
INFORMATICA
2/2018

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 2/2018
July - December

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Sergiu Cataranciuc, State University of Moldova, Chișinău, Moldova
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR

MONTH

ISSUE

Volume 63 (LXIII) 2018

DECEMBER

2

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

2

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

PAPERS FROM THE 12TH CONFERENCE MACS 2018

A. Poór, T. Kozsik, M. Tóth, I. Bozó, Compiler Front End Fusion: Undo Desugaring in

Language Processing Tools ... 5

M. Komáromi, I. Bozó, M. Tóth, An Efficient Graph Visualisation Framework for

RefactorErl ... 21

A. Reale, P. Kiss, C. Ferrari, B. Kovács, L. Szilágyi, M. Tóth, Application Functions

Placement Optimization in a Mobile Distributed Cloud Environment 37

Z. Parragi, Z. Porkoláb, Instrumentation of C++ Programs Using Automatic Source

Code Transformations .. 53

G. Morse, D. Lukács, M. Tóth, Incremental Decompilation of Loop-Free Binary Code:

Erlang .. 66

R. Kovács, G. Horváth, An Initial Prototype of Tiered Constraint Solving in the Clang

Static Analyzer ... 88

REGULAR PAPERS

L.M. Crivei, Incremental Relational Association Rule Mining of Educational Data

Sets ... 102

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.01

COMPILER FRONT END FUSION: UNDO DESUGARING IN
LANGUAGE PROCESSING TOOLS

ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

Abstract. Compiler front ends often perform desugaring on the source
code while constructing the abstract syntax tree (AST). A programming
language processing tool (such as a refactoring tool) working with the
desugared AST perceives the code at this abstract level, and loses informa-
tion on the rich syntax used in the actual source code. This paper discusses
the concept of front end fusion, a technique which may help language pro-
cessing tools to retain the syntactic sugar information on the source code in
the presence of desugaring compiler front ends. We propose a hybrid front
end created from two separate front ends: one provided by the compiler,
which offers type information, and another one, which provides the details
of the concrete syntax used in the source code. Specifically, we show how
to construct a hybrid front end in a language processing tool for the Scala
programming language.

1. Introduction

Programming language processing tools provide invaluable help during soft-
ware development and maintenance. They can statically analyse source code
for debugging, code upgrade or grokking purposes, and they can perform
source code transformations and refactoring as well. These tools typically
need to be able to parse and pretty print source code, and may also require
semantic information, e.g. the type of expressions and the result of name
resolution.

There are two major approaches to implement language processing tools.
Firstly, the tool may have a custom lexer, parser, type checker, static semantic
analyser, and pretty printer built in, and tailored for, the tool (standalone

Received by the editors: April 17, 2018.
1991 Mathematics Subject Classification. 68N15, 68N20.
1998 CR Categories and Descriptors. D.3.4 [Programming languages]: Processors

– Compilers.
Key words and phrases. parser, abstract syntax tree, compiler front end, syntactic sugar,

desugaring, refactoring.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.

5

6 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

approach). Secondly, the external approach relies on some existing, widely-
used compiler infrastructure for the given programming language. However,
as we shall see, both approaches have disadvantages.

Older compilers provide no convenient ways to access the output of the
compiler front end. For example, earlier versions of GCC (before v4.5) offer
intermediate files for observing available information between different compi-
lation phases – which is a rather inconvenient input to a language processing
tool. This is where the standalone approach may be needed: the tool needs to
re-implement (a part of) the compiler front end for the language. Obviously,
this is quite expensive from the tool developer’s point of view. Moreover, this
makes the tool more vulnerable against the evolution of the programming lan-
guage. Modern compilers such as Clang [10, p. 32], GHC [3] or Scalac [14]
provide APIs to access (annotated) abstract syntax trees (AST) at different
stages of the compilation process. Annotated ASTs may convey not only syn-
tactic information, but semantic information (e.g. types) as well. This turns
out to be a useful input for a language processing tool – a clear benefit of the
external approach.

Rich languages offer a great amount of syntactic sugar, so that program-
mers can write terse, expressive, and easy-to-read code. The syntactic sugar,
however, is typically eliminated from the AST. The compiler replaces certain
fancy programming language constructs with semantically equivalent simpler
constructs (often referred to as core language constructs). This desugaring
process results in loss of information, which can be a disadvantage of the ex-
ternal approach: the language processing tool will be unable to reproduce the
original, syntactically rich source code. Although syntactic sugar does not
affect the meaning of a program (with respect to core language constructs), it
does have a significant impact on readability and maintainability – i.e. code
quality. Therefore recovery of syntactic sugar in a language processing tool
is an essential issue. For instance, we would like to observe the original, rich
syntax, when the tool communicates analysis results back to the programmer,
or pretty prints the code.

As the main contribution, this paper proposes the concept of front end
fusion: a technique to preserve syntactic sugar for a programming language
processing tool, if the external compiler infrastructure used by the tool applies
desugaring during the construction of annotated abstract syntax trees. We
propose a hybrid front end, a language processing tool front end, which is
the result of front end fusion: it is hybrid because it combines external and
standalone front ends. The presented approach performs a fusion of a custom
standalone parser and an external compiler infrastructure when creating the
hybrid front end. The main advantage of the presented methodology is to

COMPILER FRONT END FUSION 7

rely on an external compiler front end, use the static semantic information
calculated by the compiler, and replace its parsed information with a “non-
desugared” syntax tree.

In the presentation below we show how to assemble a hybrid front end for
Scala. The concrete problem to solve is to obtain an AST representing the
rich, sugared syntax of a Scala source code, and annotate its nodes with type
information provided by the desugaring Scala compiler.

The rest of the paper is structured as follows: in Section 2 we present
desugaring in Scala, and provide a few examples. Section 4 describes some
difficulties in front end fusion, and Section 5 provides the fusing algorithm.
Section 6 presents a discussion about the presented methodology. Finally, in
Sections 7 and 8 we present related work and conclude the paper.

2. Desugaring

Scala is a particularly good language to study desugaring, since it heavily re-
lies on syntactic sugars. For example, in this language one-argument methods
can be invoked without dot and a pair of parentheses as well. This makes both
args contains "−−help" and args.contains("−−help") valid. Fur-
thermore, the anonymous (or lambda-) function that increases an integer by
one may be written as _ + 1, which will be expanded into x => x + 1. The
for-loop is also a syntactic sugar, and not part of the core language. The loop
that prints powers of two to the standard output is the following:

for (e <− List(0, 1, 2, 3, 4)) println(Math.pow(2, e))

This may as well be written using the foreach method:
List(0, 1, 2, 4).foreach{ e => println(Math.pow(2, e)) }

Lastly, the expression which overwrites an element of an array is as follows:
val xs : Array[String] = Array("zero", "one", "")
xs(2) = "two"

The second line may also be written as
xs.update(2, "two")

In all of these examples the compiler rewrites the former to the latter during
parsing. An important consequence of these and the many other syntactic
sugars is that Scala is especially well-suited for embedding languages (e.g.
creating embedded domain-specific languages, EDSLs). However, syntactic
sugars are rather ubiquitous, and can be found in other languages as well. In
Java, anonymous functions are syntactic sugars for instances of classes with
suitable “functional interface”. Anonymous functions have the benefit that
they are easier to construct and pass around, especially when working with

8 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

streams. Another nice example of syntactic sugar is the do-notation of Haskell,
which makes it possible to write imperative style code in a purely functional
language.

Syntactic sugar can be defined in terms of rewriting rules. A rewriting
rule specifies the equivalent language constructs of the core language, thus
it gives semantics to a syntactic sugar. The application of the rewrite rules
may take place at different phases of the compilation process. For exam-
ple, semicolon inference (e.g. in Scala and Eiffel) may be performed by the
lexer. Operator syntax in Scala is rewritten to method calls during parsing.
Finally, lambda-functions are rewritten to occurrences of PartialFunction
or Function objects after typing, in a separate phase. In the end, however,
the compiler front-end can output a desugared annotated abstract syntax tree
containing the constructs of the core language.

Desugaring is not an injective function, different source code may result in
the same desugared AST. On the one hand, the desugared AST is convenient
to work with in the compiler, which is only interested in whether the code is
semantically correct, and in the meaning of the code. On the other hand, the
desugared AST may be too abstract to work with in a static analyser, in a
refactoring tool, or in a pretty-printer, where the faithful reproduction of the
original source code is expected.

Another source of information loss about the syntax used in the source code
is demonstrated by the following example. Consider a simple Scala class, which
implements a counter. It has a hidden mutable variable count, an increment
procedure to increase count by one, and a get function to retrieve the current
value.

class Counter {
private var count : Int = 0
def increment() : Unit = count = count + 1
def get() : Int = count

}

The compilation technique used in the compiler turns the hidden mutable
variable into even more hidden (“object-private”), generates a getter (count)
and a setter (count_=) method, and rewrites every access to the count field
to an invocation of the getter, and every update to an invocation of the setter.
Shall we consider this as removal of syntactic sugar? Or is this Counter
example a counter-example to desugaring? In any case, when pretty-printing
the AST constructed by the compiler, the class looks quite different compared
to the original source code.

class Counter {
private[this] var count : Int = 0

COMPILER FRONT END FUSION 9

private def count : Int = count
private def count_=(newVal : Int) : Unit = count = newVal
def increment() : Unit = count_=(count.+(1)) // + is a
method in the Int class
def get() : Int = count

}

On a side note, this code may seem broken because of a name conflict between
the field and its getter method. If we investigate the AST directly, we discover
that the name of the field is not “count”, but “count ”. The extra space
character in the name of the field is not handled properly by the standard
pretty-printer, and this causes the confusion. The right way to pretty-print
the AST would be to use a so-called “literal identifier”, as follows.

private[this] var count : Int = 0
private def count : Int = count

All in all, this example also makes it clear that the abstract representation
of the code in the compiler-generated AST may lose too much syntactical
information about the source code.

3. Hybrid front end

In the presence of a desugaring compiler and an independent parser produc-
ing accurate, syntactically sugared ASTs, a hybrid front end can be assembled.
The hybrid front end produces an AST which is built from the AST of the
custom parser, which avoids desugaring, and preserves all the syntactical in-
formation available in the source code. Then, this AST is combined with the
desugared AST constructed by the desugaring compiler front end, which con-
tains collected and inferred static semantic information. In this approach only
a parser (and a lexer) may need to be developed, and the “hard part”, the
semantic analyses including name resolution and typing can be carried out
by an existing tool, the compiler. This combination of the standalone and
external approaches should be a good trade-off for many cases.

In this paper we investigate how to build such a hybrid front end for the
Scala language. Scala is selected as case study for its richness in syntactic
sugars, its desugaring compiler. Fortunately, there is no need to develop an
accurate parser for Scala: Scalameta, an open-source meta-programming li-
brary [13], suits our needs. The proposed hybrid front end relies on Scalameta
to parse source codes, and on the Scala compiler to resolve names and infer
types. In other words, the parser of the Scala compiler is “replaced” by the
parser of Scalameta, as illustrated on Figure 1.

10 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

Scala compiler

parser
namer

packageobjects
typer

parser

Scalameta

Figure 1. Phases of the hybrid front end for Scala.

4. Difficulties in front end fusion

Our main goal is to propose a hybrid front end for Scala producing syn-
tactically rich AST annotated with proper type information. The front-end
constructs the AST using Scalameta, and attaches type information computed
by the Scala compiler. This annotated AST is an excellent input for various
language processing tools.

In order to find the type of expressions represented by the nodes of the
Scalameta AST in the typed, desugared AST produced by the compiler, a
matching between the two ASTs must be established. The two ASTs have a
very similar structure, apart, of course, from the nodes representing a syn-
tactic sugar in the Scalameta AST and their desugared counterparts in the
compiler AST. However, the two tools use different names for the same syn-
tactic categories. Literals are represented with nodes of type Literal in the
Scala compiler, while Scalameta uses type-specific specializations of the Lit
type. Therefore, in the case of the selected two tools, a matching between the
two ASTs based on node types is cumbersome to define. The position infor-
mation attached to AST nodes proved to be a better basis for the matching.
The details of this typing technique will be discussed in Section 5.1. Before
that, we investigate two issues which can hamper our fusion approach.

4.1. Position consistency. Position based matching works when both ter-
minal and non-terminal nodes have information about their positions in the
source file. Position ranges of non-terminal nodes are synthesized from the
positions of their children.

We can say that a node from one of the ASTs and a node from the other
AST are in same-position relationship, if the position ranges defined by their
tokens are equal. The same-position relationship between the two tools is
position consistent if it is a one-to-one relationship. In this case, the fact that
two nodes from the two ASTs are in same-position relationship guarantees
that they are the roots of subtrees representing the same code fragment.

COMPILER FRONT END FUSION 11

Unfortunately, Scalameta and the Scala compiler are not position consistent.
Some of the desugaring transformations can result in position inconsistencies.
An example will be presented in Section 5 (Figure 3).

4.2. Preservation of types in desugaring. When we copy type informa-
tion from the typed AST to the sugared AST, we identify matching AST nodes
using the same-position relationship. If a node c in the compiler AST is in this
relationship with a node s in the sugared AST, we copy the type information
from c to s. This approach is correct, if c and s represent Scala expressions of
the same type.

In the case of desugaring, however, nodes in the same position in the two
ASTs may refer to Scala expressions of different types. Consider, for example,
the increment method of Counter in Section 2, where the assignment to the
count variable is desugared to the invocation of the setter method count_=.
Here, the count variable on the left-hand side of the assignment operator is
in same position relationship with the setter method. Note that the type of
count is Int, and the type of count_= is the function type (Int) : Unit.
Hence it is an error to copy the type information from the compiler AST to
the sugared one with respect to these two AST nodes.

Section 2 offers examples of type-preserving desugarings as well. When
desugaring args contains "−−help" to args.contains("−−help"), the
types for all pairs of nodes in same position relationship are identical. The
same holds for desugaring the anonymous function _ + 1 to x => x + 1.

Note that nodes inserted by the compiler during desugaring do not cause a
problem if they are inserted to “unused” positions.

The construction of the hybrid front end would be easy if position consis-
tency and type preservation held. In that case nodes in same-position rela-
tionship would represent the same expression, thus they would have the same
type. Unfortunately, these properties do not hold for the chosen front ends:
the Scalameta library and the Scala compiler. This may lead to annotating
with ambiguous and even incorrect types, as we shall see in Section 5.1.

5. Fusion of two compiler front ends

Now we need to investigate how to use Scalameta and the Scala compiler
together. The hybrid front end traverses the sugared and the desugared ASTs
from top to bottom. The output is an annotated AST, which includes all
terminal and non-terminal nodes of the sugared AST, as well as the semantic
information of the desugared AST, as presented in the rest of this section. We
conclude with challenges posed by Scala compiler desugarings.

12 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

5.1. Typing a sugared AST. Our type copying algorithm annotates the
sugared AST with semantic information from the desugared AST. The algo-
rithm is given in pseudo-code below. The procedure Type takes two nodes,
a sugared one and a desugared one, as parameters. The nodes need not be in
same-position relationship. The procedure searches for same-position counter-
parts in the desugared subtree. The procedure Annotate appends the type
of a match to a list of possible types for nodes. Then the typing algorithm for
children of nodes is done, this time the match is set as root of the desugared
AST. Note that this choice restricts the search for same-position counterpart
to the subtree of the match.

If there is no match found for nodes then there still may be matches for
children of nodes, so the typing continues.

TYPE(nodes, noded)
let nodes be the root of sugared and noded the root of the

desugared abstract syntax subtrees
matches = SAME-POSITION(nodes, noded)
for match in matches

ANNOTATE(nodes, TYPE(match))
for child in CHILDREN(nodes)

TYPE(child, match)
if EMPTY(matches)

for child in CHILDREN(nodes)
TYPE(child, noded)

The function Same-Position returns a set of desugared nodes that are
in same-position relationship with nodes. The function performs a recursive
depth-first traversal of the desugared subtree. The operator “includes” checks
whether a position range of a node is between the start and end of position
range of another node. The function Same-Position uses “includes” to skip
unrelated parts. In case of position consistency, the function Same-Position
always returns a singleton set.

SAME-POSITION(nodes, noded)
let matches be an empty set of desugared nodes
if POSITION(nodes) == POSITION(noded)

ADD(noded, matches)
for child in CHILDREN(noded)

if POSITION(child) includes POSITION(nodes)
UNION(SAME-POSITION(nodes, child), matches)

return matches

COMPILER FRONT END FUSION 13

We demonstrate the typing algorithm using the desugaring examples from
Section 2. We show how to type the anonymous function _ + 1 and the array
element overwrite xs(2) = "two".

For the anonymous function, we are required to use the following class
definition because the compiler accepts only complete compilation units.

class C {
val inc : Int => Int = _ + 1

}

The sugared and desugared ASTs of the expression _ + 1 is illustrated on
Figure 2. The nodes ApplyInfix and Function are the roots of the subtrees
in the two ASTs. They are in same-position relationship. For each of the
children of ApplyInfix, the algorithm searches for same-position counterparts
in the subtree of Function. It annotates Placeholder correctly with the Int
type. However, ApplyInfix has ambiguous type because it has two same-
position counterparts (a result of the violation of position consistency): the
algorithm annotates with Int and Int => Int. Also, the algorithm does not
annotate Name("+") since the node is not in same-position relationship with
any nodes.

For the array element overwrite, we use the following program:

object O {
def main(args : Array[String]) {

val xs : Array[String] = Array("zero", "one", "")
xs(2) = "two"

}
}

The sugared and desugared ASTs of the assignment xs(2) = "two" is shown
on Figure 3. Every node in the sugared can be annotated since each node is
in one or more same-position relationships. The types of Update, Int(2) and
String("two") are Unit, Int, String, respectively. However, Name("xs")
receives two distinct types: the correct type Array[String and the type of
the method update, which is (Int, String) : Unit. Again, this is a result
of violation of position consistency.

6. Evaluation

The problem to be solved is implementation of a suitable front end for a
variety of external language processing tools. Most common features that
these tools offer are static analysis and program code transformation. Many
tools statically analyse the code at hand, and even perform transformation

14 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

ApplyInfix

(sugared)
(pos: 35–40)

Placeholder
pos: 35–36

Name("+")

(pos: 37–38)
Int(1)

pos: 39–40

Function

(desugared)
pos: 35–40
Int => Int

ValDef(TermName("x$1"))
pos: 35
Int

Apply
pos: 35–40

Int

Select(TermName("+"))
pos: 35–38
(Int) : Int

Ident(TermName("x$1"))
pos: 35–36

Int

Literal(Constant(1))
pos: 39–40

Int

Figure 2. Sugared and desugared ASTs of _ + 1. Positions
are given in offsets.

based on information from static analysis, combining the two features. We
elaborate on the effect of hybrid front ends on these features in what follows.

6.1. Benefits in program code transformation. External tools which per-
form source code transformations would benefit from a front end that gener-
ates a more accurate source code representation. A typical workflow consists
of parsing, locating the code to be transformed in the AST, transformation
and pretty printing the AST.

A hybrid front end may improve locating the code in the AST in specific
cases. Depending on the compiler front end infrastructure and the order and
organisation of the compilation phases, the AST may become subject to opti-
mizations and compile time meta-programming. By the time the external tool

COMPILER FRONT END FUSION 15

Update (sugared)
pos: 104–117

Name("xs")
pos: 104–106

Int(2)
pos: 107–108

String("two")
pos: 112–117

Apply (desugared)
pos: 104–117

Unit

Select(TermName

("update"))
pos: 104–106

(Int, String) : Unit

Ident(TermName("xs"))
pos: 104–106

Array[String]

Literal(

Constant(2))
pos: 107–108

Int

Literal(Constant

("two"))
pos: 112–117

String

Figure 3. Sugared and desugared ASTs of xs(2) = "two".
Positions are given in offsets.

receives the AST, constant expressions may be folded, and meta-programming
constructs are expanded into generated code. It may happen that the program-
mer specifies a (part of a) meta-programming construct as the subject of a code
transformation, and the compiler front end replaces it with its expansion in
the AST, thus the search in the AST fails.

Benefit in pretty printing is clear. A hybrid front end retains lexical and
syntactical information on the code. The retained information, which includes
syntactic sugars, comments and whitespaces, helps the pretty printer to gen-
erate code that pleases the programmer. Without this information, as a side
effect, for-loops may become foreach functions, invaluable documentation
comments may be lost, and tabs may be replaced with spaces or vice versa,
throwing away careful indentation.

6.2. Effect on static analysis. The difference between ASTs in representa-
tion of the same statement, such as the assignment counter = counter + 1,

16 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

may cause ambiguity in interprocedural semantic analyses. This statement can
be regarded as an assignment, where the value from the right hand side flows
to the left hand side, or as an invocation of the setter method counter_= in
the class Counter.

We can resolve this ambiguity in the following way. When the user does
not define a setter for counter, the compiler will generate a trivial setter. In
that case, the analysis can treat the statement as an assignment. Otherwise,
the assignment regarded as an invocation of the setter method.

7. Related work

Several programming languages offer syntactic sugars to make software de-
velopment more convenient and efficient. At first, we present a resugaring
technique in Scala, then we investigate other languages as well.

7.1. Resugaring in Scala. An alternative approach to build a language pro-
cessing tool is to further enhance the annotated AST provided by an external
tool by undoing the desugaring and adding the sugared syntax tree to the rep-
resentation. In [12] we introduced a resugaring algorithm for Scala by linking
two ASTs, a sugared and a desugared, together. The output is a joint AST
which includes terminal and non-terminal nodes of both ASTs and the links
between them. Figure 4 illustrates the relevant fragment of the joint AST of
the Counter class, with a sugared AST constructed with Scalameta, and a
desugared AST provided by the scalac compiler.

Counter (sugared)

count

(18-46)
increment

(49-86)
get

(89-121)

Counter (desugared)

count

(18-30)
getter
(30)

setter
(30)

increment

(53)
get

(93)

Figure 4. Resugared AST of the Counter class. Positions are
given in offsets.

The links between the nodes of the two ASTs are established by an algorithm
that traverses the two ASTs simultaneously in level-order. The algorithm is
presented on Figure 5.

7.2. Scalameta. Our choice of parser library, Scalameta [13], comes with ca-
pability to annotate ASTs with types. The Scalameta compiler plugin collects
information from compiler into semantic database. During parsing, Scalameta

COMPILER FRONT END FUSION 17

RESUGAR(trees, treed)
let trees be the root of sugared and treed the root of the

desugared AST
edges = RESUGAR-CHILDREN(trees, treed)
if POSITION(trees) overlaps POSITION(treed)

ADD(edges, EDGE(trees, treed))
return edges

RESUGAR-CHILDREN(trees, treed)
let edges be an empty set of links between the nodes
let mapping be an empty mapping from positions to nodes
for i = 1 to NUM-CHILDREN(treed)

ADD(mapping,
POSITION(CHILDREN(treed, i)),
CHILDREN(treed, i))

for i = 1 to NUM-CHILDREN(trees)
if CHILDREN(trees, i) has a matching node in mapping

let match be the desugared node with overlapping
position in mapping

UNION(edges,
RESUGAR-CHILDREN(CHILDREN(trees, i), match))

return edges

Figure 5. Resugaring algorithm

consults the semantic database and exposes types in its Semantic API. Simi-
larly to our fused front end, Scalameta also uses position information.

So far, Semantic API is limited to symbol types and name resolution. An-
notating complex expressions is a work in progress.

7.3. Syntactic sugars in other languages. The records in Erlang are taken
as syntactic sugar, thus are translated to tuple expressions by the compiler.
A record of n fields is substituted with a tuple of n + 1 elements, where the
very first element is the name of the record and the following elements are the
values of the fields (listed in the defined field order).

There are two major refactoring tools for Erlang, RefactorErl [5] and Wran-
gler. These tools use different approaches in source code processing. Refac-
torErl follows a standalone approach: it uses its own analyser framework to
make every bit of information available. Even the layout, comment, prepro-
cessor constructs and record information are stored in the Semantic Program

18 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

Graph (SPG), thus the source code restoration with its context is straightfor-
ward. Opposed to RefactorErl, Wrangler [9] is closer to the external approach,
since it uses the standard syntax tools [1] library that comes with Erlang OTP.
Atop of the standard parser, however, the tool annotates ASTs with additional
information with macro, record and layout information.

The Glasgow Haskell Compiler [11] uses several well-separated phases in
compilation process. Type checking is performed right before desugaring
phase, thus extracting representation after type checking phase includes infor-
mation on syntactic sugar constructs. Haskell-tools [4] refactoring framework
uses this representation for further analysis and transformation – this is an
external approach.

7.4. Literate Programming. Donald Knuth’s literate programming [8] al-
lows us to generate documentation and code from a single WEB file. The weaving
process generates TEX document, which can be rendered in human-readable
format. The tangling process generates code (say, C), which can be compiled
and run.

It may be possible to reconstruct the original WEB file from TEX document
and code. This problem is similar to ours: assuming that front ends for TEX
and C can be fused, a hybrid front end could produce a WEB file from TEX
documentation and C code of the same program. The C code carries infor-
mation to restore section structure of the WEB file. The section names and
documentation in each section are part of the TEX file. Annotation comments
(e.g. /*8:*/ and /*:8*/) and TEX macros (e.g. \X8:) provide a way to es-
tablish connection between C code and TEX file. In contrast, we used position
information in our hybrid front end for Scala.

7.5. Preprocessor constructs. Preprocessor constructs, such as macros,
can also be considered as a special form of desugaring. In the original source
code a macro application is presented, but usually well before the static se-
mantic analysis a preprocessor substitutes the macro application with the
corresponding macro body, and the compiler builds the annotated AST from
the expanded macro body. This raises a similar problem as the desugaring in
a language processing tool. For example, the source code needs to be pretty
printed after a refactoring transformation with the original macro applications
kept.

For Erlang, the tool RefactorErl provides a custom parser to store both the
original code and the preprocessed one [7, 6]. This makes the pretty printing
after refactoring straightforward, and the static analysis more accurate on the
expanded AST.

COMPILER FRONT END FUSION 19

The C programming language also provides a powerful macro system. The
tool CRefactory [2] introduces a standalone approach to solve the same issue
by preserving the preprocessor directives during parsing.

8. Conclusion

In this paper, we elaborated on how to implement a programming language
processing tool in order to minimize the effort. We showed that building upon
modern compiler infrastructure helps, but it comes at the price of losing in-
formation, due to desugaring. We presented an approach, front end fusion,
to circumvent this. We proposed an algorithm to construct an annotated ab-
stract syntax tree by fusing the ASTs of the Scala compiler and the Scalameta
library.

The presented algorithm is based on the simultaneous traversing of the
ASTs to be fused while considering the position consistency of the desugared
nodes. We also discussed the need of type-preserving desugaring in terms of
the fusion, and presented the solution for the Scala-specific deviations.

