
INFORMATICA
1/2023

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 1/2023
January - June

ISSN (online): 2065-9601; ISSN-L: 2065-9601
©2023 STUDIA UBB INFORMATICA

Published by Babeș-Bolyai University

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR Volume 68 (LXVIII) 2023

MONTH JUNE

ISSUE 1

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

1

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

A. Mester, Malware Analysis and Static Call Graph Generation with Radare2 5

C.-I. Coste, Malicious Web Links Detection - A Comparative Analysis of Machine

Learning Algorithms .. 21

P. Kaszab, M. Cserép, Detecting Programming Flaws in Student Submissions with Static

Source Code Analysis ... 37

T.-A. Toader, DOMAS: Data Oriented Medical Visual Question Answering Using Swin

Transformer ... 55

A. Fekete, Z. Porkoláb, Field Experiment of the Memory Retention of Programmers

Regarding Source Code ... 71

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 1, 2023
DOI: 10.24193/subbi.2023.1.01

MALWARE ANALYSIS AND STATIC CALL GRAPH

GENERATION WITH RADARE2

ATTILA MESTER

Abstract. A powerful feature used in automated malware analysis is the
static call graph of the executable file. Elimination of sandbox environ-
ment, fast scan, function call patterns beyond instruction level information
– all of these motivate the prevalence of the feature. Processing and stor-
ing the static call graph of malicious samples in a scaled manner facilitates
the application of complex network analysis in malware research. IDA Pro
is one of the leading disassembler tools in the industry and can generate
the call graph via GenCallGdl and GenFuncGdl APIs – a tool which was
used in our previous works. In this paper an alternative analysis method is
presented using another disassembler tool, Radare2, an open-source Unix-
based software, which is also frequently used in this domain. Radare2 has
Python support (among other languages), via the r2pipe package, thus en-
abling full scalability on Linux-based servers using containerized solutions.
This paper offers a detailed technical description on how to use Radare2
to generate the static call graph of a PE file and a thorough comparison
with the output of IDA Pro, as well as a public dataset on which the
experiments were carried out.

1. Introduction

Analyzing malware in an automated manner not only eases the workload of
cybersecurity experts, but it is a necessity in this domain, due to the number
of new threats rising globally on a daily basis. A key statistic provided by AV-
TEST1 is the daily emerging several tens of thousands of malicious threats.
In 2022, roughly one hundred million new samples were discovered – that is
≈ 3 new malicious files per second. While these threats come from different
types of attacks and exploits such as phishing campaigns, emails, attachments,

Received by the editors: 1 March 2023.
2010 Mathematics Subject Classification. 68P25, 68P30.
1998 CR Categories and Descriptors. D.4.6 [Security and Protection]: Subtopic –

Invasive software.
Key words and phrases. malware analysis, static call graph, radare2, IDA Pro.
1https://www.av-test.org

5

https://www.av-test.org

6 ATTILA MESTER

executables, android apps, etc., the leading source of malicious attacks comes
from Windows executable files (i.e. PE).

PE files can carry a vast amount of different attack techniques, hence they
can also contribute enormously to the process of gathering threat intelligence
about the origin of the attack. One such exceedingly valuable piece of infor-
mation is called attribution in literature. In its highly comprehensive book
entitled Attribution of Advanced Persistent Threats [27] (APT) published in
2020, Steffens explains why it is so important to attribute an attack, as well
as offers some detection ideas in this regard. There are fundamentally two
options in this domain: static and dynamic analysis. These methods assume
the use of either a sandbox environment – which is often expensive and time-
consuming, or a disassembler tool such as IDA, Radare2, Ghidra, etc.

In this work, we present a malware analysis framework using Radare2 to
extract the static call graph of a PE file and offer a detailed comparison with
an alternative disassembler, IDA Pro 6. Our previous work [17, 18, 19] relies
solely on IDA Pro 6 – this experience led to the need to try out an alternative
disassembler tool which enables containerized, parallel processing of samples.
Other alternatives were taken into consideration as well, but due to its popu-
larity in the literature – as described in Section 2, our tool of choice became
Radare2.

The paper is structured as follows. Section 2 covers the key directions in
the literature of PE analysis based on static call graph features, using IDA
or Radare2 tools. Our proposed framework for the generation of the static
call graph using Radare2 is described in Section 3. We then compare the
results of our analysis with the ones obtained with IDA, in Section 4. Our
conclusions are presented in Section 5, as well as possible future research ideas
using Radare2.

2. Related work

A recent survey paper [28] offers an ample overview on the literature of
automated malware analysis using various machine learning techniques. A
multitude of research papers are presented from the past decade, and it is
clearly shown that one particular feature is by far the most frequently used
in this domain – the static call graph. Our previous work [17] presents a
detailed overview on the literature of PE analysis, based on this survey paper,
visualizing the distribution of research work with histograms of the features
and methods applied. The motivation to use one particularly interesting static
feature, the call graph, is that it includes both topological information of an
executable file regarding function call sequences, and also the x86 assembly in-
struction list of each local subroutine – one presumption of the analysis process

MALWARE ANALYSIS AND STATIC CALL GRAPH GENERATION WITH RADARE2 7

is that each of these local subroutines may be an original code of a malicious
actor or APT group. There is a multitude of potential use cases of this fea-
ture. Using only the topological structure of the call graph, graph matching or
graph edit distance (GED) may be applied [7, 22, 2, 13]. Attaching a feature
vector to graph, based on n-grams, is also common practice [5, 8, 26], as well
as applying graph embedding methods [23, 11]. The abundance of research
work using this feature raises the importance of analyzing malicious code in
a fast and scalable manner, preferably with a free, open-source tool which
enables the automated extraction of the call graph.

In this section, we present some technical disadvantages of the disassembler
tool used in our previous research work, the IDA Pro 6. This is one of the
global leading solutions [20, 31] when it comes to static malware analysis,
however, it has its limitations as well. One key aspect to mention is that IDA
is commercial software, it offers scripted functionality only in its paid version,
IDA Pro. Another major blocking issue using the scripted functionality of this
tool is the series of unexpected runtime errors, which cause unnecessarily slow
analysis – making it impossible for real-time use cases for example, where one
needs to process a daily flux of new malicious samples.

3. Using Radare2 to obtain the static call graph

3.1. IDA Pro alternatives. As a consequence of the drawbacks of the IDA
tool listed in Section 2, a list of potential alternative disassemblers was an-
alyzed. Fortunately, there is a multitude of such tools: Binary Ninja [24],
Hopper [1], Relyze [29], x64dbg2, ODA3, etc. One of the most popular alter-
natives is Ghidra4, available on Windows/Linux, developed by NSA’s Research
Directorate under Apache License (FOSS) is a leading alternative to IDA Pro
[25, 14]. The downside of this tool which made our choice of another alterna-
tive is the difficulty in using its scripted API call/graph generation.

Radare25 is also available on Windows/Linux (FOSS), and offers a light-
weight alternative to Ghidra, while being able to integrate Ghidra decompiler
r2ghidra6. It can be used from command-line interface (CLI) and also GUI,
offered by Cutter7. A major power of this tool is the Python binding r2pipe8,
which offers extensive APIs for static analysis, including call graph inspection.

2https://x64dbg.com/
3https://github.com/syscall7/oda
4https://ghidra-sre.org/
5https://www.radare.org/
6https://github.com/radareorg/r2ghidra
7https://cutter.re/
8https://r2wiki.readthedocs.io/

https://x64dbg.com/
https://github.com/syscall7/oda
https://ghidra-sre.org/
https://www.radare.org/
https://github.com/radareorg/r2ghidra
https://cutter.re/
https://r2wiki.readthedocs.io/

8 ATTILA MESTER

Radare2 (also referred to as r2) has also great popularity in the cyber tech
domain [16, 4, 9, 3, 12].

3.2. Radare2 usage and commands. Radare25 offers a clear description
of its installation on their Github page9 and has plenty of documentation
and community support on their Wiki page10 and their official e-book [21].
After installation, Radare2 can be invoked using the radare2 or r2 commands,
specifying a path to a PE file.

In this CLI, a variety of commands is offered for analyzing sections, imports,
exports, entry point information, blocks, function calls, for seeking certain
parts of the binary, and much more – also, each command has a helper interface
invocable by appending “?” after the respective command. Radare2 works
with the concept of flags, i.e a bookmark at an offset like “fcn.” or “sym.imp”,
meaning that every offset considered as interesting by Radare2 will be assigned
a corresponding flag to it, e.g. strings, functions, imports, and much more.
Analysis of a binary PE file can be started by the command “aaa”, which
analyzes all the flags in the file. Since this work focuses on the analysis of the
static call graph, we will detail commands which are related to the analysis of
the call sequences, function blocks, and entry points.

The majority of these r2 commands have multiple output formats, avail-
able by specifying a formatter at the end of the command – such as the de-
fault ASCII art, or “j” for json, “d” for dot, “b” for “Braile art” i.e. short
overview/bird’s eye plot, or “w” for an interactive plot – highly useful for
debugging purposes, similar to a matplotlib plot.

As mentioned in Section 3.1, Radare2 has also a GUI tool, Cutter, which
offers a definitely positive usage experience due to its intuitive and simple
interface.Even though Cutter makes it easy to analyze samples manually on
a daily basis, for us a huge advantage of Radare2 comes from its CLI, which
is clearly documented and offers fast analysis performance when called from
Python scripts, enabling the continuous analysis of the samples on a real-time
income flux.

3.3. Generating the static call graph. When generating the static call
graph of a PE binary using Radare2, multiple r2 commands are leveraged to
obtain the final graph object. Radare2 offers Python bindings via the r2pipe
package, which simply enables the pipeline of multiple r2 commands without
the need to open and load the file each and every time. Some of the commands
mentioned here are detailed in Section 3.2. We start the analysis by calling
“aaa” command. Then, entry point nodes are collected (i.e. function blocks)

9https://github.com/radareorg/radare2
10https://r2wiki.readthedocs.io/

https://github.com/radareorg/radare2
https://r2wiki.readthedocs.io/

MALWARE ANALYSIS AND STATIC CALL GRAPH GENERATION WITH RADARE2 9

1 import r2pipe

2 import pygraphviz

3 import networkx as nx [...]

4 r2 = r2pipe.open(self.file_path)

5 r2.cmd("aaa")

6 entrypoint_info = r2.cmd("ie").split("\n") [...]

7 agCd = r2.cmd("agCd")

8 agRd = r2.cmd("agRd") [...]

9 nx = nx.drawing.nx_agraph.from_agraph(pygraphviz.AGraph(agCd))

10 [...]

11 for addr , data in nx.nodes.items():

12 block = r2.cmd(f"agfd {addr}") [...]

Listing 1. Creating the call graph in Python using Radare2

by calling “ie”. The r2 commands that are used for call graph analysis are
part of the “ag” command group.

The structure of the call graph is provided by the “agC” command, where
the desired DOT format is specified using the “d” flag. The full reference graph
(e.g. imports) is offered by “agR” command. It is important to mention that
none of these two commands include node-level information regarding to the
instruction list. In order to obtain the assembly code of each subroutine, “agf”
command is called on each node of the call graph. In a similar manner to gen-
erating the call graph using IDA Pro 6, merging the output of “GenCallGdl”
and “GenFuncGdl” [17, 18, 19], the same logic applies in Radare2 as well.
Both the global function graph (“agC”) and global references graph (“agR”)
is needed to be analyzed, furthermore, each function block (“agf”) must be
processed in order to obtain the final, complete call graph.

One key difference between IDA Pro 6 and Radare2 is that in the former,
only 2 APIs have to be called, while in the latter, a multitude of r2 com-
mands are needed – O(n) where n is the number of function blocks. The
unexpected revelation is that despite all these aspects mentioned, Radare2
scans the binaries much faster and in a way more reliable way than IDA –
scan time information is provided in Section 4 (note: this may be due to the
environmental circumstances of the scripted analysis).

4. Comparing Radare2 with IDA Pro

The experiments were run on multiple machines, thus a reliable comparison
of the runtime cannot be provided yet. IDA Pro 6 was run on Windows Server
2012 R2, while Radare2 was run on Ubuntu 22.04. An example output of the
disassembler tools is shown in Figures 1 and 2, where the structure of the call

10 ATTILA MESTER

Figure 1. Call graph obtained with IDA Pro 6 (“GenCallGdl”).

Figure 2. Call graph obtained with Radare2 (“agCd”).

graph of the same executable file is depicted, dumped in DOT file format by
each tool, and converted to SVG image.

MALWARE ANALYSIS AND STATIC CALL GRAPH GENERATION WITH RADARE2 11

The comparison of the call graph of a binary file is carried out on both topo-
logical level (edges, i.e. function/import calls) and node-level (x86 instruction
list of the functions), and follows the following steps. The PE file is scanned
with IDA Pro 6, using the method described in our previous works [17, 18, 19]
– DFS traversal is applied on the control flow graph obtained by GenFuncGdl
and it is then merged with theGenCallGdl API’s output. The file is then
scanned using Radare2, with the method described in Section 3.3. A series of
normalizing steps are taken into consideration, e.g. IDA Pro subroutine labels
follow the structure of “sub 0XXXXXX” (i.e. a capitalized RVA address),
while Radare2 names its function blocks “fcn.0xxxxxx”. Another example
where normalization must be applied is on the instruction level: IDA prefers
to use conditional jump instructions with the notation of jump if zero (e.g.
“jz”, “jnz”, “repz”, etc.), while Radare2 uses the form of jump if equal (“je”,
“jne”, “repe”). These instructions have the same meaning, so they should not
account in the node-level comparison of the call graphs.

4.1. Comparison metrics. The topological similarity of the call graphs is
expressed with the Jaccard similarity of the edge set – an edge being repre-
sented by the name of its endpoints. For example, if the call graph from IDA
has two edges, namely

[sub 40010A → sub 400200, sub 400200 → sub 400300],

and Radare2’s call graph has also two edges, namely

[fcn.40010a → fcn.400200, fcn.400200 → sym.imp.kernel32.dll WriteF ile],

then their topological similarity will be 0.33. Similarly, another topological
similarity is calculated, referring to the node labels – the Jaccard score between
the function label sets obtained from IDA and Radare2.

The node-level similarity is expressed using the similarity between the in-
struction lists (precisely, the mnemonic list) of each matching subroutine of
the call graphs (in the sense of their label matching). For this purpose, several
metrics are calculated, i.e. Levenshtein distance, relative Levenshtein simi-
larity, Jaro distance, and Jaro-Winkler distance on each matching function
block, and statistics are gathered regarding the minimum, maximum, average,
median and 75% percentile of the values.

4.1.1. Levenshtein distance. The Levenshtein distance [15] is a commonly used
distance metric in information theory, and it measures the number of edits
needed to obtain one string from the other one. The edits permitted are in-
sertion, deletion, and substitution. This is a naturally good distance metric in
our application because we want to know how many instructions differ between

12 ATTILA MESTER

two function blocks, taking into consideration their place as well. Naturally,
if this metric is 0, it means that the instruction lists match completely.

Since the function blocks may have varying lengths of instruction lists, a
relative similarity should be expressed as well – two instruction lists having 100
assembly mnemonics that differ in only one instruction should have a higher
similarity score than two functions having 2 mnemonics, differing in only one
instruction. The relative distance, i.e. similarity is expressed in Equation 1,
and its values are bound to the interval [0, 1].

(1) Lr(a, b) = 1− L(a, b)/max(len(a), len(b)).

4.1.2. Jaro distance. The Jaro distance metric [10] is specifically designed for
short strings, names, measuring the number of matching characters while tak-
ing into consideration the distance between them as well.

4.1.3. Jaro-Winkler distance. The Jaro-Winkler metric [30] is a variant of the
Jaro distance. In addition to the former one, this metric takes into consider-
ation not only the matching characters but also some scaling factor, i.e. the
length of the common prefix. This way, it will have a higher similarity value
for strings that are similar at the beginning – in contrast to the Jaro metric
which considers the characters’ position equally important. In this paper, all
the results referring to Jaro and Jaro-Winkler distances are expressed as a
similarity score in the [0, 1] interval – 1 marking the perfect match. A detailed
comparison between various distance metrics is described in [6].

4.2. Dataset. The dataset consists of publicly available samples, in order
to increase the transparency of the experiments. The samples are part of a
Kaggle competition11. 435 binary files were analyzed with the comparison
method described in Section 4. The dataset was extracted from the Kaggle
competition11, and can be viewed on our page12.

4.3. Results. To demonstrate the efficiency of the Radare2 scanner, a his-
togram of runtime values is presented in Fig. 3.

In each of the following images, Figs. 4, 5, 6, 7, 8, 9, 10, two sets of
plots are shown, regarding the dimensions of the original IDA call graphs
– plots referring to graphs having nodes in the [0, 100) and [100,) intervals,
respectively. This was necessary in order to offer relevant statistics divided by
the category in which they are measured.

Figures 6, 7, 8, 9, 10 represent histogram plots of the minimum, maximum,
average, median and 75% percentile value of the respective metrics, which are
measured on a set of nodes. The first row represents values measured on a

11https://www.kaggle.com/competitions/malware-detection/data
12https://attilamester.github.io/call-graph/studia2022.html

https://www.kaggle.com/competitions/malware-detection/data
https://attilamester.github.io/call-graph/studia2022.html

MALWARE ANALYSIS AND STATIC CALL GRAPH GENERATION WITH RADARE2 13

0 100 200 300 400
seconds

0

50

100

150

200

250

300

350

400

Histogram of r2 scan time on 435 graphs

Figure 3. Runtime of the Radare2 scanner programme.

set of smaller graphs. Each of these graphs has a set of nodes (i.e. function
blocks) – the metrics are calculated on these sets of nodes. The second row
is calculated using the same logic applied on larger graphs. It should be
noted that these images refer to node-level statistics, and some smaller graphs
having under 10 nodes contain only functions marked as sys.imp (i.e. import
functions) – thus, these graphs are excluded from these plots. That is the
reason why these images contain statistics of only 425 graphs.

Fig. 4 has the purpose of showing the sizes of the call graphs which are ex-
amined in this paper. The upper and lower images show that the sizes range
from almost empty graphs to enormously huge ones, topping at around 15
thousand nodes (i.e. functions) and 70 thousand edges (i.e. function calls).
This fact highlights the need to separate each of the statistics into different
categories. It can be also concluded that the majority of the dataset consists
of call graphs having under one thousand nodes and edges – this is the infor-
mation shown by the lower two rows of plots. Another conclusion could be
that very few graphs have under 10 nodes or edges.

