
STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 2/2022
July - December

ISSN (online): 2065-9601; ISSN-L: 2065-9601
©2022 STUDIA UBB INFORMATICA
Published by Babeş-Bolyai University

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR Volume 67 (LXVII) 2022

MONTH

ISSUE

DECEMBER

2

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

2

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

A. Bajcsi, C. Chira, A. Andreica, Extended Mammogram Classification From Textural

Features ... 5

A.D. Călin, H.B. Mureșan, A.M. Coroiu, Feasibility of Using Machine Learning

Algorithms for Yield Prediction of Corn and Sunflower Crops Based on Seeding Date ... 21

R. Lupșa, D. Lupșa, Coroutines Comunications. Design and Implementation Issues in

C\texttt{++}20 ... 37

B. Mursa, Examining the Social Behavior of Ant Colonies Using Complex Networks 49

S. Limboi, Comparison of Data Models For Unsupervised Twitter Sentiment Analysis ... 69

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 2, 2022
DOI: 10.24193/subbi.2022.2.01

EXTENDED MAMMOGRAM CLASSIFICATION FROM

TEXTURAL FEATURES

ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

Abstract. The efficient analysis of digital mammograms has an impor-
tant role in the early detection of breast cancer and can lead to a higher
percentage of recovery. This paper presents an extended computer-aided
diagnosis system for the classification of mammograms into three classes
(normal, benign and malignant). The performance of the system is evalu-
ated for two different mammogram databases (MIAS and DDSM) in order
to assess its robustness. We discuss the changes required in the system,
particularly at the level of the image preprocessing and feature extraction.
Computational experiments are performed based on different methods for
feature extraction, selection and classification. The results indicate an ac-
curacy of 66.95% for the MIAS dataset and 54.1% for DDSM obtained
using genetic algorithm based feature selection and Random Forest classi-
fication.

1. Introduction

Computer-aided detection and diagnosis (CAD) relies on medical image pro-
cessing, being used nowadays for a big variety of diseases, including breast can-
cer. In the current research, our aim is to create a CAD system able to detect
breast cancer from mammograms. Input images are used from two different
mammogram datasets (Mammographic Image Analysis Society – MIAS [15],
Digital Database for Screening Mammography – DDSM [7]) in order to verify
a stable performance for the stages of preprocessing, feature extraction and
classification.

Received by the editors: 20 September 2022.
2010 Mathematics Subject Classification. 68T35.
1998 CR Categories and Descriptors. I.2.1 [Artifical Intelligence]: Applications and

Expert Systems – Medicine and science; I.2.6 [Artifical Intelligence]: Learning – Knowl-
edge acquisition; I.4.7 [Image Processing and Computer Vision]: Feature Measurement
– Feature representation;

Key words and phrases. Breast cancer detection, Mammogram classification, GLRLM,
Feature selection, Random Forests, MIAS, DDSM.

5

6 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

A multi-class classifier is built to distinguish normal, benign and malignant
classes. We start from a recently proposed CAD system [2], which consists of
the following five steps:

(1) mammogram preprocessing, (2) segmentation of the image, (3) fea-
ture extraction (FE) by calculating characteristics from GLRLM (Gray-Level
Run-Length Matrix [6]), (4) feature selection (FS) and (5) classification
(CLS).

In reference [2], multiple experiments are reported with competitive results
for medical images from the MIAS database [15] using Principal Component
Analysis (PCA) for feature selection and Random Forest (RF) classifiers. As
the system was created and tested for MIAS images, our main objective in
this study is to determine if the system can be extended to obtain a good
performance for other medical images. For DDSM images, the system is likely
to generate errors because the intensity of the mammograms is different com-
pared to images in MIAS. Also, images from DDSM have a high variance in
their intensities and white patches could be found on DDSM entries, connected
to the breast.

Considering the abovementioned issues, in the current paper we extend the
previously proposed system mainly concerning the preprocessing and feature
extraction steps. The preprocessing step is extended by

(1) removing white patches outside the breast, (2) setting the threshold to
define the breast dynamically, instead of hard-coding it, (3) creating a more
robust method to define the location of the pectoral muscle, (4) selecting
the proper component overlapping with the pectoral muscle and (5) filling its
concave parts.

Moreover, feature extraction considers characteristics calculated from Gray-
Level Co-Occurrence Matrices (GLCM) with different distances and is reim-
plemented to use the graphical processing unit. For segmentation, feature
selection, and classification, the same methods are used as in [2], namely, k-
means, PCA and genetic algorithm (GA) based feature selection, and Decision
Tree (DT) and RF respectively.

The rest of the article is organized as follows: in section 2 we will discuss
existing solutions in the literature to solve the problem. In section 3 the
proposed approach is presented in detail. Section 4 describes the data used
and the results achieved. In section 5 we draw the conclusions of the conducted
research and the future directions are defined.

2. Related work

With the development of image processing techniques and online (freely)
accessible databases, experiments for image analysis are being conducted in

EXTENDED MAMMOGRAM CLASSIFICATION FROM TEXTURAL FEATURES 7

various fields. One of these fields is medicine. With the help of machines,
illnesses can be easier detected and confirmed by doctors. Breast cancer is
one of these illnesses being studied. The problem of detecting cancer from
mammograms is highly important and complex because of the difference in
the images created with different machines, the size of the mammograms, and
the appropriate selection of the used features. In the following paragraphs, we
will present existing methods in the literature to detect breast cancer.

In [13] a comprehensive review is presented on the methods used from 1998
to 2018. In the review 129 papers were included. As the review highlights,
there are three major types of experiments:

(1) studies where only normal and abnormal classes are considered [16]
(2) where benign and malignant classes are considered [1, 4, 4, 6, 8, 8] and
(3) where all three classes (normal, benign and malignant) are considered
[10,12,14].

The authors concluded that the most used classifiers were Artificial Neural
Networks (ANN), Support Vector Machines (SVM) and K-Nearest Neighbors
(k-NN). As for evaluation metrics most of the researchers used accuracy, area
under curve, sensitivity and/or specificity.

Reference [5] conducted an experiment to compare several feature extraction
methods, namely, First Order Statistic (FOS), Gray Level Co-Occurrence Ma-
trix (GLCM), Gray-Level Run-Length Matrix (GLRLM), and Gray Level Dif-
ference Matrix (GLDM). The authors concluded that the best result (93.98%
accuracy) was achieved using the GLRLM features for building ECOC SVM
classifiers.

Another survey [6] focused on various feature extraction and selection meth-
ods. Besides the four features mentioned before, the authors analyzed Tamura
features, Gabor features, Wavelet transform features, Hu’s invariant moments
features, and other shape features such as perimeter, area, compactness, as-
pect ratio, and so on. For feature selection, Tabu search, Genetic algorithm,
ReliefF algorithm, and Sequential forward/backward selection are included.
The authors [6] showed that for building a classifier, GLRLM features are the
most appropriate. Using these features 66.66% and 90.9% respective to AUC
and precision were achieved [6].

In [1] is reported 88% for both accuracy and AUC using classification
with Neural Networks. As input the authors proposed using a concatenation
of different Convolutional Neural Networks (AlexNet, VGG16, GoogLeNet,
ResNet18, InceptionResNet). In reference [10] a novel approach is proposed
to solve the problem of classifying the mammograms into normal, benign and
malignant classes. Two types of features are extracted from the images:

8 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

(1) low-level features calculated using ResNet and transfer learning and
(2) high-level features calculated using RNN-LSTM.

From the resulting feature set, a CNN selects the relevant features, then the
final classification is made by an ensemble learning model (using RF learning
and boosting). With this method, the authors achieved 96% accuracy. In [16]
ANNs are used for feature extraction (DenseNet and MobileNet) and fed to a
fully connected network. With this approach, accuracy of 96.34% was achieved
using DenseNet features.

In [4] the application of super-resolution is presented to better distinguish
abnormal masses. With this method, the authors boosted the result and
achieved 96.7% accuracy. The authors used a combination of FOS and GLRLM
features as input to nine different classifiers. Reference [14] proposes the ex-
traction of features from the spatial pyramid and called Pyramid Histogram
of Colors. Feeding an ANN with the calculated features, 82.1% AUC was
achieved. In [12] a Forest Optimized Algorithm is proposed to select features
from characteristics calculated from GLCM and wavelet transform. For clas-
sification, the authors used SVM, k-NN and Decision Trees (DTs).

Reference [8] presents a Fuzzy Rule-Based interpolative classifier for making
differences between benign and malignant lesions. The input of the classifier
consists of 18 features included shape features (shape and morphological char-
acteristics), margin features (sharpness and roughness of the boundary), and
density features. With this method, the authors get accuracy of 91.65%.

3. Proposed approach

In our research, we extended the approach presented in [2] in order to be able
to apply it to other mammogram datasets. The system in [2] is not working
accordingly if the breast tissue has too low intensity or if white patches appear
on the image. In this section, we present the original CAD system proposed
in [2] and then detail the method’s extension and the main improvements
proposed in the current paper.

3.1. The base CAD system. As already mentioned, the CAD system intro-
duced in [2] has five main steps: preprocessing, segmentation, feature extrac-
tion, selection and classification. Essential aspects for a successful computer-
aided diagnosis include calculating the features and classification of the ob-
servations. The most important is to properly clear the image (remove the
information – pixel –, which is not important from the problem’s perspec-
tive). For instance, to diagnose breast cancer from medical images (such as
mammograms), everything outside the breast tissue and the pectoral muscle
is irrelevant. The pectoral muscle is not a possible location of a lesion, leading
to its disregardment during the image analysis process.

EXTENDED MAMMOGRAM CLASSIFICATION FROM TEXTURAL FEATURES 9

Figure 1. Defining the possible location of the pectoral muscle on
image mdb015 from MIAS.

In the first step, the tissue is separated from the rest of the image. To
get a precise result, noise reduction (morphological opening) and emphasis
(histogram equalisation) are applied. To remove the pectoral muscle, the
Seeded Region Growing (SRG) algorithm, proposed by Maitra et al. [9], is
used by selecting the pixels corresponding to the muscle. The requirement
of this approach is that the pectoral muscle must be on the left side of the
image. To decrease the image to the possible location of the muscle first, the
left- (A) and rightmost bounds (C) of the breast at the top (vertical lines
across the left-/rightmost points – lines AB and CD on image fig. 1) are
defined, and then the top of the right bounding line is connected to the lower-
left corner (O) of the image. As a result, a triangle should be formatted (on the
top between the two bounding lines – ACE), containing the pectoral muscle.
For this triangle, the SRG was applied using as seeds the pixels from the
section between the right angle and the bisector of the hypotenuse. The final
step of the preprocessing is to selecting a smaller bounding box surrounding
the breast. Next (segmentation step), k-means was performed to segment
the images into 12 clusters. During the feature extraction, from both the
original and the segmented image GLRLMs are calculated and characteristics
are extracted (resulting in 44 features per image – 11 features× 4 directions).
Following with the feature selection step, which aims to reduce the size of
the input. For this purpose, two algorithms are implemented: PCA and GA.
Later, the result of the feature selection method is passed to the classification.
To differentiate normal, benign and malignant classes, DT and RF models are
built.

3.2. Extended method.

10 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

When introducing new images to the system, presented in the previous sub-
section, there could be cases when the execution differs from the expected be-
haviour because it was specified for mammograms from a specific dataset. For
instance, referring to images from DDSM, there are cases when the intensity
of the breast tissue is low, and the tissue disappears after the thresholding, or
the position of the pectoral muscle is misdetected. The most vulnerable part is
the preprocessing. This subsection details the changes made in the previously
presented system.

On the side(s) of some images (from DDSM), a white column/row could
appear. Previously, the position of the pectoral muscle was defined based on
the longest vertical line found with Hough transform with an average intensity
lower than 180 or if no line was found based on the pixel intensities in the
upper corners of the mammogram. This method worked for images from
MIAS. Even though MIAS mammograms could contain white columns, they
are not connected to the breast and therefore they are removed together with
the labels. Images from MIAS are squares and the actual mammogram is
positioned in the centre. On the other hand, in DDSM, these columns could
be mistaken for the pectoral muscle (because no lines will be detected due
to the lack of surrounding black columns). Hence, before the preprocessing,
every pixel with high intensity (> 240) on the margin of the image will be set
to 0.

The first step of the preprocessing is the removal of the labels using thresh-
olding. For images from MIAS the threshold value of 50 was defined ex-
perimentally. However, using the same value on the new images led to the
disappearance of the breast tissue in some cases (due to its low intensity as on
Fig. 2(b)). To overcome this problem, we decided to use a dynamic definition
for the threshold values by calculating the median intensity value from the
image – I (omitting pixels with 0 value). The result of the new thresholding
is shown in Fig. 2(c). Next, we must ensure that the pectoral muscle is on the
left side of the image (this is a prerequisite of the used SRG method).

To define the initial orientation of the breast, the intensities in the upper
corners are used. We further break this down into two cases. First, we calcu-
late the first and last non-zero positions from the first row. If one of the values
is close enough to the side (within 100 pixels), then the location of the muscle
is clear. Otherwise, we add zero padding around the image and apply Hough’s
line transform to determine vertical lines on the image. The longest line found
specifies the position of the pectoral muscle. The zero-padding helps to define
the border, even if this is exactly on the edge of the image.

EXTENDED MAMMOGRAM CLASSIFICATION FROM TEXTURAL FEATURES 11

(a) Original (b) θ = 50 (c) θ based on me-
dian

Figure 2. Separating foreground and background using threshold-
ing presented on image A-1833-1.LEFT MLO from DDSM.

The result of SRG, mentioned in the previous section, could contain more
(unconnected) components (see Fig. 3(b)). Of these components, we should
select the largest and closest to the top left corner of the image (Fig. 3(c)).

Moreover, we investigate the shape of the different resulting components and
found that some of them are concave (Fig. 4(a)). For a more precise removal,
we fill these holes in the component (Fig. 4(b)). To accelerate the pipeline,
we propose a new feature extraction version that uses a graphical procession
unit. In the current research, we had an Nvidia GeForce GTX 960M GPU
and achieved ≈ 62× acceleration. Heretofore, the GLRLM was calculated at
265.39s. Even with parallel threads, it takes 14.52s to construct the matrix.
However, using GPU, we can get the result matrix in 4.3s (depending on the
image’s size).

For steps (2), (4) and (5) the same methods are used as in the originally
proposed method from [2]. Besides GLRLM features, GLCM features are cal-
culated (for distances 1 - default - and 8) and used for classification. From
the constructed (normalized) GLCM, the features are calculated using (3), (4)
and (7) to (23), where level denotes the number of gray levels on the mam-
mogram. The functions in (1) and (2) help the definition of sum average (18),
sum variance (20), sum entropy (19) and difference average (21), difference
variance (23), difference entropy (22) respectively.

12 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

(a) ROI of pectoral (b) Result of SRG
(used in the original
version)

(c) Pectoral mask

Figure 3. Selecting the mask corresponding to the pectoral muscle
from the result of the SRG [9] on image mdb015 from MIAS.

(a) Result of SRG
(used in the original
version)

(b) Final mask

Figure 4. Filling the wholes on the SRG [9] result on image mdb017
from MIAS.

px+y(k) =

levels−1∑
i,j=0

GLCMij ,

where i+ j = k

(1)
px−y(k) =

levels−1∑
i,j=0

GLCMij ,

where |i− j| = k

(2)

EXTENDED MAMMOGRAM CLASSIFICATION FROM TEXTURAL FEATURES 13

(3) µx =

levels−1∑
i,j=0

iGLCMij (4) σ2
x =

levels−1∑
i,j=0

(i− µx)
2GLCMij

(5) µy =

levels−1∑
i,j=0

jGLCMij (6) σ2
y =

levels−1∑
i,j=0

(j − µy)
2GLCMij

(7)

ent = −
levels−1∑
i,j=0

GLCMij lnGLCMij

(8) cont =

levels−1∑
i,j=0

(i− j)2GLCMij

(9) ASM =

levels−1∑
i,j=0

GLCM2
ij

(10) energy =
√
ASM

(11) diss =

levels−1∑
i,j=0

|i− j|GLCMij

(12)

corr =

levels−1∑
i,j=0

(i− µx)(j − µy)√
σ2
xσ

2
y

GLCMij

(13)

IDM =

levels−1∑
i,j=0

1

1 + (i− j)2
GLCMij

(14)

sim =

levels−1∑
i,j=0

1

1 + |i− j|
GLCMij

(15)

DM =

levels−1∑
i,j=0

√
|i− j|

2
GLCMij

(16)

CP =

levels−1∑
i=0

(i+j−µx−µy)
4GLCMij

(17)

CS =

levels−1∑
i=0

(i+j−µx−µy)
3GLCMij

(18) SA =

2levels∑
i=2

ipx+y(i)

(19)

SE = −
2levels∑
i=2

px+y(i) ln px+y(i)
(20) SV =

2levels∑
i=2

(i− SA)2px+y(i)

(21) DA =

levels−1∑
i=0

ipx−y(i)
(22)

DE = −
levels−1∑

i=0

px−y(i) ln px−y(i)

14 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

(23) DV =

levels−1∑
i=0

(i−DA)2px−y(i)

4. Experiments and results

In this section, we present the details of our experiments, starting with the
used datasets, the conditions of the splitting (into train and test) the datasets
and the results of our research.