We have implemented and evaluated our methodology by creating a lan-
guage processing tool for Scala with the aim of providing a refactoring frame-
work for parallelisation. Probably, the presented approach may be used for
other programming languages as well.

9. Acknowledgement

The research has been supported by the European Union, co-financed by
the European Social Fund (EFOP-3.6.2-16-2017-00013).

We would like to thank the anonymous reviewers for calling our attention
to literate programming.

References
[1] Ericsson AB. Erlang Syntax Tools User’s Guide.

http://erlang.org/doc/apps/syntax_tools/users_guide.html, 2018.
[2] Alejandra Garrido. Program Refactoring in the Presence of Preprocessor Directives.

PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2005.
AAI3199001.

[3] Adam Gundry. A Typechecker Plugin for Units of Measure. SIGPLAN Not., 50:11–22,
August 2015.

[4] Haskell-tools Refact. A GHC based toolset for Haskell programming.
http://haskelltools.org, 2018.

[5] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei, Melinda Tóth, István Bozó,
and Roland Király. Modeling semantic knowledge in erlang for refactoring. In Knowledge
Engineering: Principles and Techniques, Proceedings of the International Conference on
Knowledge Engineering, Principles and Techniques, KEPT, Sp. Issue, Studia Universi-
tatis Babeş-Bolyai, Series Informatica, volume 54, pages 7–16, 2009.

20 ARTÚR POÓR, TAMÁS KOZSIK, MELINDA TÓTH, AND ISTVÁN BOZÓ

[6] Róbert Kitlei, I. Bozó, Tamás Kozsik, Máté Tejfel, and Melinda Tóth. Analysis of
preprocessor constructs in erlang. In Proceedings of the 9th ACM SIGPLAN Erlang
Workshop, pages 45–55, Baltimore, USA, September 2010.

[7] Róbert Kitlei, László Lövei, Tamás Nagy, Zoltán Horváth, and Tamás Kozsik. Layout
preserving parser for refactoring in Erlang. Acta Electrotechnica et Informatica, 9(3):54–
63, 2009.

[8] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
[9] Huiqing Li and Simon Thompson. Tool support for refactoring functional programs. In

Partial Evaluation and Program Manipulation, San Francisco, California, USA, January
2008. Assoc of Computing Machinery.

[10] Bruno Cardoso Lopes and Rafael Auler. Getting Started with LLVM Core Libraries.
Packt Publishing, 1st edition, 2014.

[11] Simon Marlow and Simon Peyton-Jones. The glasgow haskell compiler, 2012. in The
Architecture of Open Source Applications (Volume II: Structure, Scale, and a Few
More Fearless Hacks), http://aosabook.org/en/ghc.html.

[12] Artúr Poór and Tamás Kozsik. Resugaring: Undo desugaring in language processing
tools. Thessaloniki, Greece, 2017. To appear in the Proceedings of the Symphosium of
Computer Languages and Tools.

[13] Scalameta. Metaprogramming library for Scala. http://scalameta.org, 2018.
[14] Dean Wampler and Alex Payne. Programming Scala – Scalability = Functional Pro-

gramming + Objects. O’Reilly Media, 2nd edition, December 2014.

Eötvös Loránd University, Budapest, Hungary
Email address: {poor_a, kto, toth_m, bozo_i}@inf.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.02

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK

FOR REFACTORERL

MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

Abstract. Graph visualisation is a well-known and researched field of
graphical informatics. Several good algorithms were developed and re-
viewed by our days. However, most of the graph drawing tools mainly
focus on static drawing generation. In this paper we present an approach
that is efficient enough to visualise the user-requested parts (views) of a
relatively large Semantic Program Graphs of Erlang projects in soft real-
time. With the presented approach the visualised graphs can be traversed
interactively, by changing between different levels of detailed information,
which may support code comprehension in the RefactorErl framework.

1. Introduction

Graph visualisation is a popular research topic, and several algorithms and
tools exist that are ready to use. However, the increasing size of the nodes
and links among them to visualise on the graph makes the layout calculation
more complicated and slow.

Graph visualisation is often used in tools supporting static and dynamic
source code comprehension. It is very convenient to denote the relations/de-
pendencies among program entities using a graph view.

RefactorErl [11, 22] is a static source code analysis and transformation
tool for Erlang [10]. Besides the more than 20 refactorings, the tool provides
several functionalities to support program comprehension: semantic queries,

Received by the editors: 31 March 2018.
2010 Mathematics Subject Classification. 68N01, 65D18.
1998 CR Categories and Descriptors. I.3.1 [COMPUTER GRAPHICS]: Hardware

Architecture – Parallel processing ; I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling – Physically based modelling .

Key words and phrases. graph visualisation, layout generation, physically based mod-
elling, code comprehension.

This paper was presented at the 12th Joint Conference on Mathematics and Computer
Science, Cluj-Napoca, June 14-–17, 2018.

The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

21

22 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

static-dynamic call analyses, data-flow analysis, dependence analyses, etc. The
results of several analyses can be visualised as graphs.

Also, the tool itself uses a graph based intermediate representation for the
source code: the Semantic Program Graph [16]. The SPG contains lexical,
syntactic, and semantic information about the source code. These three lay-
ers generate huge amount of data (nodes and edges) from the source code.
Even for a module with few hundreds of lines of code (LOC) the standard
visualisation tools, such as Graphviz [5], are hardly able to generate a proper
view.

Although, it depends on the complexity of the source code, but in general,
there are 50-times more nodes and edges in the graph than lines of code in the
source code.

When analysing millions of LOC in industrial scale software, or when a
single Erlang application is analysed, having more than twenty thousands of
LOC, the graph visualisation is almost impossible. Thus we decided not to
visualise the entire graph, but only the relevant parts for the user. We needed
a graph that can be traversed fully interactively, switching between the levels
of information.

The main contribution of this paper is a solution to the above presented
problem. We are providing a graph visualisation method and a new component
gview for RefactorErl that is capable of handling real Erlang projects. We
demonstrate different views available through the new component and evaluate
the performance on different open-source projects.

2. Related work

Graph visualisation has been subject to research since long time ago, many
good visualisation tools are available for use today.

2.1. Graphviz. Graphviz [5] is an open source graph visualisation software.
It supports many input formats, specifications, and algorithms for presenting
graphs. However, Graphviz is unable to render graphs with high node count,
in an interactive manner, as experienced during the development of the user
interface of RefactorErl. Rendering the main view of Mnesia into an svg file
with Graphviz, consisting of around 2200 nodes, took around 3700 seconds
(more than an hour). After the layout generation, opening the generated svg
file in a browser took 4 minutes. The layout for the very same view can be
generated by gview in 2 minutes, cached, and then displayed interactively.

2.2. Wolfram Mathematica. Wolfram Mathematica [9]: The Wolfram Lan-
guage provides functions for the aesthetic drawing of graphs. Algorithms

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 23

implemented include spring embedding, spring-electrical embedding, high-
dimensional embedding, radial drawing, random embedding, circular embed-
ding, and spiral embedding. In addition, algorithms for layered/hierarchical
drawing of directed graphs as well as for the drawing of trees are available.

2.3. MSAGL. MSAGL [6]: MSAGL is a .NET library and tool for graph
layout and viewing. MSAGL was developed in Microsoft by Lev Na-chmanson,
Sergey Pupyrev, Tim Dwyer, Ted Hart, and Roman Prutkin.

2.4. Erlgraph. Erlgraph [2] is an application which enables a d3js force di-
rected graph to connect to an Erlang VM. The plotted data consists of the
active processes of the running application and the messages they send or
receive. D3.js is a JavaScript library for manipulating documents based on
data. D3 aids creating data driven animations using HTML, SVG, and CSS.
D3 is said to emphasis on modern web standards, which gives full capability
of modern browsers without tying to a proprietary framework. Erlgraph pro-
vides an insight into the underlying mechanism of an Erlang application in
runtime. Erlgraph is an extremely useful tool for visualising how processes of
the project interact with each other. What different in gview and Erlgraph
is that while Erlgraph realises a dynamic (runtime) analysis of Erlang code,
gview targets static analysis of the Erlang project at hand, which means no
code needs to be executed.

3. Background

Gview is built upon Flib [4]. Flib (at the time of writing this paper) is
a single-author OpenGL development library for C++. It supports creating
and handling Windows, OGL contexts and OpenGL objects. It also has a GUI
system, graphical and linear mathematical tools. On windows platforms, Flib
uses the standard Windows API for window creation and management, on
Linux platforms, it uses the XLib windowing system. Consequently, OpenGL
context creation is done using WGL and GLX respectively. The Flib API
documentation generated by doxygen can be found on the online repository [3].

4. Visualisation framework: gview

4.1. Overview. Dot [18] is a general purpose graph describing language ca-
pable of representing directed and non-directed graphs alike, with extra in-
formation options on both edges and nodes. RefactorErl supports exporting
all the data from semantic graphs of loaded Erlang files to a single dot file.
Therefore, by parsing this exported dot file gview is able to create a layout for
the views of the graphs and display these views interactively. The architecture
of the software can be seen on Figure 1.

24 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

Figure 1. The architecture of gview.

4.2. Dot files. The main reason of using dot files is the existing support for
it in RefactorErl and the ease of implementing a custom parser in C++. On
the other hand, using dot files as intermediate data representation is quite
rigid. Having a file changed one must regenerate the dot file in RefactorErl,
and on every startup, gview has to parse the whole dot file. The data-flow of
the program can be seen on Figure 2.

Figure 2. Data-flow in the visualisation process.

4.3. Rendering. The rendering is done using OpenGL [21] with the support-
ing classes of Flib. We preferred OpenGL because it is hardware close and
very fast and, unlike DirectX, portable across operating systems. The drawing
data is generated on the fly after each iteration of the layout algorithm, thick
lines are tessellated into triangles, circles into regular polygons by the C++
implementation. Extra information on vertices for anti-aliasing is also added
in this process. The drawing data is then uploaded to the graphics card and
drawn as a single batch, avoiding the cost of setting up many drawing calls.
The anti-aliasing is done by our shader program on the GPU.

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 25

4.4. Layout. Our layout calculating algorithm is a modified version of two-
dimensional N-Body simulation, known as Force-Directed Layout (FDL) [14].
In a classic N-Body simulation we would have N objects, each pair exerting
attracting gravitational force, proportional to the mass and inverse square
of the distance, to each other. However our FDL algorithm considers these
objects (nodes of the graph) to have electric charges, instead of gravitational
effects, and thus repel one-another. Furthermore edges between nodes of the
graph are represented as springs of logarithmic strength, meaning the force
they exert is logarithmically proportional to the distance they stretch across.
This way the edges attract nodes they connect. After the initial setup Acting
net forces are calculated in every iteration for each node, then we update the
position of nodes according to these net forces and the elapsed simulation time.
Forces are taken to act instantaneously, which means they are applied directly
to the position of nodes not on their speed.

There are many toggleable elements of this simulation; the strength of the
springs, the amount charge a node has, the stepping time between iterations of
the simulation, and initial positions of the nodes. Choosing these parameters
were done on an empirical basis; we experimented with them until the results
looked good. Therefore, by modifying the charge of nodes or the strength of
the springs we can change the final spacing among edges or nodes. This way
we can emphasis parts of the displayed graph.

4.5. Related libraries. Beside the Flib there are many other excellent frame-
works for OpenGL development.

SDL (Simple Directmedia Layer) [12] is one of the oldest of these frame-
works, it has outstanding wide system and hardware support. However, its
interface was designed for C not C++, SDL does not use object-oriented
paradigms. SFML (Simple and Fast Multimedia Layer) [8] is another ex-
cellent choice for OpenGL development. It is completely object oriented (by
the C++ binding) with cross-platform support, but it lacks the GUI module.
Qt [7] is a professional and robust framework with good GUI and OpenGL
support.

Flib (developed by the author of this paper) brings the required OpenGL
window and context management classes and wrapper classes for the mostly
used GL object sand it has a GUI module which we use for simple text output.
It also has a robust event handling system and very convenient graphic classes
such as vectors and matrices.

4.6. GUI Framework. Flib provides GUI classes on top of OpenGL. Gview
uses Flib to automatically open a window, an OGL context associated with this
window, and a GUI context which is responsible for storing GUI related data

26 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

such as fonts and shaders. The GUI context also has a main GUI layout where
the application can attach GUI elements. The GUI elements are structured in
a tree pattern: each GUI element may have a parent layout, each layout may
have any number of children elements, layouts are GUI elements too.

The events, draw calls, and update calls are forwarded down the hierarchical
structure each time. To detect node selection and change the current view,
we use the event listener functionality of Flib to translate mouse events such
as movements, button down, button up, and more complex events as click or
double click. The graph transformation is also done with the built-in classes
of Flib, these are responsible for calculation of scaling, offset, and rotation
values that can be used for generation of the displayed mesh.

4.7. Mesh Generation. Although a mesh is generated on the CPU after
each iteration of the layout calculation by gview, using the CPU for this task
is perfectly sufficient since the displayed part of the graph is expected to have
at most 3000 nodes and 10000 edges (not even Mnesia has this much in the
main view) which results in at most tens of thousands of triangles. For this,
the task is easily handled by an average CPU these days.

Having the layout (the node positions) of the calculated graph, we tessellate
it into triangles and lines. The data to be transferred is generated in a batch,
thus it can be sent in one operation what makes the upload fast. After the
mesh calculation, the drawing can be performed with a single call. Uploading
to the GPU is done by buffer object streaming, dropping the buffer object
before each upload and creating a new one. This enables the GL to complete
drawing commands referring the previous buffer while uploading the new one.

Uploading the mesh is done using the designated interface of Flib for simplic-
ity. Tessellation of lines uses the built-in tessellation functionality from Flib
which automatically includes distance-field data needed by the anti-aliasing
technique. The data is drawn using the drawing API of Flib as well. Results
of the tessellation can be seen on Figure 3.

4.8. Dynamic Level of Detail. A very useful technique for graphical ap-
plications is Dynamic Level Of Detail [23] (DLOD), it involves altering the
detailedness of an object (how many triangles it has or what textures it uses)
based on how small that object appears on the screen. This technique is ef-
fective because our eyes can not make out the difference on small objects, we
use DLOD in gview to reduce workload on CPU when the mesh is generated.
As for an example, circles that represent module or file nodes get drawn as
regular n-sided polygons. The value of n is based on the zooming, the more
it is zoomed in, the larger the value of n is. Application of DLOD is shown
on Figure 4.

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 27

Figure 3. Tessellation of the edges (the thickness of the edges
was increased for demonstration).

To calculate the number of sides our polygon needs, when approximating
a circle, let us say the circle has r radius given in pixels on the screen. The
size of the radius in pixels can be calculated from the resolution at which the
rendering is done and the zooming level. Considering the formula for the circle
perimeter 2*r*π we can approximate the number of pixels on the perimeter of
the circle easily, as p = 2*r*M PI in C++. When drawing a circle of radius
r, we ought to approximate a curve of length p. After taking measurements,
we found that using p/4 line segments produces satisfactory images. It is
also worth noting, that letting the number of sides drop below 3 is trivially
pointless.

Figure 4. Number of sides (denoted as n) of regular polygons
representing circles with different zooming level.

4.9. Anti-aliasing. Anti-aliasing [13] is done using distance fields, through a
technique called distance-to-edge anti-aliasing (DEAA) [17]. The main idea is
that, if we know the distance from the edge of the primitive when processing a
fragment, then we can set the transparency to drop when getting near the edge
of the primitive. Thus, having the transparency stored in the alpha channel of
the fragment, the OpenGL blending mechanism will ensure it will be displayed

28 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

transparently. The effect of using anti-aliasing can be seen in Figure 5. The
distance function is calculated as the minimum of the distances to the edges
of the mesh. For this purpose, we store the distances in separate channels (red
channel holds the distance from the left edge, green channel from the right edge
etc.). Calculating these distances on a per-vertex basis and using the OpenGL
built-in linear interpolation functions, we can approximate the distance to the
edges of the mesh as the minimum of the interpolated distances.

Figure 5. Call and recursive edge with and without antialiasing.

5. Generating the layout

The layout of a displayed graph is defined as a list containing points (two-
dimensional) for each node of the graph. The algorithm described below takes
an initial layout and processes it in iterations. We use the Force-directed layout
algorithm, that is described in more detail in Section 4.4. For experimenting,
we have defined and implemented three different versions of the algorithm
(Sections 5.1, 5.2, and 5.3). The efficiency of different implementations can
be seen on Figure 6, where we plotted the number of iterations it took to
generate the final layout for tested views, against the number of connections
in the views, by connections we mean the number of potential forces acting in
the simulation. The number of these connections is in O(n2 + e), where n is
the number of nodes and e is the number of edges.

5.1. CPU implementation. The first implementation uses only the CPU
without any optimization; it simply iterates through all node pairs and sums
up the forces then applies the forces to the node positions (instantaneous
forces). The calculation of forces the nodes exert on other nodes takes O(n2)
time where n is the number of nodes. Summing the spring forces takes time
proportional to the number of edges e: O(e). Applying the forces on n nodes
take O(n) time.

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 29

Figure 6. Iterations needed to reach final state plotted
against number of connections (n2+e) in view.

5.2. QuadTrees. The second implementation uses quad trees for space par-
titioning to reduce computation time. These quadtrees have regions as nodes,
generated by recursively dividing the points in a region into two sets of the
equal size, using horizontal splitting lines and vertical splitting lines alter-
nately. This method is also called as Barnes-Hut algorithm [19]. The recur-
sion stops when a certain minimum of nodes in a region is reached. Therefore,
when calculating the net force on a node we can traverse the generated tree
and approximate the net force exerted by all the nodes in a region of the tree
in constant time when it is far enough from the currently processed node. This
technique results in O(n ∗ log(n)) time complexity when the distribution of
the nodes is even. The problem is that the constant factor of the complex-
ity is quite big as the tree has to be regenerated in each iteration (and not
CPU cache friendly). On large views this method outperforms the trivial CPU
implementation.

5.3. GPU implementation. The third implementation is the parallel equiv-
alent on GPU of the first one using OpenGL Compute Shaders. We chosed
OpenGL over Cuda or OpenCL because it has good support for AMD and
Intel cards too, integrates nicely with the rest of the drawing code, and re-
quires no extra libraries. The graph is sent to the GPU in adjacency matrix
representation in a texture image. A kernel is then dispatched for each node

30 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

of the graph which computes the net force acting on that node. The GPU
implementation reuses the calculated data and thus data is only streamed to
the CPU once every frame (typically 20 iterations). As a consequence, when
the number of nodes is smaller than the number of shader cores, the GPU is
not used efficiently. This issue could be remedied using a divide and conquer
approach: each kernel only calculates the net force on a node exerted by a
portion of other nodes. Then another shader is dispatched to sum up the
subresults.

5.4. Alternatives. Stress majoring [15] is another good algorithm that we
looked into using. However, on lack of time it was not implemented. Thus, it
is not discussed in this paper.

5.5. Caching. Generating the final layout of a graph view is very compu-
tational and time costly. Therefore, caching the generated layouts can save
important resources and speed up gview. Caches need to be stored perma-
nently, thus they are saved as external binary files using the file streams of the
C++ standard library.

One way to implement caching is having a cache file for each view of the
graph. This potentially results in thousand of files per graph, although they
can be loaded separately resulting in less memory usage.

The other way is keeping one cache file per project. This way, the cache
management is easier and clearer. The resulting cache file sizes depend on
the opened views. The cache files barely reach 50kB even on the largest test
project: Mnesia [20].

6. RefactorErl graph views

Plotting the whole graph exported to the dot file would be pointless and
computationally extremely expensive. Consequently, we define views of the
graph and only plot one of these views at a time reducing workload and letting
the user concentrate on one aspect of the project.

6.1. Main view. The main view consists of all the modules and functions
defined or referenced in the application. Each function is linked to the module
they are defined in. One can change the view by clicking on a module node,
then the view for that module is shown.

6.2. Module view. The module view is similar to the main view, but it
displays only one module and the functions defined by the actual module. It
has a ROOT node through which one can return to the main view. One can
change the view by clicking on a function node, than the view for that function
is brought up. The massive main view of Mnesia is shown on Figure 7.

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 31

Figure 7. The main view of Mnesia containing more than
2500 nodes and edges.

Figure 8. The main view of the CosTime application.

6.3. Function view. The function view plots a function and all functions
that directly or indirectly call/get called by it (Figure 9). The plot depth
of the call graph can be adjusted, this depth is an argument of the view.
Currently the depth is not limited, but in the future we plan to limit it to a
reasonable size.

32 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

Figure 9. Deep function views of GreenErl and MAS projects.

6.4. Visual elements. The displaying engine in gview supports various
graphical elements to provide information to the user. The shape of the nodes
can be customised and set for example to triangle, square, or circle. The
width of edges can be adjusted, the colour of the edges, the displayed text
below nodes, and the shape of the arrows of edges can be customised as well.
Through these options the view generator is able to highlight the differences
between the semantic entities (function, module, etc.) of the displayed graph.
Some of the available elements are shown on Figure 10.

7. Evaluation

To measure the performance of gview and profile it we tested it on several
open-source projects.

The largest project was the Mnesia [20], a robust, distributed database
management system, written in Erlang. With more than 2500 functions (and
around 25 thousands LOC) this is by far the largest project gview was tested
on. Plotting all the texts of the main view interactively could be considered a
challenge alone. Part of the main view is shown on Figure 11.

CosTime [1] is an Erlang implementation of the OMG CORBA Time and
TimerEvent Services. It has many modules with few functions, thus it was
a good candidate to test gview on. Main view of CosTime can be seen on
Figure 8.

The measurements were made on loading of dot files and generating the
views. We can conclude that the loading of dot files was the major slowdown
on startup. The loading may take more than 90% of the start time. Other

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 33

Figure 10. Some of the customisable visual elements: trian-
gles, circles, edges, recursive edges, etc.

Figure 11. The massive amount of functions in Mnesia.

events performed on startup, such as window or OGL context creation take
negligible time compared to loading and interpreting dot files.

34 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

Figure 12. The average time taken for layout generation, tes-
sellation, label setting, and drawing the view.

When displaying a view, the most time is spent on generating the layout
(70% and up). Label placement and mesh generation could run in real-time
(without layout calculation). Figure 12 demonstrates distribution of time
spent on different stages. Analysing the charts, it is obvious that described
caching mechanism largely improves the efficiency and ensures real-time re-
sponse on large views.

As an efficiency test, we have compared the execution times of gview and
the old Graphviz based dependence graph drawing component of RefactorErl.
We have exported a graph of the Mnesia application to a dot file. The graph
generation with gview needed cc. 90 seconds, which could be then interactively
used. To generate to same graph in SVG with Grapviz took more than an hour,
and because of the amount of nodes displaying and browsing the content was
hard to manage.

Measurements were done on a laptop, running Windows 10, with Intel(R)
Core(TM) i5-5250U CPU @ 1.60GHz and 8GB of memory, with Intel(R) HD
Graphics 6000 integrated GPU, using a TOSHIBA MQ02ABD100H 1TB HDD
5400Hz, which could be considered a low-end setup today. Using a 7th gen-
eration Intel processor and a much faster SSD could potentially improve the
results of some of these benchmarks.

8. Conclusion and future work

RefactorErl framework has several graphical and command-line interfaces,
that support refactorings, static code analysis, and code comprehension as
well. The tool uses a Semantic Program Graph as an intermediate representa-
tion of the source code. The SPG includes static semantic information beside
the syntactic and lexical information. The conversion of the SPG to an SVG
file with Graphviz was possible only on relatively small graphs. There was

AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 35

high demand for an efficient and interactive graph visualisation tool that led
us to create the gview component presented in this paper.

RefactorErl has support for exporting the SPG to a dot file, thus we used
this functionality and the dot format for representing the graph. These files
are then processed by our custom dot parser implemented in C++. The views
of the exported graph are generated and visualised using OpenGL. We have
used Flib for GUI and OGL object management. To calculate the layout of the
graph we used Force-directed layout generation. To improve the performance
of the interactive viewer, the resulted layout is saved to cache files to avoid
the continuous need of recalculating. To enhance the visual quality of the
rendered scene we used anti-aliasing. Dynamic Level Of Detail is applied to
reduce geometry, which is then tessellated using Flib and drawn in a single
batch. We made the appearance fully customisable, thus the users are able
to use different shapes and arrows for different semantic entities and relations
among them accordingly. The user is able to switch between views using
the cursor; pointing on a node and clicking brings up a more detailed view
associated with that node.

Although static data access through dot files was a good starting point,
it turned out that processing/parsing the dot file is the bottleneck in graph
generation. In the future we plan to replace it with dynamic graph information
acquired directly from RefactorErl.

Also, using the GPU for parallelisation of mesh tessellation is also an ap-
propriate subject for future research.

References

[1] The CosTime application. http://erlang.org/doc/apps/cosTime/cosTime.pdf. [access
date: Jun. 2, 2018].

[2] Erlgraph on GitHub. https://github.com/aol/erlgraph/. [access date: Jun. 4, 2018].
[3] Flib documentation. http://makom789.web.elte.hu/docs/index.html. [access date: Jun.

2, 2018].
[4] Flib project github page. https://github.com/Frontier789/Flib/. [access date: Jun. 2,

2018].
[5] Graphviz homepage. https://www.graphviz.org/. [access date: Jun. 2, 2018].
[6] Microsoft automatic graph layout homepage. https://www.microsoft.com/en-

us/research/project/microsoft-automatic-graph-layout/. [access date: Jun. 2, 2018].
[7] Qt — cross-platform software development for embedded and desktop.

https://www.qt.io/. [access date: Jun. 2, 2018].
[8] Simple and Fast Multimedia Library. https://www.sfml-dev.org/. [access date: Jun. 2,

2018].
[9] Wolfram Mathematica homepage. https://www.wolfram.com/mathematica/. [access

date: Jun. 2, 2018].
[10] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2nd edition, October

2013.

36 MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

[11] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit Kőszegi, Máté
Tejfel, and Melinda Tóth. RefactorErl, Source Code Analysis and Refactoring in Erlang.
In Proceedings of the 12th Symposium on Programming Languages and Software Tools,
Tallin, Estonia, 2011.

[12] Fabian Fagerholm. Simple Directmedia Layer (SDL). 2006.
[13] A. R. Forrest. Antialiasing in practice. In Rae A. Earnshaw, editor, Fundamental Algo-

rithms for Computer Graphics, pages 113–134, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg.

[14] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Software - Practice and Experience, 21(11):1129–1164, 1991.

[15] Emden R. Gansner, Yehuda Koren, and Stephen North. Graph drawing by stress ma-
jorization. In János Pach, editor, Graph Drawing, pages 239–250, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[16] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei, Anikó Nagyné Vı́g, Tamás
Nagy, Melinda Tóth, and Roland Király. Modeling Semantic Knowledge in Erlang for
Refactoring. In Knowledge Engineering: Principles and Techniques, Proceedings of the
International Conference on Knowledge Engineering, Principles and Techniques, KEPT
2009, volume 54(2009) Sp. Issue of Studia Universitatis Babeş-Bolyai, Series Informat-
ica, pages 7–16, Cluj-Napoca, Romania, July 2009.