The topological similarities, as described in Section 4.1, are shown in Fig. 5.
When measured on smaller graphs, in the upper row, it can be observed that
the Jaccard is either 1, or a rather small value. Meanwhile, on larger graphs,
this score barely reaches 1, which is natural, it is highly improbable that a
sample whose call graph has hundreds of nodes will have the same scanning
result in IDA and Radare2 as well. On the contrary, what can be confirmed is
that the size of the graphs does not affect negatively this score – as the graphs
grow, the average Jaccard still remains in the [0.4, 0.6] interval. It should

14 ATTILA MESTER

0 20 40 60 80
Node count

0

2

4

6

8

10

12

14

16
r2 nodes

0 50 100 150
Function calls

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 r2 calls

Histogram of r2 nodes and function calls on 63 graphs with nodes between [0, 100)

0 2500 5000 7500 10000 12500 15000
Node count

0

50

100

150

200

250

300
r2 nodes

0 10000200003000040000500006000070000
Function calls

0

50

100

150

200

250

300

350 r2 calls

Histogram of r2 nodes and function calls on 372 graphs with nodes between [100, 100000)

Figure 4. Histogram of call graph sizes using Radare2 (nodes
and calls).

be mentioned here that this does not mean that Radare2 obtains different
nodes than IDA – it can happen that the nodes are assigned other labels, but
their instruction content may still be the same. This is a key aspect, which
highlights the fact that the real similarity between IDA Pro and Radare2 scan
results are higher than the values measured.

Fig. 6 aims to show us the size of the local subroutines in the graphs – i.e. the
length of the assembly instruction list in a subroutine. One can observe that
the average and median values (around 100−200) are not so much affected by
the size of the graphs, but the maximum values are heavily affected (6000 −
20, 000): the larger the graph in node count, the longer its functions may
become. This may be an unwanted effect of metamorphic malware samples,
which fill their sections with garbage code from one generation to another.

MALWARE ANALYSIS AND STATIC CALL GRAPH GENERATION WITH RADARE2 15

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard between r2 and IDA nodes

0

2

4

6

8

10

12

14
Jaccard on r2 nodes

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard between r2 and IDA calls

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Jaccard on r2 calls

Topological similarity on 63 graphs: Histogram of Jaccard on nodes and calls

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard between r2 and IDA nodes

0

10

20

30

40

50
Jaccard on r2 nodes

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard between r2 and IDA calls

0

20

40

60

80

100

120 Jaccard on r2 calls

Topological similarity on 372 graphs: Histogram of Jaccard on nodes and calls

Figure 5. Topological similarity: histogram of Jaccard score
between IDA and Radare2 nodes and calls.

Figures 7, 8, 9, 10 show histograms of the distance and similarity metrics
between the instruction mnemonic lists of the nodes within the call graphs ob-
tained with IDA and Radare2. In Fig. 7 we can see one of the most valuable
conclusions of this paper: while call graphs grow, their nodes’ instruction list
grow, the Levenshtein distances’ average value still remains fixed in the range
of 10− 20. This conclusion is reinforced by Fig. 8, where relative Levenshtein
similarities converge to 1 even in the case of large graphs. This observation
remains valid in the case of the remaining plots, shown in Figures 9 and 10,
depicting the histograms of Jaro and Jaro-Winkler similarity scores, respec-
tively. The fact that the median values, especially the 75% percentile values
are close to 1 means that even though the content of the functions may change
from IDA to Radare2 and vice-versa, this change is insignificant.

16 ATTILA MESTER

0 2 4 6 8 10
r2 instruction count

0

5

10

15

20

25
Min. r2 instruction count values

0 200 400 600 800
r2 instruction count

0

5

10

15

20

25
Max. r2 instruction count values

0 20 40 60 80
r2 instruction count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 Avg. r2 instruction count values

0 10 20 30 40
r2 instruction count

0

5

10

15

20

25
PC50% r2 instruction count values

0 25 50 75 100
r2 instruction count

0

5

10

15

20

25
PC75% r2 instruction count values

r2 node instructions on 53 graphs with nodes between [0, 100)

0 5 10
r2 instruction count

0

50

100

150

200

250

300

350
Min. r2 instruction count values

0 5000 10000 15000 20000
r2 instruction count

0

50

100

150

200

250

300

350 Max. r2 instruction count values

0 50 100 150 200 250
r2 instruction count

0

20

40

60

80

100

120 Avg. r2 instruction count values

0 20 40 60 80
r2 instruction count

0

20

40

60

80

100

PC50% r2 instruction count values

0 50 100 150 200
r2 instruction count

0

20

40

60

80

100

120 PC75% r2 instruction count values

r2 node instructions on 372 graphs with nodes between [100, 100000)

Figure 6. Histogram of Radare2 nodes’ instruction count.

0 1 2 3
Levenshtein Dist.

0

10

20

30

40

50 Min. Levenshtein Dist. values

0 100 200
Levenshtein Dist.

0

5

10

15

20

Max. Levenshtein Dist. values

0 10 20 30 40
Levenshtein Dist.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 Avg. Levenshtein Dist. values

0 10 20 30 40
Levenshtein Dist.

0

10

20

30

40
PC50% Levenshtein Dist. values

0 20 40 60
Levenshtein Dist.

0

5

10

15

20

25

30 PC75% Levenshtein Dist. values

Node-level similarity on 53 graphs with nodes between [0, 100)

0.4 0.2 0.0 0.2 0.4
Levenshtein Dist.

0

50

100

150

200

250

300

350
Min. Levenshtein Dist. values

0 5000 10000 15000 20000 25000
Levenshtein Dist.

0

50

100

150

200

250

300

350 Max. Levenshtein Dist. values

0 200 400
Levenshtein Dist.

0

50

100

150

200

250

300

350 Avg. Levenshtein Dist. values

0 10 20 30 40 50
Levenshtein Dist.

0

50

100

150

200

250

300
PC50% Levenshtein Dist. values

0 50 100 150
Levenshtein Dist.

0

50

100

150

200

250

300 PC75% Levenshtein Dist. values

Node-level similarity on 372 graphs with nodes between [100, 100000)

Figure 7. Histogram of Levenshtein distances between
Radare2 and IDA nodes.

5. Conclusions and future work

This paper presents a novel comparison between IDA Pro 6 and Radare2
disassembler tools, by analyzing a dataset of malicious files using both of
these, and comparing their output. The subject of the analysis is the static

MALWARE ANALYSIS AND STATIC CALL GRAPH GENERATION WITH RADARE2 17

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

5

10

15

20

25

30Min. Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

10

20

30

40

50Max. Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0Avg. Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

5

10

15

20

25

30

35

40PC50% Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

10

20

30

40

PC75% Relative Levenshtein Sim. values

Node-level similarity on 53 graphs with nodes between [0, 100)

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

50

100

150

200

250
Min. Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

50

100

150

200

250

300

350
Max. Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

20

40

60

80

100

120

140

160Avg. Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

50

100

150

200

250

300
PC50% Relative Levenshtein Sim. values

0.00 0.25 0.50 0.75 1.00
Relative Levenshtein Sim.

0

50

100

150

200

250

300

350PC75% Relative Levenshtein Sim. values

Node-level similarity on 372 graphs with nodes between [100, 100000)

Figure 8. Histogram of relative Levenshtein similarities be-
tween Radare2 and IDA nodes.

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

5

10

15

20

25
Min. Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

10

20

30

40

50 Max. Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

5

10

15

20

25 Avg. Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

10

20

30

40
PC50% Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

10

20

30

40

50
PC75% Jaro Dist. values

Node-level similarity on 53 graphs with nodes between [0, 100)

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

50

100

150

200

250
Min. Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

50

100

150

200

250

300

350
Max. Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

50

100

150

200

250

300 Avg. Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

50

100

150

200

250

300

350 PC50% Jaro Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro Dist.

0

50

100

150

200

250

300

350 PC75% Jaro Dist. values

Node-level similarity on 372 graphs with nodes between [100, 100000)

Figure 9. Histogram of Jaro distances between Radare2 and
IDA nodes.

call graph, which is generated by using the tools’ scripted APIs and processing
the output to create the final, global call graph. In the experiments, a public
dataset is used in order to offer full transparency of the results. The call
graphs are compared from various perspectives, both topological aspects i.e.

18 ATTILA MESTER

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

5

10

15

20

25
Min. Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

10

20

30

40

50
Max. Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

5

10

15

20

25
Avg. Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

10

20

30

40

PC50% Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

10

20

30

40

50
PC75% Jaro-W Dist. values

Node-level similarity on 53 graphs with nodes between [0, 100)

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

50

100

150

200

250
Min. Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

50

100

150

200

250

300

350
Max. Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

50

100

150

200

250

300 Avg. Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

50

100

150

200

250

300

350 PC50% Jaro-W Dist. values

0.00 0.25 0.50 0.75 1.00
Jaro-W Dist.

0

50

100

150

200

250

300

350
PC75% Jaro-W Dist. values

Node-level similarity on 372 graphs with nodes between [100, 100000)

Figure 10. Histogram of Jaro-Winkler distances between
Radare2 and IDA nodes.

the function calls, and also node-level criteria i.e. the instruction list of each
subroutine. Our results claim that there is no significant change in the output
of IDA and Radare2 disassemblers, however, the latter offers a faster, more
stable way of scripted analysis which is suitable for a production environment
where performance is a key aspect.

Future ideas include and are not limited to the use of Radare2 in order
to analyze the call graphs of a larger dataset, with the aim of attribution
classification, clustering, or other threat intelligence retrieval.

Acknowledgements

This project was supported by Bitdefender, offering the infrastructure for
malware analysis –special thanks to my colleagues, Ovidiu Ardelean and Adrian
Nandrean, for helping in the dataset collection process.

I want to thank my scientific tutor, dr. Zalán Bodó, for all his assistance
during our work.

MALWARE ANALYSIS AND STATIC CALL GRAPH GENERATION WITH RADARE2 19

References

[1] Andriesse, D., Chen, X., Van Der Veen, V., Slowinska, A., and Bos, H. An
in-depth analysis of disassembly on full-scale x86/x64 binaries. In USENIX Security
Symposium (2016), pp. 583–600.

[2] Bai, J., Shi, Q., and Mu, S. A malware and variant detection method using function
call graph isomorphism. Security and Communication Networks 2019 (2019), 1–12.

[3] Cohen, I. Deobfuscating apt32 flow graphs with cutter and radare2. Tech. rep., 2019.
[4] Cunningham, E., Boydell, O., Doherty, C., Roques, B., and Le, Q. Using text

classification methods to detect malware. In AICS (2019).
[5] Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D. Large-scale malware classification

using random projections and neural networks. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (2013), IEEE, pp. 3422–3426.

[6] del Pilar Angeles, M., and Gamez, A. E. Comparison of methods hamming dis-
tance, jaro, and monge–elkan. DBKDA 2015 (2015), 73.

[7] Elhadi, A. A. E., Maarof, M. A., and Barry, B. I. Improving the detection of
malware behaviour using simplified data dependent api call graph. International Journal
of Security and Its Applications 7, 5 (2013), 29–42.

[8] Faruki, P., Laxmi, V., Gaur, M. S., and Vinod, P. Mining control flow graph
as api call-grams to detect portable executable malware. In Proceedings of the Fifth
International Conference on Security of Information and Networks (2012), pp. 130–
137.

[9] Gibert, D., Mateu, C., and Planes, J. The rise of machine learning for detection
and classification of malware: Research developments, trends and challenges. Journal
of Network and Computer Applications 153 (2020), 102526.

[10] Jaro, M. A. Advances in record-linkage methodology as applied to matching the 1985
census of tampa, florida. Journal of the American Statistical Association 84, 406 (1989),
414–420.

[11] Jiang, H., Turki, T., and Wang, J. T. Dlgraph: Malware detection using deep
learning and graph embedding. In 2018 17th IEEE international conference on machine
learning and applications (ICMLA) (2018), IEEE, pp. 1029–1033.

[12] Kilgallon, S., De La Rosa, L., and Cavazos, J. Improving the effectiveness and
efficiency of dynamic malware analysis with machine learning. In 2017 Resilience Week
(RWS) (2017), pp. 30–36.

[13] Kinable, J., and Kostakis, O. Malware classification based on call graph clustering.
Journal in computer virology 7, 4 (2011), 233–245.

[14] Koo, H., Park, S., and Kim, T. A look back on a function identification problem. In
Annual Computer Security Applications Conference (2021), pp. 158–168.

[15] Levenshtein, V. I., et al. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady (1966), vol. 10, Soviet Union, pp. 707–710.

[16] Massarelli, L., Di Luna, G. A., Petroni, F., Baldoni, R., and Querzoni, L.
Safe: Self-attentive function embeddings for binary similarity. In Detection of Intru-
sions and Malware, and Vulnerability Assessment (Cham, 2019), Springer International
Publishing, pp. 309–329.

[17] Mester, A. Scalable, real-time malware clustering based on signatures of static call
graph features. Master’s thesis, Babeş–Bolyai University, Faculty of Mathematics and
Computer Science, Cluj-Napoca, Romania, 2020.

20 ATTILA MESTER

[18] Mester, A., and Bodó, Z. Validating static call graph-based malware signatures using
community detection methods. In Proceedings of ESANN (2021).

[19] Mester, A., and Bodó, Z. Malware classification based on graph convolutional neural
networks and static call graph features. In Advances and Trends in Artificial Intelli-
gence. Theory and Practices in Artificial Intelligence: 35th International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2022, Kitakyushu, Japan, July 19–22, 2022, Proceedings (2022), Springer, pp. 528–539.

[20] Nar, M., Kakisim, A. G., Yavuz, M. N., and Soğukpinar, İ. Analysis and com-
parison of disassemblers for opcode based malware analysis. In 2019 4th International
Conference on Computer Science and Engineering (UBMK) (2019), IEEE, pp. 17–22.

[21] Org., R. The official radare2 book. https://book.rada.re/.
[22] Park, Y., Reeves, D., Mulukutla, V., and Sundaravel, B. Fast malware classi-

fication by automated behavioral graph matching. In Proceedings of the Sixth Annual
Workshop on Cyber Security and Information Intelligence Research (2010), pp. 1–4.

[23] Pektaş, A., and Acarman, T. Deep learning for effective android malware detection
using api call graph embeddings. Soft Computing 24 (2020), 1027–1043.

[24] Priyanga, S., Suresh, R., Romana, S., and Shankar Sriram, V. The good, the
bad, and the missing: A comprehensive study on the rise of machine learning for binary
code analysis. In Computational Intelligence in Data Mining: Proceedings of ICCIDM
2021. Springer, 2022, pp. 397–406.

[25] Shaila, S., Darki, A., Faloutsos, M., Abu-Ghazaleh, N., and Sridharan,
M. Disco: Combining disassemblers for improved performance. In Proceedings of the
24th International Symposium on Research in Attacks, Intrusions and Defenses (2021),
pp. 148–161.

[26] Singh, A., Arora, R., and Pareek, H. Malware analysis using multiple api sequence
mining control flow graph. arXiv preprint arXiv:1707.02691 (2017).

[27] Steffens, T. Attribution of Advanced Persistent Threats. Springer, 2020.
[28] Ucci, D., Aniello, L., and Baldoni, R. Survey of machine learning techniques for

malware analysis. Computers & Security 81 (2019), 123–147.
[29] Wenzl, M., Merzdovnik, G., Ullrich, J., and Weippl, E. From hack to elabo-

rate technique—a survey on binary rewriting. ACM Computing Surveys (CSUR) 52, 3
(2019), 1–37.

[30] Winkler, W. E. String comparator metrics and enhanced decision rules in the fellegi-
sunter model of record linkage.

[31] Yin, X., Liu, S., Liu, L., and Xiao, D. Function recognition in stripped binary of
embedded devices. IEEE Access 6 (2018), 75682–75694.

Faculty of Mathematics and Computer Science, Babeş–Bolyai University of
Cluj-Napoca

Email address: attila.mester@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 1, 2023
DOI: 10.24193/subbi.2023.1.02

MALICIOUS WEB LINKS DETECTION - A COMPARATIVE

ANALYSIS OF MACHINE LEARNING ALGORITHMS

COSTE CLAUDIA-IOANA

Abstract. One of the most challenging categories of threats circulating
into the online world is social engineering, with malicious web links, fake
news, clickbait, and other tactics. Malware URLs are extremely danger-
ous because they represent the main propagating vector for web malware.
Malicious web links detection is a challenging task because the detection
mechanism should not influence the consumers’ online experience. The
proposed solutions must be sensitive enough, and fast enough to perform
the detection mechanism before the user accesses the link and downloads
its content.

Our paper proposes three goals. The main purpose of this paper is to
refine a methodology for malicious web links detection that may be used
to experiment with machine learning algorithms. Moreover, we propose to
use this methodology for training and comparing several machine learning
algorithms such as Random Forest, Decision Tree, K-Nearest Neighbor.
The results are compared, justified, and placed in the malicious web links
literature. In addition, we propose to identify the most relevant features
and draw some observations about them.

1. Introduction

Starting with the early 2000, most services: media and news, education,
public administration, shopping etc. have moved their content, and customers
online. Now, almost every household with an Internet connection needs to
surf the Internet to satisfy its basic needs. Thus, consumers are more sus-
ceptible to becoming victims of malicious links and web-malware in general.
Malicious web links are used to trick the users into giving away personal infor-
mation. Through malicious links, consumers may be compelled to give access

Received by the editors: 1 March 2023.
2010 Mathematics Subject Classification. 68T99, 68U99.
1998 CR Categories and Descriptors. 68T99 [Artificial Intelligence]: Applica-

tions and Expert Systems – Experiments for Malicious Web Links Detection; 68U99
[Management of Computing and Information Systems]: Security and Protection
– Malicious Web Links.

Key words and phrases. malicious web links detection, web-malware, artificial
intelligence.

21

22 COSTE CLAUDIA-IOANA

to their computer’s resources or to consume low-quality and fake web content,
increasing the incomes of content providers with views, clicks, and page vis-
its. According to Cofense [4], in 2021, 38% of all phishing emails analyzed
contained a malicious link. In addition to that, shortened URLs have become
a real threat, since they are difficult to be identified as malicious [5]. More-
over, as stated by [4], 50% of credential phishing attacks were done using .com
domains and 84% of all phishing sites use SSL and HTTPS protocol [2].