4.1. Datasets. MIAS [15] is a database of MLO (mediolateral oblique view)
mammograms published in 1994. It contains 322 (161 pairs) images. Of these,
207 are from normal tissues, 64 are from tissues containing benign lesions and
the remaining 51 contain malignant lesions.

DDSM [7] is another database that was first published in 1998. Over the
years it was further developed. The database consists of 7808 mammograms
from approximately 1950 patients. Compared to MIAS, DDSM contains both
MLO and CC (craniocaudal view) view images. From the total images, we will
use only the MLO ones, so 3904 images. The distribution of the observations
is as follows: 1204 normal, 1342 benign and 1358 malignant.

4.2. Experiment setup. Each dataset is split into train and test sets con-
taining 75% and 25% of the data. When creating the split, we maintain the
same distribution in the result sets as in the original data (stratified sampling).
Also, to reduce the possible bias of the classification, we place the observations
from one person into the same set. Considering these, from MIAS, there will
be 242 mammograms in the train set and 80 in the test set. As for the DDSM
2928 mammograms will be in the train set and the remaining 976 in the test
set.

To define the optimal parameters, K-fold cross-validation was applied. The
best parameter is defined based on the highest mean accuracy across the mod-
els built during cross-validation. In these experiments 5-folds are used.

As shown above, the datasets are imbalanced. Therefore, stratification is
used to preserve the original distribution of the classes in each fold. With the
use of stratified cross-validation, the average of the result metrics will be a
close approximation to the result on the original sets.

For evaluation purpose accuracy (A), precision (P), recall (R) and f1-score
(F1) measures are used. As also shown in [13], the first three metrics are
frequently used in studies related to breast cancer detection or diagnosis.

EXTENDED MAMMOGRAM CLASSIFICATION FROM TEXTURAL FEATURES 15

Figure 5. Result metrics using
GLRLM features calculated from
MIAS images.

Figure 6. Result metrics using
GLRLM features calculated from
DDSM images.

4.3. Results. The results of the classifications are presented in Tables 1 and 2
and figs. (5) to (10). In columns A, P , R and F1 of the tables, the mean values
are reported over the folds with their corresponding standard deviation. In
Table 1 and Table 2 only the test results are presented. During the training
of the models, we achieved 100% (as show on Figs. (5) to (10)) with each
parameter mentioned in the setup.

From Table 1, we can see that the results on MIAS are slightly different from
the ones reported in [2]. This can be explained with the changes mentioned
in Section 3.2. However, these modifications are necessary in order to use the
proposed method on images from DDSM.

The best results for MIAS are obtained using GLCM8 (for step (3)), GA
feature selection (for step (4)) and RF classifier (for step (5)). With k-fold
cross-validation we reached 66.95% average test accuracy. For the extended
method, the average test accuracy using GLRLM, PCA and RF was 63.23%.
The made in the preprocessing can cause the difference between the results of
the original [2] and extended system. Now each image has the same orientation
(previously the flip and the pectoral removal did not work on some images)
and by applying CLAHE (contrast limited adaptive histogram equalization
) filtering to the images. The different split, explained above, can also affect
the result.

Table 2 presents the results obtained on DDSM images using the extended
system proposed in this paper. The best classification result on DDSM is
54.1% for average test accuracy, when classifying the observations into three
classes using features calculated from GLRLM, GA feature selection and RF
classification.

16 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

FE FS Dir.a CLS A P R F1

G
L
R
L
M P

C
A

DT
0.5372 0.5449 0.5372 0.5381
±0.0478 ±0.0255 ±0.0478 ±0.0346

RF
0.6323 0.5815 0.6323 0.5473
±0.0184 ±0.0852 ±0.0184 ±0.0310

G
A

DT
0.5662 0.5611 0.5662 0.5594
±0.0469 ±0.0478 ±0.0469 ±0.0433

RF
0.6529 0.5453 0.6529 0.5491
±0.0239 ±0.1135 ±0.0239 ±0.0319

G
L
C
M

P
C
A

DT
0.5373 0.5112 0.5373 0.5099
±0.0641 ±0.0818 ±0.0641 ±0.0543

RF
0.5869 0.5023 0.5869 0.5288
±0.0497 ±0.0721 ±0.0497 ±0.0545

G
A

DT
0.5949 0.5880 0.5949 0.5785
±0.0543 ±0.0660 ±0.0543 ±0.0492

RF
0.6491 0.5573 0.6491 0.5681
±0.0541 ±0.0718 ±0.0541 ±0.0555

G
L
C
M

8 P
C
A

DT
0.5327 0.5326 0.5327 0.5301
±0.0415 ±0.0170 ±0.0415 ±0.0271

RF
0.5910 0.4733 0.5910 0.5143
±0.0415 ±0.0608 ±0.0415 ±0.0462

G
A

DT
0.5538 0.5581 0.5538 0.5512
±0.0569 ±0.0564 ±0.0569 ±0.0553

RF
0.6695 0.6318 0.6695 0.5938
±0.0214 ±0.0640 ±0.0214 ±0.0171

a the column marks the direction of the used features.

Table 1. Test result metrics for MIAS

Figure 7. Result metrics using
GLCM features calculated from
MIAS images.

Figure 8. Result metrics using
GLCM features calculated from
DDSM images.

EXTENDED MAMMOGRAM CLASSIFICATION FROM TEXTURAL FEATURES 17

Figure 9. Result metrics using
GLCM8 features calculated from
MIAS images.

Figure 10. Result metrics using
GLCM8 features calculated from
DDSM images.

From Table 1 (and Figures 5, 7 and 9) we can also see that the results
using GA and RF are very close for all three feature extraction methods.
However, in Table 2 (and Figures 6, 8 and 10) the results from GLCM and
GLCM8 are worse, hence, concluding the advantage of using GLRLM (run-
length information) over GLCM (pixel correlation). When comparing the
results of the two classifiers (DT/RF) we can see that a single DT obtains a
lower accuracy value than RF. By using more models (DTs in the forest) we
can increase the performance of the classification.

4.4. Discussion. In the previous subsection, the results of the proposed ex-
tended method have been compared to the system proposed in [2]. We now
focus on a comparative analysis between the obtained results for MIAS and
DDSM and relevant results from the literature.

In [3], the authors report 60.7% test accuracy using an approach based on
GLCM features, correlation feature selection and RF classification (on MIAS).
In our research, we achieved higher accuracy which can be explained by the
different feature selection (GA) used in the proposed approach.

In [11] presents a comparison of different combinations of feature selection
and classification (evaluated on MIAS). The best result reported was 70.53%
using Local Binary Pattern and Deep Neural Network. This is comparable
with our result. Results achieved with homogeneity, energy, HOG features and
DNN, NB, NN, SVM classification are also reported in [11] with accuracies
between 42.6% and 59.6%. These methods are outperformed by the proposed
extended method.

18 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

FE FS Dir.b CLS A P R F1

G
L
R
L
M P

C
A

DT
0.4139 0.4143 0.4139 0.4139
±0.0255 ±0.0252 ±0.0255 ±0.0254

RF
0.4498 0.4487 0.4498 0.4487
±0.0234 ±0.0247 ±0.0234 ±0.0243

G
A

DT
0.4839 0.4845 0.4839 0.4838
±0.0191 ±0.0185 ±0.0191 ±0.0187

RF
0.5410 0.5442 0.5410 0.5411
±0.0248 ±0.0225 ±0.0248 ±0.0239

G
L
C
M

P
C
A

DT
0.3600 0.3598 0.3600 0.3594
±0.0106 ±0.0113 ±0.0106 ±0.0112

RF
0.3839 0.3838 0.3839 0.3835
±0.0175 ±0.0182 ±0.0175 ±0.0180

G
A

DT
0.4252 0.4250 0.4252 0.4247
±0.0098 ±0.0097 ±0.0098 ±0.0098

RF
0.4754 0.4709 0.4754 0.4717
±0.0124 ±0.0123 ±0.0124 ±0.0127

G
L
C
M

8 P
C
A

DT
0.3583 0.3585 0.3585 0.3582
±0.0034 ±0.0035 x±0.0034 ±0.0034

RF
0.4037 0.4037 0.4037 0.4028
±0.0231 ±0.0233 ±0.0231 ±0.0234

G
A

DT
0.4334 0.4332 0.4334 0.4330
±0.0260 ±0.0266 ±0.0260 ±0.0263

RF
0.4867 0.4838 0.4867 0.4843
±0.0229 ±0.0225 ±0.0229 ±0.0224

b the column marks the direction of the used features.

Table 2. Test result metrics for DDSM

In [10], the authors presented the results of CNNs and reported 95% accu-
racy for classifying images in MIAS into three classes and 96% on the DDSM.
From this, we can see that with this basic classification further improvements
are necessary to outperform ANNs.

5. Conclusions and Future Work

The scope of the current paper is to apply the CAD system presented in [2]
to images from DDSM. However, some changes are needed to adapt the previ-
ously presented method to the new images. To determine the best parameters
5-fold cross-validation is applied. Based on the presented results we can see an
overfitting of the classification (100% train metrics while around 60% test met-
rics). The extended system achieved 54.1% accuracy on DDSM using GLRLM,
GA and RF. On MIAS, the best result is 66.95% from GLCM8, applying GA

EXTENDED MAMMOGRAM CLASSIFICATION FROM TEXTURAL FEATURES 19

and RF. They are comparative with related results from the literature. How-
ever, the results are lower then expected, therefore the system needs further
investigation.

As highlighted in [13] building a classifier using images from more datasets
can lead to a more robust solution. Hence, in future work, we will investigate
the result of the proposed solution on a combined input using images from
MIAS and DDSM at the same time. Also, according to the same review, Ran-
dom Forests and Decision Trees are least frequently used than other classifiers,
such as Support Vector Machines and Artificial Neural Networks. Thus, we
will dive deeper into these classifiers in order to explore their potential for
breast cancer detection. Likewise, we will experiment building two separate
classifiers that distinguish: (1) normal and abnormal and (2) benign and ma-
lignant tissues. In future work it would worth experimenting some typical
failure cases and interpretation of behaviour.

Acknowledgment

This work was supported by a grant of the Romanian Ministry of Education
and Research, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2019-
2607, within PNCDI III.

References

[1] Arora, R., Rai, P. K., and Raman, B. Deep feature–based automatic classification
of mammograms. Medical & Biological Engineering & Computing 58, 6 (June 2020),
1199–1211.

[2] Bajcsi, A., Andreica, A., and Chira, C. Towards feature selection for digital mam-
mogram classification. Procedia Computer Science 192 (2021), 632–641.

[3] Bektas, B., Emre, I. E., Kartal, E., and Gulsecen, S. Classification of mammog-
raphy images by machine learning techniques. In 2018 3rd International Conference on
Computer Science and Engineering (UBMK) (2018), pp. 580–585.

[4] Boudraa, S., Melouah, A., and Merouani, H. F. Improving mass discrimination in
mammogram-cad system using texture information and super-resolution reconstruction.
Evolving Systems 11, 4 (Dec 2020), 697–706.

[5] Candra, D., Novitasari, R., Lubab, A., Sawiji, A., and Asyhar, A. H. Applica-
tion of feature extraction for breast cancer using one order statistic, GLCM, GLRLM,
and GLDM. Advances in Science, Technology and Engineering Systems Journal 4, 4
(2019), 115–120.

[6] Chaieb, R., and Kalti, K. Feature subset selection for classification of malignant and
benign breast masses in digital mammography. Pattern Analysis and Applications 22,
3 (Aug. 2019), 803–829.

[7] Heath, M., Bowyer, K., Kopans, D., Moore, R., and Kegelmeyer, W. P. The
digital database for screening mammography. In Proceedings of the 5th International
Workshop on Digital Mammography (2001), M. Yaffe, Ed., Medical Physics, pp. 212—
-218.

20 ADÉL BAJCSI, CAMELIA CHIRA, AND ANCA ANDREICA

[8] Li, F., Shang, C., Li, Y., and Shen, Q. Interpretable mammographic mass classifica-
tion with fuzzy interpolative reasoning. Knowledge-Based Systems 191 (2020), 105279.

[9] Maitra, I. K., Nag, S., and Bandyopadhyay, S. K. Technique for preprocessing of
digital mammogram. Computer Methods and Programs in Biomedicine 107, 2 (2012),
175–188.

[10] Malebary, S. J., and Hashmi, A. Automated breast mass classification system using
deep learning and ensemble learning in digital mammogram. IEEE Access 9 (2021),
55312–55328.

[11] Mathapati, M., Chidambaranathan, S., Nasir, A. W., Vimalarani, G., Rani,
S. S., and Gopalakrishnan, T. An intelligent internet of medical things with deep
learning based automated breast cancer detection and classification model. In Cognitive
Internet of Medical Things for Smart Healthcare. Springer International Publishing, Oct.
2020, pp. 181–193.

[12] Mohanty, F., Rup, S., Dash, B., Majhi, B., and Swamy, M. N. S. Digital mam-
mogram classification using 2D-BDWT and GLCM features with FOA-based feature
selection approach. Neural Computing and Applications 32, 11 (June 2020), 7029–7043.

[13] Pedro, R. W. D., Machado-Lima, A., and Nunes, F. L. Is mass classification
in mammograms a solved problem? - a critical review over the last 20 years. Expert
Systems with Applications 119 (2019), 90–103.

[14] Santos, G. PHOC descriptor applied for mammography classification. Revista de In-
formática Teórica e Aplicada 27, 1 (2020), 26–35.

[15] Suckling, J., Parker, J., and Dance, D. The mammographic image analysis society
digital mammogram database. In International Congress Series (01 1994), vol. 1069,
pp. 375–378.

[16] Xie, L., Zhang, L., Hu, T., Huang, H., and Yi, Z. Neural networks model based
on an automated multi-scale method for mammogram classification. Knowledge-Based
Systems 208 (2020), 106465.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: adel.bajcsi@ubbcluj.ro
Email address: camelia.chira@ubbcluj.ro
Email address: anca.andreica@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 2, 2022
DOI: 10.24193/subbi.2022.2.02

FEASIBILITY OF USING MACHINE LEARNING

ALGORITHMS FOR YIELD PREDICTION OF CORN AND

SUNFLOWER CROPS BASED ON SEEDING DATE

ALINA DELIA CĂLIN, HOREA-BOGDAN MUREŞAN,
AND ADRIANA MIHAELA COROIU

Abstract. In this research, our objective is to identify the relationship
between the date of seeding and the production of corn and sunflower
crops. We evaluated the feasibility of using prediction models on a dataset
of annual average crop yields and information on plant phenology, from sev-
eral states of the US. After performing data analysis and preprocessing, we
trained a selection of regression models. The best results were obtained for
corn using HistGradientRegressor and XGBRegressor with R2 = 0.969 for
both algorithms and MAE% = 8.945%, respectively MAE% = 9.423%.
These results demonstrate a good potential for the problem of yield pre-
diction based on year, state, average plating day, and crop type. This
model will be further used, combined with meteorological data, to build
an agricultural crop prediction model.

1. Introduction

The problem of increasing crop yields and optimising agricultural produc-
tion has become more relevant in the context of the growing population world-
wide [27]. Recent years have added to this the rapid issues of climate change,
which involve water shortages and soil erosion, which affect crop yield (with a
projected decrease in corn production of 20-45% by 2100) [3].

Land degradation results in the reduction of available land for crops, unless
it is rehabilitated in a sustainable way. Although many agronomic mitigating
practises are being proposed, there must be an in-depth analysis as to which is

Received by the editors: 8 December 2022.
2010 Mathematics Subject Classification. 94A15, 94A99.
1998 CR Categories and Descriptors. H.1.1 [Information Systems]: MODELS AND

PRINCIPLES – Systems and Information Theory ; H.4.2 [INFORMATION SYSTEMS
APPLICATIONS]: Types of Systems – Decision support I.2.1 [ARTIFICIAL INTEL-
LIGENCE]: Applications and Expert Systems – Medicine and science .

Key words and phrases. regression, yield prediction, seeding date, agriculture,
XGBoostRegressor.

21

22 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

the optimal approach, considering that they rely on economic viability, tech-
nical complexity, and the perception of the people involved [17]. Furthermore,
it seems that several crops (for example corn), when using the planting green
method, can become vulnerable to losses, while others are more stable (such
as soybeans) [25].

Digital farming tools enhanced with artificial intelligence and machine learn-
ing models have the potential to help mitigate these issues and bring efficiency
to crop management and protection. For example, they can reduce the usage
of fungicides by up to 30% and the tank residues by up to 75%, through more
precise calculations, thus reducing environmental pollution [28].

Furthermore, machine learning can be used successfully to identify factors
that increase crop production under different environmental conditions, as well
as model and predict future yields [20]. Many crops have a wide window of
ideal plating date (60-90 days). However, crop success can also be influenced
by changes in climate or soil composition; therefore, finding optimal planting
windows in this context, with its associated risks, is a case-by-case problem for
each crop and region [16]. The shortening of the planting window to a shorter
optimum must be carried out for each region, according to the characteristics
of the climate and hybrid type [5].

In this paper, our objective is to address the feasibility of using regression
algorithms to predict corn and sunflower yields, based on the plating date and
region, with limited available data. For this, we used historical crop data from
several US states that were available online. These crops have been chosen
as they are among the most widely cultivated in Romania. As algorithms
have proven potential, our aim in future work is to gather Romanian specific
crop data and apply machine learning algorithms for a more particular yield
prediction.

In the following sections, we will present the related work for this specific
problem, as well as the methods used in our experiments and the results
obtained.