[17] Jorge Jimenez, Diego Gutierrez, Jason Yang, Alexander Reshetov, Pete Demoreuille,
Tobias Berghoff, Cedric Perthuis, Henry Yu, Morgan McGuire, Timothy Lottes, Hugh
Malan, Emil Persson, Dmitry Andreev, and Tiago Sousa. Filtering approaches for real-
time anti-aliasing. In ACM SIGGRAPH 2011 Courses on, page 6, 2011.

[18] Eleftherios E. Koutsofios and Stephen C. North. Drawing graphs with dot. Technical
Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ, 1991.

[19] Tancred Lindholm. N-body algorithms. http://www.cs.hut.fi/ ctl/NBody.pdf. [access
date: Jun. 2, 2018].

[20] H̊akan Mattsson, Hans Nilsson, and Claes Wikström. Mnesia - a distributed robust
dbms for telecommunications applications. practical aspects of declarative languages,
pages 152–163, 1999.

[21] Randi J. Rost, Bill Licea-Kane, Dan Ginsburg, John M. Kessenich, Barthold Lichten-
belt, Hugh Malan, and Mike Weiblen. OpenGL R© Shading Language. 2004.

[22] Melinda Tóth and István Bozó. Static Analysis of Complex Software Systems Imple-
mented in Erlang. In Central European Functional Programming School, volume 7241
of Lecture Notes in Computer Science, pages 440–498. Springer, 2012.

[23] Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simplification for polyg-
onal models. In Proceedings of the 7th conference on Visualization ’96, volume 25, pages
327–334, 1996.

ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117,
Hungary

Email address: {makom789, bozoistvan, tothmelinda}@caesar.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.03

APPLICATION FUNCTIONS PLACEMENT OPTIMIZATION

IN A MOBILE DISTRIBUTED CLOUD ENVIRONMENT

ANNA REALE, PÉTER KISS, CHARLES FERRARI, BENEDEK KOVÁCS,

LÁSZLÓ SZILÁGYI, AND MELINDA TÓTH

Abstract. Distributed Computing in 5G Mobile Networks is a poten-
tial requirement for certain applications that depends on low latency and
information sharing through or with data information sources. Such ap-
plications may be observed as a distributed application. We present a
tool and method to optimize the deployment of distributed applications,
dividing it into Modules, in a 5G Mobile Network environment. To do
so we apply an approximation algorithm for the Path Computation and
Function Placement Problem described in [1]. We show that under certain
circumstances it is beneficial to deploy parts of such applications in a Cloud
Computing environment with Distributed Cloud resources at the Mobile
Network Edge. We verify our findings with an example, an Augmented
Reality application.

1. Introduction

5G mobile networks promise high bandwidth and low latency on the radio
interface for both downlink and uplink data [2] which capability will enable
new type of applications and services. Such mobile applications include Aug-
mented Reality (AR), Virtual Reality, Gaming and many other bandwidth
heavy and latency sensitive applications, potentially applied for critical use
cases such as Intelligent Transportation Systems or Surveillance.

Deploying an application on a 5G network with distributed cloud capabil-
ities involves the choice of were to allocate what parts of the applications. It
depend both on the application itself and on the involved network. In this

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68U20,68U35,90C35.
1998 CR Categories and Descriptors. C.4[PERFORMANCE OF SYS-

TEMS]: Modeling techniques– ; C.2.4[COMPUTER-COMMUNICATION NET-
WORKS]:Distributed Systems– Distributed applications .

Key words and phrases. 5G, Distributed Cloud,Distributed Computing, Application
Partitioning, Edge Computing, Augmented Reality.

This paper was presented at the 12th Joint Conference on Mathematics and Computer
Science, Cluj-Napoca, June 14-–17, 2018.

37

38 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

work we propose a method and tool to facilitate planning of refactoring of an
existing applications into modules. To do so we calculate the best placement
of the modules on the network compute servers, given user profile and con-
text conditions informations such as: typical user request, policy per type of
user (SLA), available bandwidth, network node types, available computation
power and cost of computation on the device, in the distributed edge and
central cloud.

We have chosen a resource demanding AR application for our test. We
assume that such applications can benefit both from involving low latency
external computation power and significant sized, but affordable, storage ca-
pabilities. To validate our assumptions we apply the mentioned tool and
measure the application properties under certain circumstances and network
constraints.

Main contributions of this work is the proposal of a method to automatize
application partitioning and placement in a 5G/Edge environment. We intro-
duce a possible tool-set implementing our method, its experimental setup and
evaluation.

Most works on this topic focuses only on the problem of task partitioning
and placement, while they seldom addresses issues of multiple users and load
balancing. For this purpose in our work we integrate an approach from network
service placements and apply a variation of the approximation algorithm for
the Path Computation and Function Placement Problem described in [1].

2. Background

In the following section we give an informal description of the problem we
address and contextualize it by referring to related works.

2.1. Problem Statement. To partition an application and to deploy its
modules in a 5G network with edge computing resources, we need to calculate
what is the (sub)optimal grouping of the components and their placement that
maximizes the usage of network capacities in a given instant. Giving a flexible
method to automate this process enables applications to adapt to environment
changes through dynamical reallocation of resources.

This task can be reduced in three main steps:

(1) Model the application through hybrid analysis (using both static
analysis and heuristics from dynamic profiling of the given applica-
tion);

(2) Calculate a partition to divide the application in modules minimiz-
ing their interactions and communication cost while maximizing the
responsiveness and perceived performances;

(3) Decide best placements of the modules in the given network;

APPLICATION PARTITION PLACEMENT FOR MOBILE CLOUD 39

2.2. Related Works. State-of-the-art Application Partitioning Algorithms
(APAs), applied to distributed processing, still face many issues and chal-
lenges. An extensive summary concerning APAs in Mobile Cloud Computing
is proposed in [3]. Based on the model used as an input to the partition,
the authors identify three main categories of existing solution: graph-based,
Linear Programming (LP) or hybrid solutions between the two.

2.2.1. Application Partitioning. Solutions based on graph representations of
the applications may use data flow graph to represent data dependencies be-
tween operations [4, 5, 6],

while class dependency graphs can be used to describe the structure of an
application [7, 4].

The authors in[8] partition object-oriented programs by generating an Ob-
ject Relation Graph (ORG) to estimate the runtime objects and their inter-
actions, and then applying graph partitioning to this ORG. In [9] a two-layer
graph structure is used, in which a second graph, the Target Graph (TG)
accounts for the various target infrastructures and distribution objectives.

Graph-based APAs require efficient manual annotation techniques, it is up
to the programmer to balance the metrics and specify metrics function. In
addition, a greatresource overhead is generated in case of applications with a
large number of components. Finally the performance of graph-based solutions
depends on the application characteristics: the analysis is easily performed if
the applications is already modularized somehow. On the other hand, LP
based solutions always produce optimal results for a particular objective func-
tion [10, 11, 12]. LP APAs need dynamic scheduling techniques, extra profiling
and resource monitoring, thus they also cause high overheads.

Hybrid solutions extract the important features of graph-based APAs and
LP-based APAs in order to improve the performance and mitigate overheads
but, in most cases, at the expenses of generating only a sub-optimal parti-
tion [13, 14, 6, 15, 16].

In this work we plan to create a tool to help to define a set of candidates for
partitions according to different network conditions. Such partition database
could be used in the future to allow dynamic reallocation of the application,
based only on light dynamic profiling of the context it runs in.

2.2.2. Application Modeling and graph partitioning. The NP-hard graph par-
titioning problem is a fundamental issue in many other domains of computer
science, such as parallel processing [17] and load balancing [18]. In grid com-
puting the graph partitioning problem has been used to define parallel tasks

40 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

to be deployed on heterogeneous infrastructures. As stated by [16] many pro-
posed algorithms, such as MiniMax, VHEM, QM, PaGrid, and MinEX, use a
multilevel paradigm, while others use simulated annealing [19].

In the literature, decomposition techniques based on graphs [20] involve
three macro steps: (1) Identify level of granularity for the partitions elements
or tasks; (2) Analyze the application with task dependency and interaction
graphs, (3) Map possible valid partitions.

Properties of tasks that affect the quality of mapping are: feasibility of task
generation, size of tasks and size of data handled by the task or passed between
two of them.

In fact, one needs to take in consideration the interaction between the par-
titioned task: they often share data and may have a precise sequential or-
der [21, 22].

In scheduling the interaction graph is used to represent the application
dividing it into tasks. Nodes in the graph are the tasks while their weights
denote the amount of work to be performed by the task. Edges represent the
interactions between tasks. Generally edges are undirected, when directed they
are used to show the direction of the flow of data (if the flow is unidirectional).
Weights on edges contain the cost of communication. Shared data may imply
synchronization protocols (mutual exclusion, etc) to ensure consistency.

In distributed systems theory, the interaction graph is also referred as the
Control Flow Graph (CFG). A CFG is a representation, using graph notation,
of all paths that might be traversed through a program during its execution.
The graph provides the structure of the program as a whole, among others,
making explicit all of the paths that are induced by a conditional branch. A
function dependency graph, for example, is a sub-graph of this graphs, having
has partition granularity the function. Dependency between functions implies
interaction (calls or data passing) between them.

A Call Graph (CG) is a dependency graph that represents calling rela-
tionships between functions in a computer program. Each node denotes a
procedure and each edge(f, g) indicates that procedure f calls g. Thus, a
cycle in the graph indicatesrecursive calls.

Call graphs are results of a basic program analysis, that can be used for
model programs, or as a basis for further analyses. Call graphs can be dynamic
or static. A dynamic call graph is a record of an execution of the program,
for example as output by a profiler. Thus, a dynamic call graph can be exact,
but only describes one execution of the program.

In object-oriented languages the potential target method(s) of many calls
cannot be precisely determined solely by an examination of the source code

APPLICATION PARTITION PLACEMENT FOR MOBILE CLOUD 41

[23]. Thus, to build the call graph, it is necessary to have inter-procedural
data and control-flow analysis of the program.

Granularity. Program partitioning has been used in application offloading
for resource-constrained devices. Previous works propose computation offload-
ing at different levels of granularity: Module level [5], Method level [13], Object
level [8, 9], Thread level [14, 6], Component level [10, 16]. Various metrics can
help to decide a good level of granularity for the partition of a graph. For
instance, the critical path, being the longest directed path between any start
and finish nodes, indicates what is the shortest time needed to execute. The
time can be calculated from it’s length, computed by sum of the weights of the
traversed nodes. The average degree of concurrency, that is the total amount
of work divided by critical path length is also a common metric. Related to
the size of the partitions we consider important the size of the data associated
with tasks, because it helps to minimize volume of data-exchange and maxi-
mize data locality. Also the size of context is an indicator of how affordable
or expensive the communication between tasks can be.

2.2.3. Placement Models. Appropriate resource allocation is a very old issue
in different disciplines. In this section, we present two resource allocation
problems in computer networks: placement of Virtual Machines (VM) in cloud
computing and placement of Virtual Networks Function (VNF).

VM Placement. With the term VM placement we refer to the process of
selecting the most appropriate physical machines for VMs. According to [24],
objectives of VM placement are maximizing resource utilization, reliability and
availability. There are several approaches to VM placement in the literature
[25, 26, 27], some variants even consider dynamic placement and multi-clouds
placement. For instance, [25] uses traffic-aware VM placement to improve the
network scalability in data center, defining it as an hard optimization problem
solved by a two-tier approximation algorithm to overcome very large sizes.

Service Chain Placements in NFV. Service Function Chaining (SFC)
[28] aims to overcome the limitation of static deployment models applying
algorithms that can optimally map SFC to substrate network. This category
of algorithms is referred as “Virtual Network Functions Placement (VNFP)”
algorithms [29]. As explained in [30], in this category of placement problems,
we are given a physical network, VNF specifications, and a set of service
requests. The algorithm performs the three following steps:

(1) Calculate an optimal number of needed VNF types, all the VNFs
that should be instantiated compose a set.

(2) Place VNFs to physical nodes such that the demand of VNFs do not
exceed the capacity of physical nodes;

42 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

(3) Assign service requests to VNFs such that the demand of service
requests do not exceed the capacity of VNFs.

However, the three steps are not independent, and their order depends from
the implementation of the algorithm and the problem statement. For example,
[31, 32] give an Integer Linear Programming(ILP) formulation; many others,
preferring fast heuristics to allow real time decisions [33], propose a dynamic
programming; [34] gives a Mixed ILP formulation and a heuristic algorithm
that solve the problem incrementally, which can solve the problem for incoming
flows without impacting existing flows. Among the meta-heuristic solutions,
[35] proposes a method based on genetic algorithms while [36] considers a
greedy algorithm and a tabu search-based algorithm.

Although in our example we will not work with VNF specific algorithms, we
claim that our methods may be applied to them as well. This is especially true
for network functions such as User Plane Function and special observability,
monitoring, tracing, logging and analytics VNFs.

3. A model for application partitioning and deployment

In the following sections we provide formal description of the models and
methods used to construct our simulation toolset, followed by a description of
the real application we used as first input for it.

3.1. Models. To map an application based on functions granularity we con-
struct a function dependency graph. In scheduling and load balancing, this
method is used when the application can be described from the static definition
of the dependency graph and the function sizes are known.

Determining an optimal mapping of the function dependency graph becomes
solvable if there are good heuristics available to estimate the data flow and a
structured call graph. In our case we use a static analyzer tool to generate the
function call graph from the source code. Then we run the application and
collect for each function, using a non-intrusive dynamic profiler, the percent-
age of runtime spent in it. In addition, for each link between two functions,
we collect the number of times the callers calls the callee. We normalize those
results and store them in the call graph as node and edge weights. The nor-
malized edge weights will define the dependency between the two connected
functions, thus to estimate how to separate the application to reduce such
interactions it will be enough to use a minimum edge-cut strategy. The node
weight is a useful information to estimate the complexity of the computations
handled by the function, this value can be used to balance the partitions or to
deploy different optimization strategies. For example if we want for the User
Equipment (UE) accessing the application to save energy, we could want to

APPLICATION PARTITION PLACEMENT FOR MOBILE CLOUD 43

concentrate the computational load on the Edge or on the Cloud the UE can
connect to.

It is important to stress how we are deploying a context-insensitive construc-
tion of the application call graph. In fact, each node will represent exactly a
single contour: an analysis-time representation of a function.

3.2. Application Partitions. Having our weighted graph, we partition it
using Multilevel [37] version of the Kernighan - Lin [38] algorithm (MLKL).
We choose the multilevel strategy to be able to handle potentially large func-
tion call graphs. After running the algorithm, the application will be divided
into a number of Modules where the ceiling for the number of partitions can
be selected by the user, and the weight of each Module and the interaction
frequencies between them are derived from the original graph. The directed
graph resulting as an output of the partition steps represents the due interac-
tions between the modules. This new level of abstraction means that we lose
information like when and for how long two specific functions in two mod-
ules will interact at running time. Such information also depends on the user
interaction with the application itself and can vary from instance to instance.

We decided to adopt a pessimistic approach in the module deployment
phase, taking as the weight of the assumption making that we want to instan-
taneously run all the modules.

3.2.1. MLKL and METIS. MLKL is a Multilevel Version of the KL algorithm.
It means that the algorithm is applied in three repeated phases: Coarsen,
Partition and Uncoarsen.

First, the algorithm coarsen down the graph by merging connected vertices
until a small graph is obtained. Then this graph is partitioned and uncoarsened
again, while optimizing the partition in each uncoarsening step using KL as
refinement function.

The KL algorithm is iterative. It starts with an initial partition and in
each iteration it finds two subsets which guarantee a smaller edge-cut. If
such subsets exist, then it moves them to the other part and this becomes
the partition for the next iteration. The algorithm continues by repeating
the entire process. In the implementation proposed by [39] the KL algorithm
computes for each vertex v a quantity called gain which is the decrease (or
increase) in the edge-cut if v is moved to the other part. The algorithm
terminates when the edge-cut does not decrease after x number of vertex
moves and those last moves are undone to get the maximum edge cut.

3.3. Network Model. Now we test our partition behavior in our network to
see what configuration gets the maximum out of the same network conditions.

44 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

Thus we deploy all tasks in all nodes and see what are used the most to satisfy
network demand considering network capacities.

The network is a fixed set of computational resources and communication
links. The network is represented by a graph N = (V,E), where V is the set
of nodes and E is the set of edges.

We classify nodes in three categories: UE, Edge Cloud Servers and Central
Cloud Servers. Note that the classes are disjoint and our proposed method
works with other types of disjoint classification of nodes as well.

Nodes and edges have capacities. The capacity of an edge e ∈ E is denoted
by c(e), and the capacity of a node v ∈ V is denoted by c(v). All capacities
are positive integers. c(e) represents the available bandwidth between the
two network nodes; c(v) depends on the amount of available computational
resources and the cost of accessing them. We suppose several UEs

that request services from the application. Each of these services may be
different on the Service type and the Location of the involved nodes. Examples
of such services can be a video upstream or augmented downlink video. Each
Module is a part of the application that, combined, can solve a certain service
request.

3.4. Service Request. A service request for user j is specified by a tuple
sj = (Gj , dj , bj , Uj), where the components are as follows:

Gj = (Mj , Yj) is a directed (acyclic) graph called the place-and-route graph
(pr-graph). There is a single source and a single sink, that corresponds to the
node requesting the service. We denote the source and sink nodes in Gj by
nsj ∈Mj and ntj ∈Mj , respectively. The other vertices correspond to services
or processing stages of a request. The edges of the pr-graph are directed and
indicate precedence relations between pr-vertices.

The demand of a request sj is dj and its benefit is bj . Demand is computed
from the cost of running a complete module. The benefit is the benefit of
serving that precise request of service. It should be calculated from the SLA,
but it depends on the network owner as well. By scaling, we may assume that
minj{bj} = 1.

We map the User Equipment service request sj as the realization of a path
trough the directed partition graph representing the application. In this case
the demand of a Module can be calculated over the cost of each function
composing the Module that composes the specific service request. The routing
cost from one Module to the other become than the overhead or transmission
cost brought by the selected Module interaction scheme. For example, the size
of the data to be transferred from one Virtual Machine to the other to keep
the state consistent trough all their network instances [40]. The impact of the
service request on the network thus can vary only based on the location of

APPLICATION PARTITION PLACEMENT FOR MOBILE CLOUD 45

the Modules. To specify the possible realization of a pr-graph in the physical
network we use a function Uj : Mj ∪ Yj → 2V ∪ 2E where Uj(m) is a set
of “allowed” nodes in N that can perform module m, and Uj(y) is a set
of “allowed” edges of N that can implement the precedences and routing
requirement that corresponds to y. We now define for each service request sj
the product network pn(N, sj). The node set of pn(N, sj), denoted by Vj , is

defined as Vj , ∪y∈Yj (Uj(y) × y). We refer to the subset Uj(y) × y as the
y-layer in the product graph. The edge set of pn(N, sj), denoted Ej , consists
of two types of edges Ej = Ej,1 ∪ Ej,2 defined as follows:

(1) Routing edges connect vertices in the same layer, they represent the
physical links in the network.
Ej,1 = {((u, y), (v, y)) | y ∈ Yj , (u, v) ∈ Uj(y)}

(2) Processing edges connect two copies of the same network vertex in
different layers, representing the move from one Module to the con-
secutive one in the service chain specified in Y .
Ej,2 = {((v, y), (v, y′)) | y 6= y′ ∈ Yj edges with common endpoint m,
and v ∈ Uj(m)}

PCPF problem. The substrate network N = (V,E) and a set of service
requests {si}i∈I described as stated before, are the necessary input for the
solution we used for Path Computation and Function Placement Problem
(PCFP). The goal is to compute valid realizations P̃ = {p̃i}i∈I′ for a subset

of the requests I ′ ⊆ I so that P̃ satisfies the capacity constraint of N and
maximize the total benefit

∑
i∈I′ bi. For our work, we apply the fractional

relaxation of PCFP-problem described in [1]. This is a variation of Raghavan’s
randomized rounding algorithm for general packing problems [41].

3.4.1. Experiment Setup. We created a generic setup for Multi Access Edge
Computing partitioning and distribution. It is composed by four resource con-
strained devices connected with an edge server through redundant networks,
where different network setups can be tried. The application has initially all
the processing activities done in the server, which collects information from
the four connecting devices and performs the processing.

The connections used for the experiment explained in this article were car-
ried with wireless 5 GHz and Ethernet connections, where the client devices
were equipped with 100 megabits network shields.

The client devices were equipped with cameras using Sony IMX219 sensors,
streaming real-time video to the server. The camera was configured to create
frames of 640x480 pixels, 25 frames per second and 4:3 aspect ratio. The
connection between the clients and the server was an UDP connection.

46 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

3.4.2. Measurement Tools. The measurements used to configure the tool are
grouped in three independent areas namely: (1) Network performance; (2)
Computational performance, and (3) Software processing cost. Each of them
composed as described below:

• Network Performance: available resources, Jitter between nodes (La-
tency variation), Locality UE-Edge-Cloud;
• Computational Performance: Machine capabilities, Network connec-

tion speed, Processor capabilities, Memory availability;
• Software processing cost : Dependency between two functions (num-

ber of calls), Resource usage from App (Average memory Usage Mb
per function), Cost of the software execution (processor cycles that
are required to execute each function of the software).

The software measurements were taken using instrumented profiling tools,
Valgrind [42] and our self-produced tools.

3.5. Modeling the example application. During our experiment, we chose
to start at a function level granularity for our applications, to be able to
partition it into Modules. A typical AR application has the following chain
of services: capture, preprocessing, detection, recognition, tracking, rendering.
Each of this service calls a sequence of Modules. Note that these Modules may
be different for different applications. Another example can be a partitioning
of a Linear Unicast service which may have the following modules: Streaming,
Origination, Manipulation, Encapsulation, Encryption, Encoding, according
to [43].

In our first example (Figure 1) we show the result of running the partitioning
only on the call graph of the capture service (involving camera calibration),
where different colors refers to different modules and the number of requested
partitions was 5. As second example (Figure 2), we show the Function Call
graph generated only by the camera calibration part of the application 2 on
the edges the calls between functions and on the nodes the CPU clocks.

The result of the whole AR application partition is shown in Figure 3a. The
Start node represents the interface with the User Equipment, the Main node
is the partition in which the known entry point of the program execution is
located.

The arrows are the interaction between Modules. For example, we know
that Main can receive data and be called by M1, but every call from the Main
goes either to M2 or to M4. In the construction of service requests we kept
the following interaction constraints: if the service needed by UE is contained
in M1 the shortest possible request path became {(Start,Main)(Main,M2)
(M2,M1)(M1,Main)}.

APPLICATION PARTITION PLACEMENT FOR MOBILE CLOUD 47

Figure 1. Partitioned Call Graph for an Image Capture Service

The Simulation Network will represent the possible interactions between
nodes. In our simulation, we decided to allow both direct UE to Edge and UE
to Cloud communications (Figure 3b). We consider an average transmission
overhead in the range of few ms (1 or 2) between UE and Edge nodes, of 25
ms betweens Edge and Local Clouds and of the sum of the two (26 or 27)
between UE and Cloud. The resulting pr-graph

is shown in Figure 3c. We normalize the capacities of the network nodes
based on available memory. We experimented on a SLA scenario where we
want to reduce the computation time at a minimum overhead.

For the same computation demand we define the benefit of a chosen deploy-
ment path based on the computation cost (we estimated the Edge to be four
times more expensive than the cloud) and the average transmission overhead.
Both weights were calculated as the coefficient of variation of the relative
measures registered on the Experiment Setup.

In all the generated simulations a deployment was proposed for which 12
contemporary simulated user requests where served, respecting the capacity
constraints of different networks, obtaining maximal benefit flows like the one
shown in Figure 3d. On average, the benefit was higher than running every-
thing on the device: a complete run on the single device lasted on average
9444 ms, while the average run on our simulations saved from 667 ms up to
3904 ms with maximum average communication overhead per request being
1152 ms (Table 1).

48 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

Figure 2. Camera calibration call graph

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8
Edges 4 2 5 5 5 3 4 4
UEs 3 6 3 3 3 5 4 4
Local Cloud 1 1 1 1 1 1 1 1
Average overhead per request (ms) 37 58 144 29 1152 583 84 148
Average benefit per request (ms) 3941 1348 3743 3348 1820 2841 3340 2395
Average final benefit (ms) 3904 1289 3598 3319 667 2258 3255 2246

Table 1. Experiment result: benefits of partitioning and de-
ployment of the same application on different networks topolo-
gies

4. Conclusions and Future Work

In this work we described the methods and the algorithms we used to de-
velop a first prototype of our tool to partition and deploy an application in a

APPLICATION PARTITION PLACEMENT FOR MOBILE CLOUD 49

(a) AR Application after par-
tition

(b) Simulation Network
(c) Complete AR appli-
cation pr-graph

(d) Maximal benefit
flows satisfying all user
requests

Figure 3. Models of a real application

5G distributed network. We believe this is the minimum analysis to be per-
formed to, in the future, be able to implement a dynamic reallocation of the
applications based on variation of the context conditions. The problem was
divided in three steps. First selecting the application granularity and con-
struct a graph model. Than reduce it into Modules by solving the NP-hard
graph partitioning problem it represents; finally implement and apply a frac-
tional relaxation of the Path Computation and Function Placement Problem
as described by [1].

Simulation were run with various simultaneous request of service. For our
specific set up and our AR application, there is a possibility to implement a
distributed scenario with a reasonably low overhead.

The next step would be to implement the new application partition sug-
gested by the framework and locate them in the physical network to verify
how close our simulations are to reality. We hope by running the new deploy-
ment to be able to perfect the parameters we used to describe the network
capacities and the benefits of the distributed execution. Interesting measures
to validate the outcome on different AR applications could be quality and

50 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

efficiency related measures: for example Video Quality as Average Bit rate
expressed in Kbps.

5. Acknowledgements

This research has been co-financed by the European Social Fund (EFOP-
3.6.2-16-2017-00013). We would like to thanks our university supervisors and
the 5G Ericsson Garage team: Gábor Fábián, Zoltán Gera.

References

[1] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path computation
and function placement in sdns,” in International Colloquium on Structural Information
and Communication Complexity, pp. 374–390, Springer, 2016.

[2] E. AB, “5g systems, enabling the transformation of industry and society,” white paper,
ERICSSON, 2017.

[3] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi, “Application parti-
tioning algorithms in mobile cloud computing: Taxonomy, review and future directions,”
Journal of Network and Computer Applications, vol. 48, pp. 99–117, 2015.

[4] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the cloud: en-
abling mobile phones as interfaces to cloud applications,” in Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware, p. 5, Springer-Verlag
New York, Inc., 2009.