A web link represents a Uniform Resource Locator (URL), an identifier for
a web page resource. A malicious link can be an attack vector for many types
of threats such as: phishing attacks, cross-site request forgery (CSRF), cross-
site scripting (XSS), drive-by-downloads, redirections without user’s consent
to cloned web pages etc. Most attacks target credentials theft, which may
lead to important data breaches, and it may have financial advantages for the
attackers.

Our identified problem in the domain of malicious web links is to detect
malware or benign links. The problem is a binary classification with the URL
as input and the class (malicious or benign) as output. The problem definition
is mathematically defined as: f : URLs −→ Rd, f(url) = (x1, x2, x3, ..., xd),
where d is the number of features and xd, for each d ∈ N is a feature. We ad-
dress the problem of malicious web links detection with three machine learning
(ML) algorithms: K-Nearest Neighbor (KNN), Decision Tree (DT), and Ran-
dom Forest (RF). The experiments made follow the next steps: parameters
calibration and feature importance for DT and RF. We propose a methodology
for refining the parameters values through experiments. Moreover, we would
like to compare our models and analyze how they relate with other solutions
presented in literature, especially with models proposed by Islam et al. [7],
since it is using the same dataset. Another aim for the present paper is to
investigate the feature importance in the case of DT and RF models.

The present article is structured in the following four sections. Malicious
Web Links Detection presents the previous work done in our research niche.
Proposed Methodology contains relevant details about the methodology we fol-
lowed when driving the experiments. Results and Discussions has our metrics,
comparisons and critical analysis on the experiments delivered. Conclusions
and Future Work draws the final conclusions and discusses future directions
of research.

2. Malicious Web Links Detection

Most previous work done in the malicious web links detection field can be
split into two categories: dynamic and static. The dynamic approaches involve
malicious code execution, and the static ones predict maliciousness of a link

MALICIOUS WEB LINKS DETECTION 23

based on features, without code execution. In the execution-based category,
there are included honey pots, sandbox-based systems and ML approaches
that use features related to the code execution. Static detection systems con-
tain blacklists solutions, signature-based ones, approaches based on complex
networks and ML solutions taking into consideration static features.

The features used for link classification can be split into blacklists features,
host-based ones, lexical characteristics, and content-based [14]. Blacklists
features are extracted from public blacklists and lists with trusted domains.
Host-based characteristics are usually extracted through web crawling and are
related to IP address, port, protocol, HTTP/HTTPS headers, WHOIS and
DNS information, geo-location etc. Lexical features involve traditional lexical
properties (e.g., Bag-of-Words, N-grams) [14]. Moreover, lexical features may
also involve the number of different special characters, number of words, URL
length, query parameters number, domain name, etc. Content-based features
are formed by characteristics extracted from the web page content, mostly
code: HyperText Markup Language (HTML), Cascading Style Sheets (CSS),
and JavaScript. In addition, content-based features include visual features,
used for catching consumers’ attention and metadata characteristics used for
search engine optimization.

There are more problem types when discussing malicious web links detec-
tion. Some approaches consider a binary classification (most approaches) and
others a multi-class problem ([8, 16]). There are articles ([10], [11]) testing
the proposed models across multiple datasets to prove their adaptability.

Regarding multi-class solutions, Johnson et al. [8] experiments with RF,
DT, KNN, Support Vector Machine (SVM), Logistic Regression (LR), etc.,
and two deep learning models developed with Fast.ai and TensorFlow-Keras.
Best results for both multi-class and binary-class prediction are obtained by
RF and the two deep models. Finally, RF is seen as the most suitable option
since it does not require many computational resources. Tung et al. [16] is
solving the multi-class problem as well, having four classes: benign, spam,
malware, and phishing. The classification step is done using DT and RF
models. By comparison, the RF algorithm outperforms the DT model with
an accuracy of 97.49% for each class. They concentrate their effort in the
feature selection process, where the solutions prove an improvement when
adding three host-based features.

The classification done by Oshingbesan et al. [11] is binary and it is an ex-
periment across multiple different datasets with multiple artificial intelligence
algorithms (SVM, DT, RF, KNN etc.). According to [11], KNN is the most ro-
bust model that achieved a high performance in a cross-dataset environment.
Similarly, Naveen et al. [10] is implying usage of tree-based models (DT, RF)

24 COSTE CLAUDIA-IOANA

and other algorithms (LR, Linear SVM, KNN etc.) for experiments across
multiple datasets. The model that distinguishes its performance is KNN.

Taking into consideration binary classification with multiple ML models,
Shantanu et al. [15] is using many ML models for experiments: SVM, DT,
RF, KNN, LR, Naive Bayes (NB), and Stochastic Gradient Descent. The best
metrics are obtained by RF. Similarly, Ibrahim et al. [6] analyzes malicious
websites that deliver drive-by downloads attacks, using NB, JRip and J48.
In the same direction of research, Catak et al. [3] develops two models, a RF
with default parameters and a Gradient Boosting classifier. The best accuracy
of 98.6% is obtained by RF, which proves to be faster than its counterpart
algorithm. Implying multiple ML algorithms, Pakhare et al. [12] is using: LR,
SVM with linear, RBF, and sigmoid kernels, KNN, RT and DT. But besides
this, there are proposed ensembles formed out of these algorithms. The best
performance is achieved by the ensemble formed with DT, KNN, and SVM.
Islam et al. [7] is proposing solutions on the dataset found in [17] with the
following ML algorithms: KNN, DT, RF and Multilayer Perceptron. They
achieved 90% F1 score for KNN model, 83% for Neural Net and 99% for DT
and RF model.

3. Methodology

Our research purpose is to propose an experimental methodology for ap-
proaching the malicious web links detection problem. This methodology will
be exemplified with three ML algorithms: KNN, DT and RF. We aim to cal-
ibrate their parameters, accordingly, compare them and analyze the feature
importance obtained. The methodology contains the next steps: dataset se-
lection, pre-processing, counteracting the imbalancement problem, the classifi-
cation step, which includes in total three phases of experiments for parameter
calibration and feature importance. The methodology will be detailed in the
next paragraphs.

The dataset we selected is a free available dataset [17], having 1781 records
(216 malicious, 1565 benign). We propose to first experiment with little data
such that we could easily get an insight on how we should approach this
malicious links classification problem, without involving many computation
resources. Moreover, the dataset has 17 already extracted attributes: lexical
(URL length, number of special characters) and host-based ones (WHOIS &
DNS information, content length, charset, server, number of ports open on
the server, TCP packets count, number of bytes transported over the network,
number of IPs connected to the server etc.).

Next step was preprocessing the data. Firstly, we cleared the records from
missing or not defined values. Categorical features were transformed into

MALICIOUS WEB LINKS DETECTION 25

numbers using supervised ratio algorithm (total number of samples with the
category present in the positive class divided by the total number of records
[7]) and weight of evidence algorithm (equation 1 [7]). The positive class is
annotated with 1, indicating the malicious records, while the negative one is
labeled with 0.

(1)

Xnew = ln

Pi
TP
Ni
TN

;where

Pi − number of records with positive class value for the

categorical attribute value in dataset;

Ni − number of records with negative class value for the

categorical attribute value;

TP − total number of records with positive class value;

TN − total number of records with negative class value.

As the final preprocessing step, data normalization was done using two
implementations: the Min-Max and Standard Scaler from Sklearn library [13].
The Min-Max Scaler normalizes the data on feature range (0,1). The Standard
Scalar is transforming data based on the difference between data and the mean
of data divided by the standard deviation [13]. Even though, Islam et al. [7] is
not mentioning a normalization step, we chose to add it since we consider it to
be important to balance the values in our dataset. For instance, timestamps
for datetime features are represented by a long number, while the URL length
is represented with a number between 16 and 33.

Since the data of the dataset is unbalanced, the problem is approached
by using specific metrics: ROC-AUC score, precision, recall and F1 score.
Moreover, when splitting the data into training and testing sets, it was pa-
rameterized with the stratify argument to keep the initial ratio between the
two classes. In addition to this, the class weight parameter was used for DT
and RF models. This parameter takes into consideration the imbalancement
of the data when executing the algorithm and making a node split.

The algorithms we have chosen for this experimental research were KNN,
DT and RF. We considered these algorithms because they are efficient, and
do not require a lot of configuration and training time. Moreover, these al-
gorithms are often used in other literature articles proposing solutions for
malicious web links detection.

3.1. K-Nearest Neighbor. KNN is a statistical algorithm, used in [7], where
it achieves an F1 score of 90%. Shantanu et al. [15] is using KNN along other
ML algorithms, yet all models are outperformed by RF. Johnson et al. [8] is
experimenting with multiple algorithms, including KNN, which scores 97.47
accuracy for the binary classification. In [11] and [10], KNN proves to be the

26 COSTE CLAUDIA-IOANA

most flexible and adaptive model across multiple datasets. Pakhare et al. [12]
uses KNN in the best performing ensemble model, including SVM and DT.
This ensemble is the one outperforming the others with an accuracy of 94.93%.

3.2. Decision Tree. A DT model is a directed connected acyclic graph with
a root node, child nodes and leaves. In [7], DT achieves a 99% accuracy, being
one of their best models. Also, DT is used in the best ensemble model with
SVM and KNN in [12]. Johnson et al. [8] experiments with DT for binary
classification and achieves an accuracy of 97.63. For Oshingbesan et al. [11]
and Naveen et al. [10], DT performs well for classifying links based on lexical
features but is not the best performing model. Tung et al. [16] achieves a
multi-class accuracy of 96% for the DT model.

3.3. Random Forest. RF is an ensemble learning method characterized by
a voting system and formed with multiple Decision Trees. For Islam et al. [7],
RF is one of the best models deployed, considering their experiments. Adas et
al. [1] employs a Decision Forest reaching 99.8% accuracy. Similarly, as in the
DT case, RF model achieves good accuracy for lexical features according to
Naveen et al. [10]. In [8], RF reaches a performance of 98.68 accuracy for the
binary classification case and outperforms more complex models. RF’s multi-
class accuracy is 96.26, being close to the accuracy of the fast.ai model. In the
experiments done by Pakhare et al. [12], RF has the worst accuracy of 87.34%.
Tung et al. [16] is deploying a RF model, with 97.49% accuracy, surpassing
its comparing algorithm (DT). Catak et al. [3] get its best performance with
a RF (98.6% accuracy).

The implementations of the ML algorithms (KNN, DT, RF) used in our
experiments were from Sklearn Python Library [13], version 1.0.2. For run-
ning the experiments, we used Jupyter notebooks with Google Colab and the
Python version was 3.7.15.

The experiments done followed three stages. The first and second stages of
experiments consisted of calibrating the parameters for all algorithms. The
values used for parameters were chosen based on a preliminary set of exper-
iments (first stage). These experiments were made using as a starting point
the configuration provided by Islam et al. [7], then we varied each parameter
at a time. The resulting configuration was sorted based on an average met-
ric computed as the average mean of all metrics (precision, recall, F1 score
and ROC AUC score * 100). We chose the best 20 configurations and ex-
tracted from them the parameters and values relevant. Next, for the selected
parameters and values we tried all the combinations possible (second stage of
experiments).

MALICIOUS WEB LINKS DETECTION 27

Model by [7] Preliminary stage Second stage
scaler not mentioned Min-Max & Standard Min-Max & Standard
n neighbors 5 (default) {1, 2, ..9} ∪ {10, 20, . . . , 90} {1, 2, .., 10 }
weights uniform (de-

fault)
{uniform, distance} {distance}

algorithm auto (default) {brute, ball tree, kd tree, auto} {ball tree, kd tree, auto}
leaf size 30 {1, 6, . . . 16} ∪ {20, 39} ∪ {40,

50, . . . , 90}
{1,3, .., 13} ∪ {20, 22, .., 34} ∪
{43, 44, 45, 46} ∪ {50, 51, .., 56}
∪ {65, 66, .., 69} ∪ {85, 86, ..,
91}

p 2 {1, 2, . . . , 10} (with metric =
minkowski)

{1, 2, . . . , 10} (with metric =
minkowski)

metric minkowski {euclidean, chebyshev, manhat-
tan, minkowski }

{manhattan, euclidean,
minkowski}

Configurations: 376 Configurations: 68400

Table 1. KNN algorithm with the parameters we calibrated
and their values

Model by [7] Preliminary stage Second stage
scaler not mentioned Min-Max & Standard Min-Max & Standard
criterion gini {gini, entropy} {gini, entropy}
min sam-
ples leaf

32 {1, 2, . . . 99} {1, 2, .., 20} ∪ {30, 31, . . . , 35}

min sam-
ples split

2 (default) {2, 22, 42, . . . , 1762} {2,3, .., 10}

max depth 12 {1, 2, . . . 99} {5, 6, .., 15}
max leaf
nodes

None (default) {2, 4, . . . , 98} {18, 20, 22, 24}

max fea-
tures

None (default) {1, 2, . . . , 19} ∪ {log2, sqrt,
auto}

None (default) ∪ sqrt

min weight
fraction
leaf

0.0 (default) {0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5} 0.0 (default)

min im-
purity
decrease

0.0 (default) {0, 20, 40, . . . , 1780} 0.0 (default)

ccp alpha 0.0 (default) {0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5,
0.6, 0.7, 0.75, 0.8, 0.9, 1}

0.0 (default)

Configurations: 1882 Configurations: 82368

Table 2. DT algorithm with the parameters we calibrated
and their values

In the tables 1, 2 and 3, there are aggregated all parameters for each algo-
rithm and the values chosen for both stages of the experiments. Finally, the
best configuration was chosen out of the top 20 configurations resulting from
the second stage of experiments, which were run multiple times. The scores
for the best configuration are computed as an average of all execution scores.

The last stage of our experiments was about analyzing feature importance
in the case of the DT or RF model. The feature importance was computed on
the best model with Mean Decrease in Impurity (MDI) and Mean Decrease
Accuracy (MDA) formulas, both being integrated in Sklearn library [13]. We
proposed to analyze the feature importance such that we could give relevant

28 COSTE CLAUDIA-IOANA

Model by [7] Preliminary stage Second stage
scaler not mentioned Min-Max & Standard Min-Max & Standard
n estima-
tors

100 {1, 11, . . . , 71} ∪ {80, 85, . . . , 115}
∪ {120, 130, . . . , 240} ∪ {250, 275,
. . . , 475} ∪ {500, 550, . . . , 950}

{50, 51, 90, 100, 110}

criterion gini {gini, entropy} {gini, entropy}
min sam-
ples leaf

32 {1, 6, . . . 96} {1, 3, 5} ∪ {11, 13, . . . , 21}
∪ {32}

min sam-
ples split

2 (default) {2, 3, 23, 43, . . . , 1763} {2, 4, .., 10}

max depth 12 {None} ∪ {1, 2, . . . , 15} ∪ {16, 18,
. . . , 98}

{10,11, . . . , 15} ∪ {50, 51,
. . . , 54}

max leaf
nodes

None (default) {2, 22, 42, . . . , 1762} {None, 680, 681, 682, 683,
684, 1560, 1561, 1562, 1563,
1564}

max fea-
tures

sqrt (default) {1, 3, . . . , 19} ∪ {log2, sqrt} sqrt (default)

min weight
fraction
leaf

0.0 (default) {0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5} 0.0 (default)

min im-
purity
decrease

0.0 (default) {0, 20, 40, . . . , 1780} 0.0 (default)

bootstrap True (default) {true, false} True (default)
oob score False (default) {true, false} False (default)
ccp alpha 0.0 (default) {0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6,

0.7, 0.75, 0.8, 0.9, 1}
0.0 (default)

max sam-
ples

None (default) {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 1}

None (default)

Configurations: 1816 Configurations: 99000

Table 3. RF algorithm with the parameters we calibrated and
their values

and interesting tips based on how to spot the malicious link and explain how
the tree models work in links classification.

4. Results and discussions

In the current section, we will present the results for all our experiments
described in Section 3. The first stage of experiments was the preliminary
phase. The second stage of experiments was represented by the parameter’s
calibration. Both phases were carried out for all three algorithms. In the
next paragraphs, we will present and analyze the results obtained for each
algorithm. For the preliminary stage we ran 376 configurations for KNN, 1882
for DT and 1816 for RF. Based on the results obtained from these experiments
we chose the interval values for relevant parameters in our model. The values
and parameters were presented in detail in Tables 1, 2 and 3.

4.1. Results obtained for KNN. KNN achieved the best on average perfor-
mance (see Table 4). The best configuration of KNN was weights = distance,
metric = Euclidean, algorithm = ball tree, n neighbors = 3, leaf size= 86,

MALICIOUS WEB LINKS DETECTION 29

scaler = Min-Max. Parameter calibration for KNN is presented in Figures 1.
As observed for DT and RF as well, there was little to no difference between
the normalization methods (Figure 1a). From some of the graphics associated
with the calibration of parameters it cannot be determined the best value for
our model (Figures 1d, 1a, and 1c). Best KNN had the distance value for
weights, representing that closer neighbors have a higher influence on the clas-
sification task. The Euclidean metric got the best recall and F1 score, while
the Manhattan metric had the highest precision and Minkowski reached the
best ROC AUC score as can be observed in Figure 1a. In the case of the
Euclidean metric, the value of the p parameter is not taken into considera-
tion. Ball tree algorithm got the best precision, but the difference to the other
algorithm was not significant. On the other hand, the n neighbors value could
be deducted from the Figure 1b, value 3 achieving the highest precision. Leaf
size is relevant for the algorithm ball tree chosen, but its optimal value is hard
to be observed in Figure 1d.

(a) Calibrating algorithm & metric & scaler (b) Calibrating n neighbors

(c) Calibrating p (d) Calibrating leaf size

Figure 1. KNN - calibrating parameters

30 COSTE CLAUDIA-IOANA

4.2. Results obtained for DT. The results for DT confirm that there was
little to no difference in using the Min-Max or the Standard Scaler for nor-
malization, as seen in Figure 2a. Considering the criterion, in Figure 2a it
can be observed that entropy was the better option. In figures 2d, 2c and 2e
the problem of choosing the best parameter is quite difficult, not much of a
difference between each value. On the contrary, Figure 2b is presenting the
best option to be chosen as parameter, the precision score being very sensitive
to the variations of min samples leaf parameter, where the optimum value was
1. The graphics obtained are strengthened by the selection of the best DT
model configuration. This configuration involved: criterion = entropy, min
samples leaf = 1, max depth = 8, max leaf nodes = 20, min samples split =
7, scaler = Standard, class weight = balanced, max features = None.