2. Related work

The problem of optimising yield based on seeding date is approached in
many agricultural field researches with specific findings for each location, crop
type, and climate particularities.

Patel et al. [24] analyse the effect of different sowing dates for rice crops,
emphasising the importance of correlating the sowing date with the most
favourable weather conditions of the region. The adaptation of the sowing
date and the timing of management practises, as a result of climate change,

YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 23

are also urged by looking at the effects of the sowing date of spring barley and
maize in Germany and Poland [18].

For summer maize in irrigated crops, from the semi-arid Guanzhong region
of China, an optimum planting date and water requirements for increased yield
were modelled based on crop phenology, grain yield, above-ground biomass
and leaf area index, using the Decision Support System for Agro Technology
Transfer (DSSAT) Version 4.6 [26]. The results were statistically calculated on
the observed data, obtaining a normalised root mean square error (nRMSE)
of 9.91%, and R2 = 0.62. An other study referring to summer maize in China
regions argues that, given specific conditions of extreme heat, delaying the
sowing date would improve the maize yield by 2–25% [15]. A late sowing date
appears to be the best for overall yields for irrigated regions in the Mediter-
anean also [19], and a mid-to-late for the North China Plain [30].

When cultivating sunflower in Mediteranean climate conditions [12], the
most effective was a later date, under rainfed conditions, but an early date in
regions with little water availability. A study carried out on sunflower crops
in Punjab, Pakistan [29], recommends earlier sowing dates for spring sowing
and delayed sowing dates for fall, to mitigate the warming effects of climate
change and ensure sustainable productivity.

A limitation of the studies presented above is that they only use a narrow
data range of 1 to 3 years and a few plantations (1-5), which means that
annual seasonal meteorological variations are not always accounted for [23].
Additionally, regional characteristics (soil type, climate) for the specific hy-
brids [2] will have an influence on yield, but field data is limited to one or two
regions in most studies.

In this sense, machine learning can help model these problems, using differ-
ent algorithms and techniques for data preprocessing and augmentation, and
may leverage the effect of a single independent variable, which may not be obvi-
ous, in contrast to statistical models [20]. Algorithms such as Artificial Neural
Networks, Support Vector Regression, k-Nearest Neighbour, Multiple Linear
Regression, M5-Prime have been successfully applied with accurate results in
estimating crop yield [13]. The accuracy metrics that are generally used for
validation are Root Mean Square Error (RMS), Root Relative Square Error
(RRSE), Normalised Mean Absolute Error (MAE) and Correlation Factor (R)
or Coefficient of Determination (R2 - basically, the square of the correlation
coefficient) [7].

Yield prediction is a sub-field of crop management, and most research papers
related to machine learning focus geographically on China, USA, India, and
Brazil [4], with limited interest in European countries, especially Romania.

24 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

Alam et al. [1] use regression to determine the correlation between sowing
dates and maize grain yield in Bangladesh, obtaining R2 = 0.972. In Mourtzini
et al. [20] process crop information for maize (n = 17,013) and soybean (n
= 24,848) (including yield, crop management), and weather data involving
28 US states, between 2014 and 2018. The data was split in training (80%)
and test (20%). The extreme gradient boosting (XGBoost) algorithm was
trained to predict the yield based on the previous variables, resulting in a
mean absolute error (MAE) of 4.7 with R2 = 0.94 for maize, and MAE=6.4
with R2 = 0.92 for soybean. Evaluation was performed using ten-fold cross-
validation. A similar study uses the functional gradient descent algorithm on
the data from the US corn and soybean, with a split of 85% training and 15%
test [21]. The model predicts that early sowing dates can increase soybean
yield by 10% in most US states, in the simulated context of climate change
with a 30% reduction in precipitation during the summer months.

In the case of wheat yield prediction in Australia, Random Forest and Mul-
tiple Linear Regression models are used with meteorological data, identifying
drought seasons as the main factor in yield losses [10]. The forecasts at 35
days before harvest were r = 0.85, MAPE = 17.6%, and 60 days before harvest
r = 0.62, MAPE = 27.1%.

For the prediction of massive crop yields, Gonzalez-Sanchez et al. [13] anal-
yse several algorithms on ten crop datasets. The M5-Prime Regression Trees
and the k-Nearest Neighbour obtain the lowest average RMSE errors (5.14 and
4.91), the lowest average MAE errors (18.12% and 19.42%), and the highest
average correlation (0.41 and 0.42), followed by Multiple Linear Regression,
Multilayer Perceptron Neural Networks, and Support Vector Regression. In
another study, Deshmukh et al. [9] analyse several algorithms (Random For-
est, KNN, Näıve Bayes, XGBoost) for the top three crop recommendations for
an optimised yield, of which XGBoost provides the best results.

3. Methods

Given the variety of approaches and results for different algorithms, we have
selected the best potential for our specific data. Our approach focuses on the
two types of crops: corn and sunflower.

3.1. Data preprocessing. The data have been extracted from the US Na-
tional Agricultural Statistics Service [31]. Although there are sufficient entries
(with n = 88808 data instances) and many machine learning approaches for
the corn data, as presented above, the sunflower data are limited to n = 312 in-
stances for the sowing date and the corresponding yield, which is not sufficient
for the accurate training of the regression model. Therefore, data preprocess-
ing involved first the aggregation of yield data (in lb/ac) for each state and

YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 25

year with the seeding date for both crops. The information available on the
planting was in the format of percentage of the crop planted each week of the
year. Using this information, a new feature was created as the average plant-
ing day of the year (D or AVGWeek), calculated as a weighted average based
on the weekly percentages, with di the day of seeding and wi the cumulative
percentage planted up to that date di, with w0 = 0 (see Equation (1) below).
The resulting date was then translated into the day of year (with January 1
being the first day of year).

(1) D =
1

n

n∑
i=1

di(wi − wi−1)

Data cleaning was also performed to remove inconsistent field values or
incomplete entries. As a result, we obtained n = 88808 instances for corn, for
several years from 1979 to 2022. This is described in Figure 1.

For sunflower, given the available yield data, the information that was not
available on the seeding date was completed using the forward fill method,
which means similar planting dates for the same state, thus resulting n = 1108
instances, for several years in the range 1950 to 2021. The data description
plots for sunflower are shown in Figure 2.

As a result, for each crop dataset, an entry contains 5 features: the year
(type int), the state ANSI (type int), the crop type (Irrigated, Non-irrigated
and Total, which have been encoded using the factorise method), the yield (of
type float) and the planting day of year (of type float). From these data, we
can extract and visualise the plating day-of-year interval window used in each
state, across the reference years. In Figure 3, it can be observed that there are
fewer states available for the sunflower dataset. The planting days are from
day 80 to day 170 for corn and from day 135 to day 170 for sunflower, with
the width of the planting windows ranging from 15 to 40 days.

Furthermore, the correlation matrices were also calculated and are shown
in Figures 4 and 5. For corn, we note a 0.22 positive correlation between the
yield and year, and a negative correlation between crop type and yield.

In the case of sunflower, we observe a 0.57 positive correlation between year
and yield value, and 0.25 between year and average planting day of year. The
correlation between the yield value and the average day of planting is 0.13, and
there is a negative correlation between the type of crop and the yield value.

Given the correlation in both datasets between year and yield, we have
analysed the line plots of crop yield for each state per year, in Figure 6. It
can be observed that the overall tendency is that yield increases over time.
As this might be due to several factors, including technological agricultural
advancements (availability of machinery, fertilisers, pesticides, new hybrids,

26 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

Figure 1. Feature description for the corn crop dataset fea-
tures: Year, State ANSI (or state numerical code), AVGWeek
(the average plating day of year) and Value (the yield value).

etc.), we decided to perform two experiments: one in which all features are
involved in yield prediction, and one in which the year feature is removed,
remaining only state code, crop type, and average plating day to be considered
in the prediction of the crop yield.

YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 27

Figure 2. Feature description for the sunflower crop dataset:
Year, State ANSI (or state numerical code), AVGWeek (the
average plating day of year) and Value (the yield value).

3.2. Models training. Based on the literature review, we have selected sev-
eral regression algorithms that are appropriate for our specific problem.

3.2.1. DecisionTreeRegressor. A Decision Tree is built in the form of a tree-
like hierarchical structure, containing internal nodes (or decision nodes) and

28 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

Figure 3. The average planting day of year window in each
state (based on state ANSI) for corn (left) and sunflower(right).

Figure 4. Correlation heat map for the corn crop dataset

leaf nodes (or prediction nodes). The height and width of such a tree depend
on the data characteristics, amount, and algorithm configuration. In the case

YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 29

Figure 5. Correlation heat map for the sunflower crop dataset

Figure 6. Yield value per year for each state for corn (left)
and sunflower (right).

of prediction, we use an input xi to go down the tree using decision nodes, up
to a leaf that contains the predicted yi value [8].

3.2.2. RandomForestRegressor. Random forest is an algorithm that groups an
ensemble of growing decision trees, depending on a random vector f(ϕ) . Thus,

30 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

the predictions are performed by aggregating the predictions of all the decision
trees h(x, ϕ) [14].

3.2.3. HistGradientBoostingRegressor. The Histogram-based Gradient Boost-
ing Regression Tree also uses ensemble decision trees. It improves performance
by adding new corrective models in a greedy stepwise manner, with the aim
of reducing the square error loss function until it is acceptable [11]. The his-
togram is an efficient data structure used by the tree-building algorithm to
accelerate the process.

3.2.4. XGBRegressor. The XGBoost is a scalable end-to-end Gradient Boost-
ing Tree system that is using cache access patterns, data compression, and
block sharding to optimise resource use [6].

3.2.5. Models training and hyperparameters tuning. The algorithms presented
above have been trained and tested using a data split of 20% for testing and
80% for training. Next, the parameters were fine-tuned; for XGBRegressor
the number of estimators was set to 500, max depth to 8 and learning rate
to 0.1. HistGradientBoostingRegressor used a learning rate of 0.01, with the
maximum iterations set to 1000 and the loss function Poisson. RandomFore-
stRegressor was set to use 25 estimators with a maximum of 4 features and
at most 700 leaf nodes, with a random state of 45. For DecisionTreeRegressor
the max depth was set to 10, the other parameters being as default by the
Sklearn Python library implementation.

3.3. Models evaluation. For the model evaluation we used the k-fold cross-
validation with k = 10. We note the mean absolute error (MAE), which is
calculated as an average of the absolute prediction error as in Equation (2),
where yi is the observed value and ŷi is the predicted value.

(2) MAE =
1

n

n∑
i=1

|yi − ŷi|

Another metric used is the coefficient of determination R2, which represents
how much of the variation in the y values (yield in our case) is taken into
account by the involved features, computed as in Equation (3), where ȳ is the
mean of the observed values [22].

(3) R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

We also computed MAE%, computed by dividing MAE by the average yield
value for corn and sunflower, respectively, as described by Formula (4):

YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 31

(4) MAE% =
MAE

1
n

∑n
i=1 yi

∗ 100

4. Results and Discussion

The results obtained by each model are presented in Table 1 below, in which
we provide the values for the mean (M) and standard deviation (SD), for the
datasets including all features or without year (w/t year). The best yield
prediction was obtained by the XGBRegressor (with R2 = 0.969 for corn and
R2 = 0.905 for sunflower) and HistGradientBoostingRegressor (R2 = 0.969,
for corn and R2 = 0.884 for sunflower), when all features were included.

While the R2 score is lower when the year is removed, it is still greater than
0.9 for corn, with the best result for sunflower being 0.815.

The prediction plot is visible in Figure 7 for the corn dataset, including
both experiments: using all features, and when removing the input feature
that represents the year. Figure 8 presents the regression plot for sunflower
with all features and, respectively, without year. In both figures, the x axis
represents the actual yield, and the y axis is the predicted yield.

Figure 7. Corn crop yield prediction plot using all features
(left), and without year (right), using the XGBRegressor model

Based on these results, we can state that the algorithms used in the predic-
tion reveal models with a good correlation of the selected characteristics (year,
state, plantation date, type of crop) with yield. From these, the year and the
planting day appear to be both relevant features in predicting the yield for a

32 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

Table 1. The results on yield prediction for each algorithm

XGBRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.969 0.006 7.864 0.634 9.423
Sunflower 0.905 0.028 106.778 10.473 9.768
Corn (w/t Year) 0.907 0.013 14.299 0.976 17.134
Sunflower (w/t Year) 0.815 0.047 156.957 13.515 14.359

HistGradientBoostingRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.969 0.006 7.465 0.619 8.945
Sunflower 0.883 0.032 119.289 10.838 10.913
Corn (w/t Year) 0.909 0.015 12.736 1.187 15.261
Sunflower (w/t Year) 0.797 0.047 167.133 13.687 15.290

DecisionTreeRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.940 0.010 10.009 0.776 11.993
Sunflower 0.861 0.039 124.517 13.345 11.391
Corn (w/t Year) 0.870 0.021 14.587 1.139 17.479
Sunflower (w/t Year) 0.753 0.056 180.455 15.437 16.509

RandomForestRegressor
R2 M R2 SD MAE M MAE SD MAE%

Corn 0.959 0.007 8.483 0.700 10.164
Sunflower 0.905 0.026 107.432 10.457 9.828
Corn (w/t Year) 0.891 0.018 13.779 1.235 16.510
Sunflower (w/t Year) 0.794 0.043 168.073 13.256 15.376

specific geographical location (state). These are in agreement with the results
obtained and the findings described in the state-of-the-art literature presented
in Section 2.

We also note the high metrics obtained for predicting the sunflower crop
yield, where the available data were limited, which means that the total num-
ber of instances was n = 1108. Of these only n = 312 contained complete
information regarding the plating day, the others were completed by our al-
gorithms in the preprocessing phase. This is an important finding, because
no other study has performed similar experiments on such a small number of

YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 33

Figure 8. Sunflower crop yield prediction plot with all fea-
tures (left), and without year (right), using the XGBRegressor
model

instances for a crop dataset, considering our goal is to train models on Ro-
manian crop datasets also, for which the data are being collected, and are
expected to be reduced in size. This is due to the fact that the collection is
not yet being centralised by a national statistical organisation, but privately
gathered by smaller independent agricultural entities for their own research
and seasonal activity.

Figure 9. Geographical location of the available data. Blue
dots represent states with corn crop data. Red dots are states
with sunflower crop data.

34 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

5. Conclusions and future work

In this paper, we analysed two crop datasets for the purpose of predicting
the yield based on the plating date. We obtained the best score of R2 = 0.969
for the corn dataset (n = 88808) and R2 = 0.905 for the sunflower dataset
(n = 1108), using XGBRegressor.

To better isolate the effect of the plating date from other factors, such
as technical advances throughout the years (especially given the wide range
of years of available data and the tendency of yield increase throughout the
years), we repeated the experiments without the year component. In this
case, the best results were obtained using the HistGradientBoostingRegressor
for the corn dataset (R2 = 0.909).

Given the results obtained, we conclude that the plating day of year has
a significant influence on crop yield prediction, for both corn and sunflower
datasets. We also note that it is feasible to use regression algorithms to suc-
cessfully predict crop yield even in cases where the available data are limited
(as in the case of the sunflower crop), using adequate data preprocessing tech-
niques. This finding is relevant for our planned work, because we expect the
initial available data to be reduced and perhaps incomplete.

As next steps, we aim to collect several crop data sets specific for the Roma-
nian agricultural sector and train predictive models adapted to geographical
and crop particularities.

Also, considering the literature in the field stating that the seeding date
might be in itself influenced by specific climate changes or meteorological sea-
sonal variations, further work also involves correlating these parameters, in
the context of global warming and its effects in agriculture.

6. Acknowledgement

This work was supported by the project ”The Development of Advanced
and Applicative Research Competencies in the Logic of STEAM + Health”
/POCU/993/6/13/153310, project co-financed by the European Social Fund
through The Romanian Operational Programme Human Capital 2014-2020.

References

[1] Alam, M. J., Ahmed, K. S., Nahar, M. K., Akter, S., and Uddin, M. A. Effect
of different sowing dates on the performance of maize. Journal of Krishi Vigyan 8, 2
(2020), 75–81.

[2] Ali, W., Ali, M., Ahmad, Z., Iqbal, J., Anwar, S., and Kamal, M. K. A. Influence
of sowing dates on varying maize (zea mays l.) varieties grown under agro-climatic
condition of peshawar, pakistan. European Journal of Experimental Biology 8, 6 (2018),
36.

YIELD PREDICTION OF CORN AND SUNFLOWER CROPS 35

[3] Arora, N. K. Impact of climate change on agriculture production and its sustainable
solutions. Environmental Sustainability 2 (2019), 95–96.

[4] Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., and
Bochtis, D.Machine learning in agriculture: A comprehensive updated review. Sensors
21, 11 (2021), 3758.

[5] Cerioli, T., Gentimis, T., Linscombe, S. D., and Famoso, A. N. Effect of rice
planting date and optimal planting window for southwest louisiana. Agronomy Journal
113, 2 (2021), 1248–1257.

[6] Chen, T., and Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2016), KDD ’16, Association for Computing Machinery,
p. 785–794.

[7] Chlingaryan, A., Sukkarieh, S., and Whelan, B. Machine learning approaches for
crop yield prediction and nitrogen status estimation in precision agriculture: A review.
Computers and electronics in agriculture 151 (2018), 61–69.

[8] Desai, A., and Chaudhary, S. Distributed decision tree. In Proceedings of the 9th
Annual ACM India Conference (2016), pp. 43–50.

