(yk);
if dominate(Right offspr, yk)
then

if xk = yk

then xk = yk = Right offspr
else

if nondominated(Right offspr, yk)
then yk = Right offspr;

endif
endfor
t = t + 1

endwhile

Fine tuning part of CPS algorithm is obvious.

9. Numerical experiments

Several numerical experiments using CPOS algorithm have been performed.
For all examples the detected solutions gave correct representations of Pareto set
with an acceptable accuracy degree. Some particular examples are given below.

Example 1. Consider the functions f1, f2 : [−10, 13] → R defined as

f1(x) = sin(x),

f2(x) = sin(x + 0.7).
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Consider the multiobjective optimization problem:
{

optimize f(x) = (f1(x), f2(x))
subject to x ∈ [−10, 13]

The initial population is depicted in Figures 1(a) and 1(b).

(a) (b)

Figure 1. (a) Initial population represented within solution
space; (b) Initial population represented within objective space

Consider the value
σ = 0.1

for the standard deviation of mutation operator. Solutions obtained after 3 gen-
erations are depicted in Figures 2(a) and 2(b).

The final population, obtained after 42 generations, is depicted in Figures 3(a)
and 3(b).

The final population after the refinement stage is depicted in Figures 4(a) and
4(b).

Solutions in the final population are:

s1 = [−8.47,−7.86],

s2 = [−2.26,−1.56],

s3 = [4.01, 4.69],

s4 = [10.29, 10.99].
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(a) (b)

Figure 2. (a) Population obtained after 3 generations repre-
sented within solution space; (b) Population obtained after 3 gen-
erations represented within objective space

(a) (b)

Figure 3. (a) Population obtained at convergence (after 42 gen-
erations) represented within solution space; (b) Population ob-
tained at convergence (after 42 generations) represented within
objective space

Example 2. Consider the functions f1, f2 : [−10, 20] → R defined as

f1(x) = sin(x),
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(a) (b)

Figure 4. (a) Final population obtained after fine tuning stage
represented within solution space; (b) Final population obtained
after fine tuning stage represented within objective space

f2(x) = 2 · sin(x) + 1.

Consider the multiobjective optimization problem:

{
optimize f(x) = (f1(x), f2(x))
subject to x ∈ [−10, 20]

The initial population is depicted in Figures 5(a) and 5(b).
For the value

σ = 0.1

solutions obtained after 14 generations are depicted in Figures 6(a) and (b).
The final population, obtained after 70 generations, is depicted in Figures 7(a)

and 7(b).

Example 3. Consider the functions f1, f2 : [0, 24] →R defined as

f1(x) = sin(x),

f2(x) =





−4·x
π + 8 · k, 2 · k · π ≤ x < 2 · k · π + π

2 ,
4·x
π − 4 · (2 · k + 1), 2 · k · π + π

2 ≤ x < (2 · k + 1) · π,
−2·x

π + 2 · (2 · k + 1), (2 · k + 1) · π ≤ x < (2 · k + 1) · π + 3·π
2 ,

2·x
π − 4 · (k + 1), 2 · k · π + 3·π

2 ≤ x < 2 · (k + 1) · π + π
2 .

where k ∈ Z+.
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(a) (b)

Figure 5. (a) Initial population represented within solution
space; (b) Initial population represented within objective space

(a) (b)

Figure 6. (a) Population obtained after 14 generations repre-
sented within solution space; (b) Population obtained after 14
generations represented within objective space

Consider the multiobjective optimization problem:
{

optimize f(x) = (f1(x), f2(x))
subject to x ∈ [0, 24]
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(a) (b)

Figure 7. (a) Final population obtained after 70 generations rep-
resented within solution space; (b) Final population obtained after
70 generations represented within objective space

The initial population is depicted in Figure 8(a) and 8(b).

(a) (b)

Figure 8. (a) Initial population represented within solution
space; (b) Initial population represented within objective space

For the value
σ = 0.1
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solutions obtained after 4 generations are depicted in Figures 9(a) and 9(b).

(a) (b)

Figure 9. (a) Population obtained after 4 generations repre-
sented within solution space; (b) Population obtained after 4 gen-
erations represented within objective space

The final population, obtained after 60 generations, is depicted in Figures 10(a)
and 10(b).

The final population after the refinement stage is depicted in Figure 11(a) and
11(b).

10. Concluding remarks and further research

A new evolutionary technique for solving multiobjective optimization problems
involving one variable functions is proposed. A new solution representation is used.
Standard search (variation) operators are modified accordingly. The proposed
evolutionary multiobjective optimization technique uses only one population. This
population consists of nondominated solutions already founded.

All known standard or recent multiobjective optimization techniques supply
a discrete picture of Pareto optimal solutions and of Pareto frontier. But Pareto
optimal set is usually non-discrete. Finding Pareto optimal set and Pareto optimal
frontiers using a discrete representation is not a very easy computationally task
(see [11]).

Evolutionary technique proposed in this paper supplies directly a continuous
picture of Pareto optimal set and of Pareto frontier. This makes our approach
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(a) (b)

Figure 10. (a) Population obtained at convergence (after 60 gen-
erations) represented within solution space; (b) Population ob-
tained at convergence (after 60 generations) represented within
objective space

(a) (b)

Figure 11. (a) Final population obtained after fine tuning stage
represented within solution space; (b) Final population obtained
after fine tuning stage represented within objective space

very appealing for solving problems where very accurate solutions detection is
needed.
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Another advantage is that CPS technique has a natural termination condition
derived from the nature of evolutionary method used for preserving population
diversity.

Experimental results suggest that CPS algorithm supplies correct solutions after
few generations.

Further research will focus on the possibilities to extend the proposed technique
to deal with multidimensional domains.

Another research direction is to exploit the solution representation as intervals
for solving inequality systems and other problems for which this representation
seems to be natural.
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CODING OBJECTS RELATED TO CATALAN NUMBERS

ANTAL BEGE AND ZOLTÁN KÁSA

Abstract. A coding method using binary sequences is presented for different
computation problems related to Catalan numbers. This method proves in a
very easy way the equivalence of these problems.

1. Introduction

The Catalan numbers, named after the french mathematician E. C. Catalan,
defined as

Cn =
1

n + 1

(
2n

n

)
,

are as known as the Fibonacci numbers. These numbers arise in a lot of combina-
torial problems as the number of some objects. The Catalan number Cn describe,
among other things,

• the number of binary trees with n nodes,
• the number of ways in which parantheses can be placed in a sequence of

n + 1 numbers to be multiplied two at a time,
• the number of well-formed reverse Polish expressions with n operands

and n + 1 operators,
• the number of paths in a grid from (0, 0) to (n, n), increasing just one

coordinate by one at each step, without crossing the main diagonal,
• the number of n-bit sequences that the number of 1s never exceeds the

number of 0s in each position from left to right,
• the number of ways you can draw non-crossing segments between 2n

points on a circle in the plane,
• the number of sequences (x1, x2, . . . , x2n), with xi ∈ {−1, 1} for all i

between 1 and 2n and having the following properties for all partial sums:
x1 ≥ 0, x1+x2 ≥ 0, . . . , x1+x2+. . .+x2n−1 ≥ 0, x1+x2+. . .+x2n = 0,

• the number of ways a polygon with n+2 sides can be cut into n triangles,
• the number of frieze pattern with n + 1 rows,

2000 Mathematics Subject Classification. 11B75, 68P30, 68R05.
1998 CR Categories and Descriptors. G.2.1 [Mathematics and Computing]: Discrete

Mathematics – Combinatorics, Counting problems.
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• the number of mountain ranges you can draw using n upstrokes and n
downstrokes,

• the number of ways n votes can come in for each of two candidates in
an election, with the first never behind the second.

The Catalan numbers are the solution of the following recurrence equation:

Cn+1 = C0Cn + C1Cn−1 + . . . + CnC0 for n ≥ 0, with C0 = 1.

Another recurrence equation for the Catalan numbers is:

(n + 2)Cn+1 = (4n + 2)Cn for n ≥ 0, with C0 = 1.

The generating function of these numbers is
∑

n≥0

Cnzn =
1−√1− 4z

2z
,

which can be obtained from the first recurrence equation given above using gener-
ating function techniques (see e. g. [5] for computing the number of n-node binary
trees).

Let C(z) =
∑

n≥0

Cnzn be the generating function corresponding to the Catalan

numbers. By the recurrence equation this function satisfy the following equation:

zC2(z) = C(z)− 1, with C(0) = 1.

From this

C(z) =
1−√1− 4z

2z
results. By developping in series we will get the followings:

C(z) =
1
2z

(
1−√1− 4z

)
=

1
2z


1−

∑

n≥0

(1
2

n

)
(−4z)n


 =

=
∑

n≥0

( 1
2

n + 1

)
(−1)n22n+1zn =

∑

n≥0

1
n + 1

(
2n

n

)
,

and from this the formula for Catalan numbers results.

2. The Encoding

We shall present here an encoding method of objects whose number is a Catalan
number. Each object will be codified by a binary sequence in which the number
of 0s is equal to the number of 1s, and from the beginning to any position of the
sequence, the number of 1s never exceeds the number of 0s. Let us call these
sequences Catalan sequences.

The mathematical definition of the Catalan sequence is given below. Let us
denote by n1(u) the number of 1s and by n0(u) the number of 0s in the sequence
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u. A sequence u = u1u2 . . . u2n, with ui ∈ {0, 1} for i = 1, 2, . . . , 2n, is a Catalan
sequence if

n1(u1u2 . . . ui) ≤ n0(u1u2 . . . ui) for i = 1, 2, . . . , 2n

n1(u) = n0(u)

Our coding method is different from the one given in [8] for binary trees.
There are a lot of papers which deal with the Catalan numbers, in references

we give only a few of them.

2.1. Encoding of binary trees. The encoding of a binary tree is the following:
when a vertex has only one descendant, we put the sequence 01 for a single left
edge, 10 for a single right edge, and 00 for the left edge resp. 11 for the right edge
when there are two descendants. We complete the resulting sequence with 0 at
the beginning and 1 at the end. The encoding is made using a preorder traversal
of the binary tree. In the case of the binary trees with 3 nodes we shall have the
encoding in Fig. 1.

u

u

u u

u

u

u

u

u

u

u

u

u

u u

0 01 01 1 0 01 10 1 0 10 01 1 0 10 10 1 0 00 11 1

Fig. 1. Encoding of binary trees

u

u u

u uu

u

0 00 01 10 11 00 10 11 1

u

Fig. 2. A more complex example

A more complex example, when the preorder traversal can be easily seen, is
given in Fig. 2.

The encoding algorithm for a binary tree B is given as follow in a pseudocode-
form. Let us denote by ∅ the empty binary tree (with no vertices). The put
statement puts its argument in the resulting output sequence.
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Algorithm for encoding a binary tree
put 0
procedure encoding (B):

Let BL be the left and BR the right subtree of B
if BL 6= ∅ and BR = ∅ then

put 01
call encoding (BL)

if BL = ∅ and BR 6= ∅ then
put 10
call encoding (BR)

if BL 6= ∅ and BR 6= ∅ then
put 00
call encoding (BL)
put 11
call encoding (BR)

end procedure
put 1

For an empty binary tree the procedure has no effect. The proof that the
resulting sequence is a Catalan sequence is immediately by the above algorithm.

2.2. Encoding of paths in grid. We shall put 0 for a horizontal unit of the path
and 1 for a vertical one. The resulting sequence is a Catalan one because the path
never cross the main diagonal of the grid.

In the case of a grid 3× 3 the following paths and codes results (see Fig. 3).

001011 001101 010011 010101 000111

Fig. 3. Encoding of paths in grid

2.3. Encoding of expressions with multiplications. To encode expressions
we first attach to each expression for multiplication a binary tree by a very simple
method. If we multiple a by b, this yields a binary tree with a root and two
descendant nodes a and b. A multiplication of two expressions yields a binary tree
with two subtrees which are the binary trees corresponding to the two expressions.
In the resulting binary tree each internal nodes has exactly two descendants. Such
trees are called extended binary trees. To encode an extended binary tree we shall
omit all leaves (with of course the corresponding edges) in the tree corresponding
to the multiplication expression and use the encoding method presented before
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for the resulting binary tree. For n = 4 we shall have the expressions and the
corresponding extended binary trees in Fig. 4. If we omit all leaves with the
adjacent edges in these extended trees the binary trees and the corresponding
encoding result.

u
u

u1
2

3 4

u
u

u

1 2
3

4

u
u

u
1

2 3

4

u
u

u1

2 3

4

u
u u

1 2 3 4

(((1 2) 3) 4) ((1 (2 3)) 4) (1 ((2 3) 4)) (1 (2 (3 4))) ((1 2) (3 4))

Fig. 4. Encoding of multiplications

2.4. Encoding of sequences. We encode sequences (x1, x2, . . . , x2n), with xi ∈
{−1, 1} for all i between 1 and 2n and having the following properties for all partial
sums: x1 ≥ 0, x1 +x2 ≥ 0, . . . , x1 +x2 + . . .+x2n−1 ≥ 0, x1 +x2 + . . .+x2n = 0.
We shall code −1 in the sequence by 1 and 1 by 0. It is easy to see that in any
positions the number of 1s never exceeds the number of 0s, and they are equals in
the sequence (because the sum of all 2n elements is equal to 0), so the resulting
sequence is a Catalan one. For example:

1, 1 1, −1, −1, −1 coded by: 000111
1, 1 −1, 1, −1, −1 coded by: 001011
1, 1 −1, −1, 1, −1 coded by: 001101
1, −1 1, 1, −1, −1 coded by: 010011
1, −1 1, −1, 1, −1 coded by: 010101

2.5. Encoding of segments. If we have 2n points on a circle in the plane and n
non-crossing segments between them, the encoding is the following: Let us mark
the points clockwise on the circle with numbers from 1 to 2n. For a segment
between i and j (i < j) put 0 in the ith position and 1 in the jth position in the
code sequence. For n = 3 see Fig. 5. It is easy to see that the resulting sequence
is a Catalan one.



36 ANTAL BEGE AND ZOLTÁN KÁSA
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Fig. 5. Encoding of segments

2.6. Encoding of reverse Polish expressions. We shall code each operand by
0 and each operator by 1, and add at the end of the resulting sequence an 1. For
example, if we have the reverse Polish expression aaa×a×× — which corresponds
to the expression (a× ((a× a)× a)) — the resulting code is 00010111.

2.7. Encoding of polygons. The polygon is divided into triangles. We consider
one node in each triangle, and one outside of each side of the polygon. Join by an
edge two nodes if the corresponding triangles (or a triangle and the outside of the
polygon) have a side in common. We shall get a tree, on which the encoding will
be made. If we mark one side of the polygon and the corresponding edge of the
tree, and eliminate all edges from the tree that have an endpoint as a leave, we
shall get a binary tree (the root will be the node which is adjacent with the marked
edge). The exemplification will be made for n = 3 (pentagon). The marked side
is AB. (See Fig. 6)
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Fig. 6. Encoding of polygons

3. The Decoding

If we have a Catalan sequence, from this the corresponding object can be easily
obtained. Let us consider for exemplification the sequence 00010111.

If we want to obtain the corresponding binary tree, we shall omit the first 0
and the last 1. The subsequence 00 is for a left edge (in a stack we shall keep its
position), the following subsequence is 10 corresponding to a single right edge, the
remaining subsequence 11 is a right edge (corresponding to the edge kept in the
stack). The binary tree obtained is in Fig. 7.a.

For the segments we search the first subsequence 01, trace the corresponding
segment, omit it from the sequence and continue with the remaining sequence
(keeping the original positions) (Fig. 7.b).

For the multiplication we first draw the corresponding binary tree (Fig. 7.a),
complete it to having two descendants for each node. The resulting extended
binary tree give us the order of multiplications (Fig. 7.c).

The path in the grid is obtained immediately: we draw a horizontal unit segment
for each 0 and a vertical one for each 1 (Fig. 7.d).
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From these examples general algorithms to obtain related objects from the
Catalan sequences can be easily given. We shall describe only the algorithm to
obtain a binary tree from a Catalan sequence.
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Fig. 7. Decoding

The following recursive algorithm is to decode a Catalan sequence in a binary
tree. This algorithm is valid only for correct Catalan sequences. The get statement
gets the next two digits from the sequence. We shall use the notion of current
vertex to denote a vertex from which an edge is drawn. After drawing an edge
from the current vertex the adjacent new vertex will be the current one.
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Algorithm to decode a Catalan sequence into a binary tree

Input a Catalan sequence
Output a binary tree
delete 0 from the beginning and 1 from the end of the input sequence,

and draw a vertex (the root of the tree) as current vertex
procedure decoding (c):

get ab
delete ab from c
if ab = 01 then

draw a left edge from the current vertex
call decoding (c)

if ab = 10 then
draw a right edge from the current vertex
call decoding (c)

if ab = 00 then
put in the queue the position of the current vertex
draw a left edge from the current vertex
call decoding (c)

if ab = 11 then
get from the queue the position of a vertex,
this will be the current vertex
draw a right edge from the current vertex
call decoding (c)

end procedure

4. Conclusions

Our presentation give a uniform method to encode objects whose number is a
Catalan number. The resulting code is a so-called Catalan sequence formed of
equal number of binary digits 0 and 1, in which the number of 1s never exceeds
the number of 0s from left to right. This method is important, beside the easy
handling, because coding an object in a Catalan sequence and after decoding it in
another kind of object, the equivalence of these problems can be easily seen. To
prove that the number of objects in a class is a Catalan number it is enough to
use the encoding method to obtain a Catalan sequence.
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INTENSIONAL LOGIC TRANSLATION FOR QUANTITATIVE
NATURAL LANGUAGE SENTENCES

ADRIAN ONEŢ, DOINA TĂTAR

Abstract. The performance of some natural language processing tasks im-
proves if semantic processing is involved. Moreover, some tasks ( database
query) cannot be carried out at all without semantic processing. The first
semantic description was developed by Montague and all later approach to
semantic in the frame of discourse representation theory follow Montague in
using more powerful logic language. The present paper is a contribution in
treatment of quantitative natural sentences.