(a) Calibrating scaler & criterion (b) Calibrating min samples leaf

(c) Calibrating min
samples split

(d) Calibrating max
depth

(e) Calibrating max leaf
nodes

Figure 2. DT - calibrating parameters

Considering feature importance analysis, the results for the DT model are
presented in Figure 3a for MDI and in Figure 3b for MDA. Features suffixed
with ” 1” are categorical features preprocessed with the supervised ratio algo-
rithm. The ones suffixed with ” 2” are categorical features transformed with
weight of evidence algorithm (Equation 1). Taking into consideration the re-
sults, we observed a high relevancy for host-based features such as: SERVER
and WHOIS STATEPRO. SERVER refers to the operation system running

MALICIOUS WEB LINKS DETECTION 31

on the Web Server. WHOIS STATEPRO is represented by the state (approx-
imate geo-location) from where the server responded to the request. Thus,
malicious link attacks might be a geographically segregated attack. SERVER
feature indicates importance since an outdated operating system can be more
vulnerable to threats. It can be observed that categorical features processed
with the supervised ratio algorithm reached a higher degree of importance.
From the lexical features, URL LENGTH was the most important one, its
score being comparable with other host-based characteristics: DIST REMOTE
TCP PORT and REMOTE IPS. These last two attributes refer to the number
of ports detected to be opened on the server (excluding the current connection
port when data was collected) and respectively, the number of IPs addresses
connected to the web server. These two attributes were relevant since they
show a high activity on the server.

(a) Mean Decrease in Impurity (MDI) (b) Mean Decrease Accuracy (MDA)

Figure 3. DT - feature importance

4.3. Results obtained for RF. RF on average managed to improve perfor-
mance compared to DT (Table 4). The best calibration of RF model was:
criterion = entropy, n estimators = 110, max depth=53, min samples leaf=3,
max leaf nodes=1564, min samples split=4, class weight=balanced, scaler =
Min-Max ; which outperformed the others. The best model configuration was
confirmed by the graphics presenting parameters calibration, even though in
the cases of max depth, max leaf nodes, min samples split and n estimators as
can be observed from Figures 4e, 4f, 4d and respectively Figure 4b, there was
little to no difference between the parameters values. Considering the crite-
rion used, entropy was the value scoring the highest value along all metrics
as seen in Figure 4a. Entropy was the value used in the best model calibra-
tion as well. Considering the scaler used for the normalization step, just the

32 COSTE CLAUDIA-IOANA

same conclusion here as for KNN model or DT model, there was almost no
difference between them. Still, the best performance was achieved using Min
Max scaler, which scored a higher precision and F1 score than its counterpart.
Regarding the calibration of min samples leaf parameter, as can be seen quite
easily in Figure 4c the value, which significantly increased the recall is 3, this
one being used in the best model configuration.

(a) Calibrating scaler & criterion (b) Calibrating n estimators

(c) Calibrating min samples leaf (d) Calibrating min samples split

(e) Calibrating max depth (f) Calibrating max leaf nodes

Figure 4. RF - calibrating parameters

The scores of the features were computed on the best RF model configura-
tion. Results for the RF model showed us that the importance score is more
distributed along more features, unlike the DT model case. Feature scores
were computed based on the MDI (Figure 5a) and MDA (Figure 5b). Simi-
larly, as in the case of the DT model, categorical features were transformed in

MALICIOUS WEB LINKS DETECTION 33

numbers using the supervised ratio algorithm and the weight of evidence algo-
rithm. Best features were SERVER, WHOIS STATEPRO, DIST REMOTE
TCP PORT, all of them being host-based features. SERVER represents the
operating system of the web server serving the HTTP request, which is rele-
vant to predict the vulnerability of an outdated system. WHOIS STATEPRO
refers to the approximate geo-location of the server and it was expected to
be relevant since most cyber-attack are geographically segregated. DIST RE-
MOTE TCP PORT counts the open ports waiting for a connection on the web
server and it shows a high activity on the server, maybe even serving multi-
ple web pages. From the lexical features, URL LENGTH was the attribute
achieving the highest score.

(a) Mean Decrease in Impurity (MDI) (b) Mean Decrease Accuracy(MDA)

Figure 5. RF - computing feature importance

Precision Recall F1 score ROC AUC * 100
KNN on average 85.62 77.33 95.53 93.03

Best KNN 86.6 80.43 96.02 92.78
DT on average 55.73 87.01 90.11 91.35

Best DT 75.23 83.62 94.7 90.51
RF on average 72.43 87.19 94.29 97.21

Best RF 87.6 82.55 96.39 98.08

Table 4. Results for KNN, DT and RF models

4.4. Discussions. From the experiments done and the statistics made, we
observed that precision is a highly sensitive metric to parameters’ calibration.
We considered it to be highly relevant for our binary classification because
it was computed on the malicious class. By comparing our models, their
average and best performance as presented in Figure 6a and Table 4 it can
be observed that the highest precision score was obtained for the best RF

34 COSTE CLAUDIA-IOANA

model. Moreover, this model managed to get the highest F1 score and ROC
AUC score. The second most precise model was the best KNN model, having
comparable results with the best RF model. On average, KNN performed
best having the highest precision and F1 score across the average models.
Unfortunately, the DT model performed the worst, on average achieving just
five percent above a random baseline model.

When comparing our results with the performance denoted by Islam et
al. [7] models, we managed to significantly improve the KNN model. In the
experiments from [7], KNN gets 90% F1 score, while our best KNN model had
96.02% F1 score and on average 95.53% F1 score. For the case of DT and RF
models, their approach has a better performance of 99% F1 score. Our DT
model had a 94.7% F1 score at best and RF reached 96.39% at best. Still, we
consider that our results were comparable with their experiments.

To our perspective, we manage to improve the methodology needed for run-
ning experiments in this benign/ malicious links classification field. Thus, the
purpose of our paper was not to improve state-of-the-art detection algorithms
for malicious links detection, but to try and perfect the strategy followed when
finding solutions for this problem.

(a) All models comparison
(b) All models comparison with
Islam et al. models [7]

Figure 6. Comparing models

If we compare our approach to other literature solutions that experiment
with the same algorithms, our results are outperformed by theirs. This is the
case in [15], where the authors deliver experiments on multiple ML algorithms,
such as KNN (96.2% precision), DT (99% precision), RF (99.8% precision) etc.
Reaching a higher score than ours may be because of using a 450,000 records
dataset, with the URL and the label. Having a larger dataset can be helpful
in properly fitting the models. Shantanu et al. [15] manually engineers lexical
features from the URL, while we mostly used host-based features and two
lexical ones, which are as well included in their model. Another disparity comes
from our dealing with data imbalancement, while in [15] there are no mentions

MALICIOUS WEB LINKS DETECTION 35

about the actions taken to counteract it. Moreover, we computed the metrics
as an average of multiple runs. Comparing our approach on the RF model
with the Decision Forest proposed by Adas et al. [1] (99.8% accuracy), the
dissimilarity comes from using another methodology and dataset. In [1], the
dataset has over 2.4 million URLs and the ratio between malicious and benign
samples is not mentioned. Besides that, the features used in classification are
different and their training step includes a cross validation step, which may
be very effective since their dataset is numerous.

Comparing the last step of the experiments, about feature importance, we
managed to confirm the results within other articles. The experiments done
in [11] concludes that no particular features dominated the detection algo-
rithm. On the contrary, Johnson et al. [8] manage to prove the relevance
of URL related attributes through chi-squared test, as our lexical URL fea-
tures achieved a medium accuracy score. As well, in [9] the relevant attributes
are URL-based, while the host-based ones (WHOIS information) are not as
relevant. This is in contrast with our results that proved a higher score for
host-based characteristics in general. The relevance computed with informa-
tion gain in [6] denotes that the length of the URL is a top feature together
with the count of dots, which is part of our special characters count attribute.

5. Conclusions and future work

In conclusion, malicious web links detection is a complex domain from an
experimental point of view. There was almost no difference between the two
normalization techniques we applied. Our main contribution is that we man-
aged to propose an experimental methodology for malicious web links detec-
tion. Moreover, we got to improve the score metric of KNN model compared
to other literature solutions and the RF model achieved the best precision
(87.6%). Regarding feature importance analysis, we observed a high score
for host-based features. Considering future work, we propose experimenting
with more simple and complex ML algorithms on the same dataset such that
we could draw a more relevant and complete overview from our experiments.
Moreover, we plan to develop a real-time framework that will help users report
malicious links. The collected samples of links can be further analyzed, other
features can be extracted, especially the host-based ones.

References

[1] Adas, H., Shetty, S., and Tayib, W. Scalable detection of web malware on smart-
phones. In 2015 international conference on information and communication technology
research (ICTRC) (Abu Dhabi, UAE, 2015), IEEE, IEEE, pp. 198–201.

[2] APWG. Phishing activity trends report - q4, 2020. Tech. rep., APWG, USA, 2021.

36 COSTE CLAUDIA-IOANA

[3] Catak, F. O., Sahinbas, K., and Dörtkardeş, V. Malicious url detection using
machine learning. In Artificial intelligence paradigms for smart cyber-physical systems.
IGI Global, Papua New Guinea, Turkey, 2021, pp. 160–180.

[4] Cofense. Annual state of phishing report. Tech. rep., Cofense, Leesburg, VA, USA,
2021.

[5] Cook, S. Phishing statistics and facts for 2019–2022, Oct 2022.
[6] Ibrahim, S., Herami, N. A., Naqbi, E. A., and Aldwairi, M. Detection and analy-

sis of drive-by downloads and malicious websites. In International Symposium on Secu-
rity in Computing and Communication (Trivandrum, India, 2019), Springer, Springer,
pp. 72–86.

[7] Islam, M., Poudyal, S., Gupta, K. D., et al. Mapreduce implementation for ma-
licious websites classification. International Journal of Network Security & Its Applica-
tions (IJNSA) Vol 11 (2019).

[8] Johnson, C., Khadka, B., Basnet, R. B., and Doleck, T. Towards detecting
and classifying malicious urls using deep learning. J. Wirel. Mob. Networks Ubiquitous
Comput. Dependable Appl. 11, 4 (2020), 31–48.

[9] Kumi, S., Lim, C., and Lee, S.-G. Malicious url detection based on associative clas-
sification. Entropy 23, 2 (2021), 182.

[10] Naveen, I. N. V. D., Manamohana, K., and Verma, R. Detection of malicious urls
using machine learning techniques. International Journal of Innovative Technology and
Exploring Engineering 8, 4S2 (2019), 389–393.

[11] Oshingbesan, A., Okobi, C., Ekoh, C., Richard, K., and Munezero, A. Detection
of malicious websites using machine learning techniques. preprint none, none (06 2021),
1–5.

[12] Pakhare, P. S., Krishnan, S., and Charniya, N. N. Malicious url detection using
machine learning and ensemble modeling. In Computer Networks, Big Data and IoT.
Springer, Singapore, 2021, pp. 839–850.

[13] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12
(2011), 2825–2830.

[14] Sahoo, D., Liu, C., and Hoi, S. C. Malicious url detection using machine learning:
A survey. arXiv preprint arXiv:1701.07179 (2017).

[15] Shantanu, Janet, B., and Kumar, R. J. A. Malicious url detection: A comparative
study. In 2021 International Conference on Artificial Intelligence and Smart Systems
(ICAIS) (Tamil Nadu, India, 2021), IEEE, IEEE, pp. 1147–1151.

[16] Tung, S. P., Wong, K. Y., Kuzminykh, I., Bakhshi, T., and Ghita, B. Using a
machine learning model for malicious url type detection. In Internet of Things, Smart
Spaces, and Next Generation Networks and Systems (Cham, 2022), Y. Koucheryavy,
S. Balandin, and S. Andreev, Eds., Springer International Publishing, pp. 493–505.

[17] Urcuqui, C., Navarro, A., Osorio, J., and Garćıa, M. Machine learning classifiers
to detect malicious websites. SSN 1950 (2017), 14–17.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babes, -Bolyai University, Cluj-Napoca, Romania

Email address: claudia.coste@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 1, 2023
DOI: 10.24193/subbi.2023.1.03

DETECTING PROGRAMMING FLAWS IN STUDENT

SUBMISSIONS WITH STATIC SOURCE CODE ANALYSIS

PÉTER KASZAB AND MÁTÉ CSERÉP

Abstract. Static code analyzer tools can detect several programming
mistakes, that would lead to run-time errors. Such tools can also detect
violations of the conventions and guidelines of the given programming lan-
guage. Thus, the feedback provided by these tools can be valuable for both
students and instructors in computer science education. In our paper, we
evaluated over 5000 student submissions from the last two years written
in C++ and C# programming languages at Eötvös Loránd University
Faculty of Informatics (Budapest, Hungary), by executing various static
code analyzers on them. From the findings of the analyzers, we highlight
some of the most typical and serious issues. Based on these results, we
argue to include static analysis of programming submissions in automated
and assisted semi-automatic evaluating and grading systems at universi-
ties, as these could increase the quality of programming assignments and
raise the attention of students on various otherwise missed bugs and other
programming errors.

1. Introduction

The demand for IT professionals is constantly increasing, as software devel-
opment and maintenance is required in various fields, ranging from the finance
sector through energy and manufacturing to healthcare [9]. As a direct con-
sequence, more and more people are enrolling each year in computer science
degree programs and other IT and programming related courses at universi-
ties [14]. This increment of students significantly increases the workload of
university teachers and makes the manual grading of each student submission

Received by the editors: 01 March 2023.
2010 Mathematics Subject Classification. 68U99, 68Q55, 97Q70.
1998 CR Categories and Descriptors. F.3.2 [Theory of Computation]: Logics and

Meanings of Programs – Semantics of Programming Languages; D.3.4 [Software]: Program-
ming Languages – Processors; K.3.2 [Computing Milieux]: Computers and Education –
Computer and Information Science Education.

Key words and phrases. static code analysis, C++, C#, student submission, computer
science education, programming flaw.

37

38 PÉTER KASZAB AND MÁTÉ CSERÉP

unsustainable. As a result, the usage of automatic grading systems for pro-
gramming assignments have gained focus in the past years. Whether they are
developed commercially, open-source or in many cases as an internal project
at a university, these systems are becoming indispensable for instructors [11].

Non-trivial run-time errors in programming submissions are often missed by
instructors and automatic testers, because these kinds of errors are not always
easy to find and reproduce. Furthermore, there are solutions with functionally
correct and bug-free code which do not follow the conventions and guidelines
of the given programming language. These kinds of errors can be avoided and
the application of the given guidelines can be forced using static code analyzers
[4, 12, 18, 22].

Static analyzer tools can be utilized to check or flaws in other programs.
This can be achieved by evaluating the source code, the byte code or the
binaries [2]. These tools can help developers to identify a wide range of issues
from incorrect styling and formatting to serious security issues [10]. In Section
2 we review the previous applications of such tools in higher education.

For our research, we evaluated over 5000 student submissions from the last
two years written in C++ and C# programming languages at the Eötvös
Loránd University Faculty of Informatics (ELTE FI), by executing various
static code analyzers on them. In Section 3 we introduce the evaluated courses,
the used analyzer tools and the criteria for filtering analyzer results. Then,
in Section 4 and 5 the most typical and interesting findings are presented for
the C++ and C# submissions with simple code examples. We showcase our
prototype implementation for an automated evaluator system in Section 6.
Finally, the conclusion and future work is described in Section 7.

2. Related work

2.1. Automatic evaluation of submissions. Static analyzers can be used
in education in order to help the learning process of the students and speed
up the evaluation of the submission.

Michael Striewe and Michael Goedicke [22] reviewed the static analysis ap-
proaches that can help in providing feedback to the submitted solutions. They
highlighted the following requirements for a system that evaluates submissions
with static analysis:

• check for mistakes and violated coding conventions in syntactically
correct source code;

• check for source code which is correct, but contains element that are
not allowed in the context of the given course or exercise;

• check for missing code structures;
• give hints on how to solve the previously mentioned issues.

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 39

J. Walker Orr [19] proposes a rule-based tool for Java and Python that
provides feedback on predefined rules. The checked design principles are for-
malized as logical functions, and they are applied to the subtrees of the ab-
stract syntax trees. The implemented rules are designed to meet the needs of
students. The system was hosted as a standalone web service where students
could submit their solutions. There were no limitations to the number of up-
loads, and the execution of the tests was instant. Thus, this increased the
transparency of the grading progress. On average, the rate of design quality
flaws dropped 47.84% on different assignments.

Blau et al. developed a tool called FrenchPress [4] which is an Eclipse-plugin
designed for students with intermediate knowledge of the Java programming
language. It focuses on silent flaws that often get overlooked by students,
because IDEs and compilers do not catch them. The advantage of the IDE
integration, that the students can get feedback while they work in their code
without leaving the development environment. The authors emphasize that
the feedbacks should be relevant for the situation of the students and should
be easy to understand. Also, it is important to minimize the number of false
positives, as they could be more problematic than false negatives for inexpe-
rienced users. In the end, the percentage of cases when FrencPress motivated
the users to improve their programs varied from 36% to 64% depending on
the course.

In contrast to the previously mentioned tools, Hyperstyle [3] uses existing
professional code analyzers to evaluate the submissions. It currently supports
Java, Kotlin, JavaScript and Python, but it can be extended easily with an-
alyzers for other languages. The possible errors are split into the following
categories: code style, code complexity, error-proneness, best practices, and
minor issues. Based on the findings, it gives grades for the solutions on a four
level scale: excellent, good, moderate, bad. Additionally, it provides custom
messages for some issues, because students often need more detailed errors
messages than the output of the professional tool. Hyperstyle was tested on
the Stepik and Jetbrains Academy platforms, but it can be added to other
MOOC systems as well. For Java solutions, the number of students who made
fewer mistakes increased, and the number of who made six or more mistakes
decreased. For Python solutions, the number of students without code quality
issues increased four times and the number of students who made two or more
errors decreased.