[9] Deshmukh, M., Jaiswar, A., Joshi, O., and Shedge, R. Farming assistance for soil
fertility improvement and crop prediction using xgboost. In ITM Web of Conferences
(2022), vol. 44, EDP Sciences, p. 03022.

[10] Feng, P., Wang, B., Li Liu, D., Waters, C., Xiao, D., Shi, L., and Yu, Q.
Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical
model and machine learning technique. Agricultural and Forest Meteorology 285 (2020),
107922.

[11] Geurts, P., Wehenkel, L., and d’Alché Buc, F. Gradient boosting for kernelized
output spaces. In Proceedings of the 24th international conference on Machine learning
(2007), pp. 289–296.

[12] Giannini, V., Mula, L., Carta, M., Patteri, G., and Roggero, P. P. Interplay
of irrigation strategies and sowing dates on sunflower yield in semi-arid mediterranean
areas. Agricultural Water Management 260 (2022), 107287.

[13] Gonzalez-Sanchez, A., Frausto-Solis, J., and Ojeda-Bustamante, W. Predic-
tive ability of machine learning methods for massive crop yield prediction. Spanish
Journal of Agricultural Research 12, 2 (2014), 313–328.

[14] Hsu, C.-C., Lee, Y.-C., Lu, P.-E., Lu, S.-S., Lai, H.-T., Huang, C.-C., Wang,
C., Lin, Y.-J., and Su, W.-T. Social media prediction based on residual learning and
random forest. In Proceedings of the 25th ACM international conference on Multimedia
(2017), pp. 1865–1870.

[15] Lv, Z., Li, F., and Lu, G. Adjusting sowing date and cultivar shift improve maize
adaption to climate change in china. Mitigation and Adaptation Strategies for Global
Change 25, 1 (2020), 87–106.

[16] Ma, B., Zhao, H., Zheng, Z., Caldwell, C., Mills, A., Vanasse, A., Earl, H.,
Scott, P., and Smith, D. Optimizing seeding dates and rates for canola production
in the humid eastern canadian agroecosystems. Agronomy Journal 108, 5 (2016), 1869–
1879.

[17] Malhi, G. S., Kaur, M., and Kaushik, P. Impact of climate change on agriculture
and its mitigation strategies: A review. Sustainability 13, 3 (2021), 1318.

[18] Marcinkowski, P., and Piniewski, M. Effect of climate change on sowing and harvest
dates of spring barley and maize in poland. International Agrophysics 32, 2 (2018).

36 A.D. CĂLIN, H.B. MUREŞAN, AND A.M. COROIU

[19] Maresma, A., Ballesta, A., Santiveri, F., and Lloveras, J. Sowing date affects
maize development and yield in irrigated mediterranean environments. Agriculture 9, 3
(2019), 67.

[20] Mourtzinis, S., Esker, P. D., Specht, J. E., and Conley, S. P. Advancing agri-
cultural research using machine learning algorithms. Scientific reports 11, 1 (2021), 1–7.

[21] Mourtzinis, S., Specht, J. E., and Conley, S. P. Defining optimal soybean sowing
dates across the us. Scientific Reports 9, 1 (2019), 1–7.

[22] Pan, B. Application of xgboost algorithm in hourly pm2. 5 concentration prediction.
In IOP conference series: earth and environmental science (2018), vol. 113, IOP pub-
lishing, p. 012127.

[23] Partal, E. Sunflower yield and quality under the influence of sowing date, plant popula-
tion and the hybrid. ROMANIAN AGRICULTURAL RESEARCH 39 (2022), 463–470.

[24] Patel, A., Patel, M., Patel, R., Mote, B., et al. Effect of different sowing date
on phenology, growth and yield of rice–a review. Plant Archives 19, 1 (2019), 12–16.

[25] Reed, H. K., Karsten, H. D., Curran, W. S., Tooker, J. F., and Duiker, S. W.
Planting green effects on corn and soybean production. Agronomy Journal 111, 5 (2019),
2314–2325.

[26] Saddique, Q., Cai, H., Ishaque, W., Chen, H., Chau, H. W., Chattha, M. U.,
Hassan, M. U., Khan, M. I., and He, J. Optimizing the sowing date and irrigation
strategy to improve maize yield by using ceres (crop estimation through resource and
environment synthesis)-maize model. Agronomy 9, 2 (2019), 109.

[27] Sadigov, R. Rapid growth of the world population and its socioeconomic results. The
Scientific World Journal 2022:8110229 (2022).

[28] Shankar, P., Werner, N., Selinger, S., and Janssen, O. Artificial intelligence
driven crop protection optimization for sustainable agriculture. In 2020 IEEE/ITU In-
ternational Conference on Artificial Intelligence for Good (AI4G) (2020), IEEE, pp. 1–6.

[29] Tariq, M., Ahmad, S., Fahad, S., Abbas, G., Hussain, S., Fatima, Z., Nasim,
W., Mubeen, M., ur Rehman, M. H., Khan, M. A., et al. The impact of climate
warming and crop management on phenology of sunflower-based cropping systems in
punjab, pakistan. Agricultural and Forest Meteorology 256 (2018), 270–282.

[30] Tian, B., Zhu, J., Nie, Y., Xu, C., Meng, Q., and Wang, P. Mitigating heat and
chilling stress by adjusting the sowing date of maize in the north china plain. Journal
of Agronomy and Crop Science 205, 1 (2019), 77–87.

[31] United States Department of Agriculture, U. National agricultural statistics
service. https://quickstats.nass.usda.gov/. Accessed: 2022-10-17.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: alina.calin@ubbcluj.ro

Email address: horea.muresan@ubbcluj.ro

Email address: adriana.coroiu@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 2, 2022
DOI: 10.24193/subbi.2022.2.03

COROUTINES COMUNICATIONS. DESIGN AND

IMPLEMENTATION ISSUES IN C++20

RADU LUPŞA AND DANA LUPŞA

Abstract. This paper explores the communication mechanisms and pat-
terns available to coroutines to cooperate with one another. It investigates
the issues in designing and implementing a framework for using C++20
coroutines effectively, for generators, asynchronous function calls, and es-
pecially asynchronous generators.

1. Introduction

Coroutines are a programming concept that allows execution to be sus-
pended and resumed. A coroutine can transfer the control to other piece of
code and, when getting back the control at a later time, it continues from the
next instruction and with all the data restored, including the execution stack.

Coroutines were originally proposed in 1963 and also were studied quite
thoroughly in 1960’s to beginning of 1980’s. The interest to coroutines has
resurfaced in recent years, with several mainstream languages offering some
support to coroutines.

Even though coroutines dates back to 1963 [9] , they are still found useful in
modern applications. For example, a recent work on coroutine study the use
of corotuine for a web crawler [15]. Coroutines were proven to perform better
than single-threaded and multi-threaded versions. Performance improvement
was also demonstrated for coroutine use in I/O requests [14]. When used
on Android, coroutines achieve better performance when compared to some
existing concurrency frameworks [8]. Also, lot of recent academic works study
the application of coroutines on resource-constrained platforms, in the Internet
of Things and Embedded Systems [7].

Received by the editors: 4 December 2022.
2010 Mathematics Subject Classification. 68N19, 68Q85.
1998 CR Categories and Descriptors. D.3.3 [Software]: Programming Languages –

Language Constructs and Features; D.1.3 [Software]: Programming Techniques – Language
Concurrent Programming .

Key words and phrases. asynchronous programming, coroutines, language design.

37

38 RADU LUPŞA AND DANA LUPŞA

While there are a lot of works exploring the low level aspects and the ap-
plicable aspects of using coroutine in asyncronous processing, not so much is
studied about higher-level abstractions and patterns. However, in [13] there
is a review about the following patterns: The Producer–Consumer Problem,
Generator, Goal-oriented programming, Cooperative Multitasking. They also
discuss Exception Handling, but this is more of CPS than coroutines. [10]
also present an implementation approach to asynchronous programming and
generator based on coroutines.

The coroutine primitives provided in C++20 are very powerful, but they are
very complicated to use directly. In this paper, we explore how to use them
to build the producer-consumer patterns and cooperative multitasking.

The rest of the paper is organized as follows. The next section makes an
overview of the most known coroutine classification and presents the char-
acteristics of coroutines existing in some programming languages. Section 3
details two main scenarios for inter-coroutine communication. Section 4 pro-
poses a framework over C++20 coroutines allowing several use cases: to make
an asynchronous call and switch to some other coroutine until the asyncronous
call completes, to have a coroutine yielding a sequence of values (to implement
a generator) and to combine those two features together. The paper ends with
a short review over the main things that are presented in this paper.

2. What is a Coroutine

Essentially, a coroutine is an execute thread, together with the notion of
current instruction, execution stack together with arguments, local and tem-
porary variables. However, unlike threads, switching to or from a coroutine is
done at the current coroutine request, instead of unpredictable, whenever the
operating system decides to.

According to [12], the characteristic property of a coroutine is that it can
transfer the control (yield) to other code and, when getting back the control
at a later time, it continues from the next instruction and with all the data
restored, including the execution stack.

There are 3 important classification criteria for coroutine support in a corou-
tine implementation [13], [10]:

symmetric vs asymetric: : in symmetric coroutine implementation,
any coroutine can transfer control to any other coroutine; with asym-
metric coroutines, a caller coroutine can transfer control to a subor-
dinate coroutine, while the subordinate can only transfer back to the
caller (or to own subordinates).

stackfull vs stackless: : a stackless coroutine can transfer control
only from its main function; a stackfull one can transfer control from

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 39

within a called function at any depth. However, as a partial work-
around, a stackless coroutine can create and call a child stackless
coroutine, which can then transfer control to some other coroutine.

first class vs constrained: : a first-class coroutine is explicitly ma-
nipulated by the programmer, via handles that can be passed around
and stored in variables; constrained coroutines exist only implicit,
within some programming constructs such as a generator created
based on yield statements and iterated within a foreach loop, or
the async-await mechanism, both introduced in C# [4], [5] and also
available in other languages such as Python.

2.1. Existing coroutine support in programming languages. Windows
Fibers [6] are symmetric, stackfull, first-class coroutines. The API is con-
structed for the C language. The basic operations are: CreateFiber(),
that creates a coroutine, given its main function, SwitchToFiber(), that
suspends the current coroutine giving control to the specified coroutine, and
DeleteFiber(), that deletes the specified coroutine.

Lua coroutines [11] are asymmetric, stackfull, first-class coroutines. The
basic operations are: coroutine.create() that creates a child coroutine,
coroutine.resume(), that transfers control to the specified child coroutine,
and coroutine.yield(), that transfer control to the parent coroutine. An in-
teresting feature is that an additional parameter given to coroutine.resume()
(beside the coroutine identifier) gets retrieved inside the coroutine as the re-
turn value of coroutine.yield() and, vice-versa, any parameter given to
coroutine.yield() can be retrieved in the parent coroutine as the returned
value from coroutine.resume().

C# coroutines [4], [5] are stackless, constrained coroutines (symmetry is a
bit unclear). They occur under two forms: generators and the async-await
mechanism. A generator looks like a function returning an IEnumerable. The
parent coroutine transfers the control to the child by a call to MoveNext()

on the corresponding iterator; the control is transferred back to the parent
by a yield return statement in the generator. In an async-await scenario,
the mechanism is more complex and involves threads and some thread pool
mechanism in addition to the coroutines. A coroutine is marked with the
async keyword and must return a Task or a Task<T>. An await statement
inside a coroutine suspends it and may transfer control to a coroutine that is
runnable at that time. The coroutine is resumed when the awaited future is
completed.

C++20 coroutines [1] are symmetric, stackless, first-class coroutines, al-
though the mechanism for controlling them is complex, poses some constraints

40 RADU LUPŞA AND DANA LUPŞA

and offers distinct mechanisms for symmetric and asymmetric transfer of con-
trol. A coroutine main function is identified by having one or more of the
co await, co yield or co return statements within its body. The declared
return type of a coroutine main function is a user-defined type that serves two
purposes: on one hand, it is created when starting the coroutine and should be
a wrapper over the coroutine handle, and, on the other hand, it must declare
an inner class, promise type, containing some member functions that control
the behavior of the coroutine. It is those functions that decide if and to which
coroutine should the control be transferred as a result of co await, co yield

or co return. These functions also allow data to be transmitted between
coroutines in a user-customised way, allowing the construction of higher level
mechanisms.

3. Communication between coroutines

Regardless of the lower level mechanisms of handling coroutines, there are
two higher level patterns that cover most uses of coroutines:

• Producer-consumer scenarios, where one coroutine produces values
for the consumption of another, with passing control together with
the values.

• As ”poor man’s threads”, that is to switch from a task, that cannot
be continued because it depends on some external data, to another
task, that can be continued.

3.1. Producer-consumer scenario. In this scenario, there is a producer
and a consumer, and both are written as in full control, each having a main
loop. Thus, the producer will have the main loop and will repeatedly execute
a statement (usually called yield) that pushes a value to the consumer; the
consumer also has the main loop and repeatedly pulls data from the producer,
often just through a special form of a for loop. The producer push (yield) op-
eration needs to both give data and switch control to the consumer coroutine;
the consumer pull operation needs to give control to the producer and, when
the control is transferred back, to return the data pushed by the producer.

3.2. Poor man’s threads scenario. This scenario considers several inde-
pendent operations. We want that, when one operation is blocked waiting
for an asynchronous operation, to schedule another. Each operation has its
own coroutine and decides when it can pass the control to another. This way,
coroutines are used as a cooperative multitasking mechanism.

Each coroutine acts as a line of execution, similar to a thread. Its main
advantage, though, is that it is handled in user space, which means that it is
cheaper to switch from a coroutine to another. Also, since control is yielded

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 41

only at some specific points within the code, concurrency control can be re-
laxed.

When a coroutine executes an asynchronous operation (an operation that
has to wait for an external event, such as read from input, from a socket,
sleep for an amount of time, wait for a computation executed on some other
thread), the coroutine must do three operations:

(1) start the asynchronous operation;
(2) arrange so that the completion notification of the operation marks

the coroutine runnable again;
(3) invokes a scheduler that switches to a runnable coroutine.

It is important to note that, in this scenario, coroutines are mostly inde-
pendent from one another, so, switching from a coroutine to the next is not
accompanied with passing information. On the contrary, even deciding which
coroutine is the next one is independent of the main bussines of the current
coroutine, so, it is delegated to a scheduling mechanism. Furthermore, the
scheduler can also move a coroutine from one thread to another.

4. Designing asynchronous generators

The basic usages of constrained coroutines in programming languages like
C# and Python is for generators and for the async-await pattern.

We will look into creating these mechanisms with C++20 coroutines and
combining them to form asynchronous generators.

Note that the C# language, that invented the async-await mechanism, does
not support asynchronous generators yet, although the work in this direction
is under way. Python has it implemented [3], and it comes in a straightforward
way from the generators and the async-await. Both use a scheduler mecha-
nism to decide which coroutine gets the control when the current one gets
suspended, but neither gives the programmer explicit control to choose the
scheduler.

There also exists an implementation for asynchronous generators using
C++20 coroutines — the CppCoro project [2]. However, our framework has
two important differences over what CppCoro provides:

(1) we provide primitives for conveying data from sources or to destina-
tions that are not implemented as coroutines, while CppCoro only
provides the possibility for a non-coroutine source to signal to a
coroutine that it can proceed, and similar for a coroutine source
to a non-coroutine consumer;

(2) we allow a scheduler to decide which coroutine would take over the
current thread when the current coroutine gets suspended, thus using
the symmetric coroutines mechanism in C++20 coroutines; CppCoro

42 RADU LUPŞA AND DANA LUPŞA

returns the control to the parent (or latest resumer), using the asym-
metric coroutine mechanism in C++20 coroutines.

4.1. Implementing a generator mechanism. The common way the com-
munications and coroutines work together is the generator mechanism. We
implemented a small C++20 framework allowing an easy way to write a gener-
ator — as a coroutine function that produces values and pushes them via the
co yield statement to the consumer — and the consumer code — that can
consume the elements via the standard iterators mechanism, for example as a
simple foreach style for loop.

The proposed implementation has the following elements:

• The returned type for the producer coroutines is a template over the
produced objects, Generator<T>;

• The Generator<T> object contains only the coroutine handle;
• The Generator<T>::promise type holds the value between the pro-
ducer and the consumer, as an std::optional<T>. An empty op-
tional signifies the end of data.

• The producer coroutine starts suspended (initial suspend() in
promise type returns std::suspend always). This way, we have
a lazy evaluation mechanism — the values are produced on demand.

• The consumer calls a function next() defined in Generator<T>. This
resumes the coroutine (suspending the caller).

• The producer coroutine sends the data items via the co yield, invok-
ing the yield value() in the promise type, which stores the value
and suspends the producer coroutine, resuming the caller (consumer)
code.

• The next() call returns in the value in the consumer code.
• At the end, the producer coroutine ends, leading to the runtime
invoking return void() in the promise type. This stores a null
optional, suspends the producer coroutine and resumes the consumer.
The consumer must not invoke next() after a null was returned.

• The next() call is wrapped in a standard STL iterator.