1. Introduction

At present, there doesn’t exists a general theory of the semantics of natural
language. A rigorous analysis of natural language can’t be realized without the
intensional logic introduced in computational linguistic by Montague. The inten-
sional logic is a further development from the model provided by first order logic.
In his semantic analysis of a sentence, Montague distinguishes two elements: inten-
sion (or sense) and extension (or reference). The intension of a sentence is even the
proposition it expresses, and the extension is its truth value. An extensional logic
can only assign truth value to sentences while an intensional logic can, in addition,
assign a meaning to these sentences. Moreover, Montague saw in type theory a
powerful system which could correspond to the system of syntactic categories of a
natural language.

The following sections aim at acquainting the reader with the fundamentals
of intensional logic. The last section introduces some proposals in treatment of
quantitative natural sentences.

2. Intensional logic

The intensional logic [7] contains, besides new ones, all the concepts in a pred-
icate logic of first order, L1.
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2.1. A type-theoretic version of the language L1. Let t and e be two ba-
sic symbols that respectively represent ’truth’ and ’entity’. The set of types is
recursively defined as follows:

Definition:

• t and e are types (base);
• If a and b are types, then 〈a, b〉 is a type;
• All types are obtained by applying the base and induction rule a finite

number of times.

Example:
〈e, 〈t, e〉〉 is a type.
In the following the symbol Da will represent the set of all denotations for the

expressions of type a, with respect to a given interpretation domain A. The sets
Da are recursively defined as:

• De = A;
• Dt = 0, 1 or T, F ;
• D〈a,b〉 = the set of functions from Da toDb.

If the type is 〈a1, 〈a2, 〈· · · 〈an, b〉 · · · ..〉 then D〈a1,〉a2,〈···〈an,b〉··· ..〉 is the set of
functions from Da1 ×Da2 · · · ×Dan to Db.

The syntactic categories are set of expressions in this logic language. We shall
assign to each of these categories a syntactic label (a type). The rule of this
labeling is denoted cancellation rule and can be stated formally as follows [7]:

If α is an expression of type 〈a, b〉 and β is an expression of type a then the
juxtaposition α(β) is of the type b.

Let us remark that the rule is conform with the denotation of types: If α is a
function from Da to Db and β is an element from Da then juxtaposition α(β) is
an element from Db.

We can now define the language L1 with types, denoted Lt, as follows:
Definition:

• The type of the constants ci, and variables xj is e;
• The type for one-place predicate constant Pi is 〈e, t〉 (a function from

De to Dt = {T, F});
• The type for two-place predicate constant Pi is 〈e, 〈e, t〉〉 (a function from

De ×De to Dt = {T, F});
• The type for n-place predicate constant Pi is 〈e, 〈e, · · · 〈e, t〉 · · · 〉〉, with

n occurrences of e; (a function from De · · · ×De to Dt = {T, F});
• If α is an expression of type 〈a, b〉 and β is an expression of type a then

the juxtaposition α(β) is of the type b.
• The type of the formulas is t;
• The type of the connective ¬ is 〈t, t〉 ;
• The type of the connectives ∧,∨,→ is 〈t, 〈t, t〉〉;
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• If A is a formula (of type t) and x is a variable (of type e), then [∀xA],
[∃xA] are of type t.

2.2. Lambda calculus. The language Lt will be expanded by adding the lambda
operator (λ-operator). The lambda calculus was introduced in the linguistic’s
community by Montague, and in the logic by Alonzo Church (1941). Replacing the
well known notation for the sets as: {x|x has a certain propriety} the following
notation is used: λx[formula containing x]. The expression

λx[formula containing x]

is called λ-expression or λx-abstraction.
The type of a λ-expression as above is 〈e, t〉. If we shall combine this expression

with a constant (of type e), from the cancellation rule results a formula ( of type
t. This process is named λ-conversion and may be written as follows:

λx[· · ·x · · · ](α) = [· · ·α · · · ].
In the formula [· · ·α · · · ] each free occurrence of x is replaced with α, the result

is [· · ·α · · · ] .
Most of the time, in the language Lt, x and A can be of types more general

than e and t. The rule is:
If α is an expression of the type a and x is a variable of the type b, then λx[α]

is an expression of type 〈b, a〉.
For example the type of x can be 〈e, t〉, and in this case λ- operator make a λ

abstraction after a predicate (not a variable).
Montague gave some examples of λ-operator in natural language sentences in

English [7]. Let us consider two sentences: Every student walks and Every students
reads. Their usual translation in predicate logic is:
∀x(S(x) → W (x)) and ∀x(S(x) → R(x)).
These sentences are instances of a more general sentence whose translation is a

second-order logic formula, i.e. they are λ-conversions of the λ-expression:

λY [∀x(S(x) → Y (x))].

The first conversion is

λY [∀x(S(x) → Y (x))](W )

and the second one is
λY [∀x(S(x) → Y (x))](R).

Therefore, the λ -expression λY [∀x(S(x) → Y (x))] will have the type 〈〈e, t〉, t〉
and it is equivalent to the English sentence every student.

Analogously, we can obtain a λ expression for every: if every student is λY [∀x
(S(x) → Y (x))], then this expression may be seen as conversion of the more gen-
eral expression: λZ[λY [∀x(Z(x) → Y (x))]] for S, that means λZ[λY [∀x(Z(x) →
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Y (x))]](S). So every can be translated in λZ[λY [∀x(Z(x) → Y (x))]] with the
type 〈〈e, t〉, 〈〈e, t〉, t〉〉.

Analogously, some student or a student is translated in expression λY [∃x(S(x)∧
Y (x))] with the type 〈〈e, t〉, t〉, and some, a, an, in expression λZ[λY [∃x(S(x) ∧
Y (x))]] with the type 〈〈e, t〉, 〈〈e, t〉, t〉〉.

2.3. Intensionality. In his theory Montague make a distinction between the
sense ( intention) of an expression and reference ( extension): the reference of
an expression corresponds to semantic ( truth) value of this expression, the sense
corresponds to the meaning of the expression. The distinction between sense and
reference is important when the operators ¤ ( necessarily) and ♦ (possibly) are
used. For example, ¤A cannot be described as function of the references of its
parts (¤) and A) but can be described as a function of the senses of these parts.
The intensionality in natural language is induced by propositional attitude verbs
as: think, believe, regret, etc.

In the following we shall denote by αi and αe, intension and extension of
an expression α, respectively. There is a cancellation rule e,i very important
in simplification of the expressions produced by the translation of sentences in
natural language: αi,e = αe,i = α.

The expressions for determinants every and a, some will be, considering the
intensionality:

λZ[λY [∀x(Ze(x) → Y e(x))]]

respectively

λZ[λY [∃x(Ze(x) ∧ Y e(x))]].

As in the case of type-theoretic version of the language L1, Lt, the syntax
contains recursive definitions of the types. The basic types are, as above t, e .
Additionally, is used the symbol s for sense, which will allow to associate with
every type a a new type 〈s, a〉.

Observation:
The expression of type 〈s, a〉 have as extension, intension of expression of type

a.
The formation rules for types are as follows:
Definition:

• t and e are types;
• If a and b are types, then 〈a, b〉 is a type;
• If a is a type, then 〈s, a〉 is a type;
• All types are obtained by applying the induction rules of a finite number

of times.
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3. Montague’s grammar

In his paper “The proper treatment of quantification in ordinary Englis” (1973),
Montague formulated a syntax and a semantics for natural language (NL) which
has the same rigor and precision as the syntax and semantics of formal languages.
He introduced for NL a categorial grammar with the name PTQ, from the name
of the paper. This grammar PTQ uses 11 types (syntactic categories) of words:
sentences, intransitive verbs, term(en)s (NP, proper nouns, pronouns,etc), tran-
sitive verbs, adverbs of type VP, sentence adverbs, common nouns, prepositions,
sentence complement verbs, (believe, assert, etc, used with “that”), infinitive com-
plement verbs (try, wish, etc) , determiners (every, the, a, an).

In the categorial grammar PTQ of Montague, the type (syntactic categorie) is
defined as [7, 8, 3]

• t is a syntactic category, of the expressions to which a truth value can
be assigned, i.e. the category of sentences;

• e is a syntactic category, of the expressions to which entities can be
assigned;

• if A is a syntactic category, and B is a syntactic category then A/B is a
syntactic category.

The rule of the categorial cancellation is the following: if an expression of cate-
gory A/B combines with an expression of category B then is proceeded an expres-
sion of category A.

The nine categories above have “predefinited” types: for example, intransitive
verbs are of type t/e, terms have the type t/(t/e), “believes that” have the type
(t/e)/t, etc (as in the bellow figure).

If we would analyses how the sentences John walks or John believes that Mary
walks, are obtained by the categorial cancellation rule we shall obtain sentences of
type t. Indeed, denoting by + juxtaposition, we have:

Johnt/(t,e) + walkst/e = (John walks)t

Johnt/(t,e)+(believes that)(t/e)/t+(Mary walks)t = (John believes that Mary walks)t.

Definition:
A sentence is any recursive combination of basic expressions that produces, after

a finite number of applications of the categorial cancellation rule, an expression of
category t.

In Table 1 we will present the syntactic categories of the PTQ grammar.

3.1. Syntactic rules in the PTQ categorial grammar. In the following we
will use the notation: if A is a syntactic category then BA is the set of words in
the dictionary(lexical entries) of category A and PA is the set of groups of words
of category A. For A = t, Bt is the empty set.

The first of the syntactic rules is the following:
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Name Categorial definition Denotation Example
t − sentence −

IV t/e V P ; intrans. verb run, walk, talk
T (term) t/IV or t/(t/e) NP ; proper name John,Mary

TV IV/Tor(t/e)/(t/(t/e)) transitive verb find, eat, love
IAV IV/IV V P adverb rapidly, slowly
CN t//e commonnoun man, woman
SA t/t sentence adverb necessarily

Prep IAV/T preposition in, about
SCV IV/t sentence compl. verb believe, assert
ICV IV//IV infinitive compl. verb try, wish
DET T/CN determiner every, the, a, an

Table 1. The syntactic categories of the PTQ grammar

• S1. For each syntactic category A, the set BA is included in PA.
All the syntactic rules forming complex expressions have the general

form:
• Si: If α ∈ PA/B and if β ∈ PB then Fi(α, β) ∈ PA.

Some examples of the rules proposed by Montague are given hereafter :
• S2 (Complex expressions of category Term):

If α ∈ PT/CN and if β ∈ PCN then F2(α, β) ∈ PT .
The function F2(α, β) is α∗β where α∗ is α except in the case where

α is a and the first word in β begins with a vowel; in this case α∗ = an.
• S4 (Complex expressions of category t, sentences):

If α ∈ PT and if β ∈ PIV then F4(α, β) ∈ Pt.
The function F4(α, β) is αβ∗ where β∗ is the result of replacing the

first verb from β by its third person singular present form.
The rules introduced by Montague permit the translation in de dicto (non-

specific) mode and also in de re (specific) mode for a sentence.
He first defined a correspondence between syntactic category and the types in

the form of a function f .
Definition:

• f(t) = t;
• f(CN) = f(IV ) = 〈e, t〉;
• f(A/B) = 〈〈s, f(B)〉, f(A)〉 for all syntactic category A and B.

The correspondence between syntactic categories and types is indicated in Table
2.

Beside the types, the expressions themselves are translated. Let us observe first
that basic expressions (lexical entries) are translated in constants of type 〈e, t〉
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Syntactic category Type
t t

IV 〈e, t〉
CN 〈e, t〉

T (term) = t/IV 〈〈s, 〈e, t〉〉, t〉
TV = IV/T 〈〈s, 〈〈s, 〈e, t〉〉, t〉〉, 〈e, t〉〉

IAV = IV/IV 〈〈s, 〈e, t〉〉, 〈e, t〉〉
T/CN 〈〈s, 〈e, t〉〉, 〈〈s, 〈e, t〉〉, t〉〉

t/t 〈〈s, t〉, t〉
SCV = IV/t 〈〈s, t〉, 〈e, t〉〉

ICV = IV//IV 〈〈s, 〈e, t〉〉, 〈e, t〉〉
IAV/T −

Table 2

Formal expression Associated type
P 〈s, 〈e, t〉〉
P e 〈e, t〉
j e

P e(j) t(categorial cancellation rule)
λP [P e(j)] 〈〈s, 〈e, t〉〉, t〉( cancellation rule forλexpressions)

Table 3

as for example: lexical entries man and walk are translated in man’ and walk’.
The translation of proper nouns is defined as follows: John has as translation
John′ = λP [P e(j)] where P is a predicate variable and j is a constant which
represents John. Let us verify that λP [P e(j)] is of type specific for terms, that
means 〈〈s, 〈e, t〉〉, t〉. See Table 3.

For translation formalism is enough to define for each syntactic functional ap-
plication rule Sj (j=1,...14 ) of the form:

Sj: If α ∈ PA/B and if β ∈ PB then Fj(α, β) ∈ PA

a translation rule Tj of the form:
Tj: If α ∈ PA/B and β ∈ PB , and if α and β translate into α′ and β′ respectively,

then Fj(α, β) translates into α′(β′i).
Example:
Let us compute translation of Mary talks. In grammar PTQ we have:
Mary ∈ BT so, by S1, Mary ∈ PT .
talk ∈ BIV and, by S1, talk ∈ PIV .
By S4, Mary talks ∈ Pt.
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The translation of Mary is λP [P e(m)], and the translation of talk este talk′.
Henceforth, the translation of F4(Mary, talk) is α′(β′i) = λP [P e(m)](talk′i). This
last formula may be simplified to

λP [P e(m)](talk′i) = talk′e,i(m) = talk′(m).
The first simplification is a λ conversion, the second is by the rule i,e.
Example
We can verify that the determiner every ( an expression of the category T/CN)

has the appropriate type:
f(T/CN) = f((t/IV )/CN) = 〈〈s, f(CN)〉, f(t/IV )〉 = 〈〈s, 〈e, t〉〉, 〈〈s, f(IV )〉,

f(t)〉〉 = 〈〈s, 〉e, t〉〉, 〈〈s, 〈e, t〉〉, t〉〉.
Indeed, for every, which is translated in λZ[λY [∀x(Ze(x) → Y e(x))]] we have:

expression ∀x(Ze(x) → Y e(x)) is of type t. As Y is of type 〈s, 〈e, t〉〉, expression
λY [∀x(Ze(x) → Y e(x)) is of type 〈〈s, 〈e, t〉〉, t〉. Z is also of type 〈s, 〈e, t〉〉, and
then λZ[λY [∀x(Ze(x) → Y e(x))]] is of 〈〈s, 〈e, t〉〉, 〈〈s, 〈e, t〉〉, t〉〉.

4. The treatment of quantitative sentences

In the following we will try to explain the utility of intensional logic for the
semantic representation of some significant quantitative sentences. This kind of
natural language sentences presents a special importance because of it’s mostly use
as query language over the internet and most of these sentences refer to quantity
(products, money). On the other hand these types of sentences can also be used for
the acquisition of new knowledge in a knowledge base which has as input natural
language sentences.

For an easier exemplification we split the quantitative sentences in three cate-
gories:
• Definite quantity sentences (those sentences of which quantifiers represent

exactly the expressed quantity). Example: Four men cry. John eats an apple.
• Indefinite quantity sentences (the quantifiers of these sentences gives us an ap-

proximation of the expressed quantity without specify it). Example: Most women
cry. A number of people read.
• Restrictive quantity sentences (in this case the quantifiers restrict with preci-

sion the expressed quantity). Example: Maximum five children answer.
Generally speaking, the quantitative sentences are generated by the presence of

numerals, but there are also cases when there aren’t any numeral in these sentences
(for example, the indefinite quantity sentences). This is why we will first try to
present the way that these numerals are translated in the intensional logic.

There are two types of numerals with more importance in the construction of
quantitative sentences, numerals which will be translated in different way:

a) Singles numerals which are determinants of the sentences where they belong
(e.g. Five man laugh).
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b) Numerals which are preceded by an adverb with the role of pre-determinant,
with which it forms the sentence determinant. (e.g. Maximum eleven people left
the room).