2.2. Analyze solutions from previous semesters. While the previously
reviewed papers present solutions that provide feedback to students or grade
their submissions automatically, analyzing datasets of existing submission can
provide valuable information on several aspects. Moreover, checking older

40 PÉTER KASZAB AND MÁTÉ CSERÉP

solutions can also help to evaluate the code analyzer tools, and adapt their
results to the needs of the students and teachers.

Molnar et al. [18] evaluated Python assignments from an introductory pro-
gramming course using Pylint. They also developed a custom tooling that is
able to visualize and list findings for: a specific student, a given assignment,
or an assignment corresponding to multiple students. Their study showed
that Pylint provided meaningful information regarding code style and logical
errors.

Keuning et al. [12] investigated code quality issues in Java programs. The
analyzed source files were collected from the Blackbox database, which con-
tains Java solutions written in the BlueJ IDE. The database stores multiple
versions of the source files, and also collects events and usage statistics from the
BlueJ IDE (e.g., enabled plugins). They used the PMD tool for analysis and
categorized the errors into the following categories: flow, idiom, expression,
decomposition, and modularization. Some detectable issues by PMD needed
to be discarded, because they were too advanced for novice programmers, or
they were too specific for a library or platform. Errors from categories like
presentation and documentation were completely discarded. They also exam-
ined the most commonly fixed errors. Empty if statements and singular fields
were the most commonly fixed issues. Probably, because the initial uploads
were not finished. Issues like too many fields or methods were fixed in less
than 5% of the cases. So, the overall fixing rate was relatively low.

Similarly to the previous paper, Edwards et al. [6] also analyzed Java pro-
grams from four different courses for students with different skill-levels. The
dataset contained nearly 10 million errors produced by 3691 students. They
used the CheckStyle and PMD open-source tools for static code analysis, but
they created their own categories for errors: braces, coding flaws, documenta-
tion, excessive coding, formatting, naming, readability, style, and testing. The
most common categories were documentation, formatting, style, and coding
flaws. The coding flaws category could indicate that the student is struggling.
Usually, the solutions with lower scores had more coding flaws in them. Also,
it is possible that some students ignore the warnings produced by the ana-
lyzers, if they are dominated by documentation and formatting issues. This
factor should be considered when analyzers are used in automatic evaluator
systems.

3. Methodology

The first batch containing 3433 solutions written in C++ were collected
from the Object-oriented programming course. While the students have to
develop command-line interface applications, they have to manage memory

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 41

manually and use advanced object-oriented techniques, like polymorphism. In
addition, 226 C++ projects were added from the GUI programming with QT
course, where the participants have to develop complex graphical application
with layered architecture (Model-View).

The C++ submissions were analyzed with Clang-Tidy, Clang Static Ana-
lyzer and Cppcheck [1, 13, 15, 16]. To run the previously mentioned tools and
visualize their results, we have used Ericsson CodeChecker [8].

In the case of C# projects, 2148 programming submissions were collected
from the Event-driven programming course, where students have to develop
Windows Forms, WPF and Xamarin/MAUI graphical applications. Simi-
larly to the GUI programming with QT course, the usage of layered archi-
tecture (Model-View and Model-View-ViewModel) is mandatory. For these
programs, we have used both first-party (Microsoft NetAnalyzers) and third-
party (Roslynator Analyzers and SonarAnalyzer CSharp) analyzers built on
top of APIs provided by the Microsoft Roslyn compiler platform [23, 24].

Table 1 summarizes the previously described tools, courses, and analyzed
submissions.

Language Analyzer tools Course Submissions

C++
Clang Tidy,
Clang Static Analyzer,
Cppcheck

Object-oriented
programming

3433

GUI programming
with QT

226

C#
Microsoft NetAnalyzers,
Roslynator Analyzers,
SonarAnalyzer CSharp

Event-driven
programming

2148

Table 1. Summary of the used analyzers and evaluated submissions

From the findings of the analyzers, we have selected the presented errors
according to the following criteria:

• We have included the most common and typical errors.
• Some errors only occurred in a handful of submission, but they indi-
cated serious design flaws or lack of understanding.

• We excluded styling errors. While code-styling is important, there
were no enforced styling guidelines for the assignments. Also, these
rules often require detailed configuration in real-world projects.

• For the C# programs a significant part of findings reported by the
Roslyn-based analyzers were possible refactorings, those were also
discarded.

42 PÉTER KASZAB AND MÁTÉ CSERÉP

4. C++ results

In this section, we present the selected errors from the C++ solutions.
Figure 1 shows the number of solutions from both courses where the those
errors occurred.

Figure 1. The number of C++ solutions with errors

4.1. Fields are not initialized correctly. Fields are usually not initialized
automatically in C++. However, they could be initialized during debug compi-
lation on some platforms, misleading students (as in Listing 1). It is generally
a good practice to give sensible starting values to fields during construction.

class Example {

private:

int _x , _y , _z;

public:

Example(int x, int y): _x(x), _y(y) {}

void method () {

if (_z > 0) { /* ... */ }

// _z not guaranteed to be initialized to zero

}

};

Listing 1. Field initialization

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 43

4.2. Use constant references where possible (performance improve-
ment). While function f in Listing 2 is functionally correct, it has two po-
tential performance problems:

(1) the vec vector is copied every time f is called;
(2) the curr vector is copied in every iteration.

Using const references for the parameter and the loop variable improves per-
formance of this program.

void f(vector <vector <int >> vec) {

for(vector <int > curr : vec) { /* ... */ }

}

void f_improved(const vector <vector <int >>& vec) {

for(const vector <int >& curr : vec) { /* ... */ }

}

Listing 2. Perfomance can be improved with constant references

However, sometimes copying the values of the parameters is the desired
behavior. Code analyzers are smart enough to give hints based on the con-
text. So, these warning are only showed if marking the parameter to a const

reference would not break the given program.

4.3. Narrowing conversion. Conversion from a wider data type to a nar-
rower can lead to data loss (e.g., float → int) and/or integer overflow (e.g.,
unsigned int → int in Listing 3).

void search(int elem , bool& found , int &ind) {

found = false;

for (unsigned int i = 0; i < vec.size() && !found; ++i) {

if(vec[i] == elem) {

found = true;

ind = i; // Could cause integer overflow

}

}

}

Listing 3. Possible integer overflow, because of narrowing conversion

4.4. Comparison of signed and unsigned integers. Direct comparison
between signed and unsigned integers is not safe in C++. In most cases
this error occurred, when students compared a loop-variable with a size of
a container that has std::size t type which is an unsigned integer type
(Listing 4). While this have not caused problems in the submitted solution,
it is still considered a bad practice, because vec.size() can be greater than
the maximum value of int on the given platform.

44 PÉTER KASZAB AND MÁTÉ CSERÉP

for (int i = 0; i < vec.size() /* std:: size_t */ ; ++i) {}

Listing 4. The maximum size of int might be smaller than vec.size()

Comparison of signed and unsigned integers could also be problematic if
the signed integer value is negative. In Listing 5, we would expect that it will
print 0 as i is not greater than j, but the value of i is also cast to unsigned

int and it underflows.

int i = -4;

unsigned int j = 5;

std::cout << (i > j) << std::endl; // Expected 0, but prints 1

Listing 5. int i is casted to unsigned int

4.5. Possible memory leaks in dynamic memory management. Free-
ing allocated dynamic memory is often missed by students. Consider the Stack
class in Listing 6, where the writer of the code allocates memory for the array,
but the destructor is missing. Thus, the memory will not be freed after s is
not used anymore.

class Stack {

private:

int _top , _size;

int* _arr;

public:

Stack(int size)

: _top(-1), _size(size), _arr(new int[size]) {}

// ...

};

Listing 6. Memory leak: missing destructor

4.6. Non-void functions does not return a value. Reaching the end of
the body of a non-void function without returning a value is will not generate
a compiler error by default, but it is an undefined behavior in C++. A good
example of this, a stack class where the pop method of a stack that removes
the item from the top of the stack and returns its value. The implementation
in Listing 7 of the pop method is error-prone, because the user of the class can
call the method on an empty stack.

int Stack::pop() {

if (! isEmpty ()) { return _vec[--_top]; }

}

Listing 7. Empty stacks are not handled

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 45

4.7. Potential ODR violations: placing function in headers. One Def-
inition Rule (ODR) means that non-inline functions and types must have only
one definition in the entire program [21]. For instance, placing functions in
headers can lead to ODR violations. This does not necessarily mean that the
solution does not compile or run until it is only included in one source file.
However, if the student had included it in two or more sources, the compiler
would not have accepted the solution.

Consider the scenario illustrated in Listing 8, while

• the g++ main.cpp first.cpp command will compile the program
successfully;

• the g++ main.cpp first.cpp second.cpp command will fail.

/// Contents of helpers.h:

int square(int x) { return x * x; }

/// Contents of first.cpp:

#include "helpers.h"

void first_calculation () { int res = square (2); /* ... */ }

/// Contents second.cpp:

#include "helpers.h"

void second_calculation () { int res = square (3); /* ... */ }

/// Contents main.cpp:

// helpers.h is not included in main.cpp

Listing 8. Functions in headers

4.8. Lack of virtual destructors in abstract classes or classes with
virtual functions. It is possible that the student implemented all necessary
destructors, but they are not marked as virtual when needed. In Listing 9,
if the destructor of Base is not marked as virtual and delete is called on a
variable with static type of Base, then the destructor of Derived will not be
called.

46 PÉTER KASZAB AND MÁTÉ CSERÉP

struct Base {

virtual void method () = 0;

~Base() {std::cout << "base "; } // Should be virtual

};

struct Derived: public Base {

void method () override { }

~Derived () { std::cout << "derived "; }

};

void f() {

Base* d = new Derived;

delete d; // outputs: base

}

Listing 9. Destructors should be virtual

4.9. Calling virtual methods during construction and destruction.
During construction and destruction, the virtual call mechanism is disabled.
Therefore, the implementation from the current class is used, as illustrated in
Listing 10 with the call of f. Calling virtual methods in the constructor is
not necessarily a problem, but the student might not aware of the previously
described behavior.

struct Base {

Base() { f(); } // Prints base

virtual void f() { std::cout << "base"; }

};

struct Derived: public Base {

void f() override { std::cout << "derived"; }

};

Listing 10. Virtual calls in constructors

4.10. Double-free and use after free. In C++ delete should be called
only once for the same reference and the reference should not be used after
delete called on it. Listing 11 counts not only as double-free, but an infinite
loop, because ~Example will always get called again, recursively. This is a
good example of how reported errors can also indicate lack of understanding
from students.

struct Example {

~Example () { delete this; }

};

Listing 11. Incorrect usage of delete

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 47

4.11. Out of bound indexing. Out of bound indexing is often missed by
beginner programmers. It usually results in a memory segmentation fault. The
provided example (Listing 12) is relatively simple: the student made a small
mistake and wrote <= instead of <. Fortunately, the used code analyzers can
spot possible out of bound indexing in more complex scenarios.

int arr [10];

for (int i = 0; i <= 10; ++i) { arr[i] = i; }

Listing 12. Out of bound indexing

4.12. Object slicing. Slicing happens when copying a derived object into a
base object: the members of the derived object (both member variables and
virtual member functions) will be discarded [5]. In Listing 13, slicing object
from type Derived to Base discards override method.

struct Base {

virtual void method () { std::cout << "base"; }

};

struct Derived: public Base {

virtual void method () { std::cout << "derived"; }

};

void f(Base obj) { obj.method (); }

int main() {

Derived d;

f(d); // prints base

return 0;

}

Listing 13. Object slicing

5. C# results

In this section, we present the selected errors from the C# solution. Figure
2 shows the number of solutions from both courses where the those errors
occurred, categorized by tasks. It is worth to note that the number of solutions
containing the highlighted errors are really similar for the WinForms, WPF,
and Xamarin/MAUI assignments. This is because the students have to develop
the same software for all three tasks, and they are encouraged to reuse layers
from their previous solutions. Exams are different, because student have to
develop new applications from scratch, but reusing their existing materials is
still allowed.

48 PÉTER KASZAB AND MÁTÉ CSERÉP

Figure 2. The number of C# solutions with errors

5.1. Non-constant fields with public visibility. Using public mutable
fields are generally considered a bad practice and against guidelines in C#.
There are several alternatives:

• mark the field readonly or const;
• use auto-implemented properties instead;
• make it private and access it with a property or method.

5.2. Asynchronous calls are not awaited. In Listing 14, NewGameAsync is
an async function, but it is not awaited. Thus, the state of the model object
might be incorrect when AdvanceGame is called.

GameModel model = new GameModel ();

model.NewGameAsync ();

model.AdvanceGame ();

Listing 14. model.NewGameAsync() is not awaited

5.3. Asynchronous methods with void return type. Asynchronous func-
tion should return Task or Task<T>, because they cannot be awaited and ex-
ceptions cannot be caught from them (Listing 15). Event handlers are the only

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 49

exceptions according to the Microsoft Learn guidelines, because they usually
have to return void [17].

public async void LoadAsync(string filePath) {

FileContent = await File.ReadAllTextAsync(filePath);

}

Listing 15. LoadAsync cannot be awaited

5.4. Results of integer division should not be assigned to floating
point/decimal variables/parameters. In Listing 16, if the result of size
/ 2 is positive, then it is already floored because of the integer division. There-
fore, calling Ceiling will not return the expected result.

int size = // ...

if ((int)decimal.Ceiling(size / 2) == x) { /* ... */ }

Listing 16. Integer disivision

5.5. Incorrectly implemented properties. The getters and setters of the
properties should access the correct backing fields. As shown in Listing 17, the
student may want to write a read-only property, but the setter is still present
with an empty body. The correct solution would be a property without a
setter, because assigning a value to a property will not generate a compile-
time error and the user may think that the property is writable. In contrast,
if the setter is not present, then both the compiler and the IDE will show an
error upon assignment.

private int property;

public int Property { get { return property; } set {} }

Listing 17. Read-only property: set should be omitted

5.6. Infinite recursion. A trivial example of this error, when the setter tries
to assign the vale to the property itself (Listing 18). This may be the result
of a typo in the source code, as backing fields often have the same name as
the property, but with a different case. Calling the setter of such a property
would lead to an infinite recursion.

private int property;

public int Property {

get { return property; }

set { Property = value; }

}

Listing 18. Incorrectly implemented setter: infinite recursion

50 PÉTER KASZAB AND MÁTÉ CSERÉP

5.7. Incorrect overrides of Equals(object) and GetHashCode(). When
overriding Equals(object) and GetHashCode() certain rules should be fol-
lowed, such as:

• Equals(object) and GetHashCode() should be overridden in pairs.
• Classes directly extending object should not call base in GetHashCode
or Equals. The implementation in object are based on object ref-
erence.

In Listing 19, the student overrides both methods, but the GetHashCode

calls the implementation from the object class.

class ClassName {

public override int Equals () {

// correct implementation

}

public override int GetHashCode () {

base.GetHashCode (); // Calls GetHashCode from object

}

}

Listing 19. Incorrect override of GetHashCode()

5.8. Mistakes related to disposable objects. While C# has automatic
garbage collector, the unmanaged resources taken by certain classes should be
freed. For instance (Listing 20), if a file opened by the StreamReader class,
then it should be closed after usage. The Dispose should be called (or Close
in this case), preferably in a finally block. A using statement or declaration
would be an even better option, as it ensures the correct usage of disposable
objects.

List <string > values = new List <string >();

StreamWriter sw = new StreamWriter("output.txt");

foreach (string line in values) { sw.WriteLine(line); }

Listing 20. The file is not closed after usage

It is also important that the objects cannot be used after they are disposed.
In the example in Listing 21, the Dispose method is automatically called
after the execution leaves the block of the using statement. So, the returned
StreamReader instance will not be able to read the file, as its methods will
throw an ObjectDisposedException.

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 51

public StreamReader CreateReader(string filename) {

using (StreamReader sr = new StreamReader(filename)) {

return sr;

}

}

Listing 21. sr is returned after disposal

6. Integration with automated evaluator systems

We developed a prototype-implementation as part of the open-source TMS
task management system developed at ELTE FI [7], which already contains a
custom developed Docker-based automated evaluator and integrates the static
analysis tool CodeCompass [20], but for code comprehension purposes.

We extended the evaluator system with the tools mentioned in Section 3.
CodeChecker is an important part of our solution, because apart from running
static analysis on C/C++ solutions with Clang SA, Clang Tidy, and Cppcheck
it can also process the output of more than 20 third-party analyzers and
convert it to its own format. Thus, it is enough if TMS can process only
one report format. Moreover, we could take advantage of the additional tools
provided by CodeChecker, such as the HTML report viewer.

Figure 3. The workflow of automated static code analysis in TMS

The Docker environment and the selected tools can be individually con-
figured for each assignment. So, instructors can adapt the tools to the need
of their courses. The system regularly checks for new submissions from tasks
with valid evaluator configuration. When there is a new untested solution, the
system runs the selected tools in Docker containers and converts the reports to
a common report format if necessary. Finally, when the reports are available
in the required format, TMS persists them for the given solution, and notifies
the student about the completion of the analysis. The described workflow is
illustrated in Figure 3.

52 PÉTER KASZAB AND MÁTÉ CSERÉP

Both the students and the instructors can view the results on the page of
the given submission. It is important that the results should be presented in
a legible format. They are prioritized by severity to help students identify the
more serious issues first. The HTML reports produced by CodeChecker are
also available from the user interface, so the reports can be viewed without
downloading the submissions.

7. Conclusions and Future Work

In our paper, we have evaluated over 5000 student submission written in
C++ and C#, by running static code analyzer tools on them. We have found
violations of conventions and various programming bugs which could have been
filtered with static analysis, but were overlooked by the teachers, probably due
to the high number of student submissions they had to evaluate and grade.
In these cases, the feedback provided by the analyzers could help students to
fix their mistakes before the deadlines and learn from them. Furthermore, the
usage of these tools would allow a more thorough assessment by teachers and
speed up the grading process.