The above mechanism allows, for instance, a straightforward way to im-
plement a permutations generator. Note that the coroutine function here is
recursive, so it acts both as a producer and as a consumer, so it demonstrates
both usages:

Generator<std::vector<int> >

permutations_rec(std::vector<int> const& prefix, int n) {

std::vector<int> newPrefix = prefix;

newPrefix.push_back(0);

for (int i = 0; i < n; ++i) {

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 43

if (std::find(prefix.begin(), prefix.end(), i) ==

prefix.end()) {

newPrefix.back() = i;

if (newPrefix.size() == n) {

co_yield newPrefix;

} else {

for (auto perm : permutations_rec(newPrefix, n)) {

co_yield perm;

}

}

}

}

}

Like for other coroutine-based generators, the downside is that the generator
is not copyable, so, the user cannot make a copy at a certain point and have
both the original and the copy generate independently the remaining elements.

4.2. Async-await pattern. The next element we need is to implement a
framework allowing to make an asynchronous call and switch to some other
coroutine until the asyncronous call completes.

Its goal is to be able to write something like v = co await func(), where
func() is an asynchronous operation returning a future, with the following
effect:

(1) func() is called, starting some asynchronous operation;
(2) our coroutine is suspended and the control is passed to some corou-

tine that is runnable;
(3) when the asynchronous operation completes, our coroutine is marked

runnable again;
(4) eventually, when some other coroutine gets suspended or finishes, our

coroutine is resumed;
(5) the result of the asynchronous operation is returned and assigned to

the variable v.

Additionally, to make the mechanism composable, our framework allows
the same v = co await func() statement to be executed with func() being
a coroutine returning a single value. In this case, the effect is similar to a single
asynchronous call, but there will be multiple suspends and resumes between
the initial call and getting the final result.

The implementation uses two auxiliary objects:

• a CoroutineScheduler, for keeping track of runnable coroutines.
• a PromiseFuturePair, that will hold the return value from the asyn-
chronous call.

44 RADU LUPŞA AND DANA LUPŞA

The CoroutineScheduler needs to offer two functions, markRunnable(),
that puts the specified coroutine into a set of coroutines ready to be executed,
and schedule(), which picks and returns a runnable coroutine or waits until
such a coroutine exists.

The PromiseFuturePair offers three operations: set(), that can be called
only once and sets the return value of the asynchronous operation, get(), that
waits for the result and returns it, and addCallback(), that sets a callback to
be called when the operation completes; this is needed to mark the coroutine
that waits for the result runnable.

With the above, the PromiseFuturePair can be wrapped into an awaiter ob-
ject. The await suspend() will set the callback for the PromiseFuturePair

to mark the awaiting coroutine runnable again and will invoke the scheduler
to schedule some other coroutine. The await resume() will return the value
from the future.

Note that the PromiseFuturePair awaiter needs to be linked to the Corou-
tineScheduler that will provide the next coroutine for the current thread and
will also schedule the current coroutine when the awaited condition is full-
filled. The way it is done is by having the coroutine promise object holding
a pointer to the CoroutineScheduler and the await transform() that creates
the awaiter out of the PromiseFuturePair embed the CoroutineScheduler into
the awaiter object. We took two basic assumptions behind this design:

(1) each coroutine is handled by a single scheduler (it cannot go from
one scheduler to another);

(2) no coroutine may outlive its scheduler.

The coroutine return object is also an awaiter. Its await suspend() oper-
ation, invoked by the caller coroutine, makes the called coroutine runnable,
so that the called coroutine will eventually run. It also memorizes the han-
dle of the coroutine invoking it (that gets suspended) as well as its scheduler,
so that the caller coroutine is marked ready in its scheduler when the called
coroutine returns a value. The return value() of the promise type object
marks runnable the coroutine mentioned above.

This design allows control of the scheduler for each coroutine, allowing,
among other use cases, to control the thread used by each coroutine. This
is important for some GUI frameworks that insist that GUI related functions
can be called only on the UI thread.

4.3. A pipe mechanism. To go from asynchronous operations returning sin-
gle values to asynchronous operations returning multiple values, the mecha-
nism for conveying the result must be changed from PromiseFuturePair to a
pipe (queue).

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 45

While the basics of a pipe are very simple, with the two basic operations,
send() and recv(), there are a few needed additions and clarifications needed.

First, there is the issue of how to signal the end of communication. On the
producer end, we have to either call a different function (say, pipe.close())
or send a special EOF data value. On the consumer end, since the consumer
cannot usually know beforehand when the communication will end, the only
possibility is to have pipe.recv() return the special EOF value.

Second, like for the PromiseFuturePair, we need a callback to be called
when an element is put into the queue. As the pipe is fed from an asynchronous
operation, setting the callback can be at race with putting an element into the
queue. To simplify the operations, we make the following assumptions:

• When setting a callback to be called for enqueued elements, the call-
back will be called on each element that is not consumed yet (via
recv()).

• For this to not create a race condition, the functions recv() and
setDataAvailableCallback() must not be called concurrently.

• To simplify the behavior of setDataAvailableCallback(), the ca-
pacity of the pipe will be 1 element.

4.4. Asynchronous generator. We combined the elements described above
to enable the creation of asynchronous generators.

Our design offers the user the possibility to implement an asynchronous
generator as a coroutines function having the following elements:

• like a regular generator, it returns multiple values via co yield;
• like an async-await coroutine, when it executes co await, it gets
suspended until the result of the function invoked with co await is
available;

• the argument of co await may be an asynchronous function produc-
ing multiple values. In this case, the calling coroutine gets suspended
until the next value is generated and co await returns that value;

• the argument of co await may be another asynchronous generator,
in which case co await returns the next generated value. Note that
this may lead to an arbitrary sequence of nested asyncronous gener-
ators calls and the use of co await leads to a potentially complex
sequence of suspending and resuming of their coroutines.

To support the above functionalities, our framework defines a class template,
AsyncGenerator<T>, that represents an asynchronous generator coroutines
that generates objects of type T. Given the way coroutines work in C++20,
the coroutine function that acts as an asynchronous generator should have a
declared return type which is AsyncGenerator<T>

46 RADU LUPŞA AND DANA LUPŞA

AsyncGenerator<T> is designed to be usable in two contexts:

• in a coroutine, as an argument of a co await statement. Here, it
must act as an awaiter.

• in a regular function. Here, it must offer a blocking receive function.

To implement that, the AsyncGenerator<T>::promise type acts as pipe.
The pipe is fed by the yield value(), which puts a value, and return void(),
which closes the pipe (that is, it adds a special EOF object). After feeding
the pipe, the control is transmitted back to the calling coroutine.

For the case AsyncGenerator<T> is the operand of co await, its method
await suspend() memorizes the handle of the calling coroutine and resumes
the own (called) coroutine. This is done so that the owned coroutine can
produce the next value. When the next value is produced (via yield value()

or return void() of AsyncGenerator<T>::promise type), the memorized
calling coroutine is set to runnable again.

For the case AsyncGenerator<T> is used from a regular function, it of-
fers a blocking recv() function that repeatedly calls resume() on the owned
coroutine, until a value is made available by the coroutine.

To demonstrate the capabilities of our framework, we present below an
implementation of an asynchronous generator that uses coroutines. It takes
a sequence of characters produced by another asynchronous generator named
source, parses it as a sequence of numbers and returns them to its caller.

AsyncGenerator<unsigned> parseFlow(CoroutineScheduler* pScheduler,

AsyncGenerator<char>& source) {

unsigned v = 0;

bool parseStarted = false;

while (true) {

ElementOrEof<char> el = co_await source;

if (el.isEof()) {

if (parseStarted) {

co_yield v;

}

co_return;

}

char c = el.value();

if (c >= ’0’ && c <= ’9’) {

parseStarted = true;

v = 10 * v + (c - ’0’);

} else if(c == ’ ’ || c == 10 || c == 13) {

co_yield v;

v = 0; parseStarted = false;

}

}

}

COROUTINES COMUNICATIONS. DESIGN AND IMPLEMENTATION ISSUES 47

It is worth noting that the above example shows a possible typical usage
of our framework, for instance in some networked server or client. The data
source in the example would encapsulate an asynchronous read operation from
a network connection, the coroutine in the example would do some parsing or
preprocessing of the requests, and the user of the data would contain the
main processing loop. Classical alternative mechanisms would be threads or
callbacks. Threads consume more resources than coroutines. Callbacks are
harder to understand because of the inversion of control — in the callback, the
programmer needs to keep track of a state and to update it at each incoming
callback; with coroutines, the programmer writes the main processing loop.

5. Conclusions

The asynchronous coroutines, proposed in this paper, allow a very natural
way of writing code that processes a flow of data coming asynchronously, from
some external source, without resorting to threads for this purpose.

This paper also demonstrates how to create, each by itself, the generators
and the async-await mechanism, which exist in other languages, but only at
its beginning using C++20 coroutines.

It also shows that the C++20 coroutines mechanism, while quite a bit hard
to use directly, is very powerful and allows very diverse use scenarios.

References

[1] C and c++ reference, coroutines.
https://en.cppreference.com/w/cpp/language/coroutines. Accessed: 2022.

[2] A library of c++ coroutine abstractions for the coroutines ts.
https://github.com/lewissbaker/cppcoro. Accessed: 2022.

[3] Pep 525 – asynchronous generators.
https://peps.python.org/pep-0525/ . Accessed: 2022.

[4] .NET/C# guide/language reference. await operator - asynchronously await for a task to
completes.
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await.
Accessed: 2022.

[5] .NET/C# guide/language reference. yield statement - provide the next element.
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/yield.
Accessed: 2022.

[6] Windows app development documentation. processes and threads. fibers.
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers.
Accessed: 2022.

[7] Belson, B., Xiang, W., Holdsworth, J. J., and Philippa, B. W. C++20 coroutines
on microcontrollers—what we learned. IEEE Embedded Systems Letters 13 (2021), 9–12.

[8] Chauhan, K., Kumar, S., Sethia, D., and Alam, M. N. Performance analysis of
kotlin coroutines on android in a model-view-intent architecture pattern. In 2021 2nd
International Conference for Emerging Technology (INCET) (2021), IEEE, pp. 1–6.

48 RADU LUPŞA AND DANA LUPŞA

[9] Conway, M. E. Design of a separable transition-diagram compiler. Commun. ACM 6,
7 (jul 1963), 396–408.

[10] Elizarov, R., Belyaev, M., Akhin, M., and Usmanov, I. Kotlin coroutines: Design
and implementation. In Proceedings of the 2021 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Software
(2021), Association for Computing Machinery, p. 68–84.

[11] Ierusalimschy, R. Programming in Lua, 2003.
[12] Marlin, C. D. Coroutines: A Programming Methodology, a Language Design and an

Implementation, vol. 95 of Lecture Notes in Computer Science. Springer, 1980.
[13] Moura, A. L. D., and Ierusalimschy, R. Revisiting coroutines. ACM Trans. Pro-

gram. Lang. Syst. 31, 2 (feb 2009).
[14] von Merzljak, L., Fent, P., Neumann, T., and Giceva, J. What are you wait-

ing for? use coroutines for asynchronous I/O to hide I/O latencies and maximize the
read bandwidth! In International Workshop on Accelerating Data Management Systems
(ADMS) (2022).

[15] Wang, Z. Web crawler scheduler based on coroutine. 2019 International Conference on
Intelligent Computing, Automation and Systems (ICICAS) (2019), 540–543.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: radu.lupsa@ubbcluj.ro, dana.lupsa@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 2, 2022
DOI: 10.24193/subbi.2022.2.04

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES

USING COMPLEX NETWORKS

BOGDAN MURSA

Abstract. This paper proposes the use of Complex Network Theory to

model the interactions between ants and analyze their social behavior.

Specifically, the study focuses on six colonies of ants to investigate whether

their behavior is community-oriented or individual-oriented. The research

employs various nodes properties that define nodes’ importance to quantify

the existence of a social or individual-oriented behavior. The results aim to

provide insights into the social behavior of ants and may have implications

for understanding other complex social systems.

1. Introduction

In nature, a variety of species exhibit a pronounced social behavior, whereby
members of the same species tend to interact in order to increase their chances
of survival. Such behavior is not restricted to mammals alone, but also found
in insect colonies, schools of fish, and, to a lesser extent, reptiles. Certain
species of lizards have been observed to display social behavior and organize
themselves into complex social structures [6].

In species with smaller members, individual survival rates tend to be lower,
leading to the formation of complex communities characterized by homogen-
ity and defined roles. Ant colonies are a prime example of such communities,
often comprising millions of members [17, 2]. These colonies exhibit remark-
able synchronization in tasks such as food gathering, cleaning, and protection.
Ant behavior has been widely studied in numerous experiments [10, 25, 19],
although logistical challenges often pose a significant obstacle to researchers.

As the complexity of interactions between members within a system is dif-
ficult for human observation and measurement in real-time, researchers have

Received by the editors: 17 March 2023.

2010 Mathematics Subject Classification. 05Cxx, 93Bxx, 92-xx.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures – Graphs and net-

works; G.2.2 [Discrete mathematics]: Graph Theory – Network problems (G.2.2).

Key words and phrases. complex networks, centrality measurements, social behaviours.

49

50 BOGDAN MURSA

sought frameworks to model the underlying dynamic system. Complex Net-
work Theory (CNT) has emerged as an increasingly popular framework in
recent years [7], as it enables the modeling of complex systems as topological
spaces, specifically as graphs, where the members are represented as nodes
and their interactions as edges.

By studying a modeled network, it is possible to gain insight into the be-
havior of the network’s members using a range of properties. Some properties
provide information at the level of individual nodes, such as node degree, as-
sortativity degree, and centrality measurements [22, 4, 21]. Other properties
are oriented towards characterizing the network as a whole, such as clustering
coefficient [16], communities [9, 8], and network motifs [1, 13, 14].

Various studies have demonstrated the advantages of utilizing CNT to
model ant colonies as intricate networks, enabling researchers to investigate
ant social behavior and dynamic processes such as food collection and commu-
nication. However, most of these studies have focused on the colony as a whole
rather than individual ants. Given the existence of well-defined structure and
organization in ant colonies, the lack of research on individual behavior is no-
table. Therefore, the paper aims to explore whether individual ants prioritize
their well being instead of their defined role in the organization or strive to
exhibit purely altruistic behavior by acting for the benefit of the community
without expecting anything in return.

A set of research inquiries will be developed to steer an experimental anal-
ysis of six ant colonies monitored for a duration of 41 days [18]. The objective
is to employ properties at the node and network levels derived from CNT to
measure and confirm the central query: do ants act altruistically or selfishly?
The objective is to distinguish between selfish and altruistic behavior in ants
by employing centrality measurements, which are commonly used to evaluate
the significance of a node in complex networks. There will be utilized network
properties that optimize the exchange of information within the colony, such
as maintaining a low average shortest path, to identify altruistic behavior. Ul-
timately, a qualitative analysis will be conducted to compare the two methods
of quantifying altruistic and selfish behavior.

The following sections aim to provide an overview and clarification on the
challenges that arise when studying small-sized creatures, as well as how CNT
can help overcome these challenges based on the existing state-of-the-art. Ad-
ditionally, there will be detailed each of the metrics employed in the experi-
ment, explaining their relevance and how they will be applied. There will be
introduced the dataset and the research questions that will guide the experi-
ment, with the results being validated against the network properties obtained.

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES 51

Finally, the paper will conclude with a discussion that will confirm or reject
the initial assumptions regarding the research questions posed.

1.1. Problem definition. From a logistical standpoint, studying ant colonies
is challenging due to the small size of the ants, making them difficult to observe
by the naked eye. Additionally, the high number of members that share a
similar appearance can complicate the study of their behavior, as they move
quickly and often exhibit chaotic movement patterns. Manually observing the
behavior of ants in such a scenario would be time-consuming and exhaustive,
requiring video recording and subsequent frame-by-frame tracking by one or
more researchers [20, 26].

Following the logistical difficulties of studying ant colonies, there is a sec-
ondary issue that arises during the process of analyzing the interactions be-
tween ants. This issue is caused by the need for a framework to facilitate
the entire process, starting from defining interactions and culminating with
the impact a group of interactions has on the dynamic of the colony. One
solution to this issue is to model ant colonies as systems that can be studied
using mathematical and statistical approaches. This allows for the numerical
quantification of ant behavior, leading to a feasible and valid way of answer-
ing research questions. However, even with a colony modeled as a system,
it can be difficult to understand the apparent chaotic behavior between ant
interactions. To address this challenge, a set of tools is required to extract
properties from the system that may lead to paths not initially intended by
the researchers. Complex Network Theory is one such framework that pro-
vides a wide range of tools to extract properties about the system modeled
as a complex network. By modeling the colony’s system as a network, where
ants are nodes and their interactions are edges, it can be explicitly analyzed
the interactions a given ant or group of ants have, defining statements about
their social or individual behavior [24].

Complex Network Theory has emerged as a valuable analytical tool for
studying the organizational dynamics of ant colonies. Its applications in this
field are numerous, including investigations into the community structures of
colonies [12] and the role of information flow in collective decision-making
[5]. By modeling the networks underlying ant colonies, researchers aim to
gain insights into the structural organization of the colonies, the development
of modular structures, and the resilience and optimality of information flows
among colony members. These studies also provide insights into the potential
impact of member loss in the event of a disaster [3, 11].

52 BOGDAN MURSA

In the subsequent section, there will be provided an overview of the fun-
damental properties existing in complex networks that are pertinent to the
examination of social interactions among ants belonging to the same colony,
accentuating the practical implementation of the theoretical aspects in the
context of a real-world ant colony.