In the first case the numerals represent the sentence determinant, so their type
is T/CN and their translation in the intensional logic will be:

λZ[λY [∃NX(Ze(X)∧ Y e(X)∧N = j))]] - where j represents the number indi-
cated by the numeral

In the construction of this expression we used the notation given in [3]. In the
following we will prove that this expression is of type T/CN:

– Ze is of type 〈e, t〉 and X is of type e ⇒ (with the use of cancellation rule)
Ze(X) is of type t;

– in the same way we can prove that the expression Y e(X) is of type t;
– N and j are of the same type e ⇒ (using the definition of the intensional logic)

the expression N=j is of type t;
– again using the definition of intensional logic which says that: if two expres-

sions A and B have the same type t, then the expression A∧B is also of type t. Us-
ing this definition on the above expression⇒ the expression Ze(X)∧Y e(X)∧N = j
is of type t;

– if the expression Ze(X) ∧ Y e(X) ∧ N = j is of type t ⇒ the expression
∃NX(Ze(X) ∧ Y e(X) ∧N = j) is also of type t;

– the expression Y is of type 〈s, 〈e, t〉〉 ⇒ λY [∃NX(Ze(X) ∧ Y e(X) ∧ N = j)]
has the type 〈〈s, 〈e, t〉〉, t〉;

– the expression Z is of type 〈s, 〈e, t〉〉 ⇒ λZ[λY [∃NX(Ze(X)∧Y e(X)∧N = j)]]
has the type 〈〈s, 〈e, t〉〉, 〈〈s, 〈e, t〉〉, t〉, type which is T/CN ¤

In the second situation the numerals will be translated such as base expression
by their semantics (value for the numeral). For example, the numeral four has the
translation 4’.

In the following we will explain (based on an example) the way that definite
quantity sentences will be translated in the intensional logic form (in this example,
we will also show the way that differed type of ambiguities are solved and how we
represent the a and the the determinants). Let us consider the following natural
language sentence that we have to translate in its corresponding intensional logic
formula:

Five men enter a room.

First of all we observe that the sentence is composed by the following atoms:
five – numeral with determinant role
men – common noun;
enter – transitive verb;
a – determinant;
room – common noun;
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Figure 1. The derivation tree for the sentence: Five men enter a room

First we prove that this sentence is semantically correct (which is equivalent
to prove that the sentence type is t). Next we will show that we can map this
sentence in an intensional logic formula.

To prove that the type of this sentence is t, we used a bottom-up algorithm
which constructs the sentence from its atomic parts and then, using the cancella-
tion rule, groups these atoms (see Figure 1).

It can be notice that this is not the only derivation three which we can construct
(at the second step of the construction we could apply the cancellation rule to
couple enter with five men instead with the sequence a man - this is named the
de re interpretation). This two way interpretation of the sentence is caused by its
ambiguity introduced by the scope of the quantifiers.

Now we try to translate this sentence. As we saw earlier, there are two inter-
pretations for this sentence: de dicto and de re. Each type of interpretation will
gives us another formula of the intensional logic (this is possible because of the
semantic ambiguity introduced by this sentence).

To translate this sentence we have to add a new cancellation rule for the com-
position of the sequence α of any type and the sequence β of type T. Thus, the
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cancellation rule for the sequence αβ is (FT ) FT (α, β) = β′(α′i) where α′, β′

represents the translation of the α, β respectively.
First, we will analyze the de dicto interpretation for the sentence translation.

For the sentence translation we have to follow the steps below:
• five∈ PT/CN and this expression translation is (with the respect of what we

had shown at the beginning of this chapter) λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧N =
5)]];
• men∈ PCN and its translation is men’. Thus, the expression five men will be

translated (after the use of the λ-conversion and the i,e-rule) as:
λY [∃NX(men′(X) ∧ Y e(X) ∧N = 5)]] (which has the type T );

• a∈ PT/CN and the translation of this expression is λA[λB[∃1J(Ae(J) ∧
Be(J))]] (to be more specific, we use another set of variables - the notation is
taken from [4]); room ∈ PCN and its translation is room’. Thus, after applying
the cancellation rule and after the use of the λ-conversion and the i,e-rule, the
expression a room will be λB[∈1 J(room′(J) ∧Be(J))] whose type is T .
• enter∈ PIV/T with the translation enter′2 (where the numeral 2 means that

this predicate needs two arguments - this can be also expressed with the help of
lambda calculus:λA[λB(enter(A,B))]). After the use of the cancellation rule to
the expressions enter (of type IV/T) and a room (of type T ) we receive (we use the
FT cancellation rule because the type of the expression a room is T ) - after applying
the λ-conversion and the i,e-rule - the expression ∃1J(room′(J)∧enter′1(J)) whose
type is IV (the predicate enter′1 means that the predicate enter’ needs another
argument)
• Now we only have to couple the remaining two expression: five men (whose

type is T ) and enter a room (whose type is IV ), which has the following trans-
lations λY [∃NX(men′(X) ∧ Y e(X) ∧ N = 5)]] and ∃1J(room′(J) ∧ enter′1(J))
respectively. After applying the λ-conversion and after applying the i,e-rule we
will obtain the following expression of the intensional logic:

∃NX(men′(X) ∧ ∃1J(room′(J) ∧ enter′1(J))(X) ∧N = 5) ⇐⇒

∃NX(men′(X) ∧ (∃1J(room′(J) ∧ enter′(J,X))) ∧N = 5)

The semantic of this formula express the fact that there are exactly five men
who enter in a room (not necessarily the same room).

To obtain the other translation of the sentence we must follow the de re inter-
pretation (we will give only the important steps of the process - the steps which
was excluded are the same with the previous interpretation):
• five ∈ PT/CN and this expression translation is (with the respect of what we

had shown at the beginning of this chapter) λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧N =
5)]];
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• men ∈ PCN and its translation is men’. Thus, the expression five men will be
translated (after applying the λ-conversion and the i,e-rule) as:

λY [λNX(men′(X) ∧ Y e(X) ∧N = 5)]]

(which has the type T);
• enter ∈ PIV/T with the translation enter ′2. This, the expression Five men

enter will be mapped in:

∃NX(men′(X) ∧ enter′1(X) ∧N = 5)]

(whose type is t/T); (I)
• a ∈ PT/CN and the translation of this expression is λA[λB[∃1J(Ae(J) ∧

Be(J))]] (to be more specific, we use another set of variables - the notation is
taken from [4]); room ∈ PCN and its translation is room’. Thus, after applying
the cancellation rule and after the use of the λ-conversion and the i , e-rule, the
expression a room will be λB[∃1J(room′(J) ∧Be(J))]whose type is T ; (II)
• after the combining the two expressions (I) and (II) and after using the can-

cellation rule FT we will obtain the following formula:

∃1J(room′(J) ∧ (∃NX(men′(X) ∧ enter′1(X) ∧N = 5))(J)) ⇐⇒
∃1J(room′(J) ∧ (∃NX(men′(X) ∧ enter′(X,J) ∧N = 5)))

The semantic of this formula express the fact that there is exactly one room in
which five men enter. In the same way we can translate the sentence Five men
enter the room (formula which is obtained by replacing the “a” determinant with
the “the” determinant) which has the following to translation (corresponding to
the de dicto and de re interpretation):

∃NX(men′(X) ∧ (∃1J(∀K(room′(J) ≡ J = K) ∧ enter′(J,X))) ∧N = 5)

(de re) and

∃1J((∀K(room′(J) ≡ J = K) ∧ (∃NX(men′(X) ∧ enter′(X,J) ∧N = 5)))

(de dicto)
As it may be seen these two expressions are equivalent semantically speaking.
Now we show how we can map another type of quantitative sentences: the

restrictive quantity sentences. As we had done in the previous case we will start
to analyze an example sentence. Thus, let consider the sentence: Minimum ten
men laugh, where:

minimum – adverb (pre-determinant) with the type T/CN/T/CN ;
ten – numeral;
men – noun;
laugh – intransitive verb.
It can be prove that this sentence is correct (from the syntactic point of view)

in a similar way as it was proved for the exact quantity sentence.
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For the formula translation we have to follow the following steps (as we had
done earlier with the other example):
• minimum ∈ PT/CN/T/CN and its translation:

λK[λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧minimum′(N,Ke))]]]

Which has the type T/CN/T/CN (to prove the type we must do the steps
shown for the numeral)
• ten ∈ PT/CN and its translation will be 10’. After applying the cancellation

rule for the above two expression (after applying the λ-conversion and the i,e-rule)
we obtain:

λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧minimum′(N, 10′))]];

• men ∈ PCN which translation is men’. Thus, the translation of the expression
minimum ten men (after applying the λ-conversion and the i,e-rule) is:

λY [∃NX(men′(X) ∧ Y e(X) ∧minimum′(N, 10′))];

• laugh ∈ PIV with the translation laugh’. Thus the final translation of the
sentence minimum ten men laugh (after applying the λ-conversion and the i,e-
rule) will be:

∃NX(men′(X) ∧ laugh′(X) ∧minimum′(N, 10′))

- with the type t;
The semantic of this formula means that there are minimum ten men who laugh.

It must be remarked that in this case we had also a λ-variable (K) which took
place as a predicate argument (predicate which is also expressed by an λ-variable).

The last type of sentences which will be discussed here is the indefinite quantity
sentences. This type of sentences does not need the presence of the numeral. For
this kind of sentences we choose the following sentence: Most people run where
the syntactic types of its atoms are:

most – determinant;
people – noun
run – intransitive verb
Similarly to the previous two formulas we can prove that this formula type is t

(this, the sentence is correct in the syntactic point of view).
As we have already seen in the other cases, we will follow the next steps:
• most ∈ PT/CN with the translation:

λZ[λY [∃NX(Ze(X) ∧ Y e(X) ∧most′(N))]]

- of the type T/CN
• people ∈ PCN its translation is people’. After applying the cancellation rule

with the expression most (after applying the λ-conversion and the i,e-rule) we
obtain:

λY [∃NX(people(X) ∧ Y e(X) ∧most′(N))]
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- of type T
• run ∈ PIV with the translation run’. After applying the cancellation rule

with the above expression (after applying the λ-conversion and the i,e-rule) we
obtain the final formula:∃NX(people(X)∧ run′(X)∧most′(N)) - which expresses
the fact that there are N people who run and N follows the most’ predicate.

By the previous three examples we wanted to show the importance of the cate-
gorical grammars and of the intensional logic in the natural language representa-
tion in general and of the quantitative sentences in particular. As we have seen,
this translation technique of the natural language semantic can be used success-
fully in real life. It can also be applied to express more complex sentences that
can hardly solved with the use of other grammars.
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A PRACTICAL COALITION-RESISTANT GROUP BLIND
SIGNATURE SCHEME

CONSTANTIN POPESCU

Abstract. A group signature allow any member of a group to sign on behalf

of the group. A group blind signature requires that a group member signs

on group’s behalf a document without knowing its content. In this paper we

propose a practical coalition-resistant group blind signature scheme based on

the strong RSA and the decisional Diffie-Hellman assumptions. Our scheme

is an extension of the group signature scheme proposed in [3] that adds the

blindness property.

Keywords: Group blind signature scheme, group signatures, blind sig-

natures, strong RSA assumption

1. Introduction

Group signature schemes are a relatively recent cryptographic concept intro-
duced by Chaum and van Heyst [12] in 1991. Group signatures are publicly ver-
ifiable but anonymous in that, no one, with the exception of a designated group
manager, can establish the identity of a signer. Furthermore, group signatures are
unlinkable which makes computationally hard to establish whether or not multiple
signatures are produced by the same group member. At the same time, no one,
including the group manager, can misattribute a valid group signature. A group
signature scheme could for instance be used in many specialized applications, such
as voting and bidding. They can, for example, be used in invitations to submit
tenders. All companies submitting a tender form a group and each company signs
its tender anonymously using the group signature. Once the preferred tender is
selected, the winner can be traced while the other bidders remain anonymous.
More generally, group signatures can be used to conceal organizational structures,
e.g., when a company or a government agency issues a signed statement. Also, a
group signature scheme could be used by an employee of a large company to sign
documents on behalf of the company. A further application of a group signature
schemes is electronic cash as was pointed out in [18]. In this case, several banks
issue coins, but it is impossible for shops to find out which bank issued a coin

2000 Mathematics Subject Classification. 68P25.

1998 CR Categories and Descriptors. E.3 [Data]: Data Encryption.

55



56 CONSTANTIN POPESCU

that is obtained from a customer. The central bank plays the role of the group
manager and all other banks issuing coins are group members.

Group signatures were first introduced by Chaum and van Heijst [12]. A number
of improvements and enhancements followed [1, 17, 21, 25, 26]. However, in the
schemes presented in [8, 12, 19, 20, 21, 22] the length of signatures and the size of
the group’s public key depend on the size of the group and thus these schemes are
not suitable for large groups. The first group signature suitable for large groups
is that of Camenisch and Stadler [7], where both the length of the group public
key and the group signatures are independent of the group’s size. The Camenisch-
Stadler scheme was improved by Camenisch and Michels in [5], which undoubtedly
represents the state of the art in the field.

In this paper we propose a group blind signature scheme which combines the
notions of group signatures and blind signatures [6, 10, 11, 16]. Our scheme
is an extension of the group signature scheme from reference [3] that adds the
blindness property and is more efficient and secure than [23] and the Lysyanskaya-
Ramzan scheme [18]. In particular, our scheme’s registration protocol (Join) for
new members is an order of magnitude more efficient. Our scheme is based on the
strong RSA and the decisional Diffie-Hellman assumptions and is as secure and
efficient as the basic group signature scheme proposed in [3].

2. The Group Blind Signature Scheme

Our group blind signature scheme is an extension of the group signature scheme
from reference [3] that adds the blindness property. Participants are group mem-
bers, a group manager and several users. Our group blind signature scheme allows
the members of a group to sign messages on behalf of the group such that the
following properties hold:

(1) Blindness of signatures: The signer (a group member) signs on group’s
behalf a message without knowing its content. Moreover, the signer
should have no recollection of having signed a particular document even
though he can verify that he did indeed sign it.

(2) Unforgeability: Only group members are able to sign messages on behalf
of the group.

(3) Anonimity: Given a signature, identifying the actual signer is computa-
tionally hard for everyone but the group manager.

(4) Unlinkability: Deciding whether two different signatures were computed
by the same group member is computationally hard.

(5) Traceability: The group manager can always establish the identity of
the member who issued a valid signature.

(6) No framing: Even if the group manager and some of the group members
collude, they cannot sign on behalf of non-involved group members.
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(7) Coalition-resistance: A colluding subset of group members cannot gen-
erate a valid signature that the group manager cannot link to one of the
colluding group members.

Definition 1. A group blind signature scheme is a digital signature scheme com-
prised of the following algorithms:

(1) Setup: The public output is the group’s public key P . The private out-
puts are the individual secret keys xG for each group member, the secret
key xM for the group manager.

(2) Join: An interactive protocol between the group manager and a user
that results in the user becoming a new group member.

(3) Sign: An interactive protocol between the group member A and an ex-
ternal user, which on input message m from the user, the A’s secret key
xG and the group’s public key P outputs a blind signature σ.

(4) Verify: An algorithm that for an input composed of a message m, a
signature σ and the group’s public key P returns 1 if and only if σ was
generated by any group member using the protocol Sign on input xG, m
and P .

(5) Tracing: A tracing algorithm that for an input composed of a signature
σ, a message m, the group manager’s secret key xM and the group’s
public key P returns the identity ID of the group member who issued the
signature σ together with an argument arg of this fact.

(6) Vertracing: A tracing verification algorithm that for an input composed
of a signature σ, a message m, the group’s public key P , the identity ID
of a group member and an argument arg outputs 1 if and only if arg was
generated by tracing with respect to m, σ, P and xM .

In this section we review some cryptographic assumptions necessary in the sub-
sequent design of our group blind signature scheme. The Strong RSA Assumption
was independently introduced by Baric and Pfitzman [4] and by Fujisaki and
Okamoto [14].

Definition 2 (Strong RSA Problem). Let n = pq be an RSA-like modulus and
let G be a cyclic subgroup of Z∗n of order lg. Given n and z ∈ G, the Strong RSA
Problem consists of finding u ∈ G and e ∈ Z>1 satisfying z ≡ ue(mod n).

Assumption 1 (Strong RSA Assumption). There exists a probabilistic polynomial
time algorithm K which on input 1lg outputs a pair (n, z) such that for all prob-
abilistic polynomial-time algorithms P the probability that P can solve the Strong
RSA Problem is negligible.

Assumption 2 (Decisional Diffie-Hellman Assumption). Let n = pq be an RSA-
like modulus and let α be a quadratic residue modulo n that has a large order in
Z∗n. Let G =< α >. Given as input a triplet (αa, αb, αc) in G3, it is hard to decide
whether (αa, αb, αc) is a Diffie-Hellman triplet (αa, αb, αab) or a random triplet.
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For the Decisional Diffie-Hellman Assumption see [5] for more details.
The security of our group blind signature scheme is based on these assumptions.

3. Signatures of Knowledge

In this section we present some well studied techniques for proving knowledge
of discrete logarithms. A signature of knowledge is a construct that uniquely
corresponds to a given message m that cannot be obtained without the help of a
party that knows a secret such that as the discrete logarithm of a given y ∈ G to
the base g (G =< g >). Let k, l1, l2 < lg and ε > 1 be security parameters.

We use the following notations:

• The symbol ‖ denotes the concatenation of two binary string (or of the
binary representation of group elements and integers).