[5] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for partitioning
and execution of data stream applications in mobile cloud computing,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 40, no. 4, pp. 23–32, 2013.

[6] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden, “Wishbone: Profile-
based partitioning for sensornet applications.,” in NSDI, vol. 9, pp. 395–408, 2009.

[7] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, “Adaptive offloading
inference for delivering applications in pervasive computing environments,” in Pervasive
Computing and Communications, 2003.(PerCom 2003). Proceedings of the First IEEE
International Conference on, pp. 107–114, IEEE, 2003.

[8] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. J. Giuli, and X. Gu,
“Towards a distributed platform for resource-constrained devices,” in Distributed Com-
puting Systems, 2002. Proceedings. 22nd International Conference on, pp. 43–51, IEEE,
2002.

[9] L. Wang and M. Franz, “Automatic partitioning of object-oriented programs for
resource-constrained mobile devices with multiple distribution objectives,” in Paral-
lel and Distributed Systems, 2008. ICPADS’08. 14th IEEE International Conference
on, pp. 369–376, IEEE, 2008.

[10] L. Yang, J. Cao, and H. Cheng, “Resource constrained multi-user computation parti-
tioning for interactive mobile cloud applications,” Technical reort. Department of Com-
puting, Hong Kong Polytechnical University, 2012.

[11] D. Kovachev, “Framework for computation offloading in mobile cloud computing,” IJI-
MAI, vol. 1, no. 7, pp. 6–15, 2012.

[12] M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu, “Improving energy efficiency of personal
sensing applications with heterogeneous multi-processors,” in Proceedings of the 2012
ACM Conference on Ubiquitous Computing, pp. 1–10, ACM, 2012.

APPLICATION PARTITION PLACEMENT FOR MOBILE CLOUD 51

[13] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: making smartphones last longer with code offload,” in Proceedings of
the 8th international conference on Mobile systems, applications, and services, pp. 49–
62, ACM, 2010.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution
between mobile device and cloud,” in Proceedings of the sixth conference on Computer
systems, pp. 301–314, ACM, 2011.

[15] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and F. Zhao, “Energy-
optimal software partitioning in heterogeneous multiprocessor embedded systems,” in
Proceedings of the 45th annual design automation conference, pp. 191–196, ACM, 2008.

[16] T. Verbelen, T. Stevens, F. De Turck, and B. Dhoedt, “Graph partitioning algorithms
for optimizing software deployment in mobile cloud computing,” Future Generation
Computer Systems, vol. 29, no. 2, pp. 451–459, 2013.

[17] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel computing,”
Parallel computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[18] H. Meyerhenke, B. Monien, and S. Schamberger, “Graph partitioning and disturbed
diffusion,” Parallel Computing, vol. 35, no. 10-11, pp. 544–569, 2009.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
science, vol. 220, no. 4598, pp. 671–680, 1983.

[20] F. Berman, “High-performance schedulers,” The grid: blueprint for a new computing
infrastructure, vol. 67, pp. 279–309, 1999.

[21] D. L. Long and L. A. Clarke, “Task interaction graphs for concurrency analysis,” in
Proceedings of the 11th international conference on Software engineering, pp. 44–52,
ACM, 1989.

[22] M. Naghibzadeh, “Modeling workflow of tasks and task interaction graphs to schedule
on the cloud,” CLOUD COMPUTING 2016, p. 81, 2016.

[23] D. Grove and C. Chambers, “Ibm research report an assessment of call graph construc-
tion algorithms,” 06 2000.

[24] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual machine placement
schemes in cloud computing,” Journal of Network and Computer Applications, vol. 66,
pp. 106–127, 2016.

[25] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks
with traffic-aware virtual machine placement,” in INFOCOM, 2010 Proceedings IEEE,
pp. 1–9, IEEE, 2010.

[26] R. A. da Silva and N. L. da Fonseca, “Algorithm for the placement of groups of vir-
tual machines in data centers,” in Communications (ICC), 2015 IEEE International
Conference on, pp. 6080–6085, IEEE, 2015.

[27] J. Chase, R. Kaewpuang, W. Yonggang, and D. Niyato, “Joint virtual machine and
bandwidth allocation in software defined network (sdn) and cloud computing environ-
ments,” in Communications (ICC), 2014 IEEE International Conference on, pp. 2969–
2974, IEEE, 2014.

[28] J. Halpern and C. Pignataro, “Service function chaining (sfc) architecture,” tech. rep.,
2015.

[29] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions placement and
routing optimization,” in Cloud Networking (CloudNet), 2015 IEEE 4th International
Conference on, pp. 171–177, IEEE, 2015.

[30] Y. Xie, Z. Liu, S. Wang, and Y. Wang, “Service function chaining resource allocation:
A survey,” arXiv preprint arXiv:1608.00095, 2016.

52 A. REALE, P. KISS, C. FERRARI, B. KOVÁCS, L. SZILÁGYI, AND M. TÓTH

[31] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual network function
placement for virtual 5g network infrastructure,” in Communications (ICC), 2015 IEEE
International Conference on, pp. 3879–3884, IEEE, 2015.

[32] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal placement of virtual
network functions,” in Computer Communications (INFOCOM), 2015 IEEE Conference
on, pp. 1346–1354, IEEE, 2015.

[33] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating virtual
network functions,” in Network and Service Management (CNSM), 2015 11th Interna-
tional Conference on, pp. 50–56, IEEE, 2015.

[34] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan, and T. Wood,
“Virtual function placement and traffic steering in flexible and dynamic software defined
networks,” in Local and Metropolitan Area Networks (LANMAN), 2015 IEEE Interna-
tional Workshop on, pp. 1–6, IEEE, 2015.

[35] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of virtualized deep packet
inspection functions in sdn,” in Military Communications Conference, MILCOM 2013-
2013 IEEE, pp. 992–997, IEEE, 2013.

[36] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and S. Davy, “Design
and evaluation of algorithms for mapping and scheduling of virtual network functions,”
in Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pp. 1–9, IEEE,
2015.

[37] B. Hendrickson and R. W. Leland, “A multi-level algorithm for partitioning graphs.,”
SC, vol. 95, no. 28, pp. 1–14, 1995.

[38] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman
problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.

[39] G. Karypis and V. Kumar, “Metis – unstructured graph partitioning and sparse matrix
ordering system, version 2.0,” tech. rep., 1995.

[40] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-time provisioning
for cyber foraging,” in Proceeding of the 11th annual international conference on Mobile
systems, applications, and services, pp. 153–166, ACM, 2013.

[41] P. Raghavan, Randomized rounding and discrete ham-sandwich theorems: provably good
algorithms for routing and packing problems. University of California. Computer Science
Division, 1986.

[42] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary
instrumentation,” in ACM Sigplan notices, vol. 42, pp. 89–100, ACM, 2007.

[43] W. Scott, “Content delivery networks (cdn): Caching principles, architec-
ture, and resource optimization.” https://www.slideshare.net/hacktivism/

cisco-live-content-delivery-networks-cdn, 2017. Online; accessed 29-March-2018.

Faculty of Informatics, ELTE university, Budapest, Pázmány Péter stny.
1/C., 1117 Hungary

Ericsson Hungary Research and Development Center, Budapest, Magyar tudósok
körútja 11, 1117 Hungary

Email address: {anna.reale, axx6v4, svu938, toth m}@inf.elte.hu
Email address: {benedek.kovacs,laszlo.szilagyi}@ericsson.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.04

INSTRUMENTATION OF C++ PROGRAMS USING

AUTOMATIC SOURCE CODE TRANSFORMATIONS

ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

Abstract. The main tool for programmers is always the compiler, but
there are also many other tools to help the development process. Some of
these tools work on the source code of the program, analyzing, measuring
or transforming it. Implementing a source based tool is a complex task,
especially for complex languages such as C++. In recent years the C++
language received an easy-to-use library for developing such software, in
the form of clang tooling. However, this library only focuses on processing
a single translational unit of the program, independently to the other parts
of the build process. Tools which ignore this big picture could result in
failures when used on larger projects, or incorrect runtime behavior. In this
paper, we describe some of these challenges encountered in real-world C++
projects and propose possible solutions for future tools to fix or mitigate
the issues.

1. Introduction

There are tools which work on an already built binary, by intercepting
calls (such as strace[13]), running the code on a virtual machine (such as val-
grind[14]), or by transforming the binary before (such as syzygy[6]) or during
(such as orbit profiler[12]) the execution of the program. There are tools which
work within the compiler, using transformations on the intermediate language
in it - for example, sanitizers[10] in the compilers are usually implemented
this way. There are also tools which work by analyzing, and possibly modi-
fying the source code. For example, static analyzers[11] work by performing
more detailed checks on the source code, even providing automatic correction
options for some cases.

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.3.3 [Software]: PROGRAMMING LAN-

GUAGES – Languages Constructs and Features.
Key words and phrases. C++ programming language, source code transformation,

instrumentation.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.

53

54 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

All of these have their disadvantages.
When a tool works on an already existing binary, it lacks information. De-

bug symbols can be generated for any type of builds, but optimizations, such
as inlining limit the options available for tools even then. This can be coun-
tered by running the tool on binaries compiled with special flags and providing
an API that programs can use to share information.

When a tool is integrated into the compiler, it is only available with that
compiler – and as these tools are often under active development, possibly
even limited to recent compiler versions, limits their use especially for software
targeting several compilers, operating systems or platforms.

When a tool works on the source code, it is limited to the capabilities
of the language, and it is subject to the differences between the compilers
and the complexity of interpreting the source code. These disadvantages are
especially crucial in the case of C++: While the C++ standard[7] is detailed,
it leaves choices to the compiler, and there are several examples for the most
used compilers providing different results for simple looking C++ programs
- sometimes even diverging from the standard. Interpreting the language is
also challenging because of the preprocessor: as C/C++ programs tend to
use many different configuration options[1], there is not a single AST to be
analyzed and modified.

Most tools could be implemented using different techniques, and there are
examples for implementing the same tool in different ways: Code coverage
can be measured with in-compiler instrumentation (the -fcoverage option
of clang), with transforming the source code (Coco[Bullseye]), or with a
tool working on a special binary (gcov[5]). On the other hand, it is entirely
possible that a tool can not be implemented in all three ways: Uninitialized
memory reads can be detected by a binary tool (valgrind) or an in-compiler
instrumentation tool (memory sanitizer in clang), but implementing it with a
source transformation is not possible within the limits of the language.

In this article, we focus on the problems and possible solutions when imple-
menting AST level source code instrumentation tools based on clang tooling.
Source-based tools were chosen because of their generality: tools working on
the binary or as part of the compiler are limited to the platforms where the
tool runtime or the compiler is supported. This is often a limiting factor even
on desktop systems - several tools, such as valgrind, or the clang sanitizers
only work on Linux-like systems. On other, especially embedded systems,
the problem is even more significant: these targets often have custom compil-
ers, making compiler based techniques unusable, and possibly limited or no
support for running external runtime tools along the main program.

INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 55

Our focus is how these transformations can be integrated into and per-
formed on large-scale projects. We discuss questions like how a source code
transformation tool can be included in the build process, or how the amount of
available configurations increases the complexity or possible problems[16][15].

It is also important to mention that source code transformations could easily
result in behavior changes of the program[4], and ensuring that these are not
happening is a similarly important aspect of tool development. In some cases,
this is impossible. In this situation, it is important to minimize and document
these - as in the case of the previous Coco example, which results in behavior
changes with specific operators. While we mention that this is an issue, further
analysis of the question is out of scope for of article.

2. Transformation overview

A C++ program is built by transforming every C++ source file separately
into an object file, then linking those object files, and dependencies together
into a library or executable. This process is also layered: the dependencies
used by the linking step are built similarly, but often provided only in the
final, binary form. Larger projects usually consist of multiple components,
each built this way, depending on each other. Based on this, we can split
dependencies into two categories: internal, which are built by the project, and
external, which are expected to be found in a compatible binary format.

The first issue with program instrumentation is handling the dependencies:
when the instrumentation changes the build process – as in the case of in-
compiler or source based instrumentations –, it is possible that changes have
to be made in the dependencies. An extreme example for this is the mem-
ory sanitizer[10]: it requires every dependency, including the C++ standard
library, to be built using the memory sanitizer.

This is, even more, an issue when using source transformation tools: in this
case, the task is not only the addition of some compiler flags into the build
process of the dependency, but the actual execution of another tool during its
build. It is also important to note that some dependencies are only provided
in a binary form, making transformations in them impossible.

While the tool itself can not make the task of building everything in the
necessary way more manageable, the problem can be mitigated by limiting
what parts of the software transform. In case of the memory sanitizer example,
there are no better choices because the way it is designed, but most software
should be implemented in a way that would allow at least limited usage without
rebuilding everything. To achieve this, tools either need a way to decide which
files they can safely change, or they should not rely on any change that would
change the ”interface” of a file.

56 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

Clang tools generally use a compilation database for executing the tool: a
JSON file containing every compilation command with all of their parameters.
This file can be generated by commonly used C++ build systems, and then
the tool can look up the specific compilation parameters from it. This process
is executed as follows:

(1) Configure the project. For some tools, like CMake[8], this step also
generates the compilation database.

(2) Build the project. For some tools, like bear[9] with make, this is the
step that generates the compilation database. If it was generated by
the compilation step, and the project uses no generated source files,
this step could be skipped.

(3) Run the tool on some or all of the source files.

This process works perfectly with read-only tools, that do not change the
source code. It is also suitable for some transformation tools, by repeating the
second step once more after the transformation and compiling the modified
program. Unfortunately, this approach leads to issues in some special cases.

Focusing on a single component of the build process, C++ sources include
other files, handled by the preprocessor. A header file can be, and often will
be included by more than one source file. While this usually does not result
in any issues, it is possible that different source files include the headers in the
context of varying preprocessor definitions. It is also possible that a source
file includes a header multiple times with a different preprocessor definition
context, or simply a build can include a source file multiple time with different
compilation flags, providing a different name to the resulting object file.

These all could cause problems when changing the source code:
#ifdef SOMETIHNG_DEFINED
int foo(SOMETHING_DEFINED a);
#else
void foo();
#endif

With a simple transformation approach, it is possible that this file is trans-
formed twice:

• first, when included with the definition set, only the first part is
transformed

• after that, when included with the definition not set, only the second
part is transformed

With the transformation process implemented the previously described way,
depending on the exact sources, this could cause compile or runtime errors:
As the process performs in-place transformations, the execution of the second
compilation would work on the source file already transformed by the first
execution of the tool. This is often the desired behavior: if the tools result

INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 57

is permanent – such as when using automatic refactoring tools –, in the ideal
outcome the transformation should include every sub-transformation required
by any used configuration, and further runs of the tools should not result in
additional changes. In this case, if the results conflict, the developer could be
expected to look at them and fix the remaining issues manually.

With automatic, temporary transformations, however, user interactions
during the build should be avoided, but keeping the same number of source files
as initially is not a requirement: different translation units could use different
versions of the sources, as long as these provide the same result a correctly
implemented single file would. As the changes presented by the preprocessor
definitions are limited to the current unit, this statement will hold. Based on
this, the previous process can be generalized as follows:

(1) Configure the project.
(2) For every compiler invocation in the source code:

(a) Invoke the transformation tool with the same parameters as the
compiler, providing an out of place transformation in a unique
temporary directory: every input file used by the compilation
process should be written to a different location

(b) Invoke the original compiler command, on the modified files
(c) (Optional) Remove the temporary files

This change in the execution of the tool solves most of the mentioned issues:
by doing an out-of-place transformation, always based on the original source
codes, different transformation processes will not be based on the previous
outputs – the tool will not accidentally transform the same source location
multiple times. And by invoking the tool just before the original compilation
program, we prevent accidental overrides: each compilation will be executed
immediately after the required source codes are transformed. Finally, by re-
quiring a unique temporary directory, we guarantee that parallel builds will
not cause issues when the same file is used by multiple translational units
transformed at the same time.

While these transformations increase the IO bandwidth required by the
compilation commands, a memory file system could be used to avoid actual
disk writes.

This approach also gives the advantage that it can be implemented as a
wrapper around the compilation command. While the previous version re-
quired the generation of a compilation database and a separate run for the
tool based on that database, the modified version does not need any change
in the build script, except for a change in the compiler executable. This ap-
proach is used for example by the Coco coverage tool, which merely changes
the system PATH seen by the build process.

58 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

The disadvantage is that this approach assumes that at least the transfor-
mation tool and the compiler can be run on the same platform. As our goal is
constructing tools with clang tooling, which supports most Unix-like systems
and windows, this is likely achievable.

We also have to note that with this simple modification, we did not solve
the issue when a file is included multiple times, but differently within a single
translational unit. Related issues are addressed later.

3. A note on compiler specific preprocessor definitions

The process we described is limited when the source code contains compiler-
specific conditional blocks. While these are not common in high-level code, as
the transformation process works on the entire source code, it will encounter
these: they are commonly used in standard library implementations, and also
in several widely used C++ libraries, such as boost[2].

In our experience, most transformations do not require changes in these
parts of the code. If for some reason this is required, an AST transformation
based tool can not be used. While it is possible to modify the predefined
definitions for a clang tool, these conditions are not there without reasons
in the source code. While it is possible that the only reason behind them
is a compiler specific optimization or a compile-time optimization, the more
likely reason is that other compilers can not understand the code within the
condition.

An excellent example for this is the boost preprocessor library, which has
numerous preprocessor conditions because of the slight differences between
the preprocessors in different compilers. Trying to parse a different branch of
that library other than what is designed for that compiler will likely result in
errors during the early stages of compilation, and the inability of the compiler
to produce a valid AST.

If such a macro is in the code base of the project the tool has to modify,
and it is an uncommon case, the tool could get away be reporting a diagnostic,
and provide developers the ability to manually resolve it. For transformations
in third-party libraries and common occurrences, and when the tool has to
guarantee that it will not miss any instrumentation, this is not an option.

As an example, the Coco[3] code coverage tool falls into this category: miss-
ing covered code would not be acceptable in a code coverage tool. On the other
hand, coverage analysis also falls into the category where AST information is
not required. While the tool is based on source transformations, it does so
based on the token stream.

INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 59

As it does not have to be able to construct a complete AST from the to-
kens, only to find the blocks and conditions in the code, it could change the
transformation process to the following:

(1) Run the original compiler with an additional flag, which instructs it
only to preprocess the source code, and output the result

(2) Instrument this preprocessed source code
(3) Run the original compiler using the modified sources

This process defers the preprocessing of the sources to the original compiler,
to avoid any possibility of interpreting preprocessors definitions differently.
The result should be a C++ source code, possibly referencing builtins specific
to the used compilers. While these builtins will likely prevent another compiler
from completely parsing and validating the source code, any compiler should
be able to tokenize the result.

4. Mixing C and C++ code

Another issue is presented when C and C++ code is intermixed. While our
goal is the instrumentation of C++ programs, C++ projects sometimes also
contain C source files, which can not be built by a compiler in C++ mode.

If a C++ program also contains C source files, it adds additional questions
when developing a tool. The first is, should the tool also have C support?

Some tools instrument code fragments that are only valid in C++ – in which
case, they may safely ignore the question, as they will never have to modify
a source code fragment which fails be parsed by a C compiler. Tools however
often do not fall into this category.

Some tools could instrument C sources too, but the transformations done
by the tool require a C++ compiler – it is possible that instrumenting C
code in a similar manner is impossible, or will not be completely reliable. For
example, RAII is unavailable in C sources, but it is possible for exceptions to
pass through C code if it calls a C++ function.

Tools also have to be aware that header files may be shared between C and
C++ source files. For this, the header file has to be compatible with both
C and C++ compilation: Every C++ specific language has to be behind a
conditional preprocessor directive. While the standard way to do this is the
__cplusplus definition, some project uses their specific definitions provided
by the build system.

The file also has to contain at least one global variable, or one function with
extern C linkage when compiled with a C++ compiler, and these have to be in
conditional sections which do not contain any not conditionally defined C++
symbols. Otherwise, even if the file is used by both a C and a C++ compiler,

60 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

the name mangling in C++ would ensure that the different language object
files use different symbol names, preventing any possible issues.

The process described in the previous section ensures that the tool can not
break the compilation of a header when it is used by a C or a C++ compiler: if
a header is included in multiple translation units, it will be translated multiple
times, differently. When used in a C compilation, the transformation process
may either ignore it or could provide a C compatible transformation.

However, it also provides no information the way different headers are used:
as it only wraps the compiler command and builds no external database about
the files, it has no way to check if a source file is used with both languages.
Compared to the previous example, where if a source code fragment was not
disabled by a preprocessor definition, it was always transformed in the same
way, in this case a program could end up with both a modified and an un-
modified version of the source code, causing linking errors, or possible runtime
problems.

One issue is caused by the linker: if an inline function has definitions in
several object files, the linker will choose only one of them. In this scenario,
when the C compiler does not instrument a function, but a C++ compiler
does, the linker could choose any of the implementations.

// some_header.h
#ifdef __cplusplus__
extern "C" {
#endif
inline foo() {
CPP_ONLY_INSTRUMENTATIN_MACRO;
printf("bar\n");

}
#ifdef __cplusplus__
}
#endif

A possible workaround that during the compilation, the tool could convert
global inline functions it has to modify to static functions. The issue with
this approach is that with this change, the address of the function will be
different in every object file, possibly changing the behavior of the program,
if it depends on equality checks of the function addresses. This limitation
has no possible automatic fix: While a wrapper function could guarantee
that the same object address is used in every translational unit, it would also
reintroduce the original issue in a more limited form. A tool also has no
reliable way if the function pointer is used in a comparison. For this the best
a transformation tool could do is to provide a diagnostic if it encounters the
situation, and require the developer to solve it or silence the warning.

Another issue is presented by functions which only have declarations in the
source file, and only affects tools that change function signatures: In this case,

INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 61

it is possible that the tool correctly updates the signature, and changes the
implementation of the function, which is in a C++ source file but does not
update calls to the function in C code. Similarly, it is possible that the function
is implemented in C, in which case the implementation will be unchanged, but
the C++ callers will provide an additional parameter to it. As this is an
extern C function, none of the above would result in linker errors – but both
would result in runtime issues, where the exact results depend on the used
calling conventions. While this is a more limited issue compared to the inline
functions, it similarly has no automatic solution.

5. Dealing with conditional macro expansions

In the previous sections we discussed several issues presented by conditional
preprocessor directives, but only in the context, that preprocessor directives
will cause different parts of the source code to be compiled. Another issue
presented by the preprocessor is macro expansion: when the transformation
code has to modify a source code fragment which is at least partially is a result
of the expansion of one or more preprocessor macro.

#define FACTORY_FUNCTION(T) \
T* create_or_return() { \
static T* instance = new T(); \
return instance; \

}

// ...

INLINE_MACRO FACTORY_FUNCTION(TYPE_NAME_MACRO(foo,bar));

In a permanent transformation, the goal would be the transformation of the
code behind the macro - so the code using it would remain the same, but the
macros would expand to a different source. In an automatic tool, however,
it could be easier to expand the macros to the actual source code generated
by them, and then transform that source code. This could prevent several
edge cases which could not be solved by the tool: for example, if the macro is
defined in a header file, the tool can not be sure that every single of its use
has to be instrumented.

Also, as every file is transformed uniquely by every translation unit, expan-
sion will not cause issues even when a macro is defined differently for different
compiler invocations. However it does not solve the previously mentioned is-
sue, where one header, without an include guard, is included multiple times
in a translational unit, but with differently expanding macros. In this case,
the macros are expanded multiple times differently in the same file and could
cause problems during the source code transformation.

62 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

As this can not happen when the pragma once compiler extension is used –
that would prevent the second, different expansion –, we can provide a perfect
workaround by cloning the file: when a transformation problem as described
earlier is detected – a macro expansion is detected, but at a location where
a macro was already expanded previously, but differently –, the file should
be duplicated, and the include before, and after the conflicting should be
changed to refer to the second file. The downside of this approach is that it
assumes that the transformation tool has a detailed data structure about its
transformations, and can perform this detection.

Alternatively, a simpler approach can be implemented in two separate phases:

(1) The first hooks into the preprocessing phase of clang tooling
(a) It collects every source file used by the preprocessor into a list
(b) If it detects that a source file was already used, and it again

emits non-whitespace tokens, it also marks the location where
it happened

(2) If it detected a multiply used source file, it creates multiple clones
of that file and changes the invocing include directives. This can be
implemented using a virtual in-memory filesystem in clang tooling,
without writing anything to a file system handled by the operating
system. After that, it starts over with using this virtual file system.

(3) if it did not detect any source file used multiple times, it runs the
second phase, which is the real tool as previously described, after the
AST was parsed.

In this process, we can guarantee that the second rerun will not contain
any source files used multiple times and that the preprocessor tool should not
result in any noticeable change in the behavior of the program. The AST
tool also requires no modifications, as if a macro in the source is expanded
differently multiple times, it is hidden behind the preprocessor tool.

The disadvantage of this approach is that the tool will duplicate files even
when it did not have to, as it can not tell if the tool will modify them. However
this is a rarely used possibility in the language, and as such, will not result
in any noticeable performance hit for most projects. In the detection step, it
also assumes that the process only transforms actual C++ code, not macro
definitions - it will not duplicate files which have no header guard, but only
change preprocessor symbols.

After these modifications, the tool will be able to safely expand macros
that have possibly different results but depend only on information defined
by the project. However, macros depending on external information result in
different issues:

INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 63

• There are standard macros, which could be possibly changed by the
tool, such as __FILE__ or __LINE__.

• There are nonstandard macros, which in practice work the same way
for every compiler, such as __COUNTER__

• There are macros which are often different for compilers, such as
__clang__ or _MSC_VER.

A transformation tool has to deal two possible situations with these: macros
conditionally depending on these expressions – either directly, or indirectly,
by a used macro –, or macros using these macros in expansions.

Some answers are clear in the previous list – for example, unless the tool
can be sure that the real compiler will do the same steps as the clang tool, it
should not expand a macro. In this case, the good answer is most likely only
providing a diagnostic – based on that the developer or the tool developer may
investigate the issue further, and possibly improve it. As an example, if the
tool detects that the real compiler is GCC, and the condition is only based on
GNUC macro, without depending on a clang specific macro, the expansion can be
safely done. However, if the preprocessor did not take a previous condition only
because while it allowed GCC, but disallowed clang, it is no longer expandable.
This analysis requires a rather complex logic and understanding of different
compiler internals. These decisions also require logging how the preprocessor
evaluates conditions in the clang tool, making it realistic only for tools that
often encounter these special cases.

Other decisions are not easy to decide: expanding macros such as __COUNTER__
or __PRETTY_FUNCTION__ could be perfectly safe even if the real compiler
would interpret them somewhat differently. Another good example for this is
the __DATE__ macro, which is provided by every compiler, but it is evaluated
differently every time.