2. Theoretical insights

Any complex network is characterized by a collection of nodes and a set
of edges that connect them. Although these two fundamental components
are simple, they give rise to multidimensional complex topologies with unique
properties that can be explored, underscoring the advantages of representing
real-world systems as complex networks. One of the most widely researched
concepts, particularly in social networks, is the definition of critical, important,
or popular nodes. However, this is more of a philosophical question that has
been debated extensively in the literature [15]. Nevertheless, the literature
proposes a group of metrics known as centrality measures that aim to offer
various ways of characterizing important nodes.

In this section, there will be provided detailed descriptions of the graphs
and their respective nodes’ centrality measures, as shown in Figure 1. The
figures illustrate that different nodes are identified as ”important” by each
centrality measure, highlighting that each metric has a distinct approach to
determining a node’s significance.

Degree centrality (Dc) is one of the fundamental measures of centrality in
complex networks. It quantifies the importance of a node based on the number
of edges it has with other nodes in the network. Nodes with a high number of
edges have higher degree centrality and are considered more important. The
mathematical formula for degree centrality is as follows:

Dc(x) =
dx

n− 1
where Dc(x) is the degree centrality of node x, dx is the degree of node x,

and n is the total number of nodes in the network [22].
In addition to degree centrality, another centrality measure that takes into

account the number of links and goes further in assessing a node’s importance
is eigenvector centrality (Ec) [22]. This property evaluates a node’s influence
in the network based on the degree centrality of its neighboring nodes. From a
real-world perspective, a node with a high eigenvector centrality is connected
to other nodes that are also important, meaning that being connected to pop-
ular nodes increases one’s own popularity. The eigenvector centrality formula

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES 53

(a) Betweenness centrality (b) Closeness centrality

(c) Degree centrality (d) Eigenvector centrality

Figure 1. Centrality measures in a Newman Watss Strogatz
graph with 100 nodes. Light blue - low value, Dark blue - high
value.

follows a recursive approach that calculates a value for a node by using the
values computed for its neighboring nodes, as follows:

Ec(x) =
1

λ

∑
u∈N(v)

Ec(u)

where Ec(x) is the eigenvector centrality of node x, N(x) is the set of nodes
that are connected to node x, and λ is a constant called the leading eigenvalue
of the adjacency matrix of the network [15].

A distinct perspective on defining node importance or popularity is based
on the flow of information in the network, whereby nodes that enable the flow

54 BOGDAN MURSA

of information in the network tend to be more important or popular to other
nodes. In this regard, the next group of centrality measures uses the path
between the nodes and their lengths to evaluate the significance of the nodes.
Betweenness centrality (Bc) assesses the importance of a node by its ability to
control the flow of information through the number of shortest paths between
any two nodes that pass through it. Having more shortest paths passing
through it means that the node is a hub facilitating the information flow in
the most rapid manner through the shortest paths it is part of. The formula
below depicts the quantification of this centrality measure:

Bc(x) =
∑

s ̸=x ̸=t ̸=x

σst(x)

σst

where x is the node for which there was computed the metric, σst is the
total number of shortest paths from any node s to any node t and σst(x) is
the number of those paths that pass through x (not where x is an end point)
[22].

Closeness centrality (Cc) is another measure that quantifies the importance
of a node in a network. Unlike betweenness centrality, Cc considers how quickly
a node can be reached by all other nodes in the network. A node with a high
Cc is considered to be ”close” to all other nodes in terms of its shortest paths,
making it an important hub that facilitates the flow of information in the
network:

Cc(x) =
1∑

u ̸=x

d(u, x)

where Cc(x) is the closeness centrality of node x, d(u, v) is the shortest path
distance between nodes u and v, and the summation is taken over all nodes
u ̸= v in the network [22].

In recent studies, a new approach to defining the significance of nodes has
emerged, focusing on their role in maintaining network integrity. Articula-
tion points (AP) are nodes that, when removed, divide the network into two
or more connected components, acting as bridges between isolated groups of
nodes (Figure 2). In social networks, an AP could be a social media influencer
or politician, while in an ant colony, the queen can be an AP . This concept
is gaining popularity as it provides insights into the structure of networks and
can inform strategies for improving network efficiency and stability [23].

The centrality measures detailed earlier are indicative of macro-level charac-
teristics of a node, which describes its role in influencing the overall dynamics

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES 55

Figure 2. Example of Articulation Points (in red)

of the network. Conversely, there are other properties that are more relevant
to micro-level behavior, which tend to be oriented towards the individual node
itself. For instance, the local clustering coefficient (CCl) is used to quantify
the tendency of nodes to form communities with other nodes that share similar
characteristics or interests (e.g., ants performing similar tasks). The following
formula expresses CCl as the ratio of the actual number of links (Ei) con-
necting the vertices within a node (i) neighbors to the maximum number of
possible links that could exist among them (ki(ki − 1))).

CCli =
2Ei

ki(ki − 1)

Assortativity degree (ρ) measures the tendency of nodes to connect with
other nodes that share similar degrees (e.g., popular individuals preferring to
associate with others who share a similar level of popularity). In this sense it
can defined ρ as the correlation between the degrees of connected nodes in a
network, with values in interval -1 to 1 computed with the following formula:

ρ =

∑
jk jk(ejk − qjqk)

σ2
q

where ejk is the join probability between excess degree of j and k (excess
degree, also known as remaining degree, is computed by subtracting one from

the degree of a given node), qk =
(k+1)pk+1∑

j≥1 jpj
is the normalized distribution of the

excess degree of a randomly chosen node, respectively σq is standard deviation
of qk, used to normalize ρ in interval [-1, 1].

56 BOGDAN MURSA

Positive values indicate nodes tend to connect with others with similar de-
grees, while negative values indicate nodes tend to connect with nodes with dif-
ferent degrees. An r value of 1 indicates perfect assortative mixing, 0 indicates
non-assortative mixing, and -1 indicates completely disassortative mixing.

In the experiment described in the following section, the aim is to investi-
gate the social behavior of ants in their colonies by analyzing their network
properties. Specifically, it will be explored whether nodes with high values for
centrality measures, such as degree centrality, eigenvector centrality, between-
ness centrality, and closeness centrality, respectively local clustering coeffient
and assortativity degree, but also existence of articulation points, are associ-
ated with the emergence of individual behavior among ants that is not aligned
with the organization of the colony as a whole.

3. Experiment

The following section will overview the experiment proposed to analyze the
social behaviour of ants, making use of a comprehesive dataset for which there
were validated a series of research questions that will be evaluated using a de-
fined methodology. The results of the extracted properties (detailed in Section
2) obtained in the experiment will be analyzed and a series of conclusions will
be drawn to conclude the formulated research questions.

3.1. Dataset. To conduct a robust and meaningful experiment, it was deemed
necessary to utilize a diverse dataset that is both horizontally and vertically
scaled. To this end, there will be employed a complex dataset of complex
networks that consist of six ant colonies that were completely isolated, as pro-
posed by Mersch D. et al. in their research paper [18]. The complex networks
were modeled by observing each ant colony over a timespan of 41 days, uti-
lizing a video tracking system that was based on fiducial identification labels.
Each ant’s position was tracked twice per video frame, resulting in a vast
amount of data - 2,433,250,580 ant positions and 9,363,100 social interactions.
Social interactions were defined as instances where one ant’s front end was
within the trapezoidal shape representing another ant. From this data, a total
of 246 networks were modeled, utilizing both the ant positions and the tracked
interactions.

Table 1 provides a comprehensive summary of the modeled networks based
on their nodes and edges - ants are represented as nodes, and the interactions
between them are represented as undirected edges. The weight of each edge
is determined by the number of interactions between the same ants. Since
the ant colonies were observed for a period of 41 days, changes in the number

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES 57

Table 1. General properties of the studied networks [18]

colony id metric mean 95% percentile Stdev

1 nodes 89.21 [82.35, 96.06] ± 21.15
edges 2803.97 [2429.41, 3178.54] ± 1155.48

2 nodes 100.13 [91.47, 108.79] ± 26.71
edges 3541.03 [2909.48, 4172.57] ± 1948.25

3 nodes 130.05 [122.01, 138.09] ± 24.80
edges 6036.79 [5274.19, 6799.40] ± 2352.55

4 nodes 68.77 [60.73, 76.80] ± 24.79
edges 2067.03 [1640.79, 2493.26] ± 1314.88

5 nodes 113.31 [102.26, 124.35] ± 34.07
edges 4905.05 [4034.66, 5775.44] ± 2685.03

6 nodes 131.85 [123.07, 140.63] ± 27.09
edges 6338.82 [5451.44, 7226.20] ± 2737.44

of individuals within each colony could occur, resulting in variations in the
network’s characteristics. These changes were captured by the mean, standard
deviation, and 95% percentile values, enabling the dynamics of the colonies to
be analyzed.

The metrics obtained from the modeled networks exhibit a significant degree
of diversity with regards to the number of members in each colony, which is
reflected in the number of edges present in each network. This phenomenon
can be attributed to the fact that larger colonies tend to have more interactions
among members, resulting in a higher number of edges.

3.2. Research questions. The experiment is designed to address two re-
search questions, a primary one (RQ1) and a secondary one (RQ2):

RQ1 - What is the extent of variation in individual behavior within ant
colonies, and does this variation lead to the presence of outliers ex-
hibiting selfish behavior or does the colony exhibit a predominantly
homogeneous altruistic behavior?

RQ2 - Does the dynamics of ant colonies optimize the flow of information
through interactions among the ants?

3.3. Methodology. In accordance with the formulated research question, the
methodology of the experiment will involve the extraction of centrality mea-
sures and articulation points from each network to investigate the occurrence

58 BOGDAN MURSA

of nodes with abnormally high values for these metrics, indicating their incli-
nation to strategically position themselves to maximize their valuable connec-
tions. In addition to the previously mentioned topological indicators, there
will be also extracted two additional measures, namely CCl and ρ, to gain a
deeper understanding of the global social behaviour of ants and to investigate
if any specific behaviour emerges. These measures will aid in addressing the
research questions posed in this experiment.

By quantifying and validating RQ1 through this approach, it can be em-
ployed the concept of popularity, which is defined in various ways as discussed
in Section 2.

To investigate whether the networks and colonies aim to optimize the per-
formance of the information flow among their members, there will be used
two topological indicators: density and average shortest path. Density (d) is
a measure of how close a network is to being fully connected, where all ants
interact with one another. Networks with high density tend to optimize the
information flow by ensuring that all members are easily reachable through
a high density of edges. The average shortest path is a measure of the aver-
age number of steps needed to travel between any two ants in the network.
There will be computed and used these indicators to demonstrate the colonies’
dynamics and to answer the research question. The calculation of the aver-
age shortest path (AV Gsp) can aid in determining if ants strive to optimize
the formation of valuable links within the context of an efficient information
flow. A low average shortest path, which denotes the average number of links
needed to create an optimal path between two members, suggests that ants
can easily reach each other. By analyzing this metric, it can be provided a
formal response to RQ2.

3.4. Results. In accordance with the methodology outlined in the preceding
section, there were derived all the centrality measures outlined in Section 2 as
well as other topological properties, including CCl, d, AV Gsp, and ρ (Table
2). This was done to enable the quantification of the propositions that could
potentially serve as answers to the formulated research questions.

Ants are social animals with highly organized behavior and specialized roles
throughout their lifetime [18]. Their division into groups is strictly task-
oriented, which may result in a large number of interconnections between
ants within the same group. This behavior is well-reflected in the high values
of CCl observed in all the studied colonies.

It is well known that each of the examined ant colonies has a queen, whose
exclusive responsibility is to lay eggs. Given its role as being one that it is

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES 59

unique in the structure of the colony (only one ant, namely the queen, lays
eggs), it is reasonable to classify the queen as an articulation point (AP).
However, the analysis showed that the queen is not often an articulation point
in any of the modeled networks. This indicates that despite the queen’s crit-
ical role, it is part of a well-connected community, and her death would not
necessarily lead to the colony’s disintegration.

At a macro level, the social behavior of ants does not exhibit a particular
tendency to create links with new ants, as indicated by the value of ρ which is
equal to 0. This suggests that the creation of links is not driven by individual
preferences, but rather by the collective behavior of the group as a whole.

This hypothesis is strongly supported by all of the computed centrality mea-
sures, which do not identify any notable group of nodes that exhibit excep-
tional values for their centrality measures. By computing the 95% percentile
interval and mean values, it can be observed the homogeneity of centrality
measure values across all nodes, with insignificant standard deviation. Even
though the standard deviation of the centrality measures’ computed values is
insignificant, the real-world implications of each metric should be taken into
consideration while interpreting their mean values. It is noticeable that Cc has
a substantially high value, reaching the maximum value of 1, which suggests
that the colony’s organization is optimized for efficient information flow, with
every ant only a few connections away from any other ant. A similar obser-
vation can be made for Dc, which approaches a value of 1, indicating that all
ants have nearly equal connectivity with each other. These findings reinforce
the conclusions drawn regarding the ρ property.

The Bc value in the colony’s centrality measures shows a relatively low
value from the range of [0, 1]. Typically, a higher Bc value indicates that
a network node has a greater ability to control information flow. This low
value may, therefore, suggest that the colony is organized dynamically and
oriented toward the collective benefit. Although members with high Bc values
are essential to the network, they are also critical points whose loss could
disrupt the system’s functionality. This robust organization enables the colony
to sustain itself even if some members are lost. Additionally, the centrality
measure Ec shows a low value, suggesting that the ants’ interactions are task-
oriented, with little emphasis on creating new links based on other ants’ links,
resulting in an organization geared towards the benefit of the system as a
whole.

Using these two observations it can be concluded the altruistic behaviour
of the ants (RQ1), meaning their interactions are ones established purely

60 BOGDAN MURSA

on their role in the community they are part of and the only thing that is
important to them is to succesfully complete their task.

Table 2. Network properties extracted for each of the six ant
colonies

ID Metric Mean 95% percent. Stdev ID Mean 95% percent. Stdev

1 AV Gsp 1.31 [1.30, 1.33] 0.05 2 1.36 [1.34, 1.38] 0.07
CCl 0.79 [0.78, 0.80] 0.03 0.77 [0.76, 0.78] 0.03
ρ 0.03 [0.02, 0.04] 0.03 0.09 [0.07, 0.11] 0.06
d 0.69 [0.67, 0.70] 0.05 0.64 [0.62, 0.66] 0.06
AP 0.08 [0.00, 0.16] 0.27 0.03 [0.03, 0.08] 0.16
Cc 0.77 [0.74, 0.80] 0.08 0.75 [0.72, 0.77] 0.08
Bc 0.0035 [0.003, 0.005] 0.0027 0.0041 [0.003, 0.006] 0.0038
Dc 0.69 [0.64, 0.73] 0.15 0.64 [0.59, 0.70] 0.16
Ec 0.11 [0.10, 0.12] 0.02 0.10 [0.09, 0.11] 0.03

3 AV Gsp 1.31 [1.30, 1.32] 0.04 4 1.20 [1.19, 1.21] 0.04
CCl 0.79 [0.78, 0.80] 0.03 0.86 [0.85, 0.87] 0.03
ρ 0.01 [0.00, 0.02] 0.02 0.03 [0.00, 0.05] 0.04
d 0.69 [0.68, 0.71] 0.04 0.80 [0.79, 0.82] 0.04
AP 0.15 [0.04, 0.27] 0.37 0.00 [0.00, 0.00] 0.00
Cc 0.77 [0.75, 0.80] 0.08 0.85 [0.82, 0.88] 0.08
Bc 0.0025 [0.002, 0.003] 0.0015 0.0032 [0.002, 0.004] 0.0020
Dc 0.69 [0.65, 0.73] 0.15 0.80 [0.76, 0.85] 0.14
Ec 0.09 [0.08, 0.09] 0.02 0.13 [0.11, 0.14] 0.02

5 AV Gsp 1.29 [1.28, 1.30] 0.04 6 1.31 [1.29, 1.32] 0.05
CCl 0.80 [0.79, 0.81] 0.03 0.79 [0.78, 0.80] 0.03
ρ 0.01 [0.00, 0.02] 0.05 0.03 [0.02, 0.03] 0.02
d 0.71 [0.70, 0.72] 0.04 0.69 [0.68, 0.71] 0.05
AP 0.00 [0.00, 0.00] 0.00 0.03 [0.00, 0.08] 0.16
Cc 0.78 [0.76, 0.81] 0.08 0.78 [0.75, 0.80] 0.08
Bc 0.0029 [0.002, 0.004] 0.0021 0.0025 [0.002, 0.003] 0.0015
Dc 0.71 [0.67, 0.75] 0.15 0.69 [0.65, 0.74] 0.15
Ec 0.10 [0.09, 0.11] 0.02 0.09 [0.08, 0.09] 0.02

The current findings strongly indicate the well-organized nature of ant
colonies. The AV Gsp metric is another measure demonstrating that colonies
are optimized not only in terms of creating specific groups for efficient task

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES 61

completion, but also for the rapid flow of information among members. Ac-
cording to this metric, it takes approximately 1.30 edges for any ant to reach
another ant using the shortest path in the modeled network. This value is
remarkably low for any network, highlighting the communication efficiency
present in ant colonies and confirming the answer to RQ2.

Another notable finding is that the ant colonies exhibit both a low AV Gsp

and a high CCl, which are characteristic features of small-world networks.
These networks are commonly observed in various real-world systems, such
as transportation networks, and have been the subject of many studies aimed
at understanding their effective information flow and how to replicate it in
other contexts. Given the well-organized structure of ant colonies, it is not
surprising to find that the networks derived from observing them exhibit small-
world characteristics.