While analyzing solutions from previous semesters helped us to create the
initial prototype implementation, choose the right tools, and configure them,
we believe our solution can be improved further by testing it during an aca-
demic semester. First, it should be observed what is the impact of such a tool
on the students’ behavior, how much the quality of their submissions improved.
Furthermore, it should also be determined if the students really understand
and use correctly the provided feedback. The current implementation shows
the reports to both students and instructors, but some tips might be applied
too easily without understating them. It might be beneficial to make the de-
tail of the feedback configurable or add an option to hide it from the students
completely, so instructors can choose according to their preferences. Another
possible approach could be adding an option to limit the number of possible
uploads, thus students have to rethink twice before re-upload their solutions
just to check if they managed to solve the reported problems. Finally, after the
testing is completed and the previous questions are issued, we aim to introduce
our solution for other courses at ELTE FI.

References

[1] Babati, B., Horváth, G., Májer, V., and Pataki, N. Static analysis toolset with
Clang. In Proceedings of the 10th International Conference on Applied Informatics
(2017), pp. 23–29.

[2] Bardas, A. G., et al. Static code analysis. Journal of Information Systems & Oper-
ations Management 4, 2 (2010), 99–107.

DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 53

[3] Birillo, A., Vlasov, I., Burylov, A., Selishchev, V., Goncharov, A.,
Tikhomirova, E., Vyahhi, N., and Bryksin, T. Hyperstyle: A tool for assessing
the code quality of solutions to programming assignments. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1 (New York, NY, USA,
2022), SIGCSE 2022, Association for Computing Machinery, pp. 307––313.

[4] Blau, H., and Moss, J. E. B. Frenchpress gives students automated feedback on
java program flaws. In Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education (New York, NY, USA, 2015), ITiCSE ’15,
Association for Computing Machinery, pp. 15—-20.

[5] Clang Team. LLVM - Clang-tidy - cppcoreguidelines-slicing.
https://releases.llvm.org/13.0.0/tools/clang/tools/extra/docs/clang-
tidy/checks/cppcoreguidelines-slicing.html, Accessed: 2023-02-25.

[6] Edwards, S. H., Kandru, N., and Rajagopal, M. B. Investigating static analy-
sis errors in student java programs. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (New York, NY, USA, 2017), ICER ’17,
Association for Computing Machinery, pp. 65—-73.

[7] ELTE. TMS – Task Management System. https://tms-elte.gitlab.io/,
Accessed: 2023-02-27.

[8] Ericsson Ltd. CodeChecker. https://codechecker.readthedocs.io/,
Accessed: 2023-02-25.

[9] Eurostat. ICT education - a statistical overview.
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=ICT education -
a statistical overview,
Accessed: 2023-04-16.

[10] Gomes, I., Morgado, P., Gomes, T., and Moreira, R. An overview on the static
code analysis approach in software development. Faculdade de Engenharia da Univer-
sidade do Porto, Portugal (2009).

[11] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. Review of recent
systems for automatic assessment of programming assignments. In Proceedings of the
10th Koli Calling International Conference on Computing Education Research (New
York, NY, USA, 2010), Koli Calling ’10, Association for Computing Machinery.

[12] Keuning, H., Heeren, B., and Jeuring, J. Code quality issues in student programs.
In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (New York, NY, USA, 2017), ITiCSE ’17, Association for Computing
Machinery, pp. 110—-115.

[13] Kremenek, T. Finding software bugs with the clang static analyzer. Apple Inc (2008).
[14] Loyalka, P., Liu, O. L., Li, G., Chirikov, I., Kardanova, E., Gu, L., Ling,

G., Yu, N., Guo, F., Ma, L., Hu, S., Johnson, A. S., Bhuradia, A., Khanna,
S., Froumin, I., Shi, J., Choudhury, P. K., Beteille, T., Marmolejo, F., and
Tognatta, N. Computer science skills across china, india, russia, and the united states.
Proceedings of the National Academy of Sciences 116, 14 (2019), 6732–6736.

[15] Marjamäki, D. Cppcheck. https://cppcheck.sourceforge.io/, Accessed: 2023-02-23.
[16] Martignano, M., and Spazio, I. A new static analyzer: The compiler. ADA USER

40, 2 (2019), 99–103.
[17] Microsoft. Async return types (C#). https://learn.microsoft.com/en-

us/dotnet/csharp/asynchronous-programming/async-return-types,
Accessed: 2023-02-23.

54 PÉTER KASZAB AND MÁTÉ CSERÉP

[18] Molnar, A.-J., Motogna, S., and Vlad, C. Using static analysis tools to assist stu-
dent project evaluation. In Proceedings of the 2nd ACM SIGSOFT International Work-
shop on Education through Advanced Software Engineering and Artificial Intelligence
(New York, NY, USA, 2020), EASEAI 2020, Association for Computing Machinery,
pp. 7––12.

[19] Orr, J. W. Automatic assessment of the design quality of student python and java
programs. arXiv e-prints (2022).

[20] Porkoláb, Z., Brunner, T., Krupp, D., and Csordás, M. Codecompass: an open
software comprehension framework for industrial usage. In Proceedings of the 26th Con-
ference on Program Comprehension (2018), pp. 361–369.

[21] Quinlan, D., Vuduc, R., Panas, T., Haerdtlein, J., and Saebjoernsen, A. Sup-
port for whole-program analysis and the verification of the one-definition rule in C++.
In Static Analysis Summit 2006 (6 2006).

[22] Striewe, M., and Goedicke, M. A review of static analysis approaches for pro-
gramming exercises. In Computer Assisted Assessment. Research into E-Assessment
(07 2014), vol. 439, Springer, pp. 100–113.

[23] Sundström, J. Assessment of Roslyn analyzers for Visual Studio, 2019.
[24] Vasani, M. Roslyn Cookbook. Packt Publishing Ltd., 2017.

ELTE Eötvös Loránd University, Faculty of Informatics, Department of
Software Technology and Methodology, H-1117 Budapest, Pázmány P. sny 1/C.

Email address: t5mop2@inf.elte.hu
Email address: mcserep@inf.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 1, 2023
DOI: 10.24193/subbi.2023.1.04

DOMAS: DATA ORIENTED MEDICAL VISUAL QUESTION

ANSWERING USING SWIN TRANSFORMER

TEODORA-ALEXANDRA TOADER

Abstract. The Medical Visual Question Answering problem is a joined
Computer Vision and Natural Language Processing task that aims to ob-
tain answers in natural language to a question, posed in natural language
as well, regarding an image. Both the image and question are of a medical
nature. In this paper we introduce DOMAS, a deep learning model that
solves this task on the Med-VQA 2019 dataset. The method is based on di-
viding the task into smaller classification problems by using a BERT-based
question classification and a unique approach that makes use of dataset
information for selecting the suited model. For the image classification
problems, transfer learning using a pre-trained Swin Transform based ar-
chitecture is used. DOMAS uses a question classifier and seven image
classifiers along with the image classifier selection strategy and achieves
0.616 strict accuracy and 0.654 BLUE score. The results are competitive
with other state-of-the-art models, proving that our approach is effective
in solving the presented task.

1. Introduction

Visual Question Answering (VQA) is a task that combines both the Natural
Language Processing (NLP) Field and Computer Vision (CV). The inputs of
a VQA model are an image and a question addressed in natural language,
question that can be answered from the given image. The output is of course
the answer returned in natural language as well. Medical Visual Question
Answering (MVQA) is a task that evolved from the VQA task by constraining
the domain of the image and question to be the medical domain. Therefore,
the images can take the form of pictures obtained using medical imaging, such
as X-rays, MRIs, CT scans, as will be in our case while the questions can
enquire about different aspects associated with the image. Using intelligent

Received by the editors: 14 June 2023.
2010 Mathematics Subject Classification. 68T45, 68T50.
1998 CR Categories and Descriptors. I.2.7 [Artificial Intelligence]: Natural Lan-

guage Processing – Language parsing and understanding ; I.2.7 [Artificial Intelligence]:
Applications and Expert Systems – Medicine and science.

Key words and phrases. Medical Visual Question Answering, Swin Transformer.

55

56 TEODORA-ALEXANDRA TOADER

algorithms to solve the MVQA tasks could benefit the medical field immensely
as such a model could provide a second opinion to medical professionals and
could also make medical investigations more accessible.

One big challenge of MVQA is the limited amount of data that is available
compared to the general VQA task that has been more widely explored. The
lack of data for such an extensive task can lead models to overfit and not pro-
vide enough generalization. One recent approach that has been successfully
used in the domain as a solution to the problems caused by small amounts
of data is transfer learning, which focuses on using information gained from
solving one task on a second related task. An architecture that proved to be
very successful in association with transfer learning is the transformer archi-
tecture introduced by Vaswani et al. in [17]. Transformers are deep learning
models based on the attention mechanism that proved to be very efficient in
both NLP and CV, especially when pretrained on large amounts of data and
then fine-tuned for specific tasks.

In this paper we introduce DOMAS, a deep learning model that solves the
MVQA task on the Med-VQA 2019 dataset. The architecture is based on
transforming the complex MVQA task into smaller image classification prob-
lems by selecting the image model using a model based on BERT architecture
[6] applied on the questions and our dataset knowledge and then solving the
image classifications using models based on an impressive computer vision
backbone, introduced by Liu et al. called the Swin Transformer. [10]. Our
approach achieves a 0.616 accuracy and 0.654 Bleu score on the VQA-Med-
2019 test set which makes it comparable with other state-of-the-art models.
The purpose of this paper is to answer the following research questions:

• Can the Swin architecture be an alternative to the more commonly
used CNN based networks on this task?

• Does using information about the dataset improve the classification
for modality models, especially for questions with affirmative or neg-
ative answers?

The structure of the paper will be as follows. Section 2 will present other
approaches from the literature. Section 3 will provide a detailed description
of the dataset. Our approach will be described in Section 4, while the ex-
periments will be detailed in Section 5. The last section will provide the
conclusions of the study as well as possible ideas for future work.

2. Related Work

The recent advancements in computer vision and natural language pro-
cessing also led to advancement in the joined image and language task that
is VQA. Most state-of-the-art models such as the ones of Chen at al. [4],

MEDICAL VISUAL QUESTION ANSWERING USING SWIN TRANSFORMER 57

Wang et al. [19] and Bao et al.[3] make use of the transformer architecture
for vision-language pre-training and for other tasks such as [4] which uses the
Vision Transformer for feature extraction as well. The general VQA task has
the advantage of large datasets, performant models being pre-trained on mil-
lions of images and text samples which is not currently possible for MVQA.
However, other methods and architectures can also be used for MVQA.

Many approaches have been proposed for the ImageCLEF 2019 Med-VQA
dataset, some of them during the competition that proposed the dataset. The
two highest-ranking teams at the ImageCLEF 2019 competition for the VQA-
Med task combined features extracted from image and text using a fusion al-
gorithm. Yan et al. [20] used a VGG-16 [14] inspired network combined with
Global Average Pooling for image feature extraction and the basic BERT [6]
model as the question encoder. The fusion of the two types of features ex-
tracted was achieved by using multi-modal factorized bilinear pooling with
co-attention [21]. Minh Vu et al. [18] also use a CNN based network, namely
ResNET-152 [7], to extract image features and BERT for question features.
The features are fused using an attention mechanism and global image fea-
tures are obtained, while the question features are also linearly transformed
to obtain global question features. The global features are then further com-
bined using a bilinear transformation. Some contestants also made use of the
nature of the dataset and divided the problem into four different problems,
one for each type of question. Zhou et al. [22] propose a different type of
model for the plane, organ and modality questions, where a classifier is used
to get the answer, and for abnormality questions where a generative method is
used. The simple classifier consists of an Inception ResNet-V2 [16] for image
feature extraction and BERT for question embeddings. The features are com-
bined through a Multi-Layer Perceptron (MLP). The generator used for the
abnormality questions consists of a sequence-to-sequence model. The encoder
part is similar to the classifier while the decoder consists of a long short-term
memory network (LSTM), and it continuously generates the probability dis-
tribution of the next word. Another interesting submission is the one of the
JUST team [2] which creates an individual model for each type of question as
well. They consider the questions to be repetitive and therefore each model is
in fact an image classification model or a combination of image classification
models. We can observe that all proposed models used pre-trained networks
for feature extraction as the models benefit tremendously from transfer learn-
ing given the dimension of the dataset. Particularly, the proposed models also
use CNN based networks for image feature extraction.

More recent approaches on the ImageCLEF 2019 VQA-Med dataset also
make use of the transformer architecture and obtain improved results. Ren at

58 TEODORA-ALEXANDRA TOADER

al. [12] propose CGMVQA, a model that can switch between a classification
and a generative mode, by changing only the loss function and the output layer,
in order to better fit the approached problem. They divide the task into five
subtasks depending on the type of question: yes/no questions, organ, plane,
modality and abnormality. To obtain the image features they extract from
different convolutional layers of a ResNet-152. The questions are tokenized,
and token, segment and positional embeddings are used to obtain the final
features. These two types of features are used in the classification mode, for
the generative mode, masked answers are also added as the method used for
the generation is masking position by position. To get the final outputs, the
features are fed into a slightly changed Transformer network. Another method
that makes greater use of transformer capabilities is proposed by Khare et
al. [8] where the authors propose MMBERT (Multimodal Medical BERT), a
BERT like architecture that is pre-trained using self-supervised learning. The
model is pretrained on medical images and their corresponding captions using
MLM. The image features are extracted as in [12] and the captions are modified
by replacing medical terms with the [MSK] token and then the embeddings
are obtained using BERT. The obtained embeddings are passed through a
BERT-like encoder and then a classifier is used to predict the initially masked
word.

3. Dataset Description

The dataset we are going to use in our experiments is the VQA-Med-2019
dataset, introduced at the ImageCLEF 2019 competition for the VQA task
[1]. The dataset contains 4200 images selected from MedPix database and 15
292 corresponding questions divided in the following way. For training 3200
images were allocated as well as 12 792 question-answer pairs; for validation
500 images with 2000 question answers pairs and for the test dataset, 500
images and questions.

The questions were divided into four different categories: Organ, Plane,
Modality and Abnormality. The plane category includes images in 16 differ-
ent planes, namely Axial; Sagittal; Coronal; AP; Lateral; Frontal; PA; Trans-
verse; Oblique; Longitudinal; Decubitus; 3D Reconstruction; Mammo-MLO;
MammoCC; Mammo-Mag CC and Mammo-XCC. The organ category has the
smallest number of classes, the possible answers to all the questions belonging
to a set of ten organs and organ systems namely: Breast; Skull and Contents;
Face, sinuses, and neck; Spine and contents; Musculoskeletal; Heart and great
vessels; Lung, mediastinum, pleura; Gastrointestinal; Genitourinary; Vascu-
lar and lymphatic. The modality category is slightly more complex than the
previous two. There are 36 modalities, and the question can refer to the type

MEDICAL VISUAL QUESTION ANSWERING USING SWIN TRANSFORMER 59

of modality used, either what or yes/no questions. There are also questions
related to contrast/noncontract in the image, what type of contrast is used
and specifics of MRIs (if the images are t1-weighted, t2-weighted or flared).
In total, there are 44 possible answers for all modality questions. Therefore,
the modality category includes yes/no questions, what question and other
closed questions. The abnormality category includes both yes/no questions,
that inquire about the state of the image; if it is normal/abnormal and what
questions, that inquire about the abnormality shown in the picture. The ab-
normality category is the most complex, with 1485 possible answers in the
training set. One concern that we will consider with this category is the large
number of answers to the validation questions that are not found through the
answers in training. This could be a possible issue when treating this problem
as a classification since the model will not be able to learn the classes that are
not present while training.

4. Proposed Approach

Following the lead of papers such as the ones proposed by Zhou et al. [22]
and Al-Sadi et al.[2], we propose a model that divides the complex MVQA task
into smaller and more manageable problems. By making use of the dataset
knowledge, we can treat each individual problem as an image classification
one and obtain comparable results with the current approaches from the lit-
erature. Unlike the presented approaches which use CNN based networks for
image related tasks we choose to make use of an attention based state-of-the-
art model for image classification, the Swin Transformer. We use pre-trained
versions of Swin and finetune them to our specific classifications in order to
obtain our results. We aim to see if the abilities of this model perform as well
on these downstream tasks and moreover, if this transformer-based architec-
ture can surpass the widely used CNN-based architectures. In order to apply
the image classification models we need to divide the types of questions in a
way that makes sense from the point of view of the created classes, therefore,
we chose to create individual models for organ, as all answers are a type of
organ or organ system, plane, as all answers in this category are planes in
which the image is taken and abnormality. For the modality questions we
created four models depending on the type of questions and possible answers
that would create the classes. Therefore, we obtained a contrast model, used
for questions that inquire about the way the image was taken, with contrast
or noncontrast; a contrast type model, used for questions that inquire about
the type of contrast used, possible answers being gi/iv/gi and iv; a type of
weight model, for questions that examine whether the image is t1, t2 or flair

60 TEODORA-ALEXANDRA TOADER

weighted and finally the modalities model which predicts classes representing
the type of image modalities.

4.1. Model Overview. DOMAS is therefore a model that joins two types of
models: a question classification model and several image classification ones.
An overview of the flow model can be observed in Figure 1.

Figure 1. Model overview

As it can be seen, in Figure 1, the question is first passed through the
question classifier which predicts which type of question it is organ, plane,
modality or abnormality. Based on the predicted class an image classification
model is selected. For example, in Figure 1 the question is classified as an
organ question therefore the organ model is selected. For organ, plane and
abnormality the corresponding model is selected. For modality, four models
are available. To select the type of modality model we make use of dataset
analysis. We observe that there is a limited number of questions for each of
the four modality models in both train and validation that have as answer our
classes. All questions that do not fit in one of these question lists and start
with “is” or “was” are closed-ended questions, meaning the answer is either
yes or no, and the remaining questions are image modality related questions.
To handle yes or no questions, instead of treating them as classes and creating
new models we further analyze them and make use of the initial four models.

MEDICAL VISUAL QUESTION ANSWERING USING SWIN TRANSFORMER 61

We observe that each of the yes/no questions refers, in fact, to the informa-
tion obtained using the previously mentioned models. Therefore, we create a
function that extracts the type of modality model from the question and also
the expected answer. For example, from the question “is this a t1 weighted
image?” we extract the type of model, which is the weighting model, and also
the expected class which is “t1”. Therefore, we fed the image into the weight-
ing classification model and if the class predicted by the model matches the
expected one, we predict the answer “yes”, and “no” otherwise. For modality
type closed-ended questions we notice that the questions only enquire about
“MRI” and “CT” scans, we return either “CT” or “MR” as the expected
class. However, these answers are not classes for the modality model on their
own. For that reason, we replace the perfect match for the yes answer with an
inclusion. For example, if the expected class is “CT” and the predicted class
is “CT - myelogram” we return the answer “yes” as “CT” is contained in the
answer.