Instead of expanding them, however, another approach is a more limited,
and slower macro expansion: while the mentioned macros are often used in
various C/C++ projects, it is unlikely that a tool has to transform the actual
tokens generated by these macros. A more likely situation is that these macros
are used in another macro - which also generates the source code which has
to be transformed. In this case, instead of the full expansion of the source
code fragment the tool has to transform, it could try to use a more restrained
approach by only expanding macros one level at a time, and stopping as soon
as the source locations where the transformation hat to take place are actual
tokens.

This also means that if a transformation has to modify two locations – for
example, wrapping a function call in another –, only the macros that contain

64 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

the location before and after the function call has to be expanded - macros
within the function parameter list can stay unexpanded.

While this limitation does not solve the original issue, as there can be still
situations the tool can not handle, it will greatly reduce their number. By
implementing a similar approach, a tool has to emit fewer diagnostics about
unexpandable locations.

6. Conclusion

In this article, we presented a methodology for developing C(++) source
transformation tools, which is simple for developers to implement but also
reduces the possible compilation or runtime issues caused by it. While we
were not able to provide an automatic solution for every possible corner case,
we provided workarounds to reduce the times the software has to provide
diagnostic and/or require active interaction from the developer using it.

The methods we described are primarily intended for automatic AST based
source code transformations, but most of the techniques we described could
be adapted for other tools: for example, while most of our used methods
are unsuitable for automatic refactoring, or permanent transformations, the
described ideas could be used to implement the error detection and recovery
capabilities of these tools in large projects.

We also have to note that while our results improve the usability and preci-
sion of these source transformation tools, it could be improved – both with the
open questions in the mixed language projects and macro expansions. There
are interesting improvement possibilities, such as logging the possible trans-
formation conflicts during the build process, using an external code-database
for finding how functions or headers are used or reconstructing actual macro
expansions based on the differences between the preprocessor output of the
actual compiler and clang.

We also only described the methods of these techniques without providing
an actual library implementing these features: most of the methods described
are generic and could be implemented in a generic reusable way for any tool,
but current implementations only exist as a part of actual code instrumen-
tation tools. The development of a ready to be used simple toolset would
certainly reduce the cost of writing code transformation tools.

We only focused on the build process and the preprocessor, without men-
tioning the additional issues caused by accidental semantic changes in the
program. With the capabilities of clang tooling, it would be possible to de-
velop a framework which could validate that a given source change would not
result in any unintended side effect - that is, apart from adding the additional

REFERENCES 65

instrumentation, logging, or validation, it will not cause changes in the original
program flow.

While code transformation and analysis is part of the development process
for a long time, the increasing number of available tools for developing such
software makes it an interesting research area and makes the development of
usable and reliable tools easier.

References

[1] “An Empirical Analysis of C Preprocessor Use”. In: Software Engineering, IEEE
Transactions on 28 (Jan. 2003), pp. 1146–1170.

[2] boost. Boost C++ libraries. 2018. url: https://www.boost.org/ (visited on 03/31/2018).
[3] FrogLogic. Coco coverage analysis tool. 2018. url: http://www.froglogic.com/coco

(visited on 03/31/2018).
[4] Alejandra Garrido and Ralph Johnson. “Challenges of Refactoring C Programs”. In:

International Workshop on Principles of Software Evolution (IWPSE) (Jan. 2002),
pp. 6–14.

[5] GCC. gcov - A test coverage plarform. 2018. url: https://gcc.gnu.org/onlinedocs/
gcc/Gcov.html (visited on 03/31/2018).

[6] Google. Syzygy Transformation Toolchain. 2018. url: http://github.com/google/
syzygy/ (visited on 03/31/2018).

[7] ISO. “ISO/IEC 14882:2014 Information technology — Programming languages —
C++”. In: Geneva, Switzerland: International Organization for Standardization, 2014.

[8] Kitware. CMake. 2018. url: https://cmake.org (visited on 03/31/2018).
[9] Nagy Laszlo. Build EAR. 2018. url: http://github.com/riszotto/Bear/ (visited on

03/31/2018).
[10] LLVM. Clang Memory Sanitizer. 2018. url: https://clang-analyzer.llvm.org/

(visited on 03/31/2018).
[11] LLVM. Clang Static Analyzer. 2018. url: https : / / clang - analyzer . llvm . org/

(visited on 03/31/2018).
[12] pierricgimmig. Orbit Profiler. 2018. url: http://github.com/pierricgimmig/orbitprofiler/

(visited on 03/31/2018).
[13] strace. strace. 2018. url: https://strace.io/ (visited on 03/31/2018).
[14] Valgrind. Valgrind instrumentation framework. 2018. url: http://valgrind.org/

(visited on 03/31/2018).
[15] Laszlo Vidacs. “ICSOFT 2009 - 4th International Conference on Software and Data

Technologies, Proceedings”. In: vol. 1. Jan. 2009, pp. 232–237.
[16] Daniel Waddington and Bin Yao. “High-fidelity C/C++ code transformation”. In: Sci-

ence of Computer Programming 68.2 (2007). Special Issue on ETAPS 2005 Workshop
on Language Descriptions, Tools, and Applications, pp. 64–78. issn: 0167-6423. url:
http://www.sciencedirect.com/science/article/pii/S0167642307000718.

Department of Programming Languages and Compilers, Eötvös Loránd Uni-
versity

Email address: zsoltparragi@caesar.elte.hu, gsd@elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.05

INCREMENTAL DECOMPILATION OF LOOP-FREE

BINARY CODE: ERLANG

GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Abstract. Decompiling byte code to a human readable format is an im-
portant research field. A proper decompiler can be used to recover lost
source code, helps in different reverse engineering tasks and also enhances
static analyzer tools by refining the calculated static semantic information.
In an era with a lot of advancement in areas such as incremental algorithms
and boolean satisfiability (SAT) solvers, the question of how to properly
structure a decompilation tool to function in a completely incremental
manner has remained an interesting problem.

This paper presents a concise algorithm and structuring design pat-
tern for byte code which has a loop-free representation, as is seen in the
Erlang language. The algorithms presented in this paper were implemented
and verified during the decompilation of the Erlang/OTP library.

1. Introduction

Decompilation of compiled code is the process of transforming a compiled
module typically in a machine readable byte code format, back into a human
readable source code format. A decompiler, is a tool which automates this
process. The practical nature and visible result of a decompiler is an important
tool which is useful for source code recovery, reverse engineering of hostile code,
or for compiler validation. Decompilers have almost exclusively relied upon
an approach which treats the binary as a flat and static block of instruction

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68W01, 68N20.
1998 CR Categories and Descriptors. code [Computing Methodologies - SYM-

BOLIC AND ALGEBRAIC MANIPULATION]: Algorithms – Nonalgebraic algo-
rithms; code [Software - PROGRAMMING LANGUAGES]: Processors – Incremental
compilers.

Key words and phrases. incremental decompilation, Erlang, dominator tree, post-
dominator tree, code duplication.

The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

This paper was presented at the 12th Joint Conference on Mathematics and Computer
Science, Cluj-Napoca, June 14-–17, 2018.

66

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 67

data, and proceeds with various stages also called passes over the byte-code
and iteratively through various graph structures until it achieves source code.
This approach is well understood, yet it is not a general method, and it does
not always produce usable or valid results.

The theoretical limit of decompilation lies at the general computability prob-
lem of decidability, famously highlighted by the halting problem. It is proven
that there exist cases where it is undecidable whether or not a program con-
tinues executing or stops, and this can be generalized to any decision pathway.
The first case needing this level of generality is unreachable code. The other
is that of self-modifying code, where the binary code is able to modify itself.

The motivation for a study in incremental decompilation theory becomes
clear: not only for generality of the decompilation process, but the approach
invariably could be used to make better, more flexible compilers. Compil-
ers and decompilers involve the same theory as both do binary transforma-
tion of code structures, albeit the programming languages utilize context-free
grammars and encourage block structures which is typically far less expres-
sive than byte code which tends to allow any control flow graph (CFG). A
CFG can contain sequences, selections and loops. The language of Erlang [1]
has been chosen as it is an excellent case study for incremental decompilation
for several reasons: no back edges inducing loops in the graph, impossibil-
ity of self-modifying code, and an easy to process byte-code which will be
pre-structured as instructions by its own libraries.

As a main contribution, a framework for incremental decompilation is pre-
sented in this paper based on using a symbolically semantic equivalent rep-
resentation and meticulous graph structuring. This includes algorithms con-
tributed for scanning methods, processing at merge and exit nodes and variable
emission.

Various concepts and tools maintain the incremental cascading of effects.
An analysis of semantic equivalence of byte code in a meta-data enhanced
abstract syntax tree (AST) representation for any language allows for a cross-
language approach. The importance of variable emission scenarios, classifying
side effects and nearly inexpressible byte code operations is demonstrated.
The incremental maintenance of dominator trees, reachability, and common
ancestors are discussed as with minimal processing at merge nodes.

Data interfaces encapsulate the graph structure containing basic blocks, and
another is used for the enhanced AST. Algorithms are considered for overall
decompilation, handling edges not expressible in the target language, merge
nodes with their optimized processing and minimal variable emission. Two
scanning algorithms for overall decompilation are studied. The nuances high-
light the technical challenge of achieving a consistent incremental algorithm.

68 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Since code copying is a technique which has exponential growth conse-
quences in complexity, simplifications for boolean short circuits are consid-
ered. The clean up of the AST is itself a crucial element of the decompiler for
a readable and usable decompiled output.

2. Background

“Erlang is a programming language originally developed at the Ericsson
Computer Science Laboratory. OTP (Open Telecom Platform) is a collection
of middleware and libraries in Erlang.” [2].

An abstract syntax tree (AST) is a tree containing information directly
corresponding to the grammar of the language. It can be pretty printed to
Erlang source code, or compiled to BEAM, or even emulated by the Erlang eval

library. In fact the Erlang shell uses this eval emulator to execute commands
through evaluating the AST directly without BEAM conversion, albeit with a
performance penalty and possibility to execute code which fails the compilers
more strict validation on things such as variable bindings in block structures.

A decompiler based on a graph rewriting technique was written which shows
that multiple valid approaches to Erlang decompilation are certainly possible
[3]. Both follow further a seminal work for decompiler graph structuring [4].

2.1. BEAM code. The BEAM code, provides a set of opcodes, which op-
erates on a state containing the current instruction location, 1024 registers
{x, 0} through {x, 1023} and a stack starting at ∅ which when initialized has
a head always at {y, 0} and can be of any size limited by the memory of the
system or any emulator configured limit, and 16 special floating point registers
{fr , 0} through {fr , 15}. The current line number is specified in an instruc-
tion and is part of the state, although it is only accessible through stack traces
which should only be accessed when errors occur per documentation recom-
mendation. The BEAM code is contained in a file with the .beam extension
and directly representable by a large tuple containing the whole module, some
attribute information, its functions and their BEAM opcodes.

The state of the system is accessible thanks to external code libraries, so
potentially unknowable values could find their way into these registers when
interacting with the greater system state.

A few special opcodes are used in the emulator itself where it modifies the
original BEAM code but these do not concern the decompiler directly.

The correctness of BEAM code has several levels: syntactic valid when com-
piling it, correctness done by the compiler’s validator to prevent situations that
would crash the emulator, and finally that which runs on the emulator without
crashing. For the sake of generality, it is best to consider the latter correct-
ness as the decompiler could encounter code which is custom crafted with a

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 69

modified Erlang source code which disables the validator. The gold standard
of correctness is very hard to achieve, namely compilability to identical binary
code. Though typically its need is rare, any timing, line number or other
minute side effects require it.

2.2. Incremental Graph Maintenance. There is inefficiency of constantly
recomputing the dominator information which is utilized constantly as soon
as any decidable merging happens in the control flow. It is assumed the reader
understands the shorthand graph notations for edges and dominators.

Maintaining a graph structure upon edge additions is termed as an incre-
mental algorithm, while further including edge deletions which typically is
more complex, is termed as a fully online algorithm.

Algorithms for maintaining a dominator tree incrementally on edge addition,
as well as a fully on-line algorithm which also adds edge deletion are known.
For this purpose, although G. Ramalingam of IBM Research Laboratories
provided the next major break-through [5], the preferred algorithm is the
Sreedhar, Ghao, Lee algorithm which uses a data structure called a DJ-graph
which is a dominator tree with join edge information about the connectivity
of the graph due to the fact that dominator information alone is not enough
to easily determine the scope of how much of the tree is effected by addition
or deletion. Join edges are all edges which are not between ancestors and
descendants in the dominator tree. By introducing the concept of an iterated
dominance frontier (IDF) [6], a relatively simple and elegant algorithm emerges
to incrementally maintain the DJ graph [7].

Reachability of a given graph node to the return node is also important in-
formation to decide how to process when an exception disconnects the control
flow for a node or a subset of nodes to the return node. Determining this
information cumulatively can be performed with a simple depth or breadth
first walk from the return node up the tree to the root where the visited nodes
are the set. Incrementally maintaining this information is trivial for edge ad-
dition, as adding edges does not reduce reachability and nodes always start as
reaching the return node to later not reaching it. For generality, only when
a predecessor not reaching is added to a successor which is reaching, then
the whole reverse subgraph of the predecessor is added to the set. For edge
deletion, the successor if reachable which implies the predecessor is reachable
can check if any of its remaining successors is still in the reaching set, other-
wise remove itself and continue the process recursively up the graph. The two
processes are mirrored as can be seen formally (where REVREACH(X) is the
subgraph reachable from the reverse graph rooted at X):

AddEdgeReachSet(U, V,Rs) :

{
U /∈ Rs, V ∈ Rs Rs ∪ REVREACH(U)

otherwise Rs

70 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

NREVREACH(U,Rs) = [U] ∪ ∀Y ∈ PREDS(U),NREVREACH(Y), @X ∈ SUCCS(Y), X ∈ Rs

RemoveEdgeReachSet(U, V,Rs) :

{
V ∈ Rs, @X ∈ SUCCS(U), X ∈ Rs Rs \NREVREACH(U)

otherwise Rs
.

It should be noted that actual implementations would likely use breadth
first search (BFS) methodology for efficient computation. In fact, this reacha-
bility question is more formally known as a transitive closure, and maintaining
transitive closure for a directed or undirected graph is a problem which has
been studied. Solutions exist such as based on maintaining the order of a
linked list, as this problem efficiency-wise is a data structure problem [8].

The depth first search (DFS) tree is a tool used mostly for efficient compu-
tation of dominators in this context. Its incremental computation is still an
open problem for directed graphs due to the fact that one edge addition or
deletion can cause very far reaching changes, along with the fact that multiple
valid traversals are possible. In the acylic case however, there are algorithms
known [9].

3. Main Contribution: Semantic Equivalence

Various data-flow oriented semantic equivalence of various BEAM opcodes
and their corresponding Erlang code equivalent are analyzed. This is lim-
ited by control flow structures which are not single instructions but various
sequences tied together in certain ways and requires graph analysis. Of impor-
tance to the data flow analysis is the concept of purity. Purity of a function is
an attribute that the code it contains does not change the state of the system
in anyway except that which is returned to the caller.

Three valid approaches to consistent side effect handling are apparent based
on the purity analysis and detection. The first is to always emit variables for
every state change, but this makes the code unreadable requiring later clean
up based on single usage or dead variables, and is expensive as tracing original
values for decidability in these variables requires traversing dominators. The
second approach is to emit variables for any state change except pure built-in
functions (BIFs). This is straightforward and readily implementable. It is the
approach which is taken for simplicity. The last approach and more elegant
is to emit variables for any state change except functions detected as pure
by tools such as PURITY [10]. To not stick to one of these conservative ap-
proaches would ultimately to be emitting code which is in fact not reflective of
the original code. The discussion does not end with side effects as any values
represented as the result of AST emission also must be treated as having a
side-effect or the state itself would need to contain AST entries. To avoid this,
some situations require variable emissions for the entire block structure of the
lambda function creator. The captured variables of the fun expressions also
must have variables emitted, not because of side effects, but because injecting

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 71

side-effect free representational expressions into the captured variables is cer-
tainly different from the original code, where a type of fence exists between
the captures and the lambda function since only variables can be captured,
and compiler be optimization beyond this is not done. Tables of all instruc-
tions with side effects and variable emission fences should be generated and
codified.

The whole block of the function has a return value as well which is repre-
sented by a single value which must be denoted as a state item. In Erlang, it is
always {x, 0}. In practice, this could be a group of values but ultimately most
languages allow its expression as a singular value so some type of language
grouping element would need to be used to bundle them regardless, such as
tuples or lists. The generality could thus be extended.

3.1. Byte code and Metadata Enhanced Abstract Syntax Tree. The
classical view of byte code running on a system is that of a Fetch, Decode and
Execute loop, as per the way the central processing unit (CPU) itself works.
The Fetch and Decode step can be considered as one combined unit when not
considering timing issues. For a decompiler, this view is changed to a Decide
how to Fetch and Decode, and Symbolically Execute loop. The state itself is
symbolic of the actual state and does not contain literal values. However the
fetch and decode operation when generalized must decide as specifically as it
can, the set of bits resultant from the current symbolic state.

To maintain the data flow aspects of decompilation in the AST while it
structures itself based on control flow, entries are utilized with a special meta-
data key. These contain the values of the x, y and fr registers representing the
current state. These are guaranteed at the beginning of every block, and where
there are sequences in a block emitted due to side effects including function
calls or variable assignment, an updated meta-data entry appears after it.

A table and then code for the state should be compiled for the target lan-
guage which for Erlang includes the line number and registers as discussed.

3.2. Scanning and Overall Algorithm. The sequential scan for a decom-
piler is not only straightforward to implement, and seems to be a natural
choice for scan order, it leads to a number of consequences when dealing with
incremental algorithms and decidability aspects. In fact for decidability, it is
not sufficient, and cannot be considered as an appropriate algorithm at all,
since the decidability algorithm could effectively decide that it needs to know
more about another pathway before it can make a decision. This is thereby a
dependency and so a different scan ordering addressing these dependencies in
decidability must be looked at. However the incremental theory of both ap-
proaches will be developed hereby, as some very interesting details are gleaned

72 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

from the differences and answering decidability questions is not always a re-
quirement.

The merge nodes are the motivating factor for decisions, and processing of
these nodes which is discussed shortly, can be done best when all recursive
predecessors which reach the merge point are already scanned, as at this point
its post-dominating status is stable. Otherwise if it does not post-dominate,
it may later, or if it does post-dominate, it may post-dominate more nodes
later, in both cases based on exit scenarios. So the best place to scan at any
moment, is any non-merge node, or the un-scanned merge node which is not
reached by any other un-scanned merge node and it is processable meaning a
colliding edge is confirmed not to reach it. Instead of doing a series of negative
reachability checks, a BFS ordering of the graph can provide the topmost node
which would reach all the others, so the first un-scanned and processable merge
node in the BFS is the best candidate to scan. This greatly simplifies the exit
scenarios and even better reduces exponential code copying which occurs as a
result of delayed decisions.

The decompiler should maintain the status of each node in a simple structure
called the ProcessingState which can have values of: Unprocessed, Process-
able, Processed, Colliding, which progresses as it is added and then becomes
processable then processed, and thereafter possibly marked as a colliding for
optimal processing of the node its edge collides, and then it is moved back to
Processed. The BFS ordering scan deals with using the processing state to
chose the next processable node and is guaranteed to mark all as processing if
on jumps it looks ahead to the next node and marks it. The overall algorithm
of the incremental decompiler decidably fetches and decodes, and symbolically
executes in a loop while structuring based on conditionals, merge points, side
effects, or semantic equivalents (see it with example in Appendices B and C).

3.3. Return, Exit Nodes and Conditionals. Due to the difficulty of main-
taining the post-dominator tree as it could have multiple roots, an exit node
is introduced which any node added to the graph maintains connectivity to
at all times including the entry node. And also due to the nature of func-
tional languages returning a value upon exit, another placeholder node called
a return node representing the emission of a return value is also added. The
return node will be permanently connected to the exit node, and all nodes
who are being processed or not yet processed will maintaining a successor of
the return node. Any exceptions or errors, will cause a node to redirect from
the return node to the exit node.

However, the exit node functions differently as it is completely symbolic and
no merge occurs. Therefore it does not make sense for it to post-dominate any
nodes in the graph, beyond those in the subset of nodes which do not reach

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 73

the return node. Therefore the reverse graph needs to be maintained slightly
differently than the graph, and a technique for doing this, is that any node
which is a predecessor of the exit node has its successor drawn as the successors
to its set of predecessors which are part of the return node reaching set Rs.
These nodes are chosen by the nearest predecessors reaching the return node
or formally as PredSetReach(U, Rs).

The obvious caveat, is that in certain cases, the return node may not be
needed, if all code paths go to the exit node. In this case, the return node
could either be deleted or more conveniently made to be the sole successor of
the exit node. Figure 1 indicates the presumed structuring first, and then one
of them becomes the final structure.

Basic BlocksBasic BlocksBasic Blocks

Entry

Return

Exit Exit

Return

Entry

Return

Exit

Entry

Figure 1. Three control flows: the latter two only for final
CFG with no exceptions/exits or no normal returns

For the dominator tree, the prior strategy introduces a problem. The exit
node should not dominate any node except the return node, as this is a special
allowed control flow transfer which can exit the function regardless of where
it is in the AST. To deal with this, when computing the dominator tree, all
nodes succeeded by the exit node, have all of their predecessors’ successors,
replaced with the exit node successor. In effect, this makes the node have no
effect on the dominator tree, as if it were deleted.

The exception/exit incidence including the relevant opcodes, their context,
semantic equivalence and whether they are singular pathways which effect Rs

should be compiled in a table and then coded.
No effect on post-dominator of nearest return reaching node, as the decision

node itself is the nearest return reaching node, since by definition its continua-
tion path is unexplored and thus still reaching the return node, and previously
the node itself was unexplored thus reaching the return node.

An important routine of the decompiler is conditional structuring which
revolves around laying out the edges in the graph for conditionals and exits

74 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

which comprise the control flow instructions as well as any block structure
instructions which require further analysis due to the fact that they are not
single instructions but sequences thereof, and adding various AST emissions
as well as meta-data embedded within.

Another table should be compiled of all the control flow instructions which
structure each opcode as series of AST modifications and graph changes, while
keeping track of the next node for sequential scanning over binary condition-
als. Figure 3 demonstrates the equivalent non-block re-structuring of multi-
selection conditionals to binary conditionals. Since variable assignment is
allowed consistently within conditionals, using binary conditionals, and vari-
able assignment, avoids what is termed a block structure, a language structure
requiring a single return value and consistent entry and exit from the struc-
ture. The return values can simply be unused as hence ignored by avoiding
block structuring. Block structuring has a solution albeit complex and not
discussed. The cost is that exponential code duplication can occur.

TestValue

Branch1 Branch2 ... BranchN Default

Value1 ValueNValue2a Value2b ...

Figure 2. BEAM style select branching structure

TestValue

...

TestValue

Branch2

TestValue

Branch1
TestValue

Default

BranchNValueN

...

Value2a

Value2b

Value1

Figure 3. Select semantic equivalent for nested, non-block
style structuring

3.4. Merge Nodes, Cross Edges and AST Mapping. Anytime two or
more edges are incumbent on a node, a merge occurs where the data flows
through different paths in the graph must be coalesced. The single static
assignment (SSA) form has been used to represent this using a φ-function to
represent state values at these collision places.

An optimization can occur at this stage when the merge node is reached
by an implicit edge referred to hereby as a colliding edge and this edge is

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 75

also classified as a cross edge. This is an optimization over merely using the
equivalent jump control flow semantic equivalent.

The incremental theory develops by first realizing that the importance of
the merge nodes is underscored by the fact that they post-dominate other
nodes. Variable assignments at appropriate places can be done in a consistent
way such that these merge nodes are not important unless they are also post-
dominators. Two events can occur which cause a merge node to become a
post-dominator: 1) Most common is that a label is reached where a prior basic
block is implicitly added as a colliding edge, or alternatively it could be solely
a merge from prior basic block jump targets. 2) An exception or exit occurs.
This potentially causes a chain of potential post-dominator merge nodes which
must be checked. However these do not merge in the same sense as having a
colliding edge. Reprocessing of already processed post-dominators is possible,
since an already processed post-dominator can become a post-dominator of an
additional node when its exit is realized. In this case, no variable assignments
can occur but cross edge processing must proceed. A node which is processed
and all that it reaches is immediately post-dominated by a node which is also
processed are not further processable and do not risk an exit occurring on
them, a stable and decided set of the nodes.

Timing Node State Action

On Reach Not post-dominating any node Do nothing

On Reach Post dominated ≥ 1 nodes Process fully

Exit Unprocessed Do nothing
Exit Processed and not post-dominating any node Process fully

Exit Processed and post-dominating ≥ 1 nodes Process w/o
∃N ∈ REVREACH(Node), variable

get processed(PIDOM(N)) 6= Processed assignment

Table 1. Post Dominating Node Incidence Classifier for Se-
quential Scanning

Table 1 and a HandleExit function is thereby a consequence of a sequential
scan through the code. This is a convenience and shortcut taking approach
for Erlang BEAM code since it can be safely assumed if emitted from the
compiler to be all reachable and since it is not able to self-reference and hence
self-modify itself, a sequential scan only need know that a given label is reach-
able from the EntryLabel. An alternative and improved incremental approach
could keep a queue of un-scanned locations, and not scan them until they can
be processed and hence post-dominate some nodes, while at the same time all
nodes reaching it area also processed. In this case, the whole table is unneces-
sary as there is only a single case that processes fully when post-dominating
according to these conditions. This is a more general and more ideal way of

76 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

decompiling, but in some contexts, Table 1 can also be a relatively easy to
implement and workable methodology.

These are filtered so only the already visited ones are considered. Finally
the merge node processing occurs for all of them, as it would normally. Block
structures which have only exit paths should also be identified and processed
at this point for maximizing incremental effect unless all of their processing
would be done at once at the end. This discussion cannot continue without
introducing the effect of cross edges as they are the most important aspect
towards the resolution before variable assignment occurs.

The DFS-based cross edges and inexpressible forward edges – from the per-
spective of the AST which reflects valid edges – must be processed to determine
where copying of code can resolve these situations. In general, the AST entries
are allowed edges in a language when moving: forward to any ancestor, up to a
any descendant, to an immediate sibling, or to an exit/exception. Other edges
are considered to be a cross edge, and is represented hereby as EdgeClassifier.

A DFS is needed which given that the AST is an ordered tree, is unique
and a sorting of the paths of the nodes. Edges which are cross edges will be
represented by variable CrossEdges ← E \ EdgeClassifier(E).