• We assume a collision-resistant hash function H : {0, 1}∗ → {0, 1}k

which maps a binary string of arbitrary length to a k-bit hash value.
• The notation H(m ‖ g ‖ y ‖ gsyc) denotes the message digest of the

block of data m ‖ g ‖ y ‖ gsyc.
• The notation r ∈R {0, 1}ε(lg+k) denotes that r is random in {0, 1}ε(lg+k).
• We denote logg y = α.
• SPK {(α) : y = gα} (m) is a signature of a message m ∈ {0, 1}∗ with

respect to y.
• SPK {(α) : y1 = gα ∧ y2 = hα} (m) is a signature of a message m ∈
{0, 1}∗ with respect to y1 and y2.

• SPK
{
(α) : h = gα ∧ δ = βα ∧ (2l1 − 2ε(l2+k)+1 < α < 2l1 + 2ε(l2+k)+1)

}
(m) is a proof of knowledge of the discrete logarithm of h with respect
to base g and of δ with respect to β, loggh = logβδ and loggh is in the
interval

{
2l1 − 2ε(l2+k)+1, ..., 2l1 + 2ε(l2+k)+1

}
.

A proof of knowledge is a way for one person to convince another person that
he knows some fact without actually revealing that fact. A signature of knowledge
is used both for the purpose of signing a message and proving knowledge of a
secret. Signatures of knowledge were used by Camenisch and Michels [5] and their
construction is based on the Schnorr signature scheme [24] to prove knowledge.

Showing the knowledge of a discrete logarithm [5] can be done easily as stated
by the following definition.

Definition 3. Let ε > 1 be a security parameter. A pair (c, s) ∈ {0, 1}k ×{−2lg+k, . . . , 2ε(lg+k)
}

satisfying c = H(m ‖ g ‖ y ‖ gsyc) is a signature of a
message m ∈ {0, 1}∗ with respect to y and is denoted by SPK {(α) : y = gα} (m).

A signature (c, s) = SPK {(α) : y = gα} (m) of a message m ∈ {0, 1}∗ can be
computed as follows. An entity knowing the secret key α ∈ {0, 1}lg such that
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y = gα, chooses r ∈R {0, 1}ε(lg+k) and computes t = gr, c = H(m ‖ g ‖ y ‖
t), s = r − cα.

A slight modification of the previous definition enables to show the knowledge
and equality of two discrete logarithms described in [5].

Definition 4. A pair (c, s) ∈ {0, 1}k×{−2lg+k, ..., 2ε(lg+k)
}

satisfying c = H(m ‖
g ‖ h ‖ y1 ‖ y2 ‖ yc

1g
s ‖ yc

2h
s) is a signature of a message m ∈ {0, 1}∗ with respect

to y1 and y2 and is denoted by SPK {(α) : y1 = gα ∧ y2 = hα} (m).

A signature (c, s) = SPK {(α) : y1 = gα ∧ y2 = hα} (m) of a message m ∈
{0, 1}∗ can be computed as follows. An entity knowing the secret key α ∈ {0, 1}lg

such that y1 = gα and y2 = hα, chooses r ∈R {0, 1}ε(lg+k) and computes
t1 = gr, t2 = hr, c = H(m ‖ g ‖ h ‖ y1 ‖ y2 ‖ t1 ‖ t2), s = r − cα.

Definition 5. A tuple (c1, c2, s1, s2) ∈ {0, 1}k ×{0, 1}k × {−2lg+k, ..., 2ε(lg+k)
}×{−2lg+k, ..., 2ε(lg+k)

}
satisfying c1 ⊕ c2 = H(m‖g‖h‖y1‖y2‖yc1

1 gs1‖yc2
2 hs2) is a

signature of a message m ∈ {0, 1}∗ with respect to y1 and y2 and is denoted by
SPK

{
(α, β) : y1 = gα ∨ y2 = hβ

}
(m).

This definition shows the knowledge of one out of two discrete logarithms [5].
If the signer knows the secret key α ∈ {0, 1}lg such that y1 = gα, then he can
compute this signature as follows. The signer chooses r1 ∈R {0, 1}ε(lg+k)

, r2 ∈R

{0, 1}ε(lg+k)
, c2 ∈R {0, 1}k and computes t1 = gr1 , t2 = hr2yc2

2 , c1 = c2 ⊕H(m ‖
g ‖ h ‖ y1 ‖ y2 ‖ t1 ‖ t2), s1 = r1 − c1α, s2 = r2.

The next block is based on a proof that the secret the prover knows lies in a given
interval. This building block is related to the new Range Bounded Commitment
protocol (RBC) of Chan et al. [9]. It is also related to a protocol given by
Camenisch and Michels [5].

Definition 6. A proof of knowledge of the discrete logarithm of h with respect to
base g and of δ with respect to β, which also proves that loggh = logβδ and that
loggh is in the interval

{
2l1 − 2ε(l2+k)+1, ..., 2l1 + 2ε(l2+k)+1

}
is a pair (c, s), and

is denoted by
SPK

{
(α) : h = gα ∧ δ = βα ∧ (2l1 − 2ε(l2+k)+1) < α < (2l1 + 2ε(l2+k)+1)

}
(m),

where c = H(m‖g‖h‖β‖δ‖gs−c2l1
hc‖βs−c2l1

δc) and s is in the interval{−(2k − 1)(2l2 − 1), ..., 2ε(l2+k)
}
.

This signature can be computed as follows. If the signer knows an integer
α ∈ {

2l1 , ..., 2l1 + 2l2 − 1
}

such that h = gα and δ = βα, he chooses a random
t ∈ {0, 1}ε(l2+k) and computes c = H(m‖g‖h‖β‖δ‖gt‖βt), s = t− c(α− 2l1).

The security of all the presented building blocks has been proven in the random
oracle model [13] under the strong RSA assumption in [5, 14, 15].
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4. The Proposed Group Blind Signature Scheme

We propose a realization of a group blind signature scheme the security of
which is based on the Strong RSA Assumption and Decisional Diffie-Hellman
Assumption. Our scheme is as secure and efficient as the basic group signature
scheme proposed in [3].

Let G be a cyclic subgroup of Z∗n of order lg. Let k, l1, l2 < lg and ε > 1
be security parameters. Finally, let H be a collision-resistant hash function H :
{0, 1}∗ → {0, 1}k.

4.1. Setup. The setup procedure of our scheme (as in [3]) is as follow. The group
manager executes the following steps:

(1) Select random secret lg-bit primes p′, q′ and computes p = 2p′ + 1 and
q = 2q′ + 1. Set the modulus n = pq. It is a good habit to restrict the
operation to the subgroup of quadratic residues modulo n, i.e., the cyclic
subgroup QR (n) generated by an element of order p′q′. This is because
the order p′q′ of QR (n) has no small factors.

(2) Choose random elements a, a0, g, h ∈ QR (n) of order p′q′.
(3) Choose a random secret element x ∈ Z∗p′q′ and set y = gx mod n.

(4) The group public key is P = (n, a, a0, y, g, h).
(5) The corresponding secret key is S = (p′, q′, x).

4.2. Join. Suppose now that a user wants to join the group. We assume that
communication between the group member and the group manager is secure, i.e.,
private and authentic. To obtain his membership certificate, each user Ui must
perform the following protocol with the group manager.

(1) The user Ui generates a secret exponent x′i ∈
[
0, 2l2

]
, a random integer

r ∈
[
0, 2n2

]
and sends C1 = gx′ihr mod n to group manager and proves

him knowledge of the representation of C1 with respect to bases g and
h.

(2) The group manager checks that C1 ∈ QR(n). If this is the case, the
group manager selects αi, βi ∈

[
0, 2l2

]
at random and sends (αi, βi) to

Ui.
(3) The user Ui computes xi = 2l1 +

(
αix

′
i + βi mod 2l2

)
and sends to group

manager the value C2 = axi mod n. The user also proves to group
manager:
(a) that the discrete logarithm of C2 with respect to base a lies in the

interval
[
2l1 − 2l2 , 2l1 + 2l2

]
.

(b) knowledge of integers u, v, w such that: u lies in the interval[−2l2 , 2l2
]
, u equals the discrete logarithm of C2/a2l1 with respect

to base a and Cαi
1 gβi equals gu

(
g2l2

)v

hw.
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(4) The group manager checks that C2 ∈ QR(n). If this is the case and all
the above proofs were correct, group manager selects a random prime
ei ∈

[
2l1 − 2l2 , 2l1 + 2l2

]
and conmputes Ai = (C2a0)

1/ei mod n. Fi-
nally, group manager sends to Ui the new membership certificate (Ai, ei).

(5) The user Ui verifies that axia0 ≡ Aei
i ( mod n).

(6) The group manager creates a new entry in the membership table and
stores (Ai, ei) in the new entry.

4.3. Sign. In this subsection we present our signature protocol which is blind,
unlike [3]. First, we define a group blind signature and then we show how a group
member can generate such a group blind signature.

Definition 7. Let ε, l1, l2 be security parameters such that ε > 1, l2 < l1 <

lg and l2 <
lg−2

ε − k holds. A group blind signature of a message m ∈
{0, 1}∗ is (c, s1, s2, s3, s4, A,B,D) ∈ {0, 1}k × {−2ε(l2+k)+1, ..., 2ε(l2+k)+1

} ×{−2ε(l2+k)+1, ..., 2ε(l2+k)+1
} × {−2ε(l1+2lg+k+1)+1, ..., 2ε(l1+2lg+k+1)+1

}

× {−2ε(2lg+k)+1, ..., 2ε(2lg+k)+1
} × G3 satisfying c = H(m ‖ g ‖ h ‖ y ‖ A ‖ B ‖

D ‖ ac
0A

s1−c2l1
/

(
as2−c2l1

ys3

)
‖ Bs1−c2l1

/gs3 ‖ Bcgs4 ‖ Dcgs1−c2l1
hs4).

The protocol for obtaining a group blind signature is as follows. When respond-
ing to a sign request, the signer (the group member Ui) does the following:

(1) Chooses an integer w ∈R {0, 1}2lg and computes

A = Aiy
w ( mod n) , B = gw ( mod n) , D = geihw ( mod n) .

(2) Chooses r̃1 ∈R {0, 1}ε(l2+k), r̃2 ∈R {0, 1}ε(lg+l1+k), r̃3 ∈R {0, 1}ε(lg+k),
r̃4 ∈R {0, 1}ε(l2+k) and computes

t̃1 = Ar̃1/
(
ar̃2yr̃3

)

t̃2 = Br̃1/gr̃3

t̃3 = gr̃4

t̃4 = gr̃1hr̃4 .

(3) Sends (A,B, D, t̃1, t̃2, t̃3, t̃4) to the user.
In turn, the user does the following:

(1) Chooses γ1, γ2, γ3, γ4, δ ∈R {0, 1}ε(lg+k) and computes

t1 = aδ
0t̃1A

γ1−δ2l1
/

(
aγ2−δ2l1

yγ3

)

t2 = t̃2B
γ1−δ2l1

/gγ3

t3 = t̃3B
δgγ4

t4 = t̃4D
δgγ1hγ4 .
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(2) Computes

c = H(m‖g‖h‖y‖A‖B‖D‖t1‖t2‖t3‖t4)
c̃ = c− δ.

(3) Sends c̃ to the signer.

The signer does the following:

(1) Computes

s̃1 = r̃1 − c̃(ei − 2l1)

s̃2 = r̃2 − c̃(xi − 2l1)
s̃3 = r̃3 − c̃eiw

s̃4 = r̃4 − c̃w.

(2) Sends (s̃1, s̃2, s̃3, s̃4) to the user.

The user does the following:

(1) Computes

s1 = s̃1 + γ1

s2 = s̃2 + γ2

s3 = s̃3 + γ3

s4 = s̃4 + γ4.

(2) The resulting signature of a message m is (c, s1, s2, s3, s4, A, B,D).

The tuple (c, s1, s2, s3, s4, A, B,D) is a group signature of a message m ∈ {0, 1}∗
and the above protocol is a group blind signature scheme.

4.4. Verifying Signatures, Tracing and Verifying Tracing. The resulting
signature (c, s1, s2, s3, s4, A, B, D) of a message m can be verified as follows:

(1) Compute c′ = H(m ‖ g ‖ h ‖ y ‖ A ‖ B ‖ D ‖
ac
0A

s1−c2l1
/

(
as2−c2l1

ys3

)
‖ Bs1−c2l1

/gs3 ‖ Bcgs4 ‖ Dcgs1−c2l1
hs4).

(2) Accept the signature if and only if c = c′ and s1 ∈{−2ε(l2+k)+1, ..., 2ε(l2+k)+1
}

, s2 ∈ {−2ε(l2+k)+1, ..., 2ε(l2+k)+1
}

,

s3 ∈ {−2ε(l1+2lg+k+1)+1, ..., 2ε(l1+2lg+k+1)+1
}

, s4 ∈{−2ε(2lg+k)+1, ..., 2ε(2lg+k)+1
}
.

Given a signature σ = (c, s1, s2, s3, s4, A, B, D) of a message m, the group
manager can find out which one of the group members issued this signature by
checking its correctness. He aborts if the signature is not correct. Otherwise, he
computes u′ = A/Bx, issues a signature

P := SPK {(α) : y = gα ∧A/u′ = Bα} (u′‖σ‖m)
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(see Definition 4) and reveals arg := u′‖P . He then looks up u′ in the group
member list and will find the corresponding u and the group member’s identity.
Checking whether the group manager correctly revealed the originator of a signa-
ture σ = (c, s1, s2, s3, s4, A, B, D) of a message m can simply be done by verifying
σ and arg.

5. Security and Efficiency of Our Scheme

Our group blind signature scheme is as secure and efficient as the group sig-
nature scheme proposed in [3], but more secure and efficient than group blind
signature scheme from reference [23]. This, because our Join protocol is an order
of magnitude more effiecient since all proofs that the new group member must
provide are efficient proofs of knowledge of discrete logarithms. We show only the
correctness and the blindness of the signature. The others security properties of
the proposed group blind signature scheme are like in [3].

Theorem 1 (Correctness). If the user follows the blind signing protocol and
accepts, then the tuple (c, s1, s2, s3, s4, A, B,D) is a correct group signature on
m ∈ {0, 1}∗.

Proof: The group signature (c, s1, s2, s3, s4, A, B, D) is a correct group signa-
ture on m if the equality

c = H(m ‖ g ‖ h ‖ y ‖ A ‖ B ‖ D ‖ ac
0A

s1−c2l1
/

(
as2−c2l1

ys3

)
‖ Bs1−c2l1

/gs3

‖ Bcgs4 ‖ Dcgs1−c2l1
hs4)

is verified. If it can be assumed that H(·) is a collision-resistant, then this is
equivalent to proving that t1 = ac

0A
s1−c2l1

/
(
as2−c2l1

ys3

)
, t2 = Bs1−c2l1

/gs3 ,

t3 = Bcgs4 , t4 = Dcgs1−c2l1
hs4 . We have:

ac
0A

s1−c2l1
/

(
as2−c2l1

ys3

)
= ac̃+δ

0 As̃1+γ1−(c̃+δ)2l1
/

(
as̃2+γ2−(c̃+δ)2l1

ys̃3+γ3

)
=

t̃1a
δ
0A

γ1−δ2l1
/(aγ2−δ2l1

yγ3) = t1

Bs1−c2l1
/gs3 = Bs̃1+γ1−(c̃+δ)2l1

/gs̃3+γ3 = t̃2B
γ1−δ2l1

/gγ3 = t2

Bcgs4 = Bc̃+δgs̃4+γ4 = t̃3B
δgγ4 = t3

Dcgs1−c2l1
hs4 = Dc̃+δgs̃1+γ1−(c̃+δ)2l1

hs̃4+γ4 = t̃4D
δgγ1hγ4 = t4.

This completes the proof. ¤

Theorem 2 (Blindness). If the user follows the protocol, then even a signer with
unlimited computing power gets no information about m ∈ {0, 1}∗ and the group
signature (c, s1, s2, s3, s4, A,B, D).
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Proof: To prove that the protocol is blind we show that for every possible
signer’s view there exists a unique tuple of blind factors (δ, γ1, γ2, γ3, γ4). Given any
view consisting of r̃1, r̃2, r̃3, r̃4, t̃1, t̃2, t̃3, t̃4, c̃, s̃1, s̃2, s̃3, s̃4 and any group signature
(c, s1, s2, s3, s4, A,B,D) of a message m, we consider δ = c − c̃, γ1 = s1 − s̃1,
γ2 = s2 − s̃2, γ3 = s3 − s̃3, γ4 = s4 − s̃4. It is easy to verify that the following
equations hold:

t̃1a
δ
0A

γ1−δ2l1
/

(
aγ2−δ2l1

yγ3

)
= ac

0A
s̃1+γ1−δ2l1

/
(
as̃2+γ2−δ2l1

ys̃3+γ3

)
=

ac
0A

s1−c2l1
/

(
as2−c2l1

ys3

)
= t1

t̃2B
γ1−δ2l1

/gγ3 = Bs̃1+γ1−δ2l1
/gs̃3+γ3 = Bs1−c2l1

/gs3 = t2

t̃3B
δgγ4 = gr̃4+s4−s̃4Bc−c̃ = Bcgs4 = t3

t̃4D
δgγ1hγ4 = gr̃1+γ1−δ2l1

Dδhγ4+r̃4 = Dcgs1−c2l1
hs4 = t4. ¤

Therefore, the above protocol is blind and our group signature is blind.