After the correct model has been selected, the image is given as input to the
model and the predicted class is obtained and transformed from its numeric
representation used by the model into the textual one using the corresponding
model dictionary completing the inference.

4.2. Models Architectures. The total of eight models, one for text and
seven for images, have been trained individually. More details about the ar-
chitectures and training process are available in this subsection.

The question classification model is used for differentiating between the four
major types of questions. It is based on a pretrained BERT [6] model that
we finetune for our classification. The question is pre-processed by applying
the BERT tokenizer. The model consists of the pre-trained BERT, followed
by a dropout layer and a linear layer produces the final prediction. Lastly,
ReLU activation is applied. One concern regarding this model was that it
might affect the overall accuracy of the model by misclassifying the questions
which would result in an erroneous result from the start. Fortunately, the
model achieves 100% accuracy on the task thus eliminating the concern and
providing the model with a greater generalization power than a classification
based on pattern matching.

For the image classification models we expand the dataset by using image
augmentations. After testing with several augmentation types and excluding
the ones that could alter the image in such way that the label would no longer
be fitting, such as random rotations, horizontal and vertical flips, we decided
to use random resized crop with a size of 224, which randomly crops the image
and that resize it to the given size, as it was the version that yielded the best
improvements.

62 TEODORA-ALEXANDRA TOADER

For each type of image model we experimented with a Swin-based classifier.
The architecture of the model can be observed in Figure 2.

Figure 2. Image classification model architecture

As can be seen, the resized image enters the Swin model pretrained on the
ImageNET dataset [5]. We experiment with different model versions such as
tiny, small and base. The head of the model is modified in order to change
the ImageNet classification task with our task. Therefore, the output of the
Swin backbone is passed first through a linear layer. Next, ReLU activation
and a dropout layer [15] are applied and finally the last linear layer obtains
the final class. After analyzing the dataset, we observed that some classes
are not present in the training dataset but appear in the validation dataset.
We eliminated these classes, namely, “pet-CT fusion” from the modality split
and “Mammo-XCC” from the plane classes. After this process the number of
classes were 10 for organ classifier, 14 for plane, 1485 for abnormality and 44
for modality which were split into two for contrast mode, three for weighted
model, three for contrast type model and 34 for modalities; the remaining two
were the yes/no answers.

We chose Cross Entropy Loss since we performed multi-class classification
and the Adam [9] and SGD optimizers depending on the case. Parameter
settings and other implementation details will be further detailed in Section
5.

More details about hyperparameters settings as well as the results obtained
by our model will be presented in Section 5

5. Experiments and Results

5.1. Experimental Setup and Results. We trained and evaluated our
models using a Google Colaboratory environment. The training was com-
pleted for each model using the integrated Nvidia T4 GPU. As mentioned
before, we trained each model individually and selected the best models based
on the classification accuracy. For evaluating the model we used two metrics
namely the strict accuracy and Bleu score [11]. The parameter settings of the

MEDICAL VISUAL QUESTION ANSWERING USING SWIN TRANSFORMER 63

final models can be seen in Table 1. The parameters were chosen empirically.
To select the Swin version for each model we performed experiments with the
pre-trained tiny, small and base versions and selected the best performing one
based on accuracy and F1-score. If different versions obtained the same results
we selected the smallest model between them.

Model
Swin

Version
Optimizer

Linear Layer
Output Dim

Activation
Function

Dropout
Rate

Organ Tiny Adam 384 ReLU 0.5
Plane Tiny Adam 384 ReLU 0.5

Abnormality Small Adam 1536 ReLU 0.5
Modality
Contrast

Small SGD 384 ReLU 0.5

Modality
Contrast Type

Tiny Adam 128 ReLU 0.5

Modality
Weighting

Base Adam 384 ReLU 0.5

Modality
Modalities

Small Adam 384 ReLU 0.5

Table 1. Parameters Setting for the employed models

We used the models with the configurations presented in Table 1 in combina-
tion with the question classifier, which achieved 100% accuracy and obtained
the final results which are presented in table 2

Metric Organ Plane Modality Abnormality Overall

Strict
Accuracy

0.744 0.824 0.824 0.072 0.616

BLEU
Score

0.789 0.838 0.774 0.215 0.654

Table 2. Model Results

As we can see from the results, our model obtains a 61.6% score in strict
accuracy and 65.4% BLEU score. The lowest performing model is as expected
the abnormality model since the number of classes is indeed the largest. We
can also observe that some models have high BLEU scores compared to ac-
curacy which could mean that the model does not give a perfect answer but
could give a close one.

64 TEODORA-ALEXANDRA TOADER

5.2. Discussion and comparison to related work. Our model achieves
promising results on the MVQA 2019 dataset, especially for the plane, organ
and modality questions. For the abnormality model the high number of classes
corresponding to the answers as well as the existence of many classes in both
validation and test dataset which are not found in the train set lead to a lower
performance. For the other models we will further discuss the results in order
to better understand the strong points and the shortcomings of the models.

For the organ model, we found that some questions in the validation and test
dataset have more than one organ system given as answers. More specifically,
in the test dataset there are nine such answers out of the 125. This is not
a case that we treated during training or as postprocessing, therefore the
model cannot make a correct prediction from the perspective of strict accuracy.
However, when analyzing these answers compared to the predictions, we found
out that in seven out of the nine cases our model predicted an organ system
that was part of the answer which partially increased the Bleu score. In
order to analyze if there is a pattern in the misclassifications of the model, we
constructed the confusion matrix, Figure 3 (left), from which we left out the
answers that have more than one organ system. We can observe that the most
frequent misclassifications are between face, sinuses and neck and skull and
contents or gastrointestinal and genitourinary and vascular and lymphatic,
but most classifications are indeed correct.

Figure 3. Confusion Matrices for Organ and Plane

We constructed a confusion matrix for the plane model, Figure 3 (right),
classification on the test set as well. As we can see the classes found while
testing are fewer than the ones found in the train dataset. For this model there

MEDICAL VISUAL QUESTION ANSWERING USING SWIN TRANSFORMER 65

are fewer misclassifications, as expected after seeing the metrics. However, we
can observe that the mistakes are more frequent for the less represented classes.

Figure 4. Confusion Matrices for Contrast and Weighting classifications

For the modality models we took a closer look at the results of the contrast,
weighting and modality models. Even though our models do not treat yes
and no as classes in the classification we constructed the matrices based on
the final answer given by the modality model which was constructed to give
an affirmative or negative answer as described in Section 4. For the contrast
classification, one class that did not appear in training or validations set was
found when testing therefore we removed the singular answer. We can see
in Figure 4, that the model tends to predict the noncontrast class instead of
contrast one rather than the other way around, which we also found to be true
when analyzing more deeply the true meaning of the yes and no answers. For
the weighting model we observed that there is a tendency to predict ‘t2’ type
which is the best represented class out of the modality weighting types.

For the modalities confusion matrix, Figure 5, we used again the test clas-
sification data. We notice that many discrepancies between the predicted and
true classes are generated by the different types of CT scans which explains
the good prediction for yes or no answers since they only inquire whether the
image is or not a CT scan or an MR image meaning that the prediction in-
cludes more classes which are usually only confused with one another. We can
also see confusions between different types of ultrasounds or similar classes
which explains why the Bleu score is higher that the strict accuracy.

After analyzing the results of the model overall as well as individually for
each component we can affirm that using Swin as an image classification
method for this dataset offers promising results especially for the organ, plane
and individual modality models. Moreover, our approach to the models for

66 TEODORA-ALEXANDRA TOADER

Figure 5. Confusion Matrix for Modalities classification

the modality questions makes these sub-tasks suitable for image classification
by giving each model meaningful classes to discern from. By not using the
yes and no answers as classes by themselves, but rather understanding from
the question what the desired information is and constructing the inference
accordingly we created models that can in fact predict the yes and no answers
correctly, most of the time, without the need for extra classes or models.

In order to have the best understanding of where our results stand, we
compared our model with other literature approaches, namely the first five
teams of the Image-CLEF 2019 competition according to the dataset as well
as the JUST [2] team since they also used an image classification approach
and the two transformer-based approaches we mentioned in Section 2. The
comparative results can be observed in Table 3, the results obtained by our
proposed model being highlighted. As the test set was the same for all the
papers, we did not replicate the experiments but rather got the corresponding
results from each paper.

MEDICAL VISUAL QUESTION ANSWERING USING SWIN TRANSFORMER 67

Model Organ Plane Modality Abnormality
Overall

Accuracy
Overall
BLEU

Henlin
[22]

0.736 0.768 0.808 0.184 0.624 0.644

Yan
[22]

0.736 0.768 0.808 0.168 0.62 0.640

Minhvu
[18]

0.76 0.776 0.84 0.088 0.616 0.634

TUA1
[22]

0.792 0.816 0.744 0.072 0.606 0.633

UMMS
[13]

0.736 0.76 0.672 0.096 0.566 0.593

JUST
[2]

0.704 0.728 0.64 0.064 0.534 0.591

CGMVQA
[12]

0.784 0.864 0.819 0.044 0.64 0.659

MMBERT
[8]

0.768 0.864 0.833 0.14 0.672 0.69

DOMAS 0.744 0.824 0.824 0.072 0.616 0.654

Table 3. Results compared with literature approaches

Compared to the models submitted for the competition our model achieved
the highest Bleu score and achieved the third score in accuracy. As for the
individual models, it achieves the highest accuracy for the plane classification,
ranks second for modality and third for plane. Compared to the JUST team
which had an image classification approach as well but used VGG as a back-
bone for classification, our results rank higher in all the categories which proves
that the Swin Transformer is a very suitable option for this task and could
potentially be seen as a good alternative to the CNN based networks that are
very popular choices for the MVQA task. Compared to the two transformer-
based models, our model does not obtain better results, but the results are
quite close. Our model surpasses the CGMVQA model for modality and ab-
normality results and it obtained a very close Bleu score. The MMBERT does
perform better in all categories, which shows the great impact of extra training
on more data.

Overall, our model obtains competitive results with the state-of-the-art
models in all categories except the abnormality one where the high number
of classes and small amount of data take a toll on the model’s ability to ef-
fectively classify all the abnormality answers. We plan on further improving
these results using various methods that are detailed in Section 6.

68 TEODORA-ALEXANDRA TOADER

6. Conclusions and Future Work

In conclusion, we proposed DOMAS, a model that breaks down the complex
MVQA task into multiple image classification tasks by processing the questions
using a BERT-based architecture and knowledge we extract while performing
exploratory data analysis on our dataset, Med-VQA 2019. Our approach
proposes a Swin Transformer backbone for the image classification models as
well as a unique way to select which models need to be developed based on
the nature of the question in a way that all classes make sense from an image
classification point of view. Our model achieves 0.616 score in strict accuracy
and 0.654 BLEU score which ranks it the third in accuracy and first in BLEU
among the participants in the ImageClef 2019 competition. The obtained
results are also comparable with current state-of-the-art transformer-based
model.

Our method shows that using the Swin Transformer architecture for working
with images is beneficial in this task and could be seen as a viable alternative
for the more popular CNN based networks which answers our first research
question. Our model performs well for the organ, plane and modality models
and we observe that our original approach of splitting the modality questions
into four subcategories and obtaining the yes and no answers as a postprocess-
ing of the model’s output based on dataset knowledge rather than treating the
answers as classes drastically improves the results in this category, making the
response to our second research question an affirmative one. Moreover, using
a BERT-based classifier, as opposed to a simpler pattern matching, for the
questions also provides a certain generalizing power to the model even though
the questions provided by the dataset are limited and quite redundant. How-
ever, the model also has some shortcomings such as lower level of robustness
since we do use dataset specific knowledge and also treat the problem as a
classification which makes the answer dependent on the training classes. We
can observe this issue in the abnormality model where one cause of the lower
performance could be the large number of answers in the test and validation
datasets that are not present while training.

Future work plans include addressing some of these drawbacks. We plan on
replacing the pattern matching methods used in the modality model classifi-
cation with an intelligent approach that would predict the correct model as in
the case of the question classification. Moreover, for yes and no questions we
would aim to obtain the model as well as the expected class that would later
be compared with the prediction in order to obtain the affirmative or negative
answer. We also believe that the organ model could be improved by treating
the case of multiple organ systems given as answer. As there is no information
in the questions that could indicate that the expected answer is a compound

MEDICAL VISUAL QUESTION ANSWERING USING SWIN TRANSFORMER 69

one, we believe that one viable approach would be to return all answers which
confidence exceeds a certain threshold. Finally, to improve the abnormality
model, we would like to explore the possibility of using a generative model
instead of a classification one or to use extra data for training this current
classification model.

References

[1] Abacha, A. B., Hasan, S. A., Datla, V. V., Liu, J., Demner-Fushman, D., and
Müller, H. VQA-Med: Overview of the medical visual question answering task at
ImageCLEF 2019. CLEF (working notes) 2, 6 (2019).

[2] Al-Sadi, A., Talafha, B., Al-Ayyoub, M., Jararweh, Y., and Costen, F. JUST
at ImageCLEF 2019 Visual Question Answering in the Medical Domain. In CLEF (work-
ing notes) (2019).

[3] Bao, H., Wang, W., Dong, L., Liu, Q., Mohammed, O. K., Aggarwal, K.,
Som, S., and Wei, F. VLMo: Unified Vision-Language Pre-Training with Mixture-
of-Modality-Experts, 2022.

[4] Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A., Padlewski, P., Salz, D.,
Goodman, S., Grycner, A., Mustafa, B., Beyer, L., et al. PaLI: A Jointly-Scaled
Multilingual Language-Image Model. arXiv preprint arXiv:2209.06794 (2022).

[5] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition (2009), pp. 248–255.

[6] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805 (2018).

[7] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recog-
nition, 2015.

[8] Khare, Y., Bagal, V., Mathew, M., Devi, A., Priyakumar, U. D., and Jawahar,
C. MMBERT: Multimodal BERT Pretraining for Improved Medical VQA. In 2021 IEEE
18th International Symposium on Biomedical Imaging (ISBI) (2021), IEEE, pp. 1033–
1036.

[9] Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980 (2014).

[10] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. Swin
Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of
the IEEE/CVF international conference on computer vision (2021), pp. 10012–10022.

[11] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics (2002), pp. 311–318.

[12] Ren, F., and Zhou, Y. CGMVQA: A New Classification and Generative Model for
Medical Visual Question Answering. IEEE Access 8 (2020), 50626–50636.

[13] Shi, L., Liu, F., and Rosen, M. P. Deep Multimodal Learning for Medical Visual
Question Answering. In CLEF (working notes) (2019).

[14] Simonyan, K., and Zisserman, A. Very Deep Convolutional Networks for Large-Scale
Image Recognition, 2015.

70 TEODORA-ALEXANDRA TOADER

[15] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The journal
of machine learning research 15, 1 (2014), 1929–1958.

[16] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning. In Proceedings of the
AAAI conference on artificial intelligence (2017), vol. 31.

[17] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. Attention Is All You Need. Advances in neural infor-
mation processing systems 30 (2017).

[18] Vu, M., Sznitman, R., Nyholm, T., and Löfstedt, T. Ensemble of Streamlined
Bilinear Visual Question Answering Models for the ImageCLEF 2019 Challenge in the
Medical Domain. In CLEF 2019-Conference and Labs of the Evaluation Forum, Lugano,
Switzerland, Sept 9-12, 2019 (2019), vol. 2380.

[19] Wang, W., Bao, H., Dong, L., Bjorck, J., Peng, Z., Liu, Q., Aggarwal, K.,
Mohammed, O. K., Singhal, S., Som, S., et al. Image as a Foreign Language: BEiT
Pretraining for All Vision and Vision-Language Tasks. arXiv preprint arXiv:2208.10442
(2022).

[20] Yan, X., Li, L., Xie, C., Xiao, J., and Gu, L. ImageCLEF 2019 Visual Question
Answering in the Medical Domain. Zhejiang University (2019).

[21] Yu, Z., Yu, J., Fan, J., and Tao, D. Multi-modal Factorized Bilinear Pooling with
Co-Attention Learning for Visual Question Answering. In Proceedings of the IEEE in-
ternational conference on computer vision (2017), pp. 1821–1830.

[22] Zhou, Y., Kang, X., and Ren, F. TUA1 at ImageCLEF 2019 VQA-Med: a Classi-
fication and Generation Model based on Transfer Learning. In CLEF (Working Notes)
(2019).

Department of Computer-Science, Faculty of Mathematics and Computer Sci-
ence, Babes, -Bolyai University, Cluj-Napoca, Romania

Email address: teodora.toader@stud.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 1, 2023
DOI: 10.24193/subbi.2023.1.05

FIELD EXPERIMENT OF THE MEMORY RETENTION OF
PROGRAMMERS REGARDING SOURCE CODE

ANETT FEKETE AND ZOLTÁN PORKOLÁB

Abstract. Program comprehension is a continuously important topic in
computer science since the spread of personal computers, and several pro-
gram comprehension models have been identified as possible directions of
active code comprehension. There has been little research on how much
programmers remember the code they have once written. We conducted
two experiments with a group of Computer Science MSc students. In the
first experiment, we examined the code comprehension strategies of the
participants. The students were given a task to implement a minor feature
in a relatively small C++ project. In the second experiment, we asked the
students 2 months later to complete the same task again. Before starting
the clock, we asked the students to fill a questionnaire which aimed to
measure program code-related memory retention: we inquired about how
much the students remembered the code, down to the smallest relevant de-
tails, e.g. the name of functions and variables they had to find to complete
the task.

After the second experiment, we could compare the solution times of
those students who participated in both parts. As one result, we could see
that these students could solve the task in shorter time than they did in
the first experiment. We also looked at the results of the questionnaire:
the vast majority of students could not precisely remember more than two
or three identifiers from the original code. In this paper, we will show how
this result compares to the forgetting curve.

1. Introduction

Software development is a knowledge-intensive and complex task that de-
mands programmers to master and utilize vast amounts of information. Pro-
grammers need to have a deep understanding of programming languages, al-
gorithms, and design patterns, among other things. Moreover, the retention
of knowledge and memory of previously written and read code is essential for

Received by the editors: 1 March 2023.
2010 Mathematics Subject Classification. 68U99.
1998 CR Categories and Descriptors. I.m [Computing Methodologies]: Miscella-

neous; J.m [Computer Applications]: Miscellaneous .
Key words and phrases. code comprehension, memory retention, experiment.