The cross edges must be classified based on their significance for processing
based on the current node. Therefore the CrossEdges are further mapped by
a function to the nearest post-dominator or nearest common ancestor (NCA)
which is the longest common suffix (LCS) between dominator paths, except
that the node in consideration has included itself in its dominator sequence:
NCA(PathX, PathY) = hd(LCS(PathX, PathY))

NearPDom(P, S, Node) = NCA(

{
DOM(P) P = Node

SDOM(P) otherwise
, DOM(S))

NearCrossPDom(Node) ← ∀(P, S) ∈ CrossEdges, NearPDom(P, S, Node)

The cross edges are then filtered so that CopyEdges ← ∀(P, S) ∈ CrossEdges,
Node = NearPDom(P, S, Node). These are further sorted based on the DFS,
where the greater successors or in case of equality, greater predecessors are
processed first, hence a bottom up strategy, for convenience and consistency
which allows certain data structure optimizations. These values are incremen-
tally computable and as for the NCA, it could be recalculated based on the
set of changed nodes in incremental dominator recomputation.

The merge structuring algorithm is divided into three stages where when
a colliding edge is a cross edge, a special merge node is added as a place
holder for code copying and variable assignments, followed by cross edge code
duplication, and then variable assignment. The graph copying going on here
removes cross edges, but otherwise has no effect on the post-dominator tree
of the original nodes, so intermediate re-computation is not necessary.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 77

Shortcuts are possible here where recognizing the nested, geometrically op-
posite diamond like shape of andalso as well as orelse is the most prevalent
and most useful one as this causes an exponential blow up in the graph and
therefore also the AST which makes processing slower even if it can be cleaned
up at the end. Otherwise the only illegal edges generally seen are the result
of compiler optimizations which reduced copied code, and hence copying the
code again becomes necessary. The basic structures are easy patterns to find
and can be recursively applied ideally in a bottom to top order.

A bijective mapping between the state nodes in the generated AST and the
control flow graph is needed which also must be incrementally maintained.
A simple method is to use an indexed path down the tree. The DFS of the
tree then is nothing more than a sort operation over of these labels based on
their indexed paths. This is incrementally maintained via a two-way indexing
scheme for binary search and insertion in sorted order.

The data structure to encapsulate the AST would include not only the
actual AST, but the mapping and a sorted two-way indexing for efficiency in
lookups and ranking when doing operations on the graph where a DFS ordering
based on the AST is necessary. The path of the nodes in the tree would be
encapsulated and efficiently implemented in some format. The enhanced AST
structure should provide operations for inserting nodes, child nodes, getting
or setting the meta-data, getting the DFS of the ordered tree, and copying
from a node into another node part of the AST with respect to the NCA.

As for the graph, adding edges, removing edges, getting a BFS, the reverse
graph DFS ordering, and the same copy graph operation as for the AST is
needed. Symbols for the entry, return, exit nodes and the next node and
current node should be a part of this. The graph should be able to answer
the various mathematically represented queries for edges, (post-)dominators,
reachability, CrossEdges, NearCrossPDom(Node) (see Appendix A).

3.5. Variable Assignment. Variable assignment takes all the merge nodes
that are post-dominators, after cross edges have been processed, and assigned
variables to the minimal consistent set of nodes necessary based on the domi-
nator tree. The merge node itself has its dominator used as a reference point,
as variables would not need to be assigned beyond the dominator. But all of
its predecessors, and their recursive dominators up to this top dominator need
to be considered. If changes or the lack of changes are consistent between all
children of a dominator, then the dominator itself can be chosen instead of the
child nodes, which is a key reduction in avoiding excessive variable emission.
The naive strategy would be to assign variables to all predecessors if there is
a change in any one of them.

78 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

A very useful optimization is that it is possible to only perform variable
assignment on merge nodes that are post-dominators, after cross edges have
been processed, but then the algorithm needs to be adjusted to go through
the predecessors of these nodes that do not post-dominate.

First the set of changed nodes is determined by recursively going through
the dominator tree, and then one more traversal determines the nodes that did
not change minimally with respect to the ones that did, so a variable emission
always occurs to ensure that a variable is present at the merge node in all
pathways. The state information should be maintained therefore by having
symbolic current state information for every node as it would be expensive
and undesirable to recompute something so easily maintained incrementally.

Algorithm 1 finds the minimal set of changed nodes with regards to the
predecessors and their dominators, while Algorithm 2 does this for the nodes
which did not change with respect to the nodes which did change in a similar
way with this additional exclusion and not needing to query for state changes.
Finally Algorithm 3 gives routines used in the merge algorithm for emitting
a single value on return, or going through all state item values otherwise. A
summary example is provided in Figure 4.

Algorithm 1 Find Minimal Set of Changed Nodes

Require: Candidates is a queue (not a set)

1: procedure FindChangedNodes(Candidates, Top, StateItem)
2: Changed ← ∅
3: while Candidates 6= ∅ do
4: (C, Candidates) ← (head of Candidates, pop Candidates)
5: if C = Top then . No Processing

6: else if StateChange(IDOM(C), C, StateItem) then

7: Changed ← {C}∪ Changed
8: Candidates ← Candidates \IDOM(C)

9: else
10: Candidates ← add IDOM(C) to end of Candidates

11: end if

12: end while
13: return Changed

14: end procedure

• EmitVariable(X, Y, S) is a routine which returns a pair (Assignment, Vari-
able) by assigning a variable for the state item S of node set X based on its
current state, and then emitting the symbolic representation of the assign-
ment of that variable in the state storage for node Y, the post-dominator,
along with symbolic representation of the variable without the assignment.
• StateChange(X, Y, S) is a routine which determines if the stored state has

a symbolic difference between nodes X and Y for state item S.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 79

Algorithm 2 Find Minimal Set of Unchanged Nodes Relative to a Set of
Changed Nodes

1: procedure FindNotChangedNodes(Changed, Candidates, Top, DominatorNodes)
2: NotChanged ← ∅
3: while Candidates 6= ∅ do
4: NotChanged ← NotChanged ∪∀C ∈ Candidates, C = Top ∨ IDOM(C) ∈ DominatorN-

odes ∧ IDOM(C) /∈ Changed

5: Candidates ← {IDOM(C)|C ∈ Candidates, C 6= Top, IDOM(C) /∈ DominatorNodes}
6: end while
7: return NotChanged

8: end procedure

Algorithm 3 Variable Assignment Routines

1: procedure AssignVariable(X, StateItem)

2: Nodes ← FindChangedNodes(PREDS(X), IDOM(X) StateItem)
3: EmitVariable(∀N ∈ Nodes ∪ FindNotChangedNodes(Nodes, PREDS(X) \ Nodes, IDOM(X),⋃

{DOM(C)|C ∈ Nodes}), X, StateItem)

4: end procedure
5: procedure AssignVariables(X)

6: ∀ StateItem ∈ State, AssignVariable(X, StateItem)

7: end procedure

X=1

Merge Node: X=1

X=1

X=1

Entry

...

Top: X=1

X=1

X=1 X=2

X=2

X=2 X=2

Figure 4. Example of the variable assignment algorithm

3.6. Graph Correction, Clean up and Correctness. The graph correc-
tions required for a correct AST, which involve removing the meta-data anno-
tations, and the list to tuple transformations of catch blocks and some function

80 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

calls for receive which kept a list then tuple nesting structure must be fixed
first and manually so a valid AST results. Next comes the various graph
corrections required for compilable code, which are the empty values in case
structure pathways where a single path went through due to an error in the
other path. Any amount of sibling code which comes after can be considered
to go into this area. This could be improved but more useful is a totally sepa-
rate sequence for optimization. Based on this, what emerges is a dependency
order for a minimal ambiguity in the cleanup actions.

Line numbers would be very difficult to match, and a novel approach would
be needed for true generality.

A proof of correctness of the algorithm has a basis in that variable as-
signments are processed on merge nodes using a classical dominator-based
approach only a single time when its decided the dominator tree for a merge
node cannot further change. For the cross edges, they are handled only when
they post-dominate some nodes or have an increase therein. The two process-
ing orders will guarantee all predecessor edges recursively are known, so no
cross edges will remain when the remaining set to process is empty.

4. Conclusion and Future Work

In this paper we presented a methodology to demonstrate that not only
is incremental decompilation possible and feasible, but it can be practically
implemented with good results. The technical considerations and details laid
forth provide a framework for correct CFG structuring via binary conditionals,
and can be extended to block structures like catch or receive, along with
setting forth a code clean-up framework. Due to the close relationship between
refactoring of code, and program transformation, this project is to become of
the RefactorErl toolkit released by ELTE [11].

We have successfully evaluated and validated our methodology on the source
of the Erlang/OTP libraries and the compiler test suite [12]. The details of
the evaluation was presented in [13].

In the future, a study should deal with complicated incremental structuring
induced by introduction of loops. They have their own theory and ambiguity in
determining nesting, along with interference in conditionals studied here where
multi-entry/exit loops are concerned. Decidability issues through the use of
tools such as boolean satisfiability (SAT) solvers could be incorporated. As for
Erlang, the possibility of writing obfuscators based on identified decompilation
weaknesses is also an open challenge.

References

[1] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2nd edition,
October 2013. ISBN 978-1-93778-553-6.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 81

[2] Ericsson AB. Erlang Programming Language. http://www.erlang.org, 2018.
[Accessed: 2018.03.14].

[3] Dániel Lukács and Melinda Tóth. Structuring Erlang BEAM Control Flow. In
Proc. of the 16th ACM SIGPLAN International Workshop on Erlang, Erlang
2017, pages 31–42, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5179-9.

[4] Cristina Cifuentes. Structuring decompiled graphs, pages 91–105. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1996. ISBN 978-3-540-49939-8.

[5] G. Ramalingam and Thomas Reps. An incremental algorithm for maintaining the
dominator tree of a reducible flowgraph. In Proc. of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’94, pages
287–296, New York, NY, USA, 1994. ACM. ISBN 0-89791-636-0.

[6] Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for placing
φ-nodes. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’95, pages 62–73, New York, NY,
USA, 1995. ACM. ISBN 0-89791-692-1.

[7] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Incremental com-
putation of dominator trees. ACM Trans. Program. Lang. Syst., 19(2):239–252,
March 1997. ISSN 0164-0925.

[8] Paul F. Dietz. Maintaining order in a linked list. In Proc. of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82, pages 122–127,
New York, NY, USA, 1982. ACM. ISBN 0-89791-070-2.

[9] Paolo G. Franciosa, Giorgio Gambosi, and Umberto Nanni. The incremental
maintenance of a depth-first-search tree in directed acyclic graphs. Information
Processing Letters, 61(2):113 – 120, 1997. ISSN 0020-0190.

[10] Mihalis Pitidis and Konstantinos Sagonas. Purity in Erlang. In Jurriaan Hage
and Marco T. Morazán, editors, Implementation and Application of Functional
Languages, pages 137–152, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-24276-2.

[11] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit Kőszegi,
Máté Tejfel, and Melinda Tóth. RefactorErl - Source Code Analysis and Refac-
toring in Erlang. In Proc. of the 12th Symposium on Programming Languages
and Software Tools, ISBN 978-9949-23-178-2, pages 138–148, Tallin, Estonia,
October 2011.

[12] Ericsson AB. Erlang/OTP (source code). https://github.com/erlang/otp,
2018. [Accessed: 2018.03.14].

[13] Gregory Morse. Towards a General Theory of Incremental Decompilation. TDK
Thesis, Budapest, Hungary, May 2018.

Department of Programming Languages and Compilers, Faculty of Informat-
ics, ELTE, Eötvös Loránd University, 1/C Pázmány Péter sétány, Budapest,
1117, Hungary

Email address: morse@inf.elte.hu dlukacs@caesar.elte.hu toth m@inf.elte.hu

82 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Appendix Appendix A Merge and Exit Incidence Algorithms

Algorithm 4 Algorithms to Process Merge Nodes

1: procedure HandleMerge(Node, IsExit)

Phase 1 - Add place holder node

2: if Node = ReturnNode or IsExit then

3: InsertNode ← ExitNode, SearchNode ← Node

4: else if (CurrentNode, Node) ∈ NearestCrossPdom then
5: InsertNode ← NextNode(), SearchNode ← InsertNode,

6: insert ast node (Node, get ast node(Node), InsertNode)
7: if CurrentNode ∈ PREDS(Node) then

8: add edge(CurrentNode, InsertNode), remove edge(CurrentNode, Node)
9: end if

10: add edge(Node, InsertNode), add edge(InsertNode, ReturnNode)
11: remove edge(Node, ReturnNode)
12: else

13: InsertNode ← NextNode(), SearchNode ← Node,
14: end if

Phase 2 - Resolve cross edges via code duplication

15: CrossPairs← ∀(X,Y) ∈ CrossEdges, X 6= SearchNode ∧ (NearestCrossPDom(X, Y) = Node

∨ NearestCrossPDom(X, Y) = InsertNode)

16: while CrossPairs 6= ∅ do
17: (From, To) ← arg max(X,Y)∈CrossPairs (get ast dfs (Y), get ast dfs (X))
18: CrossPairs ← CrossPairs \ {(From, To)}, NodeSet ← REACH(From) \ REACH(Node)

19: copy ast node(X, Y, NodeSet), copy graph nodes(X, Y, NodeSet)
20: end while

Phase 3 - Variable assignment

21: AfterNode ←
{

Node Node = ReturnNode ∨ IsExit

InsertNode otherwise

22: if Node = ReturnNode then

23: insert ast node (Node, AssignVariable(AfterNode, ReturnRegister))
24: else if ¬ IsExit then

25: set ast node(

{
Node IsExit

InsertNode otherwise
, AssignVariables(AfterNode))

26: end if
27: return AfterNode

28: end procedure

• insert ast node (Node, EmitValue, NewValue, NewNode) where EmitValue and

NewNode are optional, must insert at the next available AST path after Node, EmitValue
if present, and NewValue always, and if NewValue was a meta-data, then NewNode spec-

ifies the graph node path into which the meta-data path will be stored for later lookup
or removal.

• insert ast node child (Node, Kind, NewValue, NewNode) is identifical to the

previous one except Kind gives an additional path information to be traversed based on
what type of child is being added such as a conditional or block structure.

• get ast node(Node) fetches the node data specified.

• set ast node(Node, Data) replaces the data at the node specified.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 83

Algorithm 5 Algorithms to Process Exit Nodes

1: procedure HandleExit
2: NewPDoms ← PotentialNewPDoms
3: while N doewPDoms 6= ∅
4: C ← arg minX∈NewPDoms get rev dfs (X)
5: HandleMerge(C, true), NewPDoms ← NewPDoms \C
6: end while
7: end procedure

• get ast dfs (X) returns the simple tree walk ordering of node X to allow a non-

conflicting order when copying. In fact this is an approximation ordering that will
not always work, without continuing to recompute nearest cross edge post dominators

until a fixed point is reached. Technically there is a subgraph induced by FromPath

which is copied to ToPath, and any of these subgraphs which contains a ToPath creates
a dependency. The optimal scenario is therefore to avoid iterative calculation by adding

all the cross edge pairs to a list in dependency order by not adding them until their

dependencies are first added which also induces a proper partial ordering. It is a very
important point as the algorithm simplifies and hides this fact.

• copy ast node(FromNode, ToNode, NodeSet) surgically copies all the contiguous

set of the AST tree entries at the same level as FromPath and including it, which contains
NodeSet, into ToPath and which must be inserted as new mapped entries for all the meta-

data that was copied into ToNode to maintain the integrity and consistency of the AST

structure.

As for the graph, the following corresponding operations must be implemented and maintained:

• add edge(X, Y) adds the edge from node X to node Y.

• remove edge(X, Y) removes the edge between node X and node Y.

• get bfs (X) gets a comparable breath first search ordering of node X for the scanning

algorithm.

• get rev dfs (X) gets a comparable depth first search ordering of node X in the reverse
graph rooted at ReturnNode.

• copy graph nodes(FromNode, ToNode, NodeSet) copies all the nodes in sub-

graph NodeSet replacing all edges between nodes in the set with the new nodes, and

maintaining all edges which were to outside the subgraph except any nodes preceded
by FromNode which are changed to ToNode. This is the corresponding operation to

copy ast node which deals with the AST on copy.

• EntryNode symbolizes the entry node, ReturnNode symbolizes the return node,
ExitNode symbolizes the exit node, and NextNode() symbolizes the next node which

is to be newly added to the graph, and CurrentNode is the current node being processed
or considered, while CurInst is the current instruction.

• PREDS, SUCCS, DOM, SDOM, PDOM, PSDOM, IDOM, PIDOM, REACH,

REVREACH, CrossEdges, NearestCrossPdom(Node).
PotentialNewPDoms ← ∀C ∈ (

⋃
∀X ∈ PredSetReach(Node, Rs), SPDOM(X)) \ [Re-

turnNode, ExitNode], get processed(C)=Processed

84 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Appendix Appendix B Overall and Scanning Algorithms

Algorithm 6 Sequential and Breadth First Oriented Scanning

1: procedure ContinueScan
2: if Jumped and IsBFSScan then

3: set processed(GetNextLabel(), Processable)
4: Candidates ← ∀C ∈ PREDS(ReturnNode), get processed(C) = Processable

5: if Candidates = ∅ then
6: return (∅, ReturnNode)

7: else

8: NextNode ← arg minX∈Candidates get bfs (X)
9: CollideNode ← ∀C ∈ PREDS(NextNode), get processed(C) = Colliding

10: return (GetInstructionAt(NextNode,

{
hd(CollideNode) CollideNode 6= ∅
NextNode otherwise

)

11: end if
12: else

13: return (GetNextInstruction(), CurrentNode)

14: end if
15: end procedure

• get processed(Node) returns either Unprocessed, Processable, Processed or
Colliding.

• set processed(Node, State) sets Node’s processing status to State.

• SemanticEquivalence(C) provides the symbolic net effect on the state of
instruction C.

• IsBranching(C) indicates if the C instruction is a branching or exit/excep-
tion instruction.

• IsLabel(C) indicates if the C instruction is a label and hence merging point.
• NodeFromLabel(C) returns an already mapped node for the label C, whether

pre-existing or requiring a new graph node assignment.
• HasSideEffect(C) classifies if any side effect or other condition arises re-

quires variable assignment.
• UpdateState(Data, StateDifference) updates the state in Data based on the

difference.
• Output(C) gets the state.
• GetNextInstruction() gets the next instruction after instruction CurInst

unless it is empty and then the entry instruction.
• GetNextLabel() scans forward after a jump for the next label to mark a

node as not collided and hence processable.
• GetInstructionAt(Label) gets the instruction at location specified by Label.
• IsBFSScan represents the option for a breath first scan versus sequential.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 85

Algorithm 7 Overall Decompile to AST

1: procedure DecompileToAST

2: AST ← [EntryMetadata], Graph ← [EntryNode, ReturnNode, ExitNode]
3: CurInst ← ∅, CurrentNode ← EntryPoint, Jumped ← false

4: while (CurInst, CurrentNode) = ContinueScan(Jumped), CurInst 6= ∅ do
5: if IsBranching(CurInst) then
6: Jumped ← DoBranchingStructuring()

7: else if IsLabel(CurInst) then

8: NewNode ← NodeFromLabel(CurInst)

9: if IsBFSScan ∧ get processed(CurrentNode) = Processed then

10: set processed(CurrentNode, Colliding)
11: else
12: add edge(CurrentNode, NewNode), remove edge (CurrentNode, ReturnN-

ode), set processed(CurrentNode, Processed), set processed(NewNode, Processed), Han-

dleMerge(NewNode, false)
13: end if

14: else if HasSideEffect(CurInst) then

15: (Emit, NewVariable) ← AssignVariable(SemanticEquivalent(CurInst))
16: insert ast node (CurrentNode, Emit, UpdateState(get ast node(CurrentNode),

NewVariable), CurrentNode)

17: else
18: set ast node(CurrentNode, UpdateState(get ast node (CurrentNode), Seman-

ticEquivalent(CurInst)))
19: end if

20: end while

21: if ExitNode /∈ PREDS(ReturnNode) then
22: HandleMerge(ReturnNode)

23: end if

24: return Changed
25: end procedure

Appendix Appendix C Example

An overall example of a program in Figure 5 will highlight several of the
key ideas with a special view of the final AST with super-imposed cross edge
arrows in Figure 6 corresponding to the graph view of the prior step in Figure
7.

1 incstruct(A, B, C, D, E) ->

2 if not A -> A;

3 A andalso B orelse C ->

4 if D + E =:= 1 -> B; true -> error(D + E) end;

5 true -> A end.

Figure 5. Example code highlighting cross edge identifica-
tion, merge node, code copying and variable assignment

86 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

1: case Arg1 of end

4: true -> case Arg2 =/= true of end

8: true -> case Arg3 =:= true of end

16: true -> case Arg4 + Arg5 =:= 1 of end

18: true -> Var1 = Arg2

19: false -> error(Arg4 + Arg5)

17: false -> Var1 = Arg1

9: false -> case Arg4 + Arg5 =:= 1 of end

12: true -> Var1 = Arg2

13: false -> error(Arg4 + Arg5)

5: -> case Arg1 of end

6: false -> Var1 = Arg1

7: -> case Arg3 =:= true of end

10: true -> case Arg4 + Arg5 =:= 1 of end

14: true -> Var1 = Arg2

15: false -> error(Arg4 + Arg5)

11: false -> Var1 = Arg1

2: Var1

3:

Figure 6. Example program after final structuring step at
return node with arrows showing where copying occurred

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 87

true

false

true

true

false false

true

false

false

true false

12

%X1=Arg2

13

error(Arg4 + Arg5)

10

%X1=Arg4 + Arg5

case Arg4 + Arg5 =:= 1 of end

11

14

%X1=Arg2

15

error(Arg4 + Arg5)

1

%X1=Arg1

%X2=Arg2

%X3=Arg3

%X4=Arg4

%X5=Arg5

case Arg1 of end

2

3

4

case Arg2 =/= true of end

5

case Arg1 of end

6

7

case Arg3 =:= true of end

8

9

%X1=Arg4 + Arg5

case Arg4 + Arg5 =:= 1 of end

Figure 7. Graph derived from example program in final struc-
turing step at return node

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.06

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT

SOLVING IN THE CLANG STATIC ANALYZER

RÉKA KOVÁCS AND GÁBOR HORVÁTH

Abstract. Static analysis is a widely used method for finding bugs in
large code bases. One of the most popular static analysis tools used for
software written in C/C++ languages is the Clang Static Analyzer [1].
During symbolic execution [2] of the source code, the analyzer models
path sensitivity by keeping track of constraints on symbolic variables. The
built-in constraint manager module, while granting excellent performance,
only handles constraints on certain types of integer expressions, which has
a detrimental effect on the quality of the analysis, as the infeasibility of
certain execution paths cannot be proved. This often leads to false positive
findings, i.e. error reports issued for code parts that are actually correct.

This paper records the first milestone in an effort to integrate the
state-of-the-art Z3 theorem prover [3] into the Clang Static Analyzer in
order to post-process bug reports. While full integration is hindered by
the burden Z3 places on the duration of the analysis, the refutation of
false positive reports using information collected by the default pass can
improve analysis quality substantially while introducing only a moderate
regression in performance. We present an initial prototype of the tiered
constraint solving solution that is already capable of filtering out some
bogus reports, evaluate it on real-world software projects, and explore
possible improvements we plan to accomplish in our future work.

1. Introduction

Static analysis is the analysis of software without actually executing pro-
grams, usually performed by an automated tool on the source code. Static
analysis tools are widely used in the continuous integration chains of produc-
tion software as their comprehensive checks can provide rapid feedback on the
code’s performance, reliability, and safety.

Received by the editors: April 2, 2018.
2010 Mathematics Subject Classification. 68N20.
1998 CR Categories and Descriptors. F.3.2 [Logics and meanings of programs]:

Semantics of Programming Languages – Program analysis.
Key words and phrases. Static analysis, symbolic execution, Clang, SMT solver.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.

88

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 89

One of the main considerations behind the design decisions of static anal-
ysis tools is the number of false positive reports produced by the tool. False
positives are warnings issued incorrectly for code parts that do not contain
erroneous behavior. A high ratio of bogus reports is a much greater problem
for an industrial bug finding tool than some number of bugs missed (even so
as it is impossible to find all bugs using static analysis [5]). Bug reports need
to be reviewed by developers one-by-one in order to correct potential errors in
their software. If the tool presents an overwhelming amount of false warnings
to the developer, its usability suffers and developers lose their trust in the tool.

The Clang Static Analyzer is a symbolic execution engine built atop of
clang [4], a relatively recently developed LLVM compiler front-end for C-family
languages. The Static Analyzer is an increasingly popular choice of a static
analysis tool despite still being a work-in-progress, as it is free, open-source,
but its power already matches that of most closed-source tools widespread in
the industry.

Despite heavy developer effort, the Static Analyzer suffers from the prob-
lem of false positive reports much like other similar tools. One possible way
to improve the quality of the reports is to improve the constraint management
of symbolic expressions, which plays an important role in proving the infeasi-
bility of impossible execution paths during symbolic execution. An important
intermediary step in this direction is the refutation of false positive reports by
re-evaluating constraints by a more powerful constraint solver than the one
currently built into the engine.

In the following section, we give a brief overview of the inner workings
of the analyzer and explain the role of constraint management during the
symbolic execution of a program. In Section 3, we present the results of
an experiment highlighting the problem with a straightforward solution and
explain the motivation behind the choice of the method described in this paper.
In Section 4, we explore some aspects of the problem that need to be considered
while constructing the solution. Next, we evaluate our prototype on real-world
software projects and then raise some questions for future work in Section 6.

2. The Clang Static Analyzer

2.1. General overview. The Clang Static Analyzer is a symbolic execution
engine capable of analyzing C, C++, and Objective-C programs. Symbolic
execution is a form of abstract interpretation of the source code, where each
unknown value encountered is assigned a symbol, on which operations are per-
formed symbolically. Along this process, the analyzer attempts to enumerate
all possible execution paths by building a so-called exploded graph [6]. Each

90 RÉKA KOVÁCS AND GÁBOR HORVÁTH

void g (int b ,
int &x) {

i f (b)
x = b+1;

else
x = 42 ;

}

b: $b, x: $x

$b : [IMIN, IMAX]

$x : [IMIN, IMAX]

b: $b, x: $x

$b : [0, 0]

$x : [IMIN, IMAX]

b: $b, x: 42

$b : [0, 0]

b: $b, x: $x

$b : [IMIN, -1] ∪ [1, IMAX]

$x : [IMIN, IMAX]

b: $b, x: $b + 1

$b : [IMIN, -1] ∪ [1, IMAX]

Figure 1. An example depicting the representation of sym-
bolic execution in the exploded graph.

vertex of this graph is a (program state, program point) pair, where the pro-
gram point determines the current location in the program, and memory is
represented using a hierarchy of memory regions [7]. The program state holds
traits of the program such as the environment, which records symbolic val-
ues of active expressions, and a data structure holding range constraints, i.e.
ranges that symbolic values may take [8], among others.

During the execution of a path, the analyzer collects constraints on symbolic
expressions. The built-in constraint solver module can reason about simpler
pointer and integer expressions, by representing constraints on them using
closed ranges of integer values. One of the main roles of the constraint manager
is to determine whether these constraints become unsatisfiable, in which case
the analysis of the current path should be terminated. It is vital for the
analyzer to recognize such infeasible program paths in the exploded graph
mainly as not to issue error reports for paths that will never be executed.