6. Conclusion

In this paper we proposed a group blind signature scheme that is secure and
efficient and it is an extension of the group signature scheme from reference [3].
Our group blind signature scheme is more efficient and secure than the group blind
signature scheme proposed in [23] because our scheme’s registration protocol Join
for new members is an order of magnitude more efficient. Also, the proposed
scheme is as efficient and secure as the basic group signature scheme proposed in
[3].
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RECURSIVE RULES FOR DEMULTIPLEXERS EXPANDING

ANCA VASILESCU

Abstract. This paper introduces a model for the operation of the demul-
tiplexers based on the CCS language. The main result is a set of recursive
rules for the one-dimensional expanding of demultiplexers. Starting from the
CCS model for 1×2 DMUX and 1×22 DMUX we shall infer the CCS model
for the general case of a 1× 2n DMUX.

Keywords: recursive rule, demultiplexer, CCS model

1. Introduction

An important part of the internal structure of digital computers consists of
digital and logic circuits: combinational or sequential. A demultiplexer (DMUX)
[2, 3, 5] is a combinational logic circuit designed for receiving a value from its
single input line and transferring that value to one of its multiple output lines. In
addition, a DMUX has a set of special input lines for selecting which of the output
line will receive the input signal.

Intuitively, the binary combination of selection lines values represents the index
of the output line selected to transfer the value received from the input line.
So that, there has to be a relation between the number of output lines and the
number of selection lines of a DMUX. A DMUX of type n has one INPUT line,
n SELECTION lines and 2n OUTPUT lines. Usually, such a DMUX is a 1 × 2n

DMUX.
The operation of a DMUX is based on the different kinds of activities, such

as deciding if the DMUX is or not valid at one moment, loading a binary value
on a particular line, interpreting the combination of selection values. All these
activities can be regarded as communication between different components of the
unit of DMUX.

Considering this, it is proper to model the operation of a DMUX with an
algebraic language like CCS, Calculus of Communicating Systems [1, 4]. In such a
model, each of the activities of the demultiplexer can be associated with an action
of a CCS agent. Besides, each state of the DMUX could be a special agent in the
CCS model for the demultiplexer.

2000 Mathematics Subject Classification. 68Q85.
1998 CR Categories and Descriptors. B.6.1 [Hardware]: Logic Design – Design Styles.
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Figure 1. Diagrammatic representation of a 1× 2 DMUX

In order to increase the power of the systems there is an efficient method to
expand more identical systems to obtain a better one. In our case, we shall consider
the problem of obtaining a demultiplexer of type n from demultiplexers of type
n− 1.

2. Modeling demultiplexers with CCS

In this section we shall use the algebraic language CCS (Calculus of Communi-
cating Systems) to describe a demultiplexer (DMUX). Moreover, we shall infer a
set of relations, some recursive, for expressing the method of obtaining the CCS
model for a DMUX of type n, based on the model for DMUX of type n− 1. Prac-
tically, it is useful to expand two or more demultiplexers to a demultiplexer with
a large number of outputs.

2.1. A CCS model for a 1×2 DMUX. A 1×2 DMUX, or a DMUX of type 1,
receives information from its single INPUT data line and directs it to one of the
2 OUTPUT lines, namely out0 and out1. The selection of the particular output
data line is determined by a single SELECTION input line, namely S0. The bit
value of this SELECTION line determines which output line receives the input
value in order to transfer it to output.

For the reason of this paper, we add to this basic model an ENABLE input to
control the operation of the unit. When the ENABLE value is 0, the outputs are
disabled.

We propose for this unit the CCS model in Figure 3:
For this model, the possible actions are named 0, 1, INPUT, out0 and out1.

Action named 0 arises when the unit accepts an input bit 0 from the ENABLE line
or from the SELECTION line S0 (see Figure 1). The same for the action named
1. An action INPUT arises when the unit reads the input signal from the INPUT
line. Action out0 arises when the unit transfers the input value to the selected
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DMUX = DMUX’
DMUX’ = 0.DMUX’ + 1.D (E)
D = 0.SEL0 + 1.SEL1 (S)
SEL0 = INPUT. .DMUX’
SEL1 = INPUT. .DMUX’

Figure 2. CCS model for the 1× 2 DMUX

D = 0.D0 + 1.D1
D0 = SEL0
D1 = SEL1

Figure 3. Definition of the agent D for a 1× 2 DMUX

OUTPUT line out0. Action out1 arises when the unit transfers the input value to
the selected OUTPUT line out1.

According to the syntax of CCS [4], the name of output ports, here out0 and
out1, has to have the label overbared.

The agents defined in Code 1 are DMUX, DMUX’, D, SEL0, SEL1.
In terms of transition representation, we can describe the operation of the de-

multiplexer as follows. The unit is initially in state DMUX’. The equation (E) from
Figure 2 represents the role of ENABLE input. So that, while the bit value on
ENABLE is 0, the unit is constantly in state DMUX’. When the value of ENABLE
input is 1, the unit is changing to state D.

In Figure 2 the equation (S) means that the unit reads the bit value from the
SELECTION input line. If this value is 0 the unit is changing to state SEL0,
otherwise it is changing to state SEL1. The definitions of SEL0 and SEL1 mean
that the signal from INPUT is copied on the suitable OUTPUT and the unit
returns to the initial state DMUX’.

In order to prepare the recursive rule for generating the higher degree DMUX,
it is useful to redefine the expression for the agent D from the Figure 2 as follows.

We have just introduced two new agents, D0 and D1.

2.2. A CCS model for a 1× 22 DMUX. A 1× 22 DMUX, or a DMUX of type
2, has one INPUT line, 22 OUTPUT lines — namely out0, out1, out2 and out3 —
and 2 SELECTION lines — namely S0 and S1. In addition, we add the ENABLE
input.

Like in the general model, the operation of this DMUX consists in transferring
the INPUT value to one of the four OUTPUT lines, which is determined by the
bit combinations of SELECTION line values.

For the 2-dimension DMUX, the CCS model could be:
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Figure 4. Diagrammatic representation of a 1× 22 DMUX

DMUX = DMUX’
DMUX’ = 0.DMUX’ + 1.D (E)
D = 0.0.SEL0 + 0.1.SEL1 + 1.0.SEL2 + 1.1.SEL3 (S)

SEL0 = INPUT.out0.DMUX’
SEL1 = INPUT.out1.DMUX’
SEL2 = INPUT.out2.DMUX’
SEL3 = INPUT.out3.DMUX’

Figure 5. CCS model for the 1× 22 DMUX

In this model, the meaning of the CCS constants is the same as in Code 1, but
it is important to note that there are four bit combinations for the SELECTION
input line values: 00, 01, 10, 11. For the demultiplexer from Figure 4, each of
these words of 0 and 1 represents a different OUTPUT line selected to receive the
INPUT value and, implicitly, a different current agent.

As in the case of 1× 2 DMUX (see Figures 2 and 3) we redefine the expression
for the agent D from Figure 5 as follows.

Note that for this representation we used much more constants.

2.3. Recursive rules for DMUX expanding. The first problem to solve now
is to unify the notations used in Code 1and Code 3, namely to make the difference
between the agents D from the simulation of 1× 2 DMUX and 1× 22 DMUX (see
Figures 5 and 6). So that, we shall use an upper index to represent the type of
current DMUX.

For a 1 × 2 DMUX, combining Figures 2 and 3, we have the next CCS repre-
sentation:
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D = 0.D0 + 1.D1

D0 = 0.D00 + 1.D01
D1 = 0.D10 + 1.D11

D00 = SEL00
D01 = SEL01
D10 = SEL10
D11 = SEL11

SEL00 = SEL0
SEL01 = SEL1
SEL10 = SEL2
SEL11 = SEL3

Figure 6. Definition of the agent D for a 1× 22 DMUX

DMUX = DMUX’
DMUX’ = 0.DMUX’ + 1.D(1) (E)

D(1) = 0.D0(0) + 1.D1(0) (S)
D0(0) = SEL0
D1(0) = SEL1

SEL0 = INPUT.out0.DMUX’
SEL1 = INPUT.out1.DMUX’

Figure 7. Detailed CCS model for the 1× 2 DMUX

For a 1 × 22 DMUX, combining Figures 5 and 6 we have the next CCS repre-
sentation:

Note as very important that each name of the agent memories the sequence of
previous actions already done.

We define
Ln = {w ∈ 0, 1?| |w| = n}

as the set of n-dimensional words over {0, 1} and

L = {w ∈ {0, 1}?||w| ≤ n} =
0⋃

k=1

Ln.

As a generalization, we propose the next CCS model for a 1× 2n DMUX:
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DMUX = DMUX’
DMUX’ = 0.DMUX’ + 1.D(2) (E)

D(2) = 0.D0(1) + 1.D1(1) (S)
D0(1) = 0.D00(0) + 1.D01(0)

D1(1) = 0.D10(0) + 1.D11(0)

D00(0) = SEL0
D01(0) = SEL1
D10(0) = SEL2
D11(0) = SEL3

SEL0 = INPUT.out0.DMUX’
SEL1 = INPUT.out1.DMUX’
SEL2 = INPUT.out2.DMUX’
SEL3 = INPUT.out3.DMUX’

Figure 8. Detailed CCS model for the 1× 22 DMUX

DMUX = DMUX’
DMUX’ = 0.DMUX’ + 1.D(n)

Dw(k) = 0.Dw0(k1) + 1.Dw1(k1), for each k =n,1 and w ∈ Lnk (?)
Dw(0) = SELi, for each w ∈ Ln, where i(10) = w(2) (??)
SELi = INPUT.outi.DMUX’, i = 0, 2n − 1

Figure 9. CCS model for a 1× 2n DMUX

In (??) we have to see the word w over {0, 1} as a binary representation of the
decimal value i.

The most important problem for a correct simulation of a 1 × 2n DMUX is
to assure that all the bit combinations are generated on the SELECTION lines.
For our model this means to demonstrate that the (?) and (??) relations build
all the elements of Ln. Hence, because every word from Ln is bijectively the
representation of a decimal number from 0 to 2n1, we can say that the model
defines all the 2n agents of the type SEL.

Theorem. The relation

Dw(k) = 0.Dw0(k1) + 1.Dw1(k1), fork = n,1 and w ∈ Lnk, (T )

generates the Dw agents for all the words w from the language L.
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Proof. For k = n we have D(n) = 0.D0(n1) + 1.D1(n1), because |w| = nk = 0
means w = λ, the empty word. This level defines the agent D and generates for
this the agents D0 and D1.

The agent D(n) is completely defined if D0(n1) and D1(n1) are defined. That is
done by applying the relation (T) for k = n1 and w ∈ L1 = {0, 1}.

D0(n1) = 0.D00(n2) + 1.D01(n2)

D1(n1) = 0.D10(n2) + 1.D11(n2)

Until now, we have defined the agents D, D0, and D1 and we have generated
the subset {λ, 0, 1, 00, 01, 10, 11} of L, that means the words of length zero, one
and two.

We prove by structural induction that for a fixed value of k, the relation (T)
has already generated all the agents Dw with w ∈ {w ∈ {0, 1}?||w| ≤ n− k + 1}.
The value of k decreases from n to 1.

The inductive hypothesis is already verified by the previous relations written
for k = n and k = n− 1. We suppose that for a fixed value of k the relation (T)
has already generated all the agents Dw with w ∈ {w ∈ {0, 1}?||w| ≤ n − k + 1}
and we argue that for k − 1 the relation (T) generates all the agents Dw with
w ∈ {w ∈ {0, 1}?||w| ≤ n− k + 2}.

The induction step consists in proving that the next value of k adds all the words
w which have the length with one unit greater than the words already generated.
This result is obvious because the relation (T) for k − 1, i.e.

Dw(k−1) = 0.Dw0(k2) + 1.Dw1(k2), w ∈ Lnk+1

defines the agent Dw for |w| = n− k + 1 and generates the new agents Dw0 and
Dw1. These two agents represent the binary words w0 and w1 obtained from w
by adding the suffix 0 or 1. Hence, the new words w0 and w1 have the length
equal with the length of w plus one.

Based on this induction we can say now that the relation (T) for k = 1 generates
all the words w ∈ {w ∈ {0, 1}?||w| ≤ n} = L. ¤

Corollary. The relation

Dw(0) = SELi, for each w ∈ Ln, where i(10) = w(2)

generates 2n agents of the type SEL.
Proof. This issue is obvious considering the next two elementary observations.

Firstly, the set Ln has 2n elements that represent all the n- dimensional bit combi-
nations, from 0n to 1n. Secondly, the transformation of numbers from one base to
another is a one-to-one function. Hence, the relation (??) defines all the decimal
numbers from 0 to 2n − 1 which become the indices for the agents SEL. ¤
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3. Conclusions

Practically, the problem of expanding the dimension of a logic circuit like de-
multiplexer is a very important one because it is useful to enclose more circuits
within a single integrated circuit package. Many well-known works [2, 5] refer to
this subject in specific terms for logic circuits (gates, integrated circuits, blocks
of diagrams and so on). Based on the support of the CCS language [4] we have
inferred a set of recursive rules for describing the operation of a 1× 2n DMUX.

The relations from Figure 9 are important not only as a theoretical result, but
they connect two different approaches: the diagram representation (Figures 1 and
4) and the algebraic representation (Figures 7 and 8).

Moreover, the use of languages Ln and L in the above considerations suggests
working further on a (dia)grammatic representation based on the operation of
suitable automata for this model. Because of the importance of the length of the
words w, it is certain that this representation involves a Turing machine, perhaps
a particular model of it.
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NOTE ON THE TOURNAMENTS DIGRAPHS

DĂNUŢ MARCU

Abstract. In this paper,we show that every k-partite tournament (k ≥ 2)
with at most one vertex of indegree zero contains a 2-4-kernel.

Keywords: directed graphs,k-partite tournaments, kernels.

A tournament is an orientation of a complete graph (e.g., see [3]). More gen-
erally, a k-partite tournament is an orientation of a complete k-partite graph.
Landau [2] has observed that every vertex v of maximum outdegree in a tourna-
ment T is a 2 − kernel (e.g., see [3]), i.e., for every vertex u in T there exists
a directed path of length at most 2 from v to u. The purpose of this note is to
establish an analogous result for k-partite tournaments. Let us define a 2- k-kernel
in a digraph (directed graph) D as a vertex v such that for every vertex u in D
there exists a directed path of length at most k from v to u. Thus, a 2-kernel in a
tournament is a 2-2-kernel. For references to work on tournaments 2-kernels, see
[2, 3], and our terminology is the same as in [1, 3].

A necessary condition for a digraph (directed graph) to have a 2-k-kernel, for
some k ,is that at most one vertex has indegree zero.We shall, therefore, consider
such orientations. If u and v are distinct vertices in a bipartite tournament, which
dominate the same vertices, then none of u or v is a 2-3-kernel. Hence, there are
many bipartite tournaments with no 2-3-kernels.

Theorem 1. If T is a k-partite tournament (k ≥ 2) with at most one vertex of
indegree zero, then T has a 2-4-kernel.

Proof. Let V1, V2, . . . , Vk be the partite classes in T . Let vi ∈ Vi be a vertex
of maximum outdegree among the vertices in Vi. Obviously, the subgraph of T ,
induced by v1, v2, . . . , vk, is a tournament and, therefore, has a 2-2-kernel, say
v1. We claim that v1 is a 2-4-kernel in T . Let u be any vertex in T , say u ∈ Vi.
We shall describe a directed path from v1 to u of length at most 4. First, T has
a directed path P of length at most 2 from v1 to vi. If T also has a directed
path of length at most 2 from vi to u, then we are finished. Otherwise, u and vi

dominate (and are dominated by) exactly the same vertices, since the outdegree
of u is not bigger than that of vi. If i ≥ 2, then the predecessor x of vi on P
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dominates u. Replacing the arc (x, vi) of P by (x, u) results in a directed path
of length at most 2 from v1 to u. So, assume that i = 1. We can assume that T
has no directed path of length 2 from v1 to u. Hence, v1 and u dominate exactly
the same vertices. As they do not both have indegree zero, there exists a vertex
z dominating u (and v1). Say z ∈ Vj , j ≥ 2. By a previous case (where i ≥ 2),
we conclude that T has a (shortest) directed path Q of length at most 4 from v1

to z. If Q has length at most 3, then we add the arc (z, u) to Q. If Q has length
4, then the minimality of Q implies that a predecessor y of z on Q dominates v1.
But, then, y also dominates u, since v1 and u are dominated by the same vertices.
Replacing the arc (y, z) of Q by (y, u) results in a directed path of length 4 from
v1 to u. This completes the proof. ¤

It should be pointed out that Theorem 1 can be extended to larger classes
of oriented graphs (except that the constant 4 may have to be increased). For
example, the method of Theorem 1 can be extended to the following

Theorem 2. Let G be a graph whose complement is the disjoint union of complete
graphs, cycles and paths. Then, every orientation of G with at most one vertex of
indegree zero has a 2-6-kernel. ¤
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THE MV-ALGEBRA STRUCTURE OF RGB MODEL

DAN NOJE AND BARNABÁS BEDE

Abstract. The aim of this paper is to explore the MV-algebra structure of
RGB colour space (see [5]). We start with the construction of the MV-algebra
structure of one component of the RGB model (this component represents
one colour of the three that gives us the colour of a pixel on the screen). Then
we define an MV-algebra structure on RGB model. Using Chang’s Subdirect
Representation Theorem we prove that RGB model is a subdirect product of
MV-algebras of one component.