4. Conclusions

Ants have been a subject of fascination for the scientific community for
a long time due to their ability to develop highly intricate social structures
organically, which enables them to efficiently accomplish tasks such as forag-
ing, cleaning, and defense. However, research on ants has largely focused on
their collective behavior rather than individual behavior. While it is widely
acknowledged that ants exhibit altruistic behavior at the group level, it re-
mains to be seen whether this behavior is universal across all members of the
colony or if some individuals display a more self-centered approach aimed at
maximizing their own benefit.

Continuing this line of inquiry and utilizing a set of intricate network models
based on observations of six distinct ant colonies over a span of 41 days, our
research aimed to address two fundamental questions. These questions were
formulated to resolve the previous uncertainties:

RQ1 - What is the extent of variation in individual behavior within ant
colonies, and does this variation lead to the presence of outliers ex-
hibiting selfish behavior or does the colony exhibit a predominantly
homogeneous altruistic behavior?

RQ2 - Does the dynamics of ant colonies optimize the flow of information
through interactions among the ants?

During the study experiment, there were obtained various topological prop-
erties and centrality measures of the examined networks. The analysis revealed
that there is a considerable consistency among the centrality values of the in-
dividual nodes, with insignificant standard deviation. Furthermore, based on

62 BOGDAN MURSA

the property ρ, it was observed that the ants do not have any macro-level
inclination towards preferential attachment, but rather establish connections
through their task-based activities. These two observations led us to confirm
the altruistic behavior of ants as an answer to RQ1.

In addition to ants’ ability to naturally and organically evolve complex
groups that optimize task performance, the observations indicate that the
information flow within their networks is highly efficient, confirming RQ2.
The average shortest path between any two ants in the network is close to one
edge, indicating that every ant is almost directly connected to every other ant.
Furthermore, all studied networks show a high CCl and exhibit characteristics
of small-world networks, which optimize information flow performance and
evolve strong and complex structures, as commonly observed in other real-
world systems such as transportation networks.

The experiment corroborates the widely accepted behavior of ants as al-
truistic individuals that prioritize the collective good over individual interests,
while also demonstrating their capacity to naturally develop sophisticated sys-
tems that optimize task performance for the group.

In future studies of this paper, a significant enhancement would entail ex-
ploring other network properties, including communities and network motifs,
to gain a deeper understanding of the organization structure and how ants
interact in small modules. Such an approach would provide further insights
into the optimized interactions that drive task-oriented actions.

References

[1] Angulo, M., Liu, Y.-Y., and Slotine, J.-J. Network motifs emerge from intercon-

nections that favor stability. Nature Physics 11 (11 2014), 848–852.

[2] Aron, S., Beckers, R., Deneubourg, J. L., and Pasteels, J. M. Memory and

chemical communication in the orientation of two mass-recruiting ant species. Insectes

Sociaux 40, 4 (Dec 1993), 369–380.

[3] Backen, S. J., Sendova-Franks, A. B., and Franks, N. R. Testing the limits

of social resilience in ant colonies. Behavioral Ecology and Sociobiology 48, 2 (2000),

125–131.

[4] Bell, D. C., Atkinson, J. S., and Carlson, J. W. Centrality measures for disease

transmission networks. Social Networks 21, 1 (1999), 1–21.

[5] Blonder, B., and Dornhaus, A. Time-ordered networks reveal limitations to infor-

mation flow in ant colonies. PLOS ONE 6, 5 (05 2011), 1–8.

[6] Burghardt, G. M., Greene, H. W., and Rand, A. S. Social behavior in hatchling

green iguanas: Life at a reptile rookery. Science 195, 4279 (1977), 689–691.

[7] Erdös, P., and Rényi, A. On the evolution of graphs. Publication of the Mathematical

Institute of the Hungarian Academy of Sciences 5 (01 1960), 17–61.

EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES 63

[8] Fani, H., Jiang, E., Bagheri, E., Al-Obeidat, F., Du, W., and Kargar, M. User

community detection via embedding of social network structure and temporal content.

Information Processing and Management 57, 2 (2020), 102056.

[9] Girvan, M., and Newman, M. E. J. Community structure in social and biological

networks. Proceedings of the National Academy of Sciences 99, 12 (11 2001), 7821–7826.

[10] Gordon, D. M., Guetz, A., Greene, M. J., and Holmes, S. Colony variation in the

collective regulation of foraging by harvester ants. Behavioral Ecology 22, 2 (02 2011),

429–435.

[11] Hoenle, P. O., Staab, M., Donoso, D. A., Argoti, A., and Blüthgen, N. Stratifi-

cation and recovery time jointly shape ant functional reassembly in a neotropical forest.

Journal of Animal Ecology 32, 4 (2022), e2559.

[12] Ivens, A. B., von Beeren, C., Blüthgen, N., and Kronauer, D. J. Studying the

complex communities of ants and their symbionts using ecological network analysis.

Annual Review of Entomology 61, 1 (2016), 353–371.

[13] Kashani, Z. R. M., Ahrabian, H., Elahi, E., Nowzari, A., Ansari, E. S., Asadi,

S., Mohammadi, S., Schreiber, F., and Masoudi-Nejad, A. Kavosh: A new algo-

rithm for finding network motifs. BMC bioinformatics 10 (10 2009), 318.

[14] Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. Efficient sampling algorithm

for estimating subgraph concentrations and detecting network motifs. Bioinformatics

20, 11 (08 2004), 1746–1758.

[15] Landherr, A., Friedl, B., and Heidemann, J. A critical review of centrality mea-

sures in social networks. Business & Information Systems Engineering 2, 6 (Dec 2010),

371–385.

[16] Lee, D.-S., Chang, C.-S., Ye, W.-G., and Cheng, M.-C. Analysis of clustering

coefficients of online social networks by duplication models. In 2014 IEEE International

Conference on Communications (ICC) (2014), Institute of Electrical and Electronics

Engineers, pp. 4095–4100.

[17] Mersch, D. P. The social mirror for division of labor: what network topology and

dynamics can teach us about organization of work in insect societies. Behavioral Ecology

and Sociobiology 70, 7 (Jul 2016), 1087–1099.

[18] Mersch, D. P., Crespi, A., and Keller, L. Tracking individuals shows spatial

fidelity is a key regulator of ant social organization. Science 340, 6136 (2013), 1090–1093.

[19] Middleton, E. J. T., Reid, C. R., Mann, R. P., and Latty, T. Social and pri-

vate information influence the decision making of australian meat ants (iridomyrmex

purpureus). Insectes Sociaux 65, 4 (Nov 2018), 649–656.

[20] Mondéjar-Guerra, V., Garrido-Jurado, S., Muñoz-Salinas, R., Maŕın-

Jiménez, M. J., and Medina-Carnicer, R. Robust identification of fiducial markers

in challenging conditions. Expert Systems with Applications 93 (2018), 336–345.

[21] Noldus, R., and Van Mieghem, P. Assortativity in complex networks. Journal of

Complex Networks 2015 3, 4 (03 2015), 507–542.

[22] Saxena, A., and Iyengar, S. Centrality measures in complex networks: A survey.

arXiv: Social and Information Networks arXiv/2011.07190 (2020).

[23] Tian, L., Bashan, A., Shi, D.-N., and Liu, Y.-Y. Articulation points in complex

networks. Nature Communications 8, 1 (08 2016), 1–9.

64 BOGDAN MURSA

[24] Toth, J. M., Fewell, J. H., and Waters, J. S. Scaling of ant colony interaction

networks. Frontiers in Ecology and Evolution 10 (2023), 993627.

[25] Vilela, E. F., Jaffé, K., and Howse, P. E. Orientation in leaf-cutting ants (formi-

cidae: Attini). Animal Behaviour 35, 5 (1987), 1443–1453.

[26] Zhang, Z., Hu, Y., Yu, G., and Dai, J. Deeptag: A general framework for fidu-

cial marker design and detection. IEEE Transactions on Pattern Analysis; Machine

Intelligence 45, 03 (2023), 2931–2944.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1

Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address : bogdan.mursa@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 2, 2022
DOI: 10.24193/subbi.2022.2.05

COMPARISON OF DATA MODELS FOR UNSUPERVISED

TWITTER SENTIMENT ANALYSIS

SERGIU LIMBOI

Abstract. Identifying the sentiment of collected tweets has become a
challenging and interesting task. In addition, mining and defining relevant
features that can improve the quality of a classification system is crucial.
The data modeling phase is fundamental for the whole process since it can
reveal hidden information from the textual inputs. Two models are defined
in the presented paper, considering Twitter-specific concepts: a hashtag-
based representation and a text-based one. These models will be compared
and integrated into an unsupervised system that determines groups of
tweets based on sentiment labels (positive and negative). Moreover, word-
embedding techniques (TF-IDF and frequency vectors) are used to convert
the representations into a numeric input needed for the clustering methods.

The experimental results show good values for Silhouette and Davies-
Bouldin measures in the unsupervised environment. A detailed investi-
gation is presented considering several items (dataset, clustering method,
data representation, or word embeddings) for checking the best setup for
increasing the quality of detecting the sentiment from Twitter’s messages.
The analysis and conclusions show that the first results can be considered
for more complex experiments.

1. Introduction

In the last years, social media has gained ground based on the fact that
people can express their feelings, ideas, and attitudes regarding almost ev-
erything. An interesting platform is Twitter, where users can write short
messages (of maximum 280 characters), called tweets, and can follow other
users and observe opinion trends or reviews about politics, social events, pop
stars, etc. According to these new tendencies, the Sentiment Analysis domain
becomes suitable for analyzing and detecting the hidden sentiment from mes-
sages of short lengths. Hence, the main goal of a lot of designed systems was

Received by the editors: 4 April 2023.
2010 Mathematics Subject Classification. 68T30, 68T50.
1998 CR Categories and Descriptors. I.2.7 [Artificial Intelligence]: Natural Lan-

guage Processing – Text analysis.
Key words and phrases. Sentiment Analysis, Twitter, Data Representation, Hashtags,

Clustering.

65

66 SERGIU LIMBOI

to identify if a given piece of information reflects a specific sentiment (e.g.,
positive, negative, neutral). Exploring and handling texts is a difficult task
due to the free style of writing, colloquial language, and the use of abbrevia-
tions. Besides the preprocessing step, an essential phase is represented by the
way researchers model the data based on the collected messages. So, it could
be the case that unrevealed features (attributes that are not part of the actual
text- e.g., metadata, emoticons, etc.) can have a high impact on the sentiment
detection process and can be related to other built attributes. According to
[3], several features are used in literature: lexicon-based (derived from the use
of sentiment lexicons), linguistic attributes (number of nouns, adverbs, adjec-
tives), part of speech tagging or others like number of curse words, greeting
words, or question marks. All these new features can be combined and define
more complex models (e.g. a model has both linguistic features and part of
speech tagging) that are very important for the entire process that handles
textual information.

Our designed system has the goal of determining if different models or data
representations are suitable to identify the sentiment of tweets in the unsu-
pervised context. It is well known that clustering techniques aim to determine
groups of instances (in this case, messages) where objects from the same group
are very similar and different from the objects of the other groups. Therefore,
an analysis of the relevance of the two types of features (hashtag and tweet
text) using unsupervised techniques is proposed. Applying different clustering
algorithms, we want to determine two groups of messages (one positive and
one negative) by using two new models. Bearing in mind that in Twitter’s
world, hashtags represent an important feature since they are indicators of
the message, we define a hashtag representation that will use this concept
determined from the tweet. On the other hand, a text-based representation
is built based on the idea that maybe the text (without hashtags) composes
a relevant input for the sentiment detection problem. Furthermore, in the
numerical experiments, we will determine which model is better for sentiment
classification in the unsupervised context.

Finally, the original contributions of this paper are the following. Two
data representations are defined based on standalone features extracted from
tweets: text-based and hashtag-based. The defined representations are ap-
plied in the unsupervised context for detecting two groups of messages: one
with positive tweets and one with negative messages. The main contribution is
represented by comparing the two representations to determine which fits best
in the unsupervised scenario. According to our previous experiments for the
supervised approach [6], the presented representations are not new but crucial
for the starting point of defining more complex and interesting features based

DATA MODELS FOR UNSUPERVISED TWITTER SENTIMENT ANALYSIS 67

on tweets. Moreover, a detailed analysis is conducted to check if the cluster-
ing technique impacts the process in combination with two word-embedding
methods (TF-IDF and frequency vector).

The remainder of the paper presents the related work in Chapter 2 and
the whole methodology (architecture, steps, data models) in Chapter 3. The
experimental setup is highlighted in Chapter 4, focusing on the analysis of
results. In the end, conclusions and future work are specified in Chapter 5.

2. Related Work

In literature, various approaches define new features or models for detecting
the sentiment of a collection of tweets. For example, one of the novel features
is the one described in [7]. A flexible feature is built considering its proxim-
ity words extracted from a given tweet. An interesting survey is the one of
Zhang [13] that presents different features for detecting mental illnesses from
textual input, especially if people can present depression symptoms. Various
attributes can be handled for this context, from depressive symptoms lexicons,
emotion lexicons, and mood emoticons to emotion variability features. An at-
tractive model is OL-DAWE presented in [10], where a tweet’s sentiment is
reversed if there are many negative words in the message. The system proposed
by Chiong [2] uses three groups of features considering sentiment lexicons and
platform-specific features for depression detection for tweets input. Therefore,
several features are explored: the number of positive, negative, and neutral
words, the number of links, negative terms or retweets, or linguistic attributes
(e.g., the ratio of adverbs and adjectives). The system of [5] uses hashtags to
detect different emotions (e.g., sadness, joy, etc.). A term frequency is com-
puted for each hashtag, and four hashtag-based emotion lexicons are built and
applied for the whole process.

The presented paper explores two basic features from collected texts and
compares them to determine which fits best for the sentiment detection of
tweets. The following section will describe the entire methodology of our
approach.

3. Methodology

3.1. Architecture. The architecture of the entire system is illustrated in
Figure 1. In the initial point, the relevant tweets are collected for the ex-
periments. This step is enhanced with the sentiment label provided by the
Vader lexicon (if the label is not already present in the dataset). Then, the
data is pre-processed and modeled based on two representations: text-based
and hashtag-based. These representations extract the relevant aspects from a
tweet and pass the outcome to a word embedding step where the models are

68 SERGIU LIMBOI

converted into numerical representations. These inputs will be handled by a
clustering algorithm to determine groups of similar data. Next, the clusters
can be evaluated and visualized. In addition, the initial data can be visual-
ized for further comparisons. In the following subsections, every phase will be
explained.

Figure 1. System Overview

3.2. Pre-processing. The data pre-processing phase is very important in the
Sentiment Analysis process because the system handles textual information.
Thus, some cleanup mechanisms are needed to provide the proper input for
the data modeling phase. The following operations are used to pre-process the
collected tweets: lowercasing, removal of punctuation, stop words, and special
characters, and stemming by using the Porter Stemmer 1.

3.3. Data Representation. After the pre-processing of tweets, there is a
need to extract valuable information from the data. So, various features can
be built to handle tweets and to find a proper representation that can be
converted into numerical input for the clustering algorithms.

We define two data representations that will be analyzed during our ex-
periments: text-based and hashtag-based representation. Since a hashtag
is an important indicator for a tweet, highlighting the keywords of the short
message, we consider that we can design a representation that will take into

1http://snowball.tartarus.org/algorithms/porter/stemmer.html

DATA MODELS FOR UNSUPERVISED TWITTER SENTIMENT ANALYSIS 69

account this aspect. On the other hand, we want to observe the impact of
removing these keywords from the tweet and keep only the text for further
stages.

3.3.1. Hashtag Representation. Considering a collection of tweets T = {tweet1,
tweet2,, tweett} where t is the length of the tweet, and tweeti is a message
that contains hashtags and text, the hashtag representation will be defined for
a tweetihash:

(1) tweetihash = {hash1, hash2,, hashh}
where hashi is the i-th hashtag of the tweet from the collection T and h is

the number of extracted hashtags from the tweet tweeti,
For example, if there is the tweet ”Donald Trump will be the next #presi-

dent #Trump for 2016 #victory”, the hashtag-based representation will con-
tain the corresponding list of hashtags: {president, Trump, victory}.

3.3.2. Text-based Representation. The text-based representation will start from
the collection of tweets T where every tweet will contain the textual informa-
tion without the hashtags. So, a tweetitext will be specified in the next way:

(2) tweetitext = {word1, word2,, wordw}
where wordi is the i-thword of the tweet from the collection T (it cannot be a
hashtag) and w is the number of words that compose the tweet.

If we use the same example as in the hashtag-based representation, the
corresponding list of words will be: {Donald, Trump, will, be, the, next,
for, 2016}. Of course, if we apply the pre-processing rules, the list will be
shortened.

3.4. Word embedding Representation. The next step is representing by
the conversion of the previously defined models into a numerical represen-
tation, technique called word embedding. Two methods are used for the
experiments: TF-IDF and Count vectorizer.

TF-IDF (term frequency-inverse document frequency) [1] is defined based
on the next formulas

(3) TF (term) =
m

M
and

(4) IDF (term) = log(
N

n
)

where m is the number of times the term (word/ hashtag, in our case) appears
in the tweet, M is the number of terms in the tweet, N is the number of tweets
and n is the number of tweets where the term appears in the collection T .