An example analysis can be seen along with its simplified exploded graph
on Figure 1. Function g can lead to two execution paths. Since the value of
b and x is initially unknown, these values are represented with symbols $b

and $x, which can take on arbitrary values. As the analysis continues on the
execution path corresponding to the else branch, the value of b is known to
be zero, and later we discover that the value of x is the constant 42. Symbol
$x is no longer needed on this path. On the other path, the value of b can be
anything but zero. Later, we also discover that the value of x is one greater
than the original value of b. The symbol $x is no longer needed on any of the
paths, it can be garbage collected.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 91

2.2. Constraint management in the Static Analyzer. As mentioned pre-
viously, the analyzer collects constraints on symbolic variables encountered in
the program to be able to detect if they become unsatisfiable. Solving these
constraints is only one side of the coin: generating and managing them is
another. Support for constraint management is therefore scattered through-
out the analyzer engine. The current solution centers around a solver op-
erating on range-based constraints, which is only capable of handling some
common binary operations between symbolic values and concrete integers
(called SymIntExprs), and some relational operations between two symbols
(SymSymExprs). Although it is very fast, it lacks support for many other
commonly used arithmetic operations even on SymIntExprs, such as bitwise
operations, multiplication, division, etc.

In 2017, support for an alternative constraint solver backend, the Z3 Theo-
rem Prover, has been added to the engine [9]. Z3 is a state-of-the-art general
purpose SMT solver developed by Microsoft Research. Z3 is capable of han-
dling most arithmetic operations unsupported by the current solver, such as
those on floating-point values, and it also represents integers more realistically,
modeling them with fixed-width bitvectors, granting greater precision in its
results.

Unfortunately, the analyzer will not be able to harness the full power of
the Z3 Theorem Prover until symbolic expression support is improved in the
engine. Namely, the analyzer currently does not build up symbolic expressions
consisting of floating-point type values, and subsequently does not generate
constraints on them, meaning that information about such expressions never
arrives at the constraint manager. Still, without any further effort, Z3 should
already be able to improve analysis precision for expressions involving pointers
and integers.

Nevertheless, the analyzer still does not employ Z3 as the default constraint
solver backend. The reason behind this is its negative impact on the duration
of the analysis, with execution times soaring up to and above a factor of 20
times the usual. This slow-down stems from the nature of SMT solvers, which
follow complex inner heuristics, and often use up all of the allowed time as
limited by the timeout parameter for a single operation. For practical use, an
intermediary solution is needed.

One possible compromise is to use the Z3 Theorem Prover for false positive
refutation. This means to perform the analysis as usual, then post-process
the collected bug reports to find those that lie on paths that are found to be
infeasible by Z3. This could eliminate a large portion of false positive reports
while only introducing a moderate burden on the duration of the analysis.

92 RÉKA KOVÁCS AND GÁBOR HORVÁTH

3. Motivation: an experiment

In an effort to explore how each of the currently available constraint solv-
ing backends affect analysis performance and quality, we made the following
experiment. For 3 real-world open-source projects, we ran two analyses, each
with default settings but differing in the use of the constraint manager back-
end. We were concerned in the number of reports and execution times in each
case. In the table below, the RB keyword denotes the default range-based
solver built into the engine, while reports added and removed are meant for
the Z3 cases compared to the runs using the range-based solver. Analysis
duration is presented in the format hh:mm:ss.

Project
name

Reports
(RB)

Reports
(Z3)

Reports
removed

Reports
added

Duration
(RB)

Duration
(Z3)

tmux [10] 15 15 0 0 00:01:06 03:09:45
redis [11] 53 20 1 34 00:01:19 03:21:01

xerces-c [12] 69 2 0 67 00:05:40 03:06:22

Table 1. Information about default analyses run using differ-
ent constraint manager backends on some open-source projects.

It is interesting how the number of bugs seems to drop significantly when using
the Z3 backend in the case of redis and xerces-c. A study of the bug reports
could shed light on whether there are already some false positives eliminated,
but based on the analyzer statistics shown below for redis, it seems more likely
that Z3 is timing out and giving up on interesting paths.

Statistic Range-based Z3
The # of steps executed. 82 419 176 44 062 305
The # of functions at top level. 19 993 6 834
The # of paths explored by the analyzer. 65 627 33 382
The # of basic blocks in the analyzed functions. 215 656 70 679
The max # of basic blocks in a function. 3 152 1 575
The # of times we reached the max # of steps. 255 163

Table 2. Sample statistics collected by the analyzer about its
own operation during the analysis of the redis project.

Using the proposed bug post-processing method, the engine will call Z3 sig-
nificantly fewer times than it would in the case of an ordinary analysis with
the Z3 backend. Because of this, it might be reasonable to slightly increase
the timeout limit when refutation is switched on, as it could enable the an-
alyzer to explore more paths with Z3, prospectively improving the quality of
the analysis.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 93

4. A Prototype of Tiered Constraint Solving

Under tiered constraint solving, we really mean re-solving constraints for
paths that lead to bugs. To understand how this can be achieved inside the
analyzer technically, we first give a brief overview of the workings of its bug
reporting mechanism, and then explain the rationale behind some design de-
cisions of the prototype.

4.1. Bug reporting in the Static Analyzer. If the analyzer finds a critical
issue during building the exploded graph, such as a division by zero error,
it stops the analysis on that execution path, generates an error node, and
emits a bug report (less critical problems would generate a non-fatal error
node, in which case the analysis continues on that path, but the bug report
is still emitted). Bug reports are continuously collected during analysis, and
processed after the construction of the exploded graph is finished.

In order to generate a meaningful path diagnostic from a bug report, and
to suppress some reports which are likely to be false positives, the analyzer
executes bug reporter visitors at this late stage of the analysis. Starting from
the error node, visitors travel backwards on the bug path and perform arbitrary
operations needed to accomplish their task - usually place additional notes
to interesting locations along the path. The bug reporter visitor interface
therefore offers a convenient way to implement the tiered constraint solving
prototype.

4.2. Building the refutation visitor. Constraints on symbolic values are
collected in the program state during the analysis. Whenever a new con-
straint appears for a symbol, the constraint manager attempts to add it to
those already in the state, and if it can prove them to be unsatisfiable, then
the current state is said to be infeasible. While building the exploded graph,
the engine uses this information in order not to generate a new node for an im-
possible state. As branching statements are typical points in a program where
constraints are added to expressions, constraint management issues relevant
for bug report post-processing can be demonstrated on examples involving
branching.

Stage 1: Readily available constraints. Sometimes, the range-based con-
straint solver can reason about a branching condition, and even gets to the
point of generating constraints corresponding to a true and a false assumption
on the condition, but fails to prove that one of the created states is infeasible.
Consider the following example:

94 RÉKA KOVÁCS AND GÁBOR HORVÁTH

void g (int d) ;

void f (int ∗a , int ∗b) {
int c = 5 ;

i f ((a − b) == 0)

c = 0 ;

i f (a != b)

g (3 / c) ; // d i v i s i o n by zero : f a l s e p o s i t i v e

}

Arriving at the second if, both conditions are understood and translated to
ranged constraints, but the solver is not able to prove that they contradict
each other. This can be seen from the exploded graph as the current path
splits to two, meaning that the constraint manager found both new states to
be feasible. On the path assuming that both conditions are true, the exploded
node holds the following constraints:

Ranges o f symbol va lue s :

(reg $0<int ∗ a>) − (reg $1<int ∗ b>): { [0 , 0] }
(reg $1<int ∗ b>) − (reg $0<int ∗ a>): { [−9223372036854775808 , −1] ,

[1 , 9223372036854775807] }

Here, the (a != b) condition has been rearranged to ((b - a) != 0) by the
engine, and the constraint was generated by substracting zero from the full
range of possible pointer values, representing the result with a union of the
two intervals below and above zero. These constraints can be modeled by the
following small z3 program:

(dec la re−const a (BitVec 32))

(dec la re−const b (BitVec 32))

(a s s e r t (= (bvsub a b) #x00000000))

(a s s e r t (b v s l t (bvsub b a) #x00000000))

(a s s e r t (bvsgt (bvsub b a) #x00000000))

(check−sa t)

(get−model)

which, after execution, gives an unsat result, i.e. the problem is proved to be
unsatisfiable. This is the simplest case our bug reporter visitor should be able
to handle: ranged constraints are readily available in the program state, they
only need to be fed to a Z3 solver instance in the proper format. For this,
constraints on symbolic values need to be converted to the internal expression
type used by Z3, which involves the translation of integer relations into their
corresponding correct bitvector operations. If the translation succeeds and the
Z3 solver can prove the state to be infeasible, the report is marked invalid,
and never shown to the user.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 95

Stage 2: Constraints that need to be extracted. If the constraint man-
ager encounters a symbolic expression that it cannot reason about, it also
cannot generate a constraint for it. Consider the following example:

void g (int c) ;

void f (int a , int b) {
int c = 0 ;

i f (a > 3)

i f (b < 3)

i f (b > a)

g (5 / c) ; // d i v i s i o n by zero : f a l s e p o s i t i v e

}

As the constraint manager gives up while interpreting the third if condition,
it cannot prove that the state where all three conditions are true is not fea-
sible, hence the false positive report. This example is more problematic than
the previous one because whenever the constraint manager cannot generate a
constraint for an expression, the constraint will also not appear in the pro-
gram state. The data structure that comes to our aid is the control flow graph
(CFG), a representation of all paths that might be traversed during program
execution. The CFG is constructed by the compiler in an intermediary step of
the analysis, and the analyzer core relies on it heavily while building the ex-
ploded graph. While the unrecognized condition does not appear among the
constraints directly, it can still be extracted from CFG-related information
recorded in the exploded node (the terminator statement of the CFG block):

Terminator : i f b > a

l i n e =6, c o l=7

Condit ion : t rue

. . .

Ranges o f symbol va lue s :

reg $0<int a>: { [4 , 2147483647] }
reg $0<int b>: { [−2147483648 , 2] }

from where it could be extracted and fed to a Z3 solver instance with the
method outlined at the previous example. Z3 could prove that the path is
infeasible, as demonstrated by the program below, which gives an unsat result.

(dec la re−const a (BitVec 32))

(dec la re−const b (BitVec 32))

(a s s e r t (bvsgt a #x00000003))

(a s s e r t (b v s l t b #x00000003))

(a s s e r t (bvsgt b a))

(check−sa t)

(get−model)

96 RÉKA KOVÁCS AND GÁBOR HORVÁTH

Other examples where false positives can be eliminated with tricks like this
can be discovered through systematically designed experiments.

Stage 3: Constraints that need improved symbolic expression sup-
port. Symbolic values are the building blocks of symbolic expressions being
created by the symbolic value builder module during the analysis of a program.
Expressions not supported by the symbolic value builder become UnknownVals
and never get to the point of being handled by the constraint manager. Be-
cause of this, such constraints will never appear in the environment (the data
structure of the program state that maps expressions to their correspond-
ing symbolic values), meaning that they will also not appear in the exploded
graph, on which the visitor is meant to operate.

void g (int d) ;

void f (f loat c) {
int a = 2 ;

i f (c > 4 2 . 0)

return ;

i f (c > 0 . 0)

a = 0 ;

i f (− 3 .14 ∗ c ∗ c > 0)

g (3 / a) ; // d i v i d e by zero : f a l s e p o s i t i v e

}

In the above example, c is a floating-point value for which the symbolic valuei
builder cannot create a valid symbol at the present. As there is no information
in the graph that could help prove that the truthness of the third if condition
leads to an infeasible state, the path leading to the false positive report is
created.

This problem can be mitigated by adding support for currently unhandled
symbolic values to the symbolic value builder. After such improvements, infor-
mation needed for the false positive refutation visitor to work will be present
in the graph and the previously described methods can be used.

5. Evaluation

In its present state, the refutation visitor implementation is capable of han-
dling constraints that are understood by the default constraint manager and
saved into the range constraints data structure of the program state. It im-
plements a so-called bug reporter visitor, that is run for each bug report after
the construction of the exploded graph is completed. Starting from the error
node, the visitor traverses backwards on each buggy execution path, collecting
the appropriate ranged constraints from the visited nodes, and adding them

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 97

to a Z3 solver instance. At the end of the path, the solver is asked to solve the
constraints, and if it finds them unsatisfiable, the bug report gets invalidated.

Evaluation experiments were conducted by running the appropriate analysis
configurations on a collection of open-source software projects listed below, on
the same virtual machine and using 12 threads. An attempt was made to
select both smaller and larger projects written for different purposes in both
C and C++ (apart from the previously cited projects: [13], [14], and [15]).

5.1. Refutation vs. the Z3 constraint solving backend. The false pos-
itive refutation option was designed to provide a compromise between the
speed of the default analysis and the precision of an analysis using the Z3
constraint manager backend. We therefore ran analyses with the refutation
option switched on on the open-source projects studied in Section 3, in order
to compare their results to those using the Z3 backend.

We do not expect the same results for several reasons. First, analyzing
projects using the Z3 backend, the whole process uses the Z3 constraint man-
ager, and the resulting exploded graph may differ from the one built in default
mode. This means that constraints stored in the graph may be slightly more
realistic or precise than those generated in the default mode. However, its
working mechanism also differs from the case in which the default analysis is
merely enhanced by the refutation visitor. Because of its independent nature,
refutation may eliminate false reports that an analysis with the Z3 backend
cannot, e.g. those caused by weaknesses in the engine’s general operation.
And even though it operates on constraints generated by the default solver,
the table presented below shows that its advantage in speed may outweigh its
disadvantage in granting report quality.

Project
name

Reports
(default)

Reports
(FPR)

Reports
(Z3)

Duration
(default)

Duration
(FPR)

Duration
(Z3)

tmux 15 15 15 00:01:06 00:02:02 03:09:45
redis 53 49 20 00:01:19 00:01:22 03:21:01

xerces-c 69 29 2 00:05:40 00:05:50 03:06:22
libWebM 6 6 0 00:00:56 00:00:58 09:26:28

curl 17 14 10 00:01:16 00:01:15 01:34:04
memchached 17 14 1 00:00:37 00:00:38 00:48:32

Table 3. Comparison of analyses run with the default config-
uration, with refutation enabled and using the Z3 constraint
manager backend.

98 RÉKA KOVÁCS AND GÁBOR HORVÁTH

5.2. Refutation vs. default analysis. From an industry viewpoint, the
study of any performance regression refutation poses on the analysis is essen-
tial. The following table contains the number of bug reports for two analysis
runs for 6 open-source projects, one with a default configuration, and one with
the naive prototype of false positive refutation enabled.

As expected, the tiered constraint solving pass did not create any new re-
ports. Since it begins to operate after the exploded graph is completed, it does
not participate in the actual analysis process, and can only remove some of
the existing reports, but has no means to add new ones. The number of invali-
dated reports, on the other hand, depends heavily on the analyzed project. In
most cases, only a few bugs were removed by the visitor, which is reasonable
considering that it currently handles a narrow range of subtle false positive
cases. The xerces-c project stands out in this regard, with more than a half
of its bugs thrown away. After performing a manual inspection of some of the
removed reports, either the falseness of the reports was difficult to determine
(because of long bug paths), or we found that the report was truly a mistake
on the analyzer’s behalf and its removal increased the overall quality of the
analysis.

Project
name

Reports
(default)

Reports
(FPR)

Reports
removed

Duration
(default)

Duration
(FPR)

tmux 15 16 0 00:01:01 00:01:18
redis 53 161 4 00:02:15 00:04:01

xerces-c 69 40 40 00:03:22 01:01:22
libWebM 6 28 0 00:01:21 00:02:50

curl 17 36 3 00:01:01 00:01:00
memcached 17 14 3 00:29:30 00:40:17

Table 4. Report numbers for analyses with a default config-
uration and with false positive refutation (FPR) enabled for
some open-source projects.

6. Future Work

Although the tiered constraint solving protoytype is already capable of elim-
inating some false positive bug reports, its functionality can be extended and
its results greatly improved once further enhancements outlined below will be
introduced into the analyzer.

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 99

6.1. Symbolic expression support. The main purpose of the initial intro-
duction of the Z3 backend was to enable the analyzer to reason about floating-
point values. For this to work fully, the analyzer needs to generate and han-
dle symbolic floating-point expressions (SymFloatExprs and FloatSymExprs).
Apart from floats, symbolic expression support should generally be improved
in the symbolic value builder module, including arithmetic operations involv-
ing values other than concrete integers. This could fundamentally improve the
precision of the analysis.

The analyzer sometimes makes assumptions about algebraic operations that
were written with the integer-based constraint manager in mind, and often do
not hold for other types of values (e.g. the x == x is true assumption does
not hold for special floating-point values like NaNs). Along with the introduc-
tion of new types, these assumptions could be revised and extended to support
operations defined for any new types, for example for floats. Additionally, as-
sumptions like these could also be checked for expressions involving an integer
and a symbol or two symbols.

Code parts responsible for dropping constraints that will not be digested by
the symbolic value builder are scattered around in its current form. This makes
it difficult to evaluate how changing the level of detail affects the performance
of the engine (and it is also more difficult to determine what is handled). This
logic could be collected to one place behind a flag, so that symbolic expression
handling could be controlled easily.

6.2. Packaging. Although the adoption of the tiered constraint solving solu-
tion in the Clang Static Analyzer is already in progress, its usage for a normal
user is hindered by packaging issues. Users typically use the analyzer as part
of their continuous integration toolchains and are reluctant to make modifi-
cations to their command scripts, so Z3 support should be granted just by
updating their clang to the latest version.

This is however not possible because of the project’s licensing policy. Al-
though Microsoft Research open-sourced their Z3 theorem prover, its license
is still not compatible with clang ’s liberal open-source license, and thus can-
not be included in the latest clang package. On the contrary, the Z3 sources
need to be downloaded and installed separately by each user and then clang
needs to be built with special flags that find the Z3 installation and enable
its support. Most of the users would probably abandon the refutation feature
because of such inconveniences.

One idea to solve this situation would be to find and integrate another SMT
solver like the Z3 theorem prover, but with a compatible license. Alternatively,
if no project is found that suits the analyzer’s needs, a small SMT solver could

100 RÉKA KOVÁCS AND GÁBOR HORVÁTH

be re-implemented inside the analyzer much like the range-based solver, but
a more powerful one.

To facilitate solver comparing experiments and to make solver backend
switching more flexible, a general SMT solver interface could be implemented
in the analyzer. The current constraint management framework relies heavily
on the built-in range-based solver, and only has been extended to support Z3
in a very special manner. Most of the duplicate work involved in adding a
new backend at the present could be avoided with a general interface.

7. Conclusion

Minimizing the number of false positive reports is a critical issue for most
static analysis tools in order to grant high-quality results to their users. A
method taking an important step towards this goal was presented for one of
the most widely used open-source static analysis tools for C family languages,
the Clang Static Analyzer. The solution works by introducing an additional
step towards the end of the analysis, when constraints on symbolic expres-
sions encountered on the buggy execution path are re-evaluated by a powerful
external constraint solver engine, invalidating a bogus bug report if the path
leading to it is found to be infeasible. This step is needed because the default
built-in constraint solver is designed to prefer speed over precision, while using
the precise external solver for the whole process would result in unacceptably
long execution times. In order for the analyzer to retain its industrial-strength
performance, a practical intermediary solution was needed.

The tiered constraint solving solution described in this paper is careful to
preserve close-to-usual execution times while eliminating many of the false
positive reports, as found by an evaluation on a set of real-world software
projects. Additionally, an agenda of possible enhancements was outlined that
might be useful to study and implement to further improve the results. The
prototype is currently under review by the open-source community.

8. Acknowledgement

We owe our special thanks to Artem Dergachev and George Karpenkov,
core developers of the Clang Static Analyzer, for the discussion and advice
regarding the proposed changes.

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

AN INITIAL PROTOTYPE OF TIERED CONSTRAINT SOLVING 101

References

[1] Clang Static Analyzer. https://clang-analyzer.llvm.org
[2] HAMPAPURAM, Hari; YANG, Yue; DAS, Manuvir. Symbolic path simulation in path-

sensitive dataflow analysis. In: ACM SIGSOFT Software Engineering Notes. ACM, 2005.
p. 52-58.

[3] DE MOURA, Leonardo; BJØRNER, Nikolaj. Z3: An efficient SMT solver. In: Interna-
tional conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, Berlin, Heidelberg, 2008. p. 337-340.

[4] ”clang” C language family frontend for LLVM. https://clang.llvm.org/
[5] RICE, Henry Gordon. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society, 1953, 74.2: 358-366.
[6] REPS, Thomas; HORWITZ, Susan; SAGIV, Mooly. Precise interprocedural dataflow

analysis via graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 1995. p. 49-61.

[7] XU, Zhongxing; KREMENEK, Ted; ZHANG, Jian. A memory model for static analysis
of C programs. In: International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation. Springer, Berlin, Heidelberg, 2010. p. 535-548.

[8] Artem Dergachev: Clang Static Analyzer - A Checker Developer’s Guide. 2016.
https://github.com/haoNoQ/clang-analyzer-guide

[9] Dominic Chen: Add new Z3 constraint manager backend. Differential Review. 2017.
https://reviews.llvm.org/D28952

[10] Tmux, a terminal multiplexer. https://github.com/tmux/tmux/
[11] Redis, an open source, in-memory data structure store. https://redis.io/
[12] Xerces-C++ XML Parser. https://xerces.apache.org/xerces-c/
[13] WebM, an open web media project. https://www.webmproject.org/
[14] Curl, a command line tool for transferring data with URLs. https://curl.haxx.se/
[15] Memcached, a distributed memory object caching system. https://memcached.org/

Email address: rekanikolett@caesar.elte.hu

Eötvös Loránd University, Department of Programming Languages and Com-
pilers, Pázmány Péter st. 1/C., Budapest, Hungary

Email address: xazax@caesar.elte.hu

Eötvös Loránd University, Department of Programming Languages and Com-
pilers, Pázmány Péter st. 1/C., Budapest, Hungary

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.07

INCREMENTAL RELATIONAL ASSOCIATION RULE

MINING OF EDUCATIONAL DATA SETS

LIANA MARIA CRIVEI

Abstract. Educational Data Mining is an attractive research field in
which the underlying idea is that of bringing the data mining perspective
into educational environments. The main focus is to better understand
the educational related phenomena by extracting, through data mining
techniques, meaningful hidden patterns from educational data sets. Incre-
mental Relational Association Rule Mining (IRARM) has been introduced
as an effective online data mining method for dynamically mining inter-
esting relational association rules (RARs) in a dynamic data set which is
extended with new data instances. The study conducted in this paper is
aimed to emphasize the effectiveness of both RAR and IRARM mining
methods in educational data mining settings. Experiments performed on
various academic data sets highlight the potential of using relational asso-
ciation rules for uncovering relevant knowledge from educational related
data.

1. Introduction

Data mining (DM) techniques are extensively applied nowadays in various
domains including medicine, bioinformatics, software engineering, to discover
relevant patterns in large databases, especially due to their potential of un-
covering hidden information from data.

Applying DM techniques in education [5] has attracted researchers from
both DM and educational research and thus a new interdisciplinary research
discipline known as educational data mining (EDM) emerged. The main focus
in EDM is to develop methods for extracting knowledge from data that come
from various educational information systems and educational environments.

Received by the editors: April 15, 2018.
2010 Mathematics Subject Classification. 68T05, 68P15.
1998 CR Categories and Descriptors. H.2.8[Database management]: Database Ap-

plications – Data Mining ; I.2.6[Computing Methodologies]: Artificial Intelligence –
Learning .

Key words and phrases. Data mining, Educational data mining, Relational association
rule, Incremental algorithm.

102

RULE MINING OF EDUCATIONAL DATA SETS 103

Through mining educational data sets, EDM’s purpose is to better under-
stand the students’ learning process and thus to offer additional insights into
educational related phenomena.

Within the DM domain, association rule (AR) mining represents an impor-
tant data analysis and mining technique [9] applied in various supervised and
unsupervised learning scenarios for extracting rule based patterns from data
sets. Ordinal association rules (OARs) [7] were proposed as a particular class
of ARs which express ordinal relationships between the attributes character-
izing a data set. Afterwards, relational association rules (RARs) [6, 11] have
been introduced as an extension of OARs capable to capture various type of
non-ordinal relations between data attributes.

We are approaching in this paper the problem of incremental relational
association rule mining (IRARM) in the context of EDM. The process of
incremental RAR mining is appropriate specifically for online DM scenarios,
where the data set to be mined is dynamic and thus continuously extended
with real-time arriving data streams. In such situations, IRARM approach
aims to progressively adapt the interesting RARs identified in a data set, when
it is enlarged with new instances. Since the learning processes within educa-
tional environments are by nature online processes, the idea of investigating
the IRARM perspective in EDM comes naturally. The EDM literature also
reveals that DM is very useful in the educational field particularly when ex-
ploring the online learning environment [18].

The contribution of the paper is summarized as follows. First, we are em-
phasizing the relevance of RAR mining in the field of educational data mining
(EDM) with the goal of uncovering meaningful patterns within educational
data sets. Secondly, we extend the experimental evaluation of our previously
proposed incremental relational association rule mining approach (IRARM)
[17] on several EDM case studies. The effectiveness of IRARM is emphasized
through the reduction in mining time achieved when using IRARM against
RAR mining from scratch when a data set is extended with new instances.
The study conducted in this paper is novel in the EDM literature, since neither
the classical nor the incremental RAR mining approaches have been applied
on academic data sets, so far.

The rest of the paper is structured as follows. Section 2 introduces the EDM
domain and emphasizes its relevance within the larger DM field. A background
on RAR mining and its incremental extension IRARM is presented in Section
3, together with an example of RAR mining in EDM. Section 4 describes the
experiments performed for highlighting the performance of IRARM on four
academic data sets and discusses upon the obtained experimental results. The

104 LIANA MARIA CRIVEI

conclusions of the paper and directions for future improvements are highlighted
in Section 5.

2. Educational Data Mining

EDM is an attractive research field in which the underlying idea is that
of bringing the data mining perspective into educational environments. The
main focus is to better understand the educational related phenomena by
extracting, through data mining techniques, meaningful hidden patterns from
educational data sets.

Extracting relevant patterns from the educational processes would also be
useful for understanding students and how they learn, as well as improving
the educational outcomes (e.g. learning outcomes). EDM has received lately
considerable attention from the research community since extracting hidden
knowledge from educational data is of particular interest for the academic
institutions and also useful for improving their teaching methodologies and
learning processes [18].

Various applications using data mining techniques have been developed, so
far, in the EDM field. Machine learning methods are intensively investigated,
both from a supervised and unsupervised perspective, as data mining tech-
niques for building course planning systems, detecting what type of learners
are the students, grouping students according to their similarity, predicting
the students’ performance for courses, assisting instructors in the educational
process [15].