1. Introduction

Fuzzy sets are well known for their applications to image processing. It is also
well known that the fuzzy sets have an MV-algebra structure (see [4]). We intend
to develop an similar structure on RGB model (see[5]). This will allows us to use
MV-algebras in image processing.

First we recall some definitions and properties of MV-algebras (see e.g. [2], [3])
that will be used later.

Definition 1.1. An MV-algebra is an algebra 〈A,⊕,¬, 0A〉 with a binary opera-
tion ⊕, a unary operation ¬ and a constant 0A satisfying the following equations:

(MVi) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(MVii) x⊕ y = y ⊕ x;
(MViii) x⊕ 0A = x;
(MViv) ¬¬x = x;
(MVv) x⊕ ¬0A = ¬0A;
(MVvi) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Remark 1.2. In particular, axioms (MV1)-(MV3) state that 〈A,⊕, 0A〉 is a commu-
tative monoid. As usually, we denote an MV-algebra 〈A,⊕,¬, 0A〉 by its universe
A.

Remark 1.3. The constant 1A and the operations ¯ and ª are defined on each
MV-algebra A as follows:
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i) 1A =def ¬0A;
ii) x¯ y =def ¬(¬x⊕ ¬y);
iii) xª y =def x¯ ¬y.

The following identities are immediate consequences of (MV4):
(MV7) ¬1A = 0A;
(MV8) x⊕ y = ¬(¬x¯ ¬y).
Axioms (MV5) and (MV6) can now be written as:

(MV5’) x⊕ 1A = 1A;
(MV6’) (xª y)⊕ y = (y ª x)⊕ x.

Setting y = ¬0A in MV6) we obtain:
(MV9) x⊕ ¬x = 1A.
Following common usage, we consider that ¬ operation is more binding than

any other operation. Also we consider that ¯ operation is more binding than ⊕
operation and ª operation.

Definition 1.4. Let A be an MV-algebra and x, y ∈ A. We say that x ≤ y if and
only if x and y satisfy one of the bellow equivalent conditions:

i) ¬x⊕ y = 1A;
ii) x¯ ¬y = 0A;
iii) y = x⊕ (y ª x);
iv) there is an element z ∈ A such that x⊕ z = y.

Remark 1.5. It follows that ≤ is a partial order, called the natural order of A.

Definition 1.6. An MV-algebra whose natural order is total is called an MV-
chain.

Lemma 1.7. In every MV-algebra A the natural order ≤ has the following prop-
erties:

i) x ≤ y if and only if ¬y ≤ ¬x;
ii) if x ≤ y then for each z ∈ A, x⊕ z ≤ y ⊕ z and x¯ z ≤ y ¯ z;
iii) x¯ y ≤ z if and only if x ≤ ¬y ⊕ z.

Proposition 1.8. On each MV-algebra A the natural order determines a lattice
structure. Specifically, the join x ∨ y and the meet x ∧ y of the elements x and y
are given by

i) x ∨ y = (xª y)⊕ y;
ii) x ∧ y = x¯ (¬x⊕ y).

Definition 1.9. The distance function d : A×A → A is defined by

d(x, y) =def (xª y)⊕ (y ª x).

Proposition 1.10. In every MV-algebra A we have:
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i) d(x, y) = 0A if and only if x = y;
ii) d(x, y) = d(y, x);
iii) d(x, z) ≤ d(x, y)⊕ d(y, z);
iv) d(x, y) = d(¬x,¬y);
v) d(x⊕ s, y ⊕ t) ≤ d(x, y)⊕ d(s, t).

2. Construction of MV-algebra structure of one component of
RGB model.

RGB model represents one of the most used models to determin a pixel’s colour
on the screen. The number of colours that can be displayed is directly influenced
by the number of bits on which the colours are stored in the computers memory.
Also it is influenced by the properties of the screen.

RGB (see [5]) is defined as the set of triplets (red, green, blue) or (r, g, b). The
numbers form triplets represent how much red, green, respectively blue contains
the pixel’s colour.

We consider the number that represents one component of the triplet, stored
on t bits. Therefore as the set of possible values for one colour component of RGB
model we consider the set

C =def

{
x ∈ R | 0 ≤ x ≤ 2t−1

}
.

We introduce a binary operation ⊕, a unary operation ¬ and a constant 0C as
follows (when x, y ∈ C):

(2.1) x⊕ y =def min(2t−1, x + y);

(2.2) ¬x =def 2t−1 − x;

and 0C is represented by the real number 0.

Lemma 2.1. The quadruple 〈C,⊕,¬, 0〉 is an MV-algebra.

Proof. For proving that 〈C,⊕,¬, 0〉 is an MV-algebra we have to show that the
axioms (MV1)-(MV6) are satisfied.

(MV1): From equation (2.1) we have

x⊕ (y ⊕ z) = x⊕min(2t−1, y + z)

= min(2t−1, x + min(2t−1, y + z)) = min(2t−1, x + y + z)

= min(2t−1, min(2t−1, x + y) + z) = min(2t−1, x + y)⊕ z = (x⊕ y)⊕ z.

(MV2): Also by equation (2.1) we have

x⊕ y = min(2t−1, x + y) = min(2t−1, y + x) = y ⊕ x.
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(MV3): Using equation (2.1) we obtain

x⊕ 0 = min(2t−1, x + 0) = min(2t−1, x) = x.

(MV4):From equation (2.2) we obtain

¬¬x = ¬(2t−1 − x) = 2t−1 − (2t−1 − x) = x.

(MV5): By equations (2.1) and (2.2) it is easy to see that

x⊕ ¬0 = x⊕ (2t−1 − 0) = x⊕ 2t−1 = min(2t−1, x + 2t−1)

= 2t−1 = 2t−1 − 0 = ¬0.

(MV6): For proving (MV6) we will transform each side of equation to the same
expression.

Using equation (2.2) the left side of axiom (MV6) is

¬(¬x⊕ y)⊕ y = ¬((2t−1 − x)⊕ y)⊕ y.

Then applying equation (2.1) we obtain

¬(¬x⊕ y)⊕ y = ¬min(2t−1, 2t−1 − x + y)⊕ y.

Applying now several times the equations (2.1) and (2.2) we have

¬(¬x⊕ y)⊕ y = (2t−1 −min(2t−1, 2t−1 − x + y))⊕ y = max(0, x− y)⊕ y

= min(2t−1, max(0, x− y) + y) = min(2t−1,max(y, x)).
Since both x and y are less or equals then 2t−1we have

max(y, x) ≤ 2t−1

and then we obtain
¬(¬x⊕ y)⊕ y = max(y, x).

Using now the commutativity of max function we obtain

¬(¬x⊕ y)⊕ y = max(x, y) (1).

Using equation (2.2) the right side of axiom (MV6) is

¬(¬y ⊕ x)⊕ x = ¬((2t−1 − y)⊕ x)⊕ x.

Then applying equation (2.1) we obtain

¬(¬y ⊕ x)⊕ x = ¬min(2t−1, 2t−1 − y + x)⊕ x.

Applying now several times the equations (2.1) and (2.2) we have

¬(¬y ⊕ x)⊕ x = (2t−1 −min(2t−1, 2t−1 − y + x))⊕ x = max(0, y − x)⊕ x

= min(2t−1,max(0, y − x) + x) = min(2t−1, max(x, y)).
Since both x and y are less or equals then 2t−1 we have

max(x, y) ≤ 2t−1
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and then we obtain

¬(¬y ⊕ x)⊕ x = max(x, y) (2).

From the equations (1) and (2) we obtain

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

The constant 1C and the operations ¯ and ª are defined on MV-algebra C as
follows:

i) 1C =def ¬0.
From equation (2.2) we obtain

(2.3) 1C = 2t−1.

ii) x¯ y =def ¬(¬x⊕ ¬y).
Also by equation (2.2) we obtain

x¯ y = 2t−1 − ((2t−1 − x)⊕ (2t−1 − y)).

From equation (2.1) we have

x¯ y = 2t−1 −min(2t−1, 2t−1 − x + 2t−1 − y).

After calculations we obtain

x¯ y = max(0, x + y − 2t−1).

From equation (2.3) we have

(2.4) x¯ y = max(0, x + y − 1C).

iii) xª y =def x¯ ¬y.
From equation (2.2) we obtain

xª y = x¯ (2t−1 − y).

By the equations (2.3) and (2.4) we have

(2.5) xª y = max(0, x− y).

Remark 2.2. We can introduce an order relation ≤ on 〈C,⊕,¬, 0〉 in the same way
like in the general case (see Definition 1.4).

It is easy to see that the natural order on 〈C,⊕,¬, 0〉 is a total order and thus
the MV-algebra C is an MV-chain. Since C ⊆ R, it is obvious that C is a complete
latice.

The order relation on MV-algebra C is induced by the order relation of real
numbers.
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The distance function d : C × C → C is defined by:

d(x, y) =def (xª y)⊕ (y ª x)

Using equation (2.5) we obtain

d(x, y) = min(1C ,max(0, x− y) + max(0, y − x)) = min(1C , |x− y|).
Since both x and y are less or equals then 1C we have

|x− y| ≤ 1C

and then we obtain

(2.6) d(x, y) = |x− y| .
Remark 2.3. The distance function is defined following the general case (See Def-
inition 1.9). It is obvious that all the properties of the distance are fullfiled (see
Proposition 1.10).

Observe also that we obtain the classical Euclidean distance.

3. Construction of MV-Algebra structure of RGB model

In the previous section we have considered the set C as the set of possible
values for one colour component of RGB model (see [5]). We also have proved
that 〈C,⊕,¬, 0〉 is an MV-algebra.

In this section we will introduce on RGB model an MV-algebra structure. Let
consider the set:

RGB =def {(c1, c2, c3) | ci ∈ C, i ∈ {1, 2, 3}} .

In other words RGB is the direct product of family {Ci}i∈{1,2,3}, where

Ci = C for all i ∈ {1, 2, 3} .

On RGB set we introduce the operations ⊕, ¬ and the constant 0 as follows:

(3.1) (c1, c2, c3)⊕ (d1, d2, d3) =def (c1 ⊕ d1, c2 ⊕ d2, c3 ⊕ d3)

for each (c1, c2, c3) and (d1, d2, d3) from RGB;

(3.2) ¬(c1, c2, c3) =def (¬c1,¬c2,¬c3)

for each (c1, c2, c3) from RGB;

(3.3) 0RGB =def (0, 0, 0)

where 0 is the constant 0 on MV-algebra C.

Theorem 3.1. The quadruple 〈RGB,⊕,¬, 0RGB〉 is an MV-algebra.
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Proof. For proving that 〈RGB,⊕,¬, 0RGB〉 is an MV-algebra we have to show
that the axioms (MV1)-(MV6) are satisfied.

(MV1): From equation (3.1) we have

(a1, a2, a3)⊕ ((b1, b2, b3)⊕ (c1, c2, c3))
= (a1, a2, a3)⊕ (b1 ⊕ c1, b2 ⊕ c2, b3 ⊕ c3)

= (a1 ⊕ (b1 ⊕ c1) , a2 ⊕ (b2 ⊕ c2) , a3 ⊕ (b3 ⊕ c3)) .

By Lemma 2.1, the associative law holds in the MV-algebra C

ai ⊕ (bi ⊕ ci) = (ai ⊕ bi)⊕ ci for i = 1, 2, 3.

From this law we have

(a1, a2, a3)⊕ ((b1, b2, b3)⊕ (c1, c2, c3)) =

= ((a1 ⊕ b1)⊕ c1, (a2 ⊕ b2)⊕ c2, (a3 ⊕ b3)⊕ c3) .

From this equality and from equation (3.1) we obtain

(a1, a2, a3)⊕ ((b1, b2, b3)⊕ (c1, c2, c3))

= (a1 ⊕ b1, a2 ⊕ b2, a3 ⊕ b3)⊕ (c1, c2, c3)
= ((a1, a2, a3)⊕ (b1, b2, b3))⊕ (c1, c2, c3) .

(MV2): From equation (3.1) we have

(a1, a2, a3)⊕ (b1, b2, b3) = (a1 ⊕ b1, a2 ⊕ b2, a3 ⊕ b3) .

Using the commutativity of MV-algebra C we obtain

(a1, a2, a3)⊕ (b1, b2, b3) = (b1 ⊕ a1, b2 ⊕ a2, b3 ⊕ a3) .

From equation (3.1) we have

(a1, a2, a3)⊕ (b1, b2, b3) = (b1, b2, b3)⊕ (a1, a2, a3) .

(MV3): From the equations (3.1) and (3.3) it is easy to see that

(a1, a2, a3)⊕ (0, 0, 0) = (a1 ⊕ 0, a2 ⊕ 0, a3 ⊕ 0) = (a1, a2, a3)
since 0 is the neutral element of MV-algebra C.

(MV4): Applying several times the equation (3.2) we obtain

¬¬ (a1, a2, a3) = ¬ (¬a1,¬a2,¬a3)
= (¬¬a1,¬¬a2,¬¬a3) = (a1, a2, a3) ,

since ¬¬a = a in MV-algebra C.
(MV5): From equation (3.2) we have

(a1, a2, a3)⊕ ¬ (0, 0, 0) = (a1, a2, a3)⊕ (¬0,¬0,¬0) .

Using this equality and from equation (3.1) we obtain
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(a1, a2, a3)⊕ ¬ (0, 0, 0) = (a1 ⊕ ¬0, a2 ⊕ ¬0, a3 ⊕ ¬0)

= (¬0,¬0,¬0) = ¬ (0, 0, 0) ,

since a⊕ ¬0 = ¬0, in MV-algebra C.
(MV6): From equation (3.2) we have

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ ((¬a1,¬a2,¬a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3) .

From equation (3.1) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ (¬a1 ⊕ b1,¬a2 ⊕ b2,¬a3 ⊕ b3)⊕ (b1, b2, b3) .

Applying successively equations (3.2) and (3.1) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= (¬ (¬a1 ⊕ b1)⊕ b1,¬ (¬a2 ⊕ b2)⊕ b2,¬ (¬a1 ⊕ b3)⊕ b3) .

By (MV6) of MV-algebra C applied for each component we have

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= (¬ (¬b1 ⊕ a1)⊕ a1,¬ (¬b2 ⊕ a2)⊕ a2,¬ (¬b3 ⊕ a3)⊕ a3) .

Applying now successively equation (3.1) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= (¬ (¬b1 ⊕ a1) ,¬ (¬b2 ⊕ a2) ,¬ (¬b3 ⊕ a3))⊕ (a1, a2, a3) .

By equation (3.2) we have

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ (¬b1 ⊕ a1,¬b2 ⊕ a2,¬b3 ⊕ a3)⊕ (a1, a2, a3) .

Applying equations (3.1) and (3.2) we obtain

¬ (¬ (a1, a2, a3)⊕ (b1, b2, b3))⊕ (b1, b2, b3)

= ¬ ((¬b1,¬b2,¬b3)⊕ (a1, a2, a3))⊕ (a1, a2, a3)

= ¬ (¬ (b1, b2, b3)⊕ (a1, a2, a3))⊕ (a1, a2, a3) .

The constant 1RGB , and the operations ¯ and ª are defined as follows:
i) 1RGB =def ¬ (0, 0, 0).
From equations (2.2) and (3.2) we obtain

1RGB = (¬0,¬0,¬0) =
(
2t−1, 2t−1, 2t−1

)
.
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By equation (2.3) we obtain

1RGB = (1C , 1C , 1C)

ii) (a1, a2, a3)¯ (b1, b2, b3) =def ¬(¬ (a1, a2, a3)⊕ ¬ (b1, b2, b3)).
Applying equation (3.2) we have:

(a1, a2, a3)¯ (b1, b2, b3) = ¬ ((¬a1,¬a2,¬a3)⊕ (¬b1,¬b2,¬b3)) .

By equation (3.1) we obtain

(a1, a2, a3)¯ (b1, b2, b3) = ¬ (¬a1 ⊕ ¬b1,¬a2 ⊕ ¬b2,¬a3 ⊕ ¬b3) .

Applying equation (3.2) we have

(a1, a2, a3)¯ (b1, b2, b3) = (¬ (¬a1 ⊕ ¬b1) ,¬ (¬a2 ⊕ ¬b2) ,¬ (¬a3 ⊕ ¬b3))

By definition of ¯ on MV-algebra C we obtain:

(3.4) (a1, a2, a3)¯ (b1, b2, b3) = (a1 ¯ b1, a2 ¯ b2, a3 ¯ b3)

iii) (a1, a2, a3)ª (b1, b2, b3) =def (a1, a2, a3)¯ ¬ (b1, b2, b3).
By equation (3.1) and 3.4 we have:

(a1, a2, a3)ª (b1, b2, b3) = (a1, a2, a3)¯ (¬b1,¬b2,¬b3) .

From equation (3.4) we obtain

(a1, a2, a3)ª (b1, b2, b3) = (a1 ¯ ¬b1, a2 ¯ ¬b2, a3 ¯ ¬b3) .

By definition of ª on MV-algebra C we obtain:

(3.5) (a1, a2, a3)ª (b1, b2, b3) = (a1 ª b1, a2 ª b2, a3 ª b3) .