70 SERGIU LIMBOI

The Count vectorizer is the Python naming 2 for a frequency vector.
Basically, it determines for every word/ hashtags the number of appearances.
If we have the tweet ”Donald Trump will be the next president. He is the best
president”, the words will have the frequencies: Donald-1, Trump-1, will-1,
be-1, the-2, next-1, president-2, he-1, is-1, best-1.

3.5. Clustering Algorithms and Evaluation Measures. The next stage
will be represented by the clustering algorithm that will use the numerical
input modeled in the previous phase to determine relevant groups of data.
The main idea is that information from the same group is very similar and
different from data from other clusters. For our experiments, the goal is to de-
termine two clusters: one with positive tweets and the other one with negative
messages. As algorithms, three techniques are used: k-means [12], agglom-
erative [12] and spectral clustering [9].

The result of the clustering is evaluated via internal measures like Silhou-
ette and Davies-Bouldin indices [11].

3.6. Vader Lexicon. We label the datasets, in case the sentiment is missing,
to visualize the information and have a better view of tweets, with the corre-
sponding polarity by using the Vader lexicon [4]. Vader (Valence Aware
Dictionary and Sentiment Reasoner) lexicon determines a compound
value for every word. Then, a so-called sentiment score of a message tweet
will be the sum of the sentiment scores of the corresponding terms (word or
hashtag):

(5) score(tweet) =

q∑
i=1

scoreV ader(termi),

where q is the length of tweet tweet and scoreV ader(termi) is the sentiment
score of the ith word.

All in all , the sentiment label of tweet tweet is determined as follows:

(6) sentimentlabel(tweet) =

{
positive, if score(tweet) > 0.05

negative, otherwise

where 0.05 is a threshold computed taking into account different experiments
from the literature. So, the dataset that does not contain the sentiment label
will be enriched with this information via the Vader lexicon.

2https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.CountVectorizer.html

DATA MODELS FOR UNSUPERVISED TWITTER SENTIMENT ANALYSIS 71

3.7. Data Visualization. Data visualization is an important phase during
the experiments. There is a need to visualize data before and after the cluster-
ing process in order to proceed with detailed analysis and comparison between
representations (text and hashtag-based). So, the t-SNE technique is used for
dimension reduction of the dataset [8]. In other words, each collection of tweets
is reduced from the high-dimensional representations to two dimensions and
visualized according to the two sentiments (positive and negative).

4. Experimental setup

The experiments will cover all previously mentioned phases focusing on the
datasets, results, and comparison between different experiments in order to
highlight which model or representation fits properly for tweets.

4.1. Data sets. Three data sets are used for the numerical experiments. The
first one contains tweets related to president Joe Biden 3. This textual input
will be referenced as Joe Biden data set in the experiment’s details. The
data collection consisted of 357 tweets that contain hashtags, divided into 298
positive messages and 59 negatives. As a remark, this is an unlabelled data
set, so the Vader lexicon will be used to determine an initial sentiment for
each message. The second data set is composed of 4.316 tweets with hashtags
(3219 positive and 1097 negative) related to COVID-19, messages collected
from the April-June period of 2020 4. In the experiments, this collection will
be called COVID-19 data set.

The third data set has tweets from the 2016 USA presidential debate of the
Republican Party 5. It consists of 13.871 labeled messages that are positive,
negative, or neutral. Since the focus is also on tweets that have hashtags,
10.323 are kept for the experiments, and only the positive and negative ones
are used (the focus is on a binary sentiment). Hence, 2.180 messages are
positive, and 8142 are negative. This fact leads to the idea that the data set is
quite unbalanced. Therefore, we took 30% as the testing dataset (3097 tweets
where 2180 are labeled as positive and 917 as negative messages). In addition,
this collection will be called Republican Presidential debate data set.

4.2. Experiments for Joe Biden Data Set. Before applying the clustering
techniques to the chosen dataset, a visualization step is used for checking
how data is distributed according to the target classes (positive and negative
tweets). Vader lexicon is used for determining the label since the collection
does not have the sentiment. T-SNE is used for both previously defined data

3https://www.kaggle.com/ibrahimrrz/tweeter-nlp
4https://www.kaggle.com/arunavakrchakraborty/covid19-twitter-dataset
5https://www.kaggle.com/datasets/crowdflower/first-gop-debate-twitter-sentiment

72 SERGIU LIMBOI

representations (hashtag-based and text-based) and word embeddings (TF-
IDF and Count Vectorizer). This is a mandatory phase for proceeding with a
detailed comparison and drawing relevant conclusions.

4.2.1. Experiments using the TF-IDF embedding. Figure 2 presents the dataset
before the clustering process for both models. Then, the three algorithms (k-
means, agglomerative and spectral) are used for determining two groups of
tweets: one with positive messages and one with negative ones.

(a) (b)

Figure 2. Initial Joe Biden dataset (A)Hashtag (B)Text

The results of the grouping are reflected in Table 1, presenting the Silhouette
and Davies-Bouldin values. A value closer to 1 is a better clustering for the
Silhouette measure and a lower value is a good indicator for the Davies-Bouldin
metric.

Table 1. Joe Biden dataset- Clustering results for TF-IDF

Clustering algorithm
Hashtag Text

Silhouette Davies-Bouldin Silhouette Davies-Bouldin
K-Means 0.215 0.761 0.142 0.877

Agglomerative 0.214 0.788 0.138 0.982
Spectral 0.168 0.788 0.138 0.982

The figures 3 , 4 and 5 highlight the t-SNE representation of the clustering
results for the defined models considering the three mentioned techniques.

4.2.2. Experiments using the frequency vector/Count Vectorizer embedding.
The next word embedding used in the experiments is the frequency vector
implemented via the Count Vectorizer library from Python. Figure 6 presents
the initial dataset after the modeling with the hashtag and text representation
and converting the representations into frequency vectors.

DATA MODELS FOR UNSUPERVISED TWITTER SENTIMENT ANALYSIS 73

(a) (b)

Figure 3. K-Means TF-IDF (A)Hashtag (B)Text

(a) (b)

Figure 4. Agglomerative TF-IDF (A)Hashtag (B)Text

(a) (b)

Figure 5. Spectral TF-IDF (A)Hashtag (B)Text

Then, the clustering results for all the techniques are briefly described in
Table 2. It is noteworthy that there is no significant distinction between the
used clustering algorithms.

In the end, the clustered data is illustrated in figures 7, 8, and 9.

4.3. Analysis for Joe Biden dataset experiments. From the t-SNE vi-
sualization of the Joe Biden dataset, we can notice that the collection is quite
unbalanced. There are a lot of positive messages (marked with red color) and

74 SERGIU LIMBOI

(a) (b)

Figure 6. Initial Joe Biden dataset with frequency vector:
A)Hash B) Text

Table 2. Joe Biden dataset- Clustering results for Count vec-
torizer

Clustering algorithm
Hashtag Text

Silhouette Davies-Bouldin Silhouette Davies-Bouldin
K-Means 0.102 0.971 0.095 0.998

Agglomerative 0.101 0.982 0.079 1.123
Spectral 0.101 0.982 0.079 1.123

(a) (b)

Figure 7. K-Means A)Hashtag (B)Text

only a few negative tweets (the blue color indicates the negative sentiment).
In addition, from the initial visualizations, we can notice that for the hashtag-
based model, several sub-groups/ sub-clusters can indicate potential hashtag-
based clusters. In other words, from the big group of positive messages, we
can deduce small groups that have as highlights some relevant hashtags.

4.3.1. Clustering algorithm analysis. From the experiments, we can observe
that the best values for the hashtag-based and text-based experiments, for
both word embeddings, are the ones produced by the K-means algorithms.

DATA MODELS FOR UNSUPERVISED TWITTER SENTIMENT ANALYSIS 75

(a) (b)

Figure 8. Agglomerative clustering A)Hashtag (B)Text

(a) (b)

Figure 9. Spectral clustering A)Hashtag (B)Text

Analyzing the values for the Silhouette and Davies-Bouldin indexes, there is
no significant difference between the used clustering methods (the values are
quite similar with only small variations). Therefore, the added value is not
represented by the technique and the enhancement is reflected by how data is
modeled (the defined representations). Also, regarding the t-SNE visualization
of the clustering results, it can be highlighted the idea that there are a lot of
positive messages and only a spot of negative tweets.

4.3.2. Word embeddings analysis. Comparing the results from TF-IDF and
frequency vector embeddings, the best values, in terms of Silhouette and
Davies-Bouldin, are the ones when the representations are converted into TF-
IDF. This embedding brings relevance to our context since we work with texts
of small lengths. When we convert textual input into frequency vectors we
can face the issue that text is really small after the preprocessing phase. The
evaluation in terms of embedding techniques is supported also by the t-SNE
visualization. For the TF-IDF case, we distributed data in small sub-groups,
but for the count vectorizer situation, after the clustering, there are a lot of
dots (instances) distributed randomly and only two or three subgroups can be
identified (so no semantic relevance can be deduced from the visualizations).

76 SERGIU LIMBOI

4.3.3. Data representation analysis. The best results are achieved by the hashtag-
based representation in the unsupervised context (determining groups of sim-
ilar tweets). This case is reflected also in the visualization part where we can
identify subgroups from the dataset. All these things highlight the idea that
hashtags are relevant concepts for the Twitter world and they can be drivers
for defining the groups.

4.3.4. Summary of the analysis. Table 3 sums up the conclusions of the anal-
ysis for the experiments conducted on the Joe Biden dataset.

Table 3. Joe Biden dataset- Analysis summary

Concept Conclusions

The clustering algorithm
K-Means produces the best values, but there is

no significant difference between the used
clustering algorithms

Word embedding
TF-IDF has better results than frequency

vector

Data representation
For the unsupervised context, the

hashtag-based is more relevant than the
text-based model

Dataset
It is quite unbalanced: 298 positive tweets and

59 negatives.

Data visualization

Better visualization for the hashtag-based
representation since we can identify relevant
subgroups (conceptual/semantical clusters) in

comparison with the text-based model.

4.4. Experiments for COVID-19 Data Set. Considering the previous ex-
periments and the ones conducted on the second dataset (COVID-19), we
will present only the results for one clustering algorithm (K-Means) and the
TF-IDF embedding. The initial visualization of the dataset for both represen-
tations (text-based and hashtag-based) is presented in Figure 10.

The clustering evaluation is given in the Table 4 that illustrates the Sil-
houette and Davie-Bouldin values for the K-Means algorithm for both repre-
sentations. The clustering visualization is presented in Figure 11.

4.4.1. Analysis and conclusions. The COVID-19 dataset is bigger than the
previous one and data is more balanced than the Joe Biden set, but still
quite unbalanced in terms of positive and negative sentiments. The clustering
evaluation reflects the idea that the hashtag representation is better than the

DATA MODELS FOR UNSUPERVISED TWITTER SENTIMENT ANALYSIS 77

(a) (b)

Figure 10. Initial COVID-19 dataset A)Hashtag (B)Text

Table 4. COVID 19 dataset- Evaluation for TF-IDF embed-
ding

Representation Silhouette Davies-Bouldin
Hashtag-based 0.166 1.030
Text-based 0.022 1.044

(a) (b)

Figure 11. K-Means A)Hashtag (B)Text

text-based one. This conclusion is strengthened by the data visualization since
we have grouped data where we can identify more subgroups. The text-based
visualization is a big cluster of positive tweets and a smaller group of negative
instances.

4.5. Experiments for 2016 Republican Presidential Debate Data Set.
The visualization of the initial dataset is presented in Figure 12. The test
data is more balanced (2180 positive and almost 1000 negative) than the oth-
ers, an idea reflected also in the t-SNE visualization. The experiments are con-
ducted using the K-Means algorithm and TF-IDF embedding for text-based
and hashtag-based representations.

78 SERGIU LIMBOI

(a) (b)

Figure 12. Initial Republican Debate dataset A)Hashtag
(B)Text

Table 5 defines the Silhouette and Davies-Bouldin values for the defined
representations, using the K-Means technique. The clustering visualization
is drawn in Figure 13. As evident from the evaluation measures’ values
and t-SNE visualization, the text representation gives pretty poor outcomes.
Almost all instances are labeled as one class, and only a few are marked as
the opposite one.

Table 5. COVID 19 dataset- Evaluation for TF-IDF embed-
ding

Representation Silhouette Davies-Bouldin
Hashtag-based 0.445 0.566
Text-based 0.011 1.099

(a) (b)

Figure 13. K-Means A)Hashtag (B)Text

Based on the analysis, we can conclude that also for bigger datasets the
hashtag-based representation is better than the text one, in the unsupervised

DATA MODELS FOR UNSUPERVISED TWITTER SENTIMENT ANALYSIS 79

context. Moreover, we notice that we do not have the small subgroups pre-
sented in the smaller datasets. Thus, the models tend to evolve into two main
clusters with the defined labels: positive and negative.

4.6. Comparisons and Summary. Table 6 presents the final conclusions
of the conducted experiments on the three datasets: Joe Biden, COVID-19
and 2016 Republican Presidential Debate.

Table 6. Conclusions and summary

Concept Conclusions

Clustering method
No significant difference between

clustering technique

Word embedding
TF-IDF has better results than

frequency vector

Data representation
For the unsupervised context, the
hashtag-based is the relevant mode

Dataset

The Joe Biden dataset has 298
positive tweets and 59 negatives.
The COVID-19 collection has 3219
positive and 1097 negative. The

last one contains 2180 positive and
917 negative

5. Conclusions and Future Work

In the Sentiment Analysis area, there is a need to define new data rep-
resentations and explore the valuable information the collected input offers.
In this paper, we used two data representations for textual information of
short lengths, in this case, tweets, that use the whole text or extract rele-
vant platform-specific features: hashtag-based and text-based representations.
Moreover, several clustering algorithms apply these two in the unsupervised
learning context. The goal is to determine two main groups of tweets according
to two sentiment labels: positive and negative. The experimental results re-
veal only a slight difference between the used clustering techniques. Therefore,
the data representations bring the main enhancement. Regarding evaluation
and data visualization, hashtag representations handle short messages better
than text ones. Even though this is a simple methodology that uses two ex-
isting representations and analyzes which one fits better in the unsupervised
context, our plan involves more interesting and complex work. The plan is to
define topic-driven clusters based on the most popular and relevant hashtags

80 SERGIU LIMBOI

collected from the data, exploring bigger datasets. Also, using the models de-
fined in [6] and combined with more complex ones (e.g., BERT-based models)
will be quite interesting. Overall, the first results are encouraging and design
the steps for more exploratory and extensive experiments.

References

[1] Baeza-Yates, R., Ribeiro-Neto, B., et al. Modern information retrieval, vol. 463.
ACM press New York, 1999.

[2] Chiong, R., Budhi, G. S., and Dhakal, S. Combining sentiment lexicons and
content-based features for depression detection. IEEE Intelligent Systems 36, 6 (2021),
99–105.

[3] Hung, L. P., and Alias, S. Beyond sentiment analysis: A review of recent trends in
text based sentiment analysis and emotion detection. Journal of Advanced Computa-
tional Intelligence and Intelligent Informatics 27, 1 (2023), 84–95.

[4] Hutto, C., and Gilbert, E. Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In Proceedings of the international AAAI conference on
web and social media (2014), vol. 8, pp. 216–225.

[5] Koto, F., and Adriani, M. Hbe: Hashtag-based emotion lexicons for twitter senti-
ment analysis. In Proceedings of the 7th Annual Meeting of the Forum for Information
Retrieval Evaluation (2015), pp. 31–34.

[6] Limboi, S., and Dioşan, L. Hybrid features for twitter sentiment analysis. In Artifi-
cial Intelligence and Soft Computing: 19th International Conference, ICAISC 2020, Za-
kopane, Poland, October 12-14, 2020, Proceedings, Part II 19 (2020), Springer, pp. 210–
219.

[7] Pilar, G.-D., Isabel, S.-B., Diego, P.-M., and Luis, G.-Á. J. A novel flexible
feature extraction algorithm for spanish tweet sentiment analysis based on the context
of words. Expert Systems with Applications 212 (2023), 118817.

[8] Van der Maaten, L., and Hinton, G. Visualizing data using t-sne. Journal of ma-
chine learning research 9, 11 (2008).

[9] Von Luxburg, U. A tutorial on spectral clustering. Statistics and computing 17 (2007),
395–416.

[10] Wang, W., Li, B., Feng, D., Zhang, A., and Wan, S. The ol-dawe model: tweet
polarity sentiment analysis with data augmentation. IEEE Access 8 (2020), 40118–
40128.

[11] Xu, D., and Tian, Y. A comprehensive survey of clustering algorithms. Annals of Data
Science 2 (2015), 165–193.

[12] Xu, R., and Wunsch, D. Survey of clustering algorithms. IEEE Transactions on neural
networks 16, 3 (2005), 645–678.

[13] Zhang, T., Yang, K., Ji, S., and Ananiadou, S. Emotion fusion for mental illness
detection from social media: A survey. Information Fusion 92 (2023), 231–246.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: sergiu.limboi@ubbcluj.ro

	1. Introduction
	2. Related work
	3. Proposed approach
	3.1. The base CAD system
	3.2. Extended method

	4. Experiments and results
	4.1. Datasets
	4.2. Experiment setup
	4.3. Results
	4.4. Discussion

	5. Conclusions and Future Work
	Acknowledgment
	References