We briefly review, in the following, several recent approaches which have
been developed for assessing the performance of students in educational envi-
ronments.

Ayers et al. applied in [3] several clustering algorithms such as hierarchical
agglomerative clustering, K-means and model based clustering for grouping
students according to their skill sets.

Bharadwaj and Pal conducted in [4] a study towards identifying features
which are strongly correlated with the academic students’ performances. The
authors found out that characteristics such as the living location, medium
of teaching, mother’s qualification, the family annual income, and student’s
family status highly influence the performance of the prediction task. Pal
and Pal conducted in [21] a study using decision tree based classification algo-
rithms to identify the students needing special advising and counseling from
the teachers.

Supervised classification models such as Naive Bayes, decision trees, neural
networks have been applied in [15] together with Synthetic Minority Over-
Sampling (SMOTE) method to improve the accuracy of a machine learning

RULE MINING OF EDUCATIONAL DATA SETS 105

model for predicting the students’ final grade for a particular course. An anal-
ysis of the performance of the previous mentioned machine learning models,
including support vector classification was performed by Shahiri et al. in [23].
Additionally, a study was conducted upon the effectiveness of the attributes
involved in the classification process.

Ahmed et al. focused in [2] on predicting the performance of instructors
and analyzed the factors that affect students’ academic achievements, with
the purpose of improving the quality of the educational system. Several clas-
sifiers such as J48 Decision Tree, Multilayer Perceptron, Näıve Bayes, and
Sequential Minimal Optimization were applied and compared to identify the
best performing classification algorithm. Among all considered classifiers, J48
provided the best classification accuracy of 84.8%.

The problem of predicting the students performance (PSP) has been con-
sidered in [24] as regression problem and a hybrid method combining a collab-
orative filtering-based system and a regression-based one has been proposed.

3. Background on relational association rules

In Section 3 the fundamental concepts related to relational association rule
(RAR) mining [11] are reviewed. Then, the relevance and importance of RAR
mining in the context of EDM is emphasized through an example on an edu-
cational data set. Section 3.2 briefly presents the incremental relational asso-
ciation rule mining (IRARM) approach [17].

3.1. Relational association rule mining. Association rule (AR) mining
represents an important data analysis and mining technique [9] useful in mul-
tiple machine learning tasks for uncovering meaningful rule based patterns in
data sets. Ordinal association rules (OARs) [7] were proposed as a partic-
ular class of ARs which express ordinal relationships between the attributes
characterizing a data set. RARs [6, 11] have been introduced as an extension
of OARs able to express different type of non-ordinal relations between data
attributes.

The Relational Association Rules (RARs) notion is defined in the following
paragraphs.

We consider D = {d1, d2, . . . , dn} a set of instances or records. Let Ω =
(a1, . . . , am) be a sequence of m attributes characterizing each instance from
the data set D. Each attribute ai takes values from a non-empty and non-fuzzy
domain ∆i, which also contains a null (empty) value. We denote by Ψ(dj , ai)
the value of attribute ai for an instance dj .

We denote by T the set of all possible relations that are not necessarily
ordinal which can be defined between two domains ∆i and ∆j .

106 LIANA MARIA CRIVEI

Definition 3.1. A relational association rule [11] is an expression

(ai1 , ai2 , ai3 , . . . , aih)⇒ (ai1τ1ai2τ2ai3 . . . τh−1aih),

where {ai1 , ai2 , ai3 , . . . , aih} ⊆ Ω, aik 6= aip, k, p = 1, . . . , h, k 6= p and τk ∈ T
is a relation over ∆ik ×∆ik+1

, ∆ik being the domain of the attribute aik .

a) If ai1 , ai2 , . . . , aih are non-missing in m instances from the data set
then we call s = m

n the support of the rule.
b) If we denote by D′ ⊆ D the set of instances where ai1 , ai2 , ai3 , . . . , aih

are non-missing and all relations Ψ(dj , ai1)τ1Ψ(dj , ai2), Ψ(dj , ai2)τ2
Ψ(dj , ai3), . . . , Ψ(dj , aih−1

)τh−1Ψ(dj , aih) hold for each instance d

from D′ then we call c = |D′|
n the confidence of the rule.

Interesting RAR’s were defined in [11] as those rules which have both their
support and confidence greater than or equal to specified minimum thresholds.
For mining interesting RARs an Apriori-like algorithm named DRAR (Dis-
covery of Relational Association Rules) was proposed in [12] as an extension
of the DOAR algorithm introduced in [7] for uncovering OARs.

3.1.1. Example. For a better understanding of the concept of RAR, an exam-
ple on an EDM related data set is considered. The aim is to highlight the
relevance of applying RAR mining in the context of educational data sets.

The data set used in our example is a real data set, containing the grades
obtained by students at a Computer Science undergraduate course offered at
Babeş-Bolyai University in a time frame of four academic years (2014-2018).
The complete data set is available at [1]. There are a total of 867 instances
characterized by 6 attributes, denoted by a1, a2, . . . , a6. These attributes rep-
resent the following: written exam score (a1), seminar score (a2), laboratory
score (a3), first practical test score (a4), second practical test score (a5) and
final grade (a6). Considering the minimum support threshold at smin = 1 and
the minimum confidence threshold at cmin = 0.6, we applied DRAR mining
algorithm. Since all the attributes in our experiment have integer values, two
possible binary relations between integer valued attributes were used: ≤ and
>. The discovered maximal interesting RARs are illustrated in Table 1.

Each line from Table 1 describes a RAR of a certain length (depicted in the
first column), which has the confidence illustrated in the third column. For
example, the first line in Table 1 refers to the RAR a1 ≤ a3 of length 2 (i.e.
the rule contains two attributes) having a confidence of 0.739. This rule has
the following interpretation: the value of the attribute a1 is less or equal than
the value of the attribute a3 in 73.9% of instances from the analyzed data.

Analyzing the last rule depicted in Table 1 one observes that for 61.3 % of
the students the grade for the written exam is less or equal than the first test

RULE MINING OF EDUCATIONAL DATA SETS 107

Length Rule Confidence

2 a1 ≤ a3 0.739
2 a1 ≤ a5 0.751
2 a1 ≤ a6 0.825
2 a2 ≤ a3 0.751
2 a2 ≤ a4 0.828
2 a2 ≤ a5 0.819
2 a2 ≤ a6 0.669
2 a3 ≤ a4 0.722
2 a3 ≤ a5 0.711
2 a3 > a6 0.605
2 a4 ≤ a5 0.713
2 a5 > a6 0.604
3 a1 ≤ a4 > a6 0.613

Table 1. Interesting maximal relational association rules
mined for smin = 1 and cmin = 0.6.

grade, which is greater than the final grade. This suggests that the grades
for the practical test are greater than those for the written exam, which could
be considered typical because the written exam requires wider knowledge.
Analyzing other interesting rules depicted in the table 1: a3 ≤ a4 and a3
≤ a5 we observe that the grade obtained for the laboratory is less than the
both practical test scores. This is an indication that some of the laboratory
assignments are more difficult or complex than the actual practical test. The
complexity of the practical test could be increased. We also observe that a3
> a6 meaning the laboratory score is less than the final grade score.

The RARs mined from the academic data may be relevant for the professor
and can provide indications about the complexity of the laboratory assign-
ments or the written exams.

3.2. Incremental relational association rule mining. We have previously
introduced in [17] an incremental relational association rule mining approach,
called IRARM , which is useful when a data set to be mined is extended with
new objects. In such situations, for uncovering the interesting RARs from the
extended data set, IRARM will efficiently adapt the RARs discovered in the
data set before the extension. This incremental process will be more effective
than running DRAR from scratch on the extended data set.

We consider in the following that the data set D to be mined is dynamic,
being extended at a certain time with a non-empty set of instances {dn+1, dn+2,

108 LIANA MARIA CRIVEI

. . . , ds}. We denote the enlarged set of instances by Dext = {d1, d2, . . . , ds},
while the set of newly added instances is Dnew = Dext \ D. For pre-specified
minimum support (smin) and confidence thresholds (cmin), we analyze the
problem of incrementally identifying all interesting RARs in the extended
data set Dext by adapting the set of interesting RARs mined in D before its
extension. Through the IRARM method we aim to reduce the running time
required to mine the set Rulesext of interesting RARs from Dext.

Certainly, new interesting RARs could be produced by the newly added
instances, but also RARs which were interesting enough in the data set be-
fore extension may become uninteresting on the extended data set. The set
Rulesext of all interesting RARs may be discovered by applying the DRAR
method from scratch, on the extended set of objects. But this process can be
computationally expensive. That is why our goal is to replace it by a more
efficient algorithm IRARM (Incremental Relational Association Rule Min-
ing), which preserves the completeness of the RARs generation procedure.
Considering the newly added instances, IRARM adjusts the set Rules of all
interesting RARs in the initial data set D to produce the set of all interesting
RARs in the extended data set Dext.

The idea behind determining the setRulesext will be further described. Two
main stages characterize the IRARM method. The first stage is filtering
the set Rules of interesting RARs from the initial data set D in order to
maintain only the rules which are interesting in the extended data set Dext as
well. The second stage consists of extending the subset previously obtained
with new rules which were not interesting in D, but become interesting on the
extended data set Dext. After the second phase is completed the set Rulesext
of interesting RARs from the extended data set Dext will have been mined.

More details about the description of IRARM algorithm can be found in
[17].

The educational process is essentially dynamic therefore the results of the
evaluation for new students are available in an incremental manner. While
new information is accessible the existent academic data set is continuously
updated. In such situations the discovery of interesting relational association
rules in academic data sets is an incremental process. Consequently it is more
efficient from a computational viewpoint to apply the IRARM incremental
method (by adapting the set of rules identified before updating the data)
rather than applying DRAR from the scratch on the entire data set.

4. Results and discussion

We provide in the following an experimental evaluation of IRARM on two
academic data sets, as well as a discussion upon the obtained results.

RULE MINING OF EDUCATIONAL DATA SETS 109

4.1. Case studies and data sets. In order to evaluate the performance of
IRARM , two case studies will be conducted on four educational data sets.

The first case study is performed starting from a real academic data set
collected from the Babeş-Bolyai University.

4.1.1. First case study. The first data set used in our study is the real data
set described in Section 3.1.1 and available at [1].

The second data set considered in our evaluation is synthetically generated
from the first data set and is available at [1]. The number of instances from
this data set is 867, as in our first data set. Since our first data set contained
a relatively small number of attributes, namely 6, we extended the set of
attributes to 10 attributes, a1, a2, . . . , a10. The first 5 attributes from this data
set have the same meaning as described in Section 3.1.1. Attributes a6, a7, a8
and a9 represent the scores for four additional practical tests, while the last
attribute a10 represents the final grade. We mention that the values for the
added attributes a6–a9 were randomly generated, using a uniform distribution,
within the interval determined by the attributes a2, a3, a4, a5.

4.1.2. Second case study. The second case study used for evaluating IRARM
contains the Turkiye Student Evaluation data sets publicly available at [14].
There are two data sets (Turkey Student Evaluation Generic and Turkey Stu-
dent Evaluation Specific) each containing a total of 5820 evaluation scores
provided by students from Gazi University in Ankara (Turkey). Each data
set contains a total of 28 course specific questions and additional 5 specific
attributes. Details about the attributes can be found at [14].

4.2. Experimental results. Let us denote by s the number of instances from
the analyzed data set. For both data sets from our first case study s = 867,
while for the data sets from the second case study s = 5820.

In the performed experiments, for all data sets considered for evaluation,
the following experimental methodology was applied. We have started with n
instances in the data set (for various values for n) and afterwards the data set
was extended with s− n entities. Different values were used for the minimum
confidence threshold cmin, while smin was set to 1 since our data sets do not
contain missing values.

For each experiment, the set of interesting RARs on the extended data set
containing s instances was obtained in two ways:

(1) by adapting using IRARM the set of RARs obtained on the data
set before its extension;

(2) by applying the DRAR method from scratch on the extended data
set.

110 LIANA MARIA CRIVEI

We mention that, using method (1) or (2), the set of interesting RARs dis-
covered in data is the same, but we expect the total mining time for IRARM
to be lower than the total mining time of DRAR applied from scratch. The
experiments presented in this section were performed on a PC with an Intel
Core i7 Processor at 2.30 GHz, with 4 GB of RAM.

In the mining process, we used the following binary relations between the
integer valued attributes: >,<,=.

For all four data sets from our case studies, we have repeatedly run DRAR
and IRARM for different values for cmin and different values for n

s . Tables 2
and 3 present the results obtained when considering cmin = 0.1 and varying
n
s from 0.25 to 0.85 with a step size of 0.05. For a certain combination of
parameters (n, s, cmin), the mining method (DRAR or IRARM) was executed
20 times and the results were averaged over these executions. The fifth column
from the tables gives the reduction in total running time achieved by IRARM
computed as DRAR time−IRARM time

DRAR time .
From Tables 2 and 3 we observe that, when the percentage of initial in-

stances n
s is larger than 0.35, the running time of IRARM is increasingly

reduced with respect to the running time of DRAR, as the number of in-
stances added to the data set decreases. The maximum reduction in mining
time obtained by IRARM is achieved when n

s is 0.85 and is higher than 70%.
Figure 1 depicts, for the data sets from our first case study, how the per-

centage of IRARM ’s running time reduction increases when increasing n
s , for

three different minimum confidence thresholds: 0.1, 0.2 and 0.3.

(a) First data set. (b) Second data set.

Figure 1. IRARM ’s reduction in total mining time for the
data sets from our first case study, using different minimum
confidence thresholds.

Figures 2 and 3 illustrate, for the data sets from the first case study, how
the running time for the main operations of IRARM algorithm (Filter func-
tion, candidates generation process, Select function, support and confidence

RULE MINING OF EDUCATIONAL DATA SETS 111

Data set n s-n Time DRAR Time IRARM IRARM time

(ms) (ms) reduction (%)

217 650 5.6 5.55 0.0089
260 607 5.65 5.8 -0.0265
303 564 5.8 5 0.1379

347 520 5.65 4.75 0.1593
390 477 5.8 4.4 0.2414

First data set 433 434 5.8 4.35 0.25

477 390 5.8 3.7 0.3621
520 347 5.7 3.3 0.4211
564 303 5.45 2.85 0.4771

607 260 5.6 2.35 0.5804
650 217 5.3 2.3 0.5660

694 173 5.55 2.1 0.6216

737 130 5.85 1 0.8291

217 650 15.05 15.05 0

260 607 14.9 15 -0.0067
303 564 14.8 14.4 0.0270
347 520 15.05 13.35 0.1130

390 477 14.95 12.35 0.1739
Second data set 433 434 15.05 11.2 0.2558

477 390 15 10.35 0.31

520 347 15.15 9.6 0.3663
564 303 15 8.35 0.4433
607 260 14.9 7.25 0.5134

650 217 15.15 5.85 0.6139
694 173 15.15 5.15 0.6601

737 130 15.1 4.3 0.7152

Table 2. Experimental results on the data sets from our first
case study for smin = 1 and cmin = 0.1.

computation) evolved when varying n
s for cmin = 0.1. From the figures we ob-

serve that running times for the Filter and Select operations decrease while
n
s increases.

Figure 4 illustrates for the data sets from the second case study, how the
percentage of IRARM ’s running time reduction increases when increasing n

s ,
for two different minimum confidence thresholds: 0.8 and 0.85.

The experimental results presented in this section highlighted the effective-
ness of IRARM method, which reduces the mining time against the time
achieved by applying DRAR mining from scratch when a data set is extended
with new instances.

4.3. Comparison to related work. The incremental relational association
rule mining approach previously introduced in [17] and applied in this paper
on educational data sets is new both in the DM and EDM literature. Existing
incremental approaches from the DM literature handle only non-relational

112 LIANA MARIA CRIVEI

Data set n s-n Time DRAR Time IRARM IRARM time

(ms) (ms) reduction (%)

1455 4365 814 875.2 -0.0751
1746 4074 552.2 564.75 -0.0227
2037 3783 782.7 703.25 0.1015

2328 3492 794.35 664.55 0.1634
2619 3201 834.65 678.35 0.1873

Turkiye Student 2910 2910 765 564.95 0.2615

Evaluation Generic 3201 2619 816.85 525.15 0.3571
data set [14] 3492 2328 692.4 386.1 0.4424

3783 2037 739.95 358.7 0.5152

4074 1746 570 238.25 0.5820
4365 1455 809.65 312.35 0.6142

4656 1164 628.55 228.3 0.6368

4947 873 501.65 156.45 0.6881

1455 4365 686.7 751.65 -0.0946

1746 4074 684.35 695.65 -0.0165
2037 3783 742.4 676.55 0.0887
2328 3492 845.95 704.05 0.1677

2619 3201 967.55 779.25 0.1946
Turkiye Student 2910 2910 1010.95 637.9 0.3690

Evaluation Specific 3201 2619 980.75 540.4 0.4490

data set [14] 3492 2328 936.45 475.7 0.4920
3783 2037 730.25 383.85 0.4744
4074 1746 565.1 252.7 0.5528

4365 1455 748.35 291.85 0.6100
4656 1164 952.9 360.8 0.6214

4947 873 961.85 288.2 0.7004

Table 3. Experimental results on the data sets from our sec-
ond case study for smin = 1 and cmin = 0.8.

association rules. In the EDM literature we have not found, so far, approaches
using relational association rule mining or incremental relational association
rule mining on EDM scenarios.

We present in the following several data mining methods which deal with
the incremental mining perspective on non-relational association rules.

Sarda and Srinivas introduced in [22] an algorithm for incremental associa-
tion rule mining, in which the data set is extended with new instances. The
proposed adaptive algorithm was able to identify new rules for the updated
database, avoiding multiple scans of it. Yafi et al. proposed in [25] an incre-
mental association rules mining algorithm named YAMI based on the Apriori
model on evolving databases. The authors also introduced the concept of
shocking interesting rule, as a rule which surpass all user’s expectations.

The incremental association rule mining on dynamic transactional databases
was investigated by Chandraker and Sao in [8]. Nath et al. present in [19] a

RULE MINING OF EDUCATIONAL DATA SETS 113

(a) First data set. (b) Second data set.

Figure 2. Running time (ms) for the main operations of
IRARM , for both data sets from the first case study, for
cmin = 0.1.

Figure 3. Running time (ms) for the Select function, for both
data sets from the first case study, for cmin = 0.1.

survey on incremental association rule mining. They review frequent itemset
generation techniques, rule generation techniques and incremental association
rule mining techniques. The authors emphasize several research issues and
challenges, such as the incremental behaviour of the data set, the number
of data set scans and the number of generated candidate itemsets. Dhanab-
hakyam and Punithavalli [13] propose An Adaptive Association Rule Mining
with Faster Rule Generation Algorithm (FRG-AARM) with the intent of ac-
quiring a more efficient Market Basket Analysis.

114 LIANA MARIA CRIVEI

(a) Turkiye Student Evaluation Generic
data set.

(b) Turkiye Student Evaluation Specific
data set.

Figure 4. IRARM ’s reduction in total mining time for the
data sets from the second case study, using different minimum
confidence thresholds.

Ogunde et al. [20] introduced an Adaptive Incremental Mining Algorithm
(AIMA) aimed to adapt to the trend of constant data updates in distributed
databases.

An incremental association rule mining algorithm has been proposed by
Yu-Dong et al. [26]. This was named VSIFP-Growth (Improved FP-Growth)
and used together with parallel computing techniques with the purpose of
developing the PVSIFP-Growth algorithm for frequent itemsets generation.
Li et al. [16] developed TDUP , a three-way decision update pattern approach
together with a synchronization mechanism in order to reduce the number of
scans of the initial data set.

The above presented methods deal with incremental AR mining, but from
a non-relational perspective. Unlike the classical association rules, RARs are
capable to express relationships between data attributes. Thus, RARs may
be more powerful than classical ARs in various machine learning scenarios,
including those related to EDM tasks.

5. Conclusions and future work

We investigated in this paper the application of classical and incremental
RAR mining for knowledge discovery in data sets from educational environ-
ments, with the goal of uncovering meaningful patterns within educational
data sets. The relevance of uncovering RARs in academic data sets has been
emphasized in the context of the students’ learning process, as offering ad-
ditional insights into educational related phenomena. Additionally, the effec-
tiveness of incremental RAR mining in online EDM scenarios was highlighted
through several case studies.

RULE MINING OF EDUCATIONAL DATA SETS 115

Future work will be done in order to extend the experimental evaluation of
IRARM on other EDM tasks, to further test its performance. An incremental
adaptive RAR mining will be also investigated for academic data sets, when
both new instances and new features are added to the data set. Furthermore,
we plan to apply RAR, gradual RARs [10] and IRARM mining algorithm
in supervised learning EDM scenarios, such as predicting student’s academic
performance.

Acknowledgements

The author acknowledges the assistance received by using the UCI Machine
Learning Repository.

References

[1] Academic data set, 2018. http://www.cs.ubbcluj.ro/∼liana.crivei/AcademicDataSets.
[2] Ahmed Mohamed Ahmed, Ahmet Rizaner, and Ali Hakan Ulusoy. Using data mining to

predict instructor performance. Procedia Computer Science, 102:137 – 142, 2016. 12th
International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS
2016, 29-30 August 2016, Vienna, Austria.

[3] Elizabeth Ayers, Rebecca Nugent, and Nema Dean. A comparison of student skill knowl-
edge estimates. In Educational Data Mining - EDM 2009, Cordoba, Spain, July 1-3,
2009. Proceedings of the 2nd International Conference on Educational Data Mining.,
pages 1–10, 2009.

[4] Brijesh Kumar Baradwaj and Saurabh Pal. Mining educational data to analyze students’
performance. CoRR, abs/1201.3417, 2012.

[5] Alejandro Bogaŕın, Rebeca Cerezo, and Cristóbal Romero. A survey on educational
process mining. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 8(1),
2018.

[6] Alina Câmpan, Gabriela Şerban, and Andrian Marcus. Relational association rules and
error detection. Studia Universitatis Babes-Bolyai Informatica, LI(1):31–36, 2006.

[7] Alina Campan, Gabriela Şerban, Traian Marius Truta, and Andrian Marcus. An algo-
rithm for the discovery of arbitrary length ordinal association rules. In DMIN, pages
107–113, 2006.

[8] Toshi Chandraker and Neelabh Sao. Incremental mining on association rules. Interna-
tional Jurnal of Engineering and Science, 1(11):31–33, 2012.

[9] H. Y. Chang, J. C. Lin, M. L. Cheng, and S. C. Huang. A novel incremental data
mining algorithm based on fp-growth for big data. In 2016 International Conference on
Networking and Network Applications (NaNA), pages 375–378, July 2016.

[10] I. G. Czibula, G. Czibula, D.-L. Miholca. Enhancing relational association rules with
gradualness. International Journal of Innovative Computing, Information & Control,
13(1):289-305, 2017.

[11] Gabriela Şerban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Communi-
cations & Control, I(S.):439–444, June 2006.

116 LIANA MARIA CRIVEI

[12] Gabriela Czibula, Maria-Iuliana Bocicor, and Istvan Gergely Czibula. Promoter se-
quences prediction using relational association rule mining. Evolutionary Bioinformat-
ics, 8:181–196, 04 2012.

[13] M. Dhanabhakyam and M. Punithavalli. An efficient market basket analysis based on
adaptive association rule mining with faster rule generation algorithm. The Standard
International Journals on Computer Science Engineering and its Applications (CSEA),
1(3):105–110, 2013.

[14] N. Gunduz and E. Fokoue. UCI machine learning repository, 2013.
[15] Syed Tanveer Jishan, Raisul Islam Rashu, Naheena Haque, and Rashedur M. Rahman.

Improving accuracy of students’ final grade prediction model using optimal equal width
binning and synthetic minority over-sampling technique. Decision Analytics, 2(1):1, Mar
2015.

[16] Yao Li, Zhi-Heng Zhang, Wen-Bin Chen, and Fan Min. Tdup: an approach to incremen-
tal mining of frequent itemsets with three-way-decision pattern updating. International
Journal of Machine Learning and Cybernetics, 8(2):441–453, Apr 2017.

[17] Diana-Lucia Miholca, Gabriela Czibula, and Liana Maria Crivei. A new incremen-
tal relational association rules mining approach. In 22nd International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems, KES2018, page
to be published. Procedia Computer Science, 2018.

[18] Siti Khadijah Mohamad and Zaidatun Tasir. Educational data mining: A review. Pro-
cedia - Social and Behavioral Sciences, 97:320 – 324, 2013. The 9th International Con-
ference on Cognitive Science.

[19] B. Nath, D. K. Bhattacharyya, and A. Ghosh. Incremental association rule mining: A
survey. Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(3):157–169,
2013.

[20] Adewale O. Ogunde, Olusegun Folorunso, and Adesina S. Sodiya. The design of an adap-
tive incremental association rule mining system. In Proceedings of the World Congress
on Engineering 2015 - Volume I, London, UK, 2015.

[21] Kumar Ajay Pal and Saurabh Pal. Analysis and mining ofeducational data forpredict-
ingthe performance of students. International Journal of ElectronicsCommunication and
Computer Engineering, 4(5):278—-4209, 2013.

[22] N. L. Sarda and N. V. Srinivas. An adaptive algorithm for incremental mining of asso-
ciation rules. In Proceedings of the 9th International Workshop on Database and Expert
Systems Applications, DEXA ’98, pages 240–, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[23] Amirah Mohamed Shahiri, Wahidah Husain, and Nur’aini Abdul Rashid. A review
on predicting student’s performance using data mining techniques. Procedia Computer
Science, 72:414 – 422, 2015. The Third Information Systems International Conference
2015.

[24] Thi-Oanh Tran, Hai-Trieu Dang, Viet-Thuong Dinh, Thi-Minh-Ngoc Truong, Thi-
Phuong-Thao Vuong, and Xuan-Hieu Phan. Performance prediction for students: A
multi-strategy approach. CYBERNETICS AND INFORMATION TECHNOLOGIES,
17(2):164 – 182, 2017.

[25] Eiad Yafi, Ahmed Al-Hegami, Afshar Alam, and Ranjit Biswas. YAMI: Incremental
mining of interesting association patterns. The International Arab Jurnal of Information
Technology, 9(6):504–510, 2012.

RULE MINING OF EDUCATIONAL DATA SETS 117

[26] Guo Yu-Dong, Li Sheng-Lin, Li Yong-Zhi, Wang Zhao-Xia, and Zeng Li. Large-scale
dataset incremental association rules mining model and optimization algorithm. Inter-
national Journal of Database Theory and Application, 9(4):195–208, 2016.

Department of Computer Science,, Faculty of Mathematics and Computer
Science,, Babeş-Bolyai University, Kogălniceanu 1, Cluj-Napoca, 400084, Roma-
nia

Email address: liana.crivei@cs.ubbcluj.ro