Remark 3.2. We can introduce a partial order relation ≤ on 〈RGB,⊕,¬, 0RGB〉
in the same way like in the general case.

It is easy to verify that:

i) (a1, a2, a3) ≤ (b1, b2, b3) if and only if ai ≤ bi, for each i = 1, 2, 3.
ii) (a1, a2, a3) ∨ (b1, b2, b3) = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3)
iii) (a1, a2, a3) ∧ (b1, b2, b3) = (a1 ∧ b1, a2 ∧ b2, a3 ∧ b3).

Proposition 3.3. RGB has a complete lattice structure, and this implies that
RGB is an MV σ-algebra (see [1]).

Remark 3.4. Convergent sequences can be defined on RGB, using MV σ-algebra
properties of RGB (see [1]).
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4. Distance on RGB

To use the MV-algebra structure of RGB model for image processing, we have
to define a distance function d : RGB ×RGB → RGB as follows

d ((a1, a2, a3) , (b1, b2, b3)) =def

= ((a1, a2, a3)ª (b1, b2, b3))⊕ ((b1, b2, b3)ª (a1, a2, a3)) .

From equation (3.5) we have

d ((a1, a2, a3) , (b1, b2, b3))

= (a1 ª b1, a2 ª b2, a3 ª b3)⊕ (b1 ª a1, b2 ª a2, b3 ª a3) .

Applying equation (3.1) we obtain

d ((a1, a2, a3) , (b1, b2, b3))

= ((a1 ª b1)⊕ (b1 ª a1) , (a2 ª b2)⊕ (b2 ª a2) , (a3 ª b3)⊕ (b3 ª a3)) .

From definition of the distance function on MV-algebra C we obtain:

d ((a1, a2, a3) , (b1, b2, b3)) = (d (a1, b1) , d (a2, b2) , d (a3, b3)) .

In Section 2 of this paper we have shown that 〈C,⊕,¬, 0〉 is an MV-chain. In
Section 3 we have defined RGB set as a direct product of C set. It is obviously
that RGB set is also a subdirect product of C set. From Chang’s Subdirect
Representation Theorem (see [2]) we obtain:

Proposition 4.1. The MV-algebra 〈RGB,⊕,¬, 0RGB〉 is a subdirect product of
the MV-chains 〈C,⊕,¬, 0〉.
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STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 1, 2001

CHARACTER RECOGNITION USING MORPHOLOGICAL
TRANSFORMATIONS

VASILE PREJMEREAN AND SIMONA MOTOGNA

Abstract. Starting from a digital image representing a character (or, more
general, an object), we will obtain formal descriptions of the object structures,
formed from primitives and the relations between them, using morphological
transformations (thinning, prunning, determining the corners, determining
the primitives). From such a description we will construct a description
grammar for the object under study, grammars that are used in the syntac-
tical recognition of similar objects. The object being recognized has a corre-
sponding description through morphological transformations that allows us
to study if the description belongs to the language generated by the designed
grammar.

1. Introduction

Generally speaking, we can say that an image transformation is dedicated to
human eyes or is made for a pattern recognition reason.

This paper presents a method for character recognition using morphological
transformations, whose purpose is to obtain certain structures formed from lines
and curves (type 3 images [6]) needed for pattern recognition. The notion of
morphology comes from animal and plants form study, but for us morphological
processing ([3, 5]), means the determination of the object structures from their
images.

2. Morphological Processing

Morphological processings consist in operations through which an object X is
modified by a structuring element B, yielding to a form convenient for future
processing (pattern recognition). The two interacting elements (X and B) are
represented as sets in the Euclidian bidimensional space.

Most of the morphological operations can be defined by two basic operations,
erosion and dilation described in the following.

2000 Mathematics Subject Classification. 68Q45, 68T10.
1998 CR Categories and Descriptors. F.4.2 [Theory of Computation]: Mathematical

Logic and Formal Languages – Grammars and Other Rewriting Systems; I.5.2 [Computing
Methodologies]: Pattern Recognition – Design Methodology.
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Notation 2.1.
The translation of B in x denoted by Bx, is the translation of the structural

element B such that the origin OB is located in x.
Definition 2.1.
The erosion of X by B, denoted by X ª B, is the set of all points x such that

Bx is included in X:
X ªB = {x|Bx ⊂ X}.

Remark : Erosion is an operation that decreases the object.
Definition 1.2.
The dilation of X by B, denoted by X ⊕B, is the set of all points x such that

Bx and X have a nonempty intersection:

X ⊕B = {x|Bx ∩X 6= ∅}.
Remark : Dilation is an operation that increases the object.
The two presented basic operations have the following properties: translation

invariant, distributivity, local knowledge, iteration, increasing, duality, and so on
[3].

Next, we shall present some usual transformations obtained from the two basic
operations described above (XC denotes the complement of X).
a. Hit-Miss, denoted by X ∗B, verifies if a structure B ∈ X and BC ∈ XC :

X ∗B = (X ªB) ∩ (XC ªBC) = (X ªB) ∩ (X ⊕BC)C =
= (X ªBOb)\(X ⊕BBk) (we denote B by BOb, and BC by BBk)

because from:(XC ⊕ B) = (X ª B)C (duality property for all X and all B) it
results that

(1) (X ⊕BC) = (XC ªBC)C (applied to XC and BC).

BOb must be matched with the object X, and BBk with the Background ;
b. Open of X relative to B, denoted by XB is the domain scanned by all of the

translations of B included in X:

XB = (X ªB)⊕B

c. Close of X relative to B, denoted by XB , is the reverse operation to open:

XB = (X ⊕B)ªB

d. Boundary determination (δX):

δX = X\(X ªG)

The usual structuring element is G =
o o o
o O o
o o o

where o - object
O - origin
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e. Thinning, using morphological transformation, is defined as follows:

X ⊗B = X\(X ∗B)

The usual structuring element is B =
o o o
∗ O ∗
o o o

where

o - object
o - background
O - origin
∗ - don’t care

To obtain a simetrical thinning we must apply successively the operation
described above, using as structuring element the rotate object B:

X ⊗s B = ((...((X ⊗B1)⊗B2)⊗ ...)⊗Bn),

where B1 = B and Bi = Rotate(Bi−1), 2 ≤ i ≤ n.
f. Thicking of X through B, denoted X ¯B, is the reverse operation to thinning

and is defined as follows:

X ¯B = X ∪ (X ∗B)

g. The skeleton of an object X, denoted by S(X), is defined as:

S(X) =
nmax⋃
n=0

sn(x) =
nmax⋃
n=0

[(X ª nG)\(X ª nG)G],

where nmax is the smallest n such that X ª nG = ∅.
The reconstructed object X is:

X =
nmax⋃
n=0

[sn(x)⊕ nG],

where X ª nG = (((X ªG)ªG)ª . . .)ªG.
h. Prunning deletes (suppresses) the parasite branches, that can be the results

after a thinning operation:

Xpn = X1 ∪ [(X2 ⊕G) ∩X], where

X1 = X ⊗s E;

X2 =
8⋃

j=1

[X1 ∗ Ej ];

E =
∗ ∗ ∗
o o o
o o o
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3. Character Recognition

There are several types of recognitions, and we use syntactical recognition be-
cause it has the advantage of being able to identify an infinity set of complex
forms using a small number of production rules. Syntactical recognition of a form
assumes the identification of the primitives that compund the form (these primi-
tives must be easy to recognise) which is achieved with morphological processing,
then syntactical analysis of the form in order to identify and perphaps obtain its
structure, which will be presented in the next paragraph.

Figure 1. Chracter ’A’ during recognitin: original, thinned and prunned

Character recognition can be divided in the following steps, as shown in Figure
1:

a) Thinning, described in Section 2, paragraph e;

Figure 2. The significance of signs from Figure 1
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Figure 3. The junction zones for character ’A’

b) Then the object is prunned, according to the rules described in Section 2,
paragraph h;

c) To obtain the corners (Junction zone) we may apply successively the hit-miss
operation, using as structuring element the rotate object B, as in 3:

B =
∗ o ∗
o O ∗
∗ o ∗

where
o − object
O − Origin
∗ − don’t care

X ⊗B =
4⋃

i=1

(X ∗Bi) where : B1 = B and Bi = Rotate(Bi−1), 2 ≤ i ≤ 4.

d) To obtain the primitives that compose the image of the character we apply the
hit-miss operation with the following structuring elements B:

− vertical lines : X|B =
3⋃

i=1

(X ⊗B
|
i), 1 ≤ i ≤ 3, with :

B
|
1 B

|
2 B

|
3

∗ o ∗
o O ∗
∗ o ∗

∗ o ∗
o O ∗
∗ o ∗

∗ o ∗
o O ∗
∗ o ∗
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Figure 4. The primitives for character ’A’

where the notations have the same significance as in c).

− horizontal lines : X −B =
3⋃

i=1

(X ⊗B−
i ), where B−

i = Rotate(B|
i), 1 ≤ i ≤ 3

− diagonal − down lines : X\B =
2⋃

i=1

(X ⊗B
\
i ), where

B
\
2 = Rotate2(B\

1) and B
\
1 =

∗ o ∗
∗ O o
∗ ∗ ∗

− diagonal − up lines : X/B =
2⋃

i=1

(X ⊗B
/
i ), whereB

/
i = Rotate(B\

i ), 1 ≤ i ≤ 2.

Now, it is easy for someone to recognise the primitives that compose the picture
and after that to describe the character. It’s not difficult to find the relations of
relative positions of these primitives (see Figure 4).

4. Gramamtical Description

A form will be the result of several concatenation operations, that unifies the
simplest forms in subforms more and more complex.

A form description language defines their structure, and a form description
grammar defines the subform compounding rules.

Structural representations of a form is recommended when there exist complex
concatenation relations between the primitives that have been used, because this
representation gives us a graphical image of the way in which the primitives are
interconnected.
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Figure 5. Forms built with ’diagonal’ primitives

In order to build a form representation, we choose a starting point, which will
be the initial node in the structural descrition. This node is then decomposed in
two subforms together with the relation between them, as shown in Figure 8. If
these subforms are also compound from other subforms, then we will continue the
description until all the nodes will contain only primitives.

The syntactical recognition process assumes the following three steps:

• the selection of the primitives in order to obtain the form description
alphabet;

• the form representation using a description language;
• the definition of a grammar, such that it will generate the description

language.

The first two steps have already been discussed. We will focus next on some
grammar classes, which are used for certain form representation methods.

The forms that can be represented through a primitive sequence (using primitive
concatenation operation) are called one-dimension forms, and their corresponding
grammars are called one-dimension grammars.

The grammar G1 = ({S, A,C, D}, {a, b, c, d, (, ), +, ∗,¬}, P, S), with the produc-
tion rules: P = {S → A/C,D → (a+b)∗c, A → a+D+b, C → ((¬d)+c+d)∗D},
generates the language L(G1) = {a + (a + b) ∗ c + b, ((¬d) + c + d) ∗ (a + b) ∗ c},
where + is the usual concatenation operator, ∗ is for parallel concatenation, and
¬ is the operator for extremes inversion [4, 1].

This language describes the two forms from Figure 5, built with the primitives
{a, b, c, d} = {↗,↘,→, ↑}.

We will present now the image desciption model that uses grammars whose
terminal symbols are graphical primitives (horizontal, vertical and diagonal lines,
as shown in Figure 4) and predicates [2]. To each primitives we attach char-
acteristics regarding their position in the image frame (framework coordinates).
The predicates express relations that can exist between certain image components
(primitives and compound forms). The compound forms correspond to the non-
terminal symbols from a traditional grammar. For example, on(x, y) (“x is over
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y”) is a predicat that has the value true if and only if all the components of ob-
ject x are on all the components of object y. The relative positions of the image
components can be obtained from their attached coordinates (as we shall see in
the next section).

Such a grammar G = (N, Σ, P, S) consists of the set of nonterminal symbols
N(S ∈ N), the set Σ of terminal symbols containing primitives and predicates,
the set P of production rules (each of them defining a form) and the start symbol
S. A production of this grammar has the form A → (ω) : α;π, where A ∈ N
is a nonterminal representing the name of the defining graphical form, ω is a list
of arguments of the production, α is a list of objects (primitives or compound
objects), and π is a predicate (α and π are statements that should be true for
arguments from the list ω.

In order to ilustrate these concepts, we will use as example the ’A’ character
from Figure 4. Suppose that the terminal alphabet is:

• types of graphical primitives: /, \, |,−;
• predicates: ‘in’,‘on’,‘near’,‘right’.

The productions described above can be represented in a parsing tree. For this
example, the corresponding tree is shown in Figure 8.

We shall present now an algorithm for generating graphical subforms and for
building the production rules (corresponding to the first step of the syntactical
recognition process).

At the begining, the description list (ObIni) contains the graphical primitives
from the drawing (we denote by GPNo the total number of graphical primitives),
storing for each primitive p its type (PrimitiveType(p)), the window in which is
framed (Domainp = (x1, y1, x2, y2)) and the set of components (MObp = {p}).
For each graphical primitive from the analized drawing we will store the following
information:

(p, PrimitiveType(p), Domainp,MObp = {p}), (for each p = 1, 2, ..., GPNo).

This list is enriched with new compound objects (NewOb) formed from the
ones existing in the list ObIni and are in a convenient relative position, denoted
by relation φ (for example, (s, d), if s is inside d, i.e. Domains ⊂ Domaind). For
a compound object o we will store:

(o, (s, d), φ(s, d), Domaino,MObo = MObs ∪MObd),
where Domaino is computed using the following formula:

x1 := Minim(s.x1, d.x1), x2 := Maxim(s.x2, d.x2),
y1 := Minim(s.y1, d.y1), y2 := Maxim(s.y2, d.y2).

(see Figure 6).
The addition of new elements is continued until it is no more possible (NewOb =

∅).
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Figure 6. Coordinates specification for an object

Those objects o that contain all the graphical primitives of the drawing (MObo ⊃
{1, 2, ..., GPNo}), represent drawing descriptions.

Algorithm 3.1.
Initialize ObIni = {Obp, p = 1, GPNo}; {List of graphical primitives}

ObAd := ObIni; LPrim := ObIni; o := m;
Repeat

NewOb := ∅; LOb := ObIni ∪ObAd;
For each α = (s, d) ∈ LOb×ObAd ∪ObAd× LOb execute

For each relation φ execute { see the Table 1 }
If φ(s, d) and Obs ∩Obd = ∅ then {s φ d and no common primitives}

o := o + 1; Compute Domaino;
NewObi := NewOb ∪ {(o, (s, d), φ(s, d), Domaino,MObs ∪MObd)};
ObIni := LOb; ObAd := NewOb;

Until NewOb = ∅; {no more new objects}
The set of descriptions: = {o|{1, 2, ..., GPNo} ⊂ MObo}.
Two objects can be in the relations presented in 1, representing relations be-

tween their coordinates (specified in 6).

φ O1 in O2 O1 on O2 O1 near O2 O1 left O2

O2.x1 < O1.x1 O1.y2 ≤ O2.y1 O1.x2 ≤ O2.x1 O1.x2 < O2.x1

O1.x2 < O2.x2 O1.y2 ≈ O2.y1 O1.x2 ≈ O2.x1 O1.x2 6≈ O2.x1

O2.y1 < O1.y1 O1.x1 ≈ O2.x1 O1.y1 ≈ O2.y1 O1.y1 ≈ O2.y1

O1.y2 < O2.y2 O1.x2 ≈ O2.x2 O1.y2 ≈ O2.y2 O1.y2 ≈ O2.y2

Table 1. Definition of relations φ, where α ≈ β means |α−β| ≤
ε, namely are very close to each other.
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Figure 7. The numbers associated to primitives

Example 4.1.
We consider the drawing from Figure 4, and we will number the primitives (as

in 7) in order to build the initial subform list, as presented in Table 2.

Pr. x1 y1 x2 y2

1. / 3 2 7 5
2. \ 8 2 11 4
3. | 3 6 3 9
4. | 11 5 11 9
5. | 3 11 3 16
6. | 11 11 11 16
7. - 6 10 9 10

Table 2. The primitives used in Example 4.1

Applying the predicates ’in’, ’on’, ’near’ and ’left’ to all object pairs from the
initial list we will obtain the following list (when we add new elements, we also
determine information regarding the new objects postions):
8-(1,2):near(1,2); 11-(4,6):on(4,6);
9-(3,4):left(3,4); 12-(5,6):left(5,6)
10-(3,5):on(3,5);

The process is repeated using the extended list (1-12). The new list elements
obtained in the third step are:
13-(8,9):on(8,9); 15-(10,11):left(10,11);
14-(9,12):on(9,12);

The next step will produce the following elements:
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Figure 8. The parsing tree for character ’A’

16-(7,14):in(7,14); 19-(8,15):on(8,15);
17-(7,15):in(7,15); 20-(12,13):on(13,12);
18-(8,14):on(8,14);

Since there is no object that contains all the primitives, the process will continue,
adding the last elements:
21-(7,18):in(7,18); 24-(8,16):on(8,16);
22-(7,19):in(7,19); 25-(8,17):on(8,17).
23-(7,20):in(7,20);

We notice that these last objects (21–25) contain all the primitives as com-
ponents. The parsing tree corresponding to the object 25 is shown in Figure 8.

Next, we will replace variables with constant names, in three steps:
1) symbols from 8 to 20, representing intermediary compound objects will be

replaced with nonterminals (from A to M):
A=8-(1 near 2) E=12-(5 left 6) I=16-(h in G)
B=9-(3 left 4) F=13-(8 on 9) J=17-(h in H)
C=10-(3 on 5) G=14-(9 on 12) K=18-(A on G)
D=11-(4 on 6) H=15-(10 left 11) L=19-(A on H)

M=20-(F on E)
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2) symbols from 1 to 7, representing the primitives will be replaced with the
primitive names:

A=8-(p near q) E=12-(v left v) I=16-(7 in 14)
B=9-(v left v) F=13-(A on B) J=17-(7 in 15)
C=10-(v on v) G=14-(B on E) K=18-(8 on 14)
D=11-(v on v) H=15-(C left D) L=19-(8 on 15)

M=20-(13 pe 12)

3) symbols from 21 to 25, representing final objects have the following associated
grammar:

21: S → h in K; 22: S → h in L; 23:S → h in M;
K → A on G; L → A on H; M → F on E;
A → p near q; A → p near q; E → v left v;
G → B on E; H → C left D; F → A on B;
B → v left v; C → v on v ; A → p near q;
E → v left v. D → v on v. B → v left v.

24: S → A on I; 25: S → A on J;
A → p near q; A → p near q;
I → h in G; J → h in H;
G → B on E; H → C left D;
B → v left v; C → v on v;
E → v left v. D → v on v.

We will proceed now with the reduction of the grammar, in order to obtain a
simpler one. The reduction takes into consideration the following remarks:

a. we have some identical rules: C and D, B and E, respectively;
b. rules for K and L, I and J differ only by a symbol (G, respectively H), and we

will use unification;
c. rules for M and F differ only by a symbol (F, respectively A), so we will use

unification.

The final grammar, capable of generating the original sample is:

S → h in K | h in M | A on I;
K → A on G; A → p near q;
G → B on B | C left C; B → v left v;

C → v on v ;
M → M on B | A on B; I → h in G;

Since the rule for the symbol M generates sequences of the form A(on B)n, n >
0, we can extend it even more such that n ≥ 0, yielding, eventually, to M →
M on B|A. This grammar generates character of the form shown in 9.
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Figure 9. Forms obtained for different values of n with the de-
termined grammar

As it can be seen in the figure 9, the proposed method allows us to obtain
classes of generalized images, starting from an initial pattern, images that satisfy
the same rules.

The ability of understanding an image will be increased if we know the rules
under which they were generated (if the images had been defined by relations
between components, and not by static or semantic rules). In such cases, the
importance of lingvistical methods is obvious, since these methods represent tools
useful in solving recognition problems.

The final step in pattern recognition process is the parsing (syntactical analysis),
in which the forms are classified according to the description grammars of the form
classes. The parsing decides if a certain form belongs or not to a form class, and
when the answer is afirmative it will provide information about the form structure.

In our case, a form is a drawing, and a form class is a picture language. The
problem of recognising a drawing d (representing the studied form) from a picture
language P (a given form class) is: ”d ∈ P?”. Consequently, we have presented
here a method of solving this problem.
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PURELY FUNCTIONAL PROGRAMMING AND THE
OBJECT-ORIENTED INHERITANCE AND POLYMORPHISM

LEHEL KOVÁCS, GÁBOR LÉGRÁDI, AND ZOLTÁN CSÖRNYEI

Abstract. According to the purely functional paradigm, the value of an
expression depends only on the values of its subexpressions, if any.

In this paper we introduce this principle in the object-oriented para-
digm. The simplicity and power of functional languages is due to properties
like pure values, first-class functions, and implicit storage management. We
must extend these properties with a strong type-system.

The values must be typed, the type system used for this purpose is the
higher-order, explicitly-typed, polymorphic λ-calculus with subtyping, called
F ω
≤ .

This type-system must be prepared for basic mechanisms of object-
oriented programming: encapsulation, message passing, subtyping and in-
heritance. Polymorphic functions arise naturally when lists are manipulated
and lists with elements of any types can be accomplished by a straightforward
generalization of inheritance.

Interesting questions are also, how to introduce the object- oriented
inheritance, the subtyping mechanism and the object oriented polymorphism.
Key Words and Phrases: untyped and typed λ-calculus, object-oriented

programming, inheritance, polymorphism.

1. Introduction

In this paper we introduce the principle of purely functional paradigm into the
object-oriented paradigm and we concentrate the solutions of problems related to
each kind of inheritance and polymorphism.

We are going to focus our attention on a simple object model in which an object
has a value that can be modified by messages.

An object has an internal state and methods, the states have unusual feature:
the internal state of all objects is immutable, the result of methods are values
rather side-effects of variables.

The simplicity and power of functional languages are due to properties like pure
values, first-class functions, and implicit storage management. We must extend
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these properties with a strong type system, the type system Fω
≤ is applied. A

summary of this type system is given in the next section.
There are three object models from literature, the record model, the existential-

type model and the axiomatic model [2]. We use the the record model to refer
to the representation of objects by recursively defined records in which a class
is represented by a record of variables and methods. Using λ-calculus and type
system Fω

≤ extended by record structures we have a purely functional model of
object-oriented programming.

We also show how to write well-typed polymorphic functions that operates on
different objects. A polymorphic function can be applied to arguments of more
than one type. We concentrate on parametric polymorphism, a special kind of
polymorphism, in which type expressions are parametrized.

2. Type system Fω
≤

Church’s ordinary typed λ-calculus has the name F1, F2 correspond to Girard’s
and Reynold’s second-order typed λ-calculus. F3 is obtained from F2 by allowing
type constructors that transform existing types into new types, and it follows
that the kind has the form ∗ or ∗ → kind. Using successively higher kind, we
obtain systems F4, F5,. . . The union of all these systems is called Fω. In system
Fω the syntax of kinds has the form

kind := ∗
| kind → kind

One of the natural extension of type system Fω deals with subtyping, a simple
version of such a system is Fω

≤ . The description of this system is described for
example in [3].

A further extension of Fω
≤ introduces records [5], it is mainly used to formulate

models for object-oriented systems [1,4].
The syntax of record type, record term construction and record term selection

are as follows:

< type > := {| < name1 >:< type1 >, . . . , < namen >:< typen > |}
< term > := {< name1 >=< term1 >, . . . , < namen >=< termn >}

| < term > . < name >

Now we will extend the rule-system Fω
≤ to allow records.

(1) The kinding rule for record:

Γ ` < typei > ∈ ∗ for each i

⇒ Γ ` {| < name1 >:< type1 >, . . . , < namen >:< typen > |} ∈ ∗
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(2) The rule of record introduction:

Γ ` < termi >:< typei > for each i

⇒ Γ ` {< name1 >=< term1 >, . . . , < namen >=< termn >}
: {| < name1 >:< type1 >, . . . , < namen >:< typen > |}

(3) The rule of record elimination for the record
< term >≡ {< name1 >=< term1 >, . . . , < namen >=<

termn >}:

Γ ` < term >: {| < name1 >:< type1 >, . . . , < namen >:< typen > |}
⇒< term > . < namei >:< typei >

(4) And finally, the subtype rule has two assumptions,
• the subtype record has at least the same fields as the other record

type,
• each of the types of the fields of the subtype need to be subtypes

of the types of the corresponding fields (if they exist) in the other
type.

{name1,1, . . . , name1,m} ⊇ {name2,1, . . . , name2,n}, m ≥ n

Γ ` < type1,i > ≤ < type2,i > for each < name1,i >=< name2,i >

⇒ Γ ` {| < name1,1 >:< type1,1 >, . . . , < name1,m >:< type1,m > |}
≤ {| < name2,1 >:< type2,1 >, . . . , < name2,n >:< type2,n > |}

3. The object-oriented inheritance

A class (child class) inherits state and behavior from its superclass (parent
class). Inheritance provides a powerful and natural mechanism for organizing and
structuring software programs. The instance variables and the methods of the child
class are an extension of the structure and the behavior of the parent class. The
child class extends the properties, the structure of the parent class, and constitutes
a limitation of the meaning.

Definition 3.1 (The principle of substitutability). An instance of the child class
can imitate the behavior of a parent class and can not be distinguished from an
instance of the parent class if it is used in a similar situation. If C is the child
oclass and P is the parent class, C = subst(P ) means that each instance of C may
be used instead of an instance of P .

Definition 3.2 (Subtype). A subtype is a class which fulfills the principle of
substitutability (C = subst(P )).
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Informally, a type σ is a subtype of τ , written σ ≤ τ , if an expression of type σ
can be used in any context that expects an expression of type τ .

The rule for subtyping functions states that σ → τ ≤ σ′ → τ ′ iff σ′ ≤ σ and
τ ≤ τ ′.

This is formalized by extending our λ-calculus with a subtype relation, written
Γ ` S ≤ T to mean that S is a subtype of T under assumptions Γ.

Definition 3.3 (Subclass). A subclass is an arbitrary class created by inheritance,
regardless of the principle of substitutability (C 6= subst(P )).

A subclass may also override the definitions of methods it would otherwise
inherit by redefining them. Because a subclass inherits code for methods, it also
inherits interface type information for the methods that it does not override.

We write Γ ` S < T to mean that S is not a subtype of T , but is a subclass of
T under assumptions Γ.

In the object-oriented paradigm a class is a prototype that defines the variables
and the methods common to all objects of a certain kind.

Let v1, v2, . . . , vi be the variables and let m1,m2, . . . ,mj be the methods,
let V = {V1, V2, . . . , Vi} be the typeclass of each variable and let M =
{M1,M2, . . . ,Mj} be the typeclass of each method (the signature of methods)
for a given class S, where i is the number of variables and j is the number of
methods for a class S = V ∪M .

In that case, the subtyping rule between classes S and T is:

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,

S = V ∪M, T = V ′ ∪M ′,

T = subst(S),

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,

Γ ` {| v′1 : V ′
1 , . . . , v′i′ : V ′

i′ ,m
′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗

⇒ Γ ` S ≤ T

For a better formalization of T = subst(S) or T 6= subst(S) we must give the
subtyping (or subclassing) rule for each kind of inheritance.
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3.1. Specialization.

Definition 3.4 (Specialization). The child class is a specialized form of the parent
class.

Additional functionalities, principle of substitutability is guaranteed. Does not
change the old variables and methods (from parent class), but brings in new vari-
ables and new methods in child class.

V = {V ′
1 , V ′

2 , . . . , V ′
i′ , . . . , Vi}, M = {M ′

1,M
′
2, . . . , M

′
j′ , . . . , Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i > i′, j > j′,

S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,

Γ ` {| v′1 : V ′
1 , . . . , v′i′ : V ′

i′ ,m
′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗

⇒ Γ ` S ≤ T

3.2. Specification.

Definition 3.5 (Specification). The parent class defines an interface, the child
class gives the implementation.

Changes the old variables of parent class, no additional functionalities, principle
of substitutability is guaranted.

V = {V1, V2, . . . , Vi}, M = {M ′
1,M

′
2, . . . , M

′
j},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i }, M ′ = {M ′

1,M
′
2, . . . , M

′
j},

V ⊆ V ′, M = M ′,

S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M ′
1, . . . ,mj : M ′

j |} ∈ ∗,

Γ ` {| v′1 : V ′
1 , . . . , v′i : V ′

i ,m′
1 : M ′

1, . . . , m
′
j : M ′

j |} ∈ ∗

⇒ Γ ` S ≤ T
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3.3. Construction.

Definition 3.6 (Construction). The parent class provides the functionality, but
gives no logical context to the child class.

Typical kind of subclassing, changes the old variables, methodes, adds new
variables and methods, no substitutability.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
⇒ Γ ` S < T

3.4. Generalization.

Definition 3.7 (Generalization). The child class extends the functionality of the
parent class, creates more general instances.

Like the construction, but we can tell absolutly nothing about substitutability.
It depends on particular cases.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
⇒ Γ ` S ≤? < T

3.5. Extension.

Definition 3.8 (Extension). The child class adds further functionalities to the
parent class, but does not change any inherited behavior.

The principle of substitutability is guaranted.

V = {V ′
1 , V ′

2 , . . . , V ′
i }, M = {M1,M2, . . . ,Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i }, M ′ = {M ′

1,M
′
2, . . . , M

′
j},

V = V ′, M ⊆ M ′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V ′
1 , . . . , vi : V ′

i ,m1 : M1, . . . , mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j |} ∈ ∗
⇒ Γ ` S ≤ T
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3.6. Limitation.

Definition 3.9 (Limitation). The child class restricts the use of some of the
behaviors inherited from the parent class.

The principle of substitutability is not guaranted.

V = {V ′
1 , V ′

2 , . . . , V ′
i }, M = {M1,M2, . . . ,Mj},

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i }, M ′ = {M ′

1,M
′
2, . . . , M

′
j},

V = V ′, M ⊆ M ′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V ′
1 , . . . , vi : V ′

i ,m1 : M1, . . . , mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i : V ′
i ,m′

1 : M ′
1, . . . , m

′
j : M ′

j |} ∈ ∗
⇒ Γ ` S < T

3.7. Variance.

Definition 3.10 (Variance). The parent and the child class are variant of each
other, the class – subclass relationship is arbitrary.

The principle of substitutability is not guaranted.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i }, M ′ = {M ′
1,M

′
2, . . . , M

′
j},

V ⊆ V ′, M ⊆ M ′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i : V ′
i ,m′

1 : M ′
1, . . . , m

′
j : M ′

j |} ∈ ∗
⇒ Γ ` S < T

3.8. Combination.

Definition 3.11 (Combination). The child class inherits features from two or
more parent classes. It is commonly called multiple inheritance.

Changes the old variables, methods, brings in new variables, methods. We can
tell absolutly nothing about substitutability. It depends on particular cases.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
⇒ Γ ` S ≤? < T
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4. Summary - Inheritance

The following table contains a general view of object-oriented inheritance kinds:

Kind New New Substi- Changes Changes
variables methods tutability old old

variables methods
specialization Yes Yes Yes No No
specification No No Yes Yes No
construction Yes Yes No Yes Yes
generalization Yes Yes ?(Yes,No) Yes Yes
extension No Yes Yes No No
limitation No No No No Yes
variance No No No Yes Yes
combination Yes Yes ?(Yes,No) Yes Yes

5. The object-oriented polymorphism

According to the object-oriented polymorphism, one message (the same mes-
sage) can be different interpreted by the objects (Methods with the same names,
signatures and with different bodies). Polymorphism is a natural characteristic of
object-oriented languages based on the principles of message passing, inheritance
and substitutability [6].

For a better formalization we must give the subtyping rule for each kind of
polymorphism.

5.1. Overloading.

Definition 5.1 (Overloading). A function name denotes more than one possible
statement sequence.

Overloading extends the syntax of the programming language. For example,
overloading the ’+’ operator for Complex numbers (Complex is a class). Subtyping
rule: see Overriding.

5.2. Polymorphic parameters.

Definition 5.2 (Polymorphic parameters). One method (function or procedure)
can be called with different type of arguments.

A method can be redeclared with a different parameter signature from its an-
cestor, it overloads the inherited method without hiding it. Calling the method in
a descendant class activates whichever implementation matches the parameters in
the call.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
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V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
∃k ∈ {1, . . . , j} : name(mk) = name(m′

k) ∧ signature(mk) 6= signature(m′
k)

⇒ Γ ` S ≤ T

Where name(m) is the name of the method, and signature(m) is the signature
(name and parameter list) of the method.

5.3. Deferring.

Definition 5.3 (Deffering). The parent class declares only the method, the child
class implements it.

Commonly called abstract polymorphism.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
- no method bodies in M, just the declarations.

V ′ = {V ′
1 , V ′

2 , . . . , V ′
i′}, M ′ = {M ′

1,M
′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
∀k ∈ {1, . . . , j} : signature(mk) = signature(m′

k)
⇒ Γ ` S ≤ T

5.4. Overriding.

Definition 5.4 (Overriding). A child class changes the meaning of a method,
which was defined in the parent class.

Overriding a method means extending or refining it, rather than replacing it.
A descendant class can override any of its inherited virtual methods. It is the
common and the most used case of polymorphism.

V = {V1, V2, . . . , Vi}, M = {M1,M2, . . . , Mj},
V ′ = {V ′

1 , V ′
2 , . . . , V ′

i′}, M ′ = {M ′
1,M

′
2, . . . , M

′
j′},

V ⊆ V ′, M ⊆ M ′, i ≥ i′, j ≥ j′,
S = V ∪M, T = V ′ ∪M ′,

Γ ` {| v1 : V1, . . . , vi : Vi, m1 : M1, . . . ,mj : Mj |} ∈ ∗,
Γ ` {| v′1 : V ′

1 , . . . , v′i′ : V ′
i′ ,m

′
1 : M ′

1, . . . , m
′
j′ : M ′

j′ |} ∈ ∗
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∃k ∈ {1, . . . , j} : signature(mk) = signature(m′
k)

⇒ Γ ` S ≤ T

6. Summary - Polymorphism

The following table contains a general view of object-oriented polymorphism
kinds:

Kind Same Same Same Abstract Extends
names bodies signatures methods the syntax

overloading Yes No Yes No Yes
parameters Yes No No No No
deferring Yes No Yes Yes No
overriding Yes No Yes No No
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