71

72 ANETT FEKETE AND ZOLTÁN PORKOLÁB

program comprehension and efficient coding. The memory retention of coding
concepts is important for programmers’ productivity, as they must be able to
recall previous code when creating new programs.

The ability to remember code and programming concepts is a critical com-
ponent in the development process, but it is not always clear how long the
retention lasts, or how it impacts performance. To address these questions,
this paper investigates the effect of forgetting on source code comprehension
and task solving time. We also examine whether programmers tend to remem-
ber code details or larger units, such as functions or algorithms. By answering
these questions, we can gain a better understanding of the cognitive processes
involved in programming and provide insights into how programmers can op-
timize their performance by retaining and recalling code more effectively.

In order to measure memory retention regarding source code, we conducted
two experiments with Computer Science MSc students, in which the partic-
ipants had to solve the same programming task and answer memory-related
questions. The experiments took place two months apart. After the second
experiment, we investigated the memories the participants had of the task, and
how that influenced their solution time. We asked the students to describe
their memories with as much details as possible in an essay question, and
asked them to fill a multiple-choice question which targeted the remembrance
of exact source code details.

In this paper, we attempt to answer the following research questions in
connection with source code comprehension and memory retention:

• RQ1: How does forgetting affect source code comprehension and
task solving time?

• RQ2: Are programmers more likely to remember the details of the
code, or larger units like functions or algorithms?

The rest of the paper is structured as follows: In Section 2, we present
earlier research about memory retention and programming experiments. In
Section 3, we describe the details of both experiments, putting more focus on
the second one. Section 4 contains the results of the second experiment. In
Section 5, we mention the possible threats to the validity of our study. Finally,
we conclude the paper in Section 6.

2. Related work

Our work is focused on the memory retention of programmers regarding
source code through two experiments in which the participants were given a
programming task to solve. In this section we present related research to show
how other studies conducted experiments that were centered around the work

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 73

of software developers, and attempts to measure how programmers remember
source code.

2.1. Program comprehension experiments. Programming tasks require
cognitive effort and mental models from programmers, and can affect them
physically. Many experiments have investigated program comprehension and
computer science students, examining various aspects. For example, Naka-
gawa et al. measured cerebral blood flow during program comprehension and
found that more complex code increased mental workload [14]. Andrzejewska
and Skawińska tracked eye activity and found that external conditions and cog-
nitive load affected comprehension speed [1]. Krüger et al. examined feature
traceability and program decomposition and found that feature traces were
helpful in solving tasks more quickly, while program decomposition hindered
it [10]. They also found based on developer interviews that self-assessments
are reliable sources of developer-related information, and programmers tend
to be correct when they recall memories on project-related questions that they
consider important [11]. Their findings confirm the study of Koenemann and
Robertson who investigated the analysis methods of professional developers,
and found that they focus on the software parts that they perceive as relevant
to them [9]. Cornelissen, Zaidman, and Dursen investigated trace visualiza-
tion and found that it could speed up task solving by 22% [3]. Kather and Jan
found that program comprehension and algorithm comprehension are not the
same, and that domain knowledge, experience, and abstract knowledge can
help solve tasks more quickly [8].

2.2. Memory retention and forgetting. In 1885, Ebbinghaus defined the
so-called ”forgetting curve” [4] (see Figure 1) after a series of experiments in
which his subjects tried to remember randomly selected words. The most im-
portant factor of the formula is time. The original experiments of Ebbinghaus
were since then replicated, confirming the correctness of the formula with some
small modification in its smoothness [13], and it has also been investigated in
the context of brain function [16]. The psychological experiments of Averell
and Heathcote [2] confirmed that the exponential curve is the best fit to model
human forgetting.

Forgetting and memory retention has been scarcely researched from a soft-
ware development and source code aspect. Some studies that utilize the for-
getting curve include the work of Xu et al. who investigated the concreteness
and readability of identifiers in the source code based on how easily program-
mers remembered them [18]. One study that is closer to our goals is the work
of Ünal et al. who looked at how repeated exposure to the same source code
helps solving programming tasks [17]. Kang and Hahn found in their study

74 ANETT FEKETE AND ZOLTÁN PORKOLÁB

Figure 1. The forgetting curve as described by Ebbinghaus
in the 19th century.

that forgetting affects methodological knowledge more than technology-related
knowledge [7]. Most similarly to our research objectives, Krüger et al. exam-
ined whether the forgetting curve is applicable in remembering source code.
Their experiment covered hours and days during which the programmers were
asked to recall memories of the source code [12]. Our aim is to investigate
whether programmers are likely to remember abstract levels and details of the
source code after a longer time period.

3. Experiments

We planned two experiments in advance: in the first one, we targeted the
code comprehension strategies of junior programmers. The goal of the sec-
ond experiment was to gain an understanding of the memory retention of
programmers of source code.

We asked Computer Science MSc students from Eötvös Loránd University
to take part in the experiment. The students were all enrolled in the Multi-
paradigm programming course whose main topic is advanced C++. A total
of 27 students took part in the first experiment, and 16 of them took part in
both. We considered MSc students to be better experimental subjects, since
they generally have more experience in programming (both as a job and as an
activity), and because of that, they are more conscious about code compre-
hension and programming tasks.

Both experiments consisted of two main parts: first, the students were asked
to fill a different questionnaire. Afterwards, the students were given a small

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 75

C++ task to solve in TinyXML2 1, a simple XML parser which contains only
three C++ source files of hundreds of lines of code. The task was focused on
code comprehension rather than writing new code: TinyXML2 is case-sensitive
by default regarding XML tags. The students had to make the library case-
insensitive by finding a particular line of code, and replace it with calling
a function that we readily provided for them. Thus, we could measure code
comprehension speed because the students only had to focus on understanding
the code and finding the line in question instead of spending time with writing
the replacement code.

The following function definition was provided for the participants:
#include <ctype.h>

int my_stricmp(const char* s1, const char* s2)
{

while (tolower((unsigned char) *s1) == tolower((unsigned
↪→ char) *s2))

{
if (*s1 == ’\0’)

return 0;
s1++; s2++;

}
return (int) tolower((unsigned char)*s1) - (int) tolower

↪→ ((unsigned char)*s2);
}

The line to be modified was line 1142 in tinyxml.cpp:
...
else if (!XMLUtil::StringEqual(endTag.GetStr(), ele->Name

↪→ ())) {
...

The correct solution:
...
else if (my_stricmp(endTag.GetStr(), ele->Name())) {
...

We divided the students into two groups: one group had to use CodeCom-
pass for code comprehension activities, the other group was free to use any
code editor or code comprehension tool. The latter group formed the control

1TinyXML2 GitHub repo: https://github.com/leethomason/tinyxml2

76 ANETT FEKETE AND ZOLTÁN PORKOLÁB

group in the first experiment. CodeCompass [15] is an open-source code com-
prehension framework which applies static analysis to the source code and its
environment (e.g. compilation database, version control repository), and pro-
vides various textual and visual support for understanding source code both
on code level and file level.

3.1. First experiment. In the first experiment, we investigated the usual
code comprehension strategies of young programmers, and how that correlates
with factors such as the amount of experience as a programmer, and language
familiarity. Building on our earlier study [6], we aimed to investigate the
comprehension functionality that students used during task solution.

In the questionnaire of the first experiment we inquired about the amount
of their work and general programming experience, as well as the languages
they were most familiar with. As mentioned above, 27 students took part in
this experiment: 15 had to use CodeCompass, and 12 were free to use any
other tool.

Based on the participants’ solution time and their answers to the question-
naire, we concluded that while more programming experience meant quicker
task solution, work experience correlated more with solution time. The stu-
dents in the CodeCompass group used our demo server2, which collects anony-
mous user activity using Google Analytics. The activity log in CodeCompass
showed that the students were majorly using top-down comprehension strate-
gies.

The details and results of the first experiment are elaborated in our previous
study [5].

3.2. Second experiment. The second experiment took part cc. two months
after the first one. As mentioned above, 16 students took part in both the
first and the second experiment, thus their results are relevant in this study.

The students were asked to solve the same programming task as in the
first experiment: find the line of code in TinyXML2 in which the function call
needs to be replaced with the provided function in order to make XML parsing
case-insensitive.

We asked them to fill a different questionnaire the second time. The ques-
tions were related to source code memory retention:

• Essay question: What do you remember from the first experiment?
Please provide as much information as you can, any detail can be
useful.

• Multiple-choice question: Which identifiers were in the program that
you had to modify? For this question we listed 9 correct and 21 false

2Demo server: https://codecompass.net/

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 77

identifiers. The false ones were most of the time very similar to the
correct ones, or they were made to sound relevant in an XML parser.

All students had to use the same tool for comprehension activities they used
in the first experiment. Our goal was to repeat the first experiment down to
every possible detail, in order to remove any additional factors that might
affect measuring memory retention. Both experiments were conducted in the
same university computer lab, and the machines were equipped with the same
hardware and software.

4. Results and discussion

By repeating the experiment, and asking the students about their memories
of the first experiment, we wanted to investigate whether participants remem-
ber source code details or structure, and whether remembering details of the
actual code correctly is correlated with quicker solution time. In our previous
study, we collected the common elements of code comprehension models [6].
These elements usually rely on how the code is written syntactically (e.g. bea-
cons are ”visual cues” in the code the programmer is looking for to identify the
meaning of a source code unit), this is why we focus on remembering actual
identifiers.

We evaluated the students’ responses to the essay question. 14 out of 16
students remembered the task clearly, and 9 students described steps of their
previous solution. It is worth noting, that multiple students explicitly stated
in their response that they do not usually remember exact identifiers of any
source code, instead they remember structural details.

Table 2 shows the number of correct and incorrect guesses of the multiple-
choice question for each student. We calculated the χ-square test for the
answers of the question to determine whether the distribution of responses
is significantly different from what would be expected by chance. Table 1
represents the contingency table of the calculation. We divided the responses
into two categories, marked and not marked.

Equation 1 shows the results of the test. The degree of freedom in the
calculation was 1, and the original significance was p < .05. The statistic
value and the calculated significance suggest that the students’ guesses were
influenced by the correct vs. incorrect nature of the answer. Equation 2 shows
the statistics of the test with Yates correction: the results in this case did not
change the conclusion, the null hypothesis (that the students’ answers are
independent of correctness of the answer) remains rejected.

(1) χ2(1) = 21.42, p < .00001

78 ANETT FEKETE AND ZOLTÁN PORKOLÁB

Correct answers Wrong answers
Marked 58 68

Not marked 77 247
Table 1. The contingency table used in the χ-square test for
the evaluation of the multiple-choice question in which we ex-
amined if the students remember identifiers correctly.

(2) χ2(1) = 20.37, p < .00001
In Table 2 we also listed the solution times of each student who took part in

both experiments. Comparing the two experiments, the solution times show
an average improvement of 16 minutes and 20 seconds. If we look at the
individual solution times, we can see that students performed better in all
cases we knew both solution times.

The proportion of correct vs. wrong guesses was greater or equal to 1
in the case of 8 students, while this number was below 1 for the other 8
students. Comparing the solution times, the students with better guess rate
improved by 16.97 minutes on average, while the other 8 students decreased
their average solution time by 15.6 minutes. The cc. 1.5-minute difference
between the average improvements shows that remembering identifiers better
correlates with quicker solution time. However, the significant improvement
in solution times for all participants suggests that remembering the process
of task solution is more significant than remembering exact identifiers in the
source code. We included in the rightmost column of Table 2 if a student
described steps or details of the solution in the essay question. 7 students who
had more correct than wrong guesses reported such memories, while only 2
students remembered any details from the solution. This result suggests that
remembering steps of an algorithm and exact details from a code base are
correlated.

To answer RQ1 (How does forgetting affect source code comprehension and
task solving time?), our data shows that the participants who reported more
memories of the first experiment - either in the form of actual identifiers or
verbal descriptions of the task or the source code - performed better on average
during the second experiment.

Solution times and responses to the questions suggest that the participants
had statistically significant memories of the source code after two months of the
initial experiment. To answer RQ2 (Are programmers more likely to remember
the details of the code, or larger units like functions or algorithms?), the data
suggests that there is a correlation between remembering exact details of the

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 79

source code and having more memories of the structure or steps of solving a
programming task.

The findings in reply to RQ2 are complementary to a related study [11] that
concluded from developer interviews that abstract knowledge of the source
code is more important to remember. However, our results are somewhat con-
tradictory of another study by Krüger et al. [12] who found that the forgetting
curve applies to remembering source code. According to our results, the par-
ticipants had a fairly good recollection of the solution process even after 2
months. This suggests that forgetting slows down after a certain amount of
time, as we observed memory retention after two months, and the aforemen-
tioned study investigates remembering source code after some days.

Student #
Solution
time #1
(mins)

Solution
time #2
(mins)

Correct ids Wrong ids
Detailed

mem-
ories?

1 11 3:05 7 7 ✓
2 N/A 25 5 7 ✗
3 33 8:03 3 2 ✓
4 19:50 N/A 2 2 ✗
5 N/A 14 6 4 ✗
6 11:30 8:54 5 6 ✓
7 26:40 4:34 1 3 ✓
8 30 8 7 3 ✓
9 7 1:20 4 4 ✓
10 23:48 16:54 2 7 ✗
11 37 27 1 3 ✗
12 59:48 19 2 3 ✗
13 24 2:50 4 3 ✓
14 N/A N/A 7 0 ✓
15 12 4:30 4 2 ✓
16 26:47 15:35 5 12 ✗

Table 2. The results of the second experiment. Comparing
solution times we can see that all students performed better
the second time which implies complex memory retention in
spite of inconsistent remembrance of exact identifiers.

5. Threats to validity

As any research that relies on human resources and input, our study holds
some obvious threats to validity.

80 ANETT FEKETE AND ZOLTÁN PORKOLÁB

Small number of participants. Although 27 students took part in the
first experiment, only 16 of them was present during the second one. The
students come from similar backgrounds considering their computer science
education and programming experience. This might narrow down our research
results regarding target population, making more experiments needed with a
more diverse pool of participants.

Incomplete data. The questionnaire was available for the students on
the Canvas learning management system. The responses of one student could
not be found after the experiment. The solution times were also collected
through Canvas, and some data was lost between the experiments, this is why
a few solution times are missing from Table 2. The missing data is omitted
in our calculations in order to avoid distorting results, hence the metrics in
our results are computed for 12 students instead of 16, the total number of
participants.

Short study period for the students. In our experiments, the students
had one hour both times to study the source code of TinyXML2. In reality,
a programmer spends much more time working on the same source code, so
their memory retention of the code is probably stronger. However, our data
shows that even with a short study period and after a longer intermission, the
students were able to recall the comprehension process and solved the task
quicker than the first time, which suggests that more time spent with the
same code instills even stronger memories.

Effects of the first experiment. The students were aware that they were
participating in an experiment both times which gives space to biased results
as they might have paid more attention to the code and exercise than they
would have had they not know about the experiment. However, at the time of
the first experiment, they did not know there would be a second one so they
had no direct reason to clearly remember the details of the first one after the
2-month break.

6. Conclusion

In this research, we presented the results of two consecutive experiments
with Computer Science MSc students in which we investigated the effect of
forgetting in source code comprehension and solving programming tasks. The
students were asked to fill questionnaires and solve the same C++ program-
ming task in both experiments. In the first experiment, we examined the
code comprehension strategies of the students, and the correlation between
task solution time, and work experience, general programming experience,
and familiarity with programming languages. In the second experiment, we
investigated how much the students remembered from the first experiment: we

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 81

asked them to describe their memories, and answer a multiple-choice question
about the actual identifiers in the source code.

In total, 16 students took part in both experiments. We executed a χ-square
test on the students’ guesses in the multiple-choice question. The test showed
that there is correlation between the correctness of an answer option and if it
was guessed by a student.

The average solution time was decreased by 16.3 minutes on average among
the participants. In case of the 8 students who marked at least as many
correct identifiers as wrong ones in the multiple-choice question, the solution
time improved by 15.6 minutes, and 16.97 minutes for the other 8 students.
This result suggests that remembering the process of task solution is a more
significant factor in code comprehension than remembering exact identifiers.
The results of our research suggest that remembering both structural and
code-level details contribute to quicker task solution, and that remembering
more exact details of the source code correlates with the retention of more
structural memories.

References
1. Magdalena Andrzejewska and Agnieszka Skawińska, Examining students’ intrinsic cog-

nitive load during program comprehension–an eye tracking approach, International Con-
ference on Artificial Intelligence in Education, Springer, 2020, pp. 25–30.

2. Lee Averell and Andrew Heathcote, The form of the forgetting curve and the fate of
memories, Journal of mathematical psychology 55 (2011), no. 1, 25–35.

3. Bas Cornelissen, Andy Zaidman, Arie Van Deursen, and Bart Van Rompaey, Trace
visualization for program comprehension: A controlled experiment, 2009 IEEE 17th In-
ternational Conference on Program Comprehension, IEEE, 2009, pp. 100–109.

4. Hermann Ebbinghaus, Über das gedachtnis, 1885.
5. Anett Fekete and Zoltán Porkoláb, Report on a Field Experiment of the Comprehension

Strategies of Computer Science MSc Students, 2022 IEEE 16th International Scientific
Conference on Informatics - Proceedings, IEEE, 2022, pp. 73–81.

6. Anett Fekete and Zoltán Porkoláb, A comprehensive review on software comprehension
models, Annales Mathematicae et Informaticae, vol. 51, Ĺıceum University Press, 2020,
pp. 103–111.

7. Keumseok Kang and Jungpil Hahn, Learning and forgetting curves in software develop-
ment: Does type of knowledge matter?, ICIS 2009 Proceedings (2009), 194.

8. Philipp Kather and Jan Vahrenhold, Is algorithm comprehension different from program
comprehension?, 2021 IEEE/ACM 29th International Conference on Program Compre-
hension (ICPC), IEEE, 2021, pp. 455–466.

9. Jürgen Koenemann and Scott P Robertson, Expert problem solving strategies for program
comprehension, Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 1991, pp. 125–130.

10. Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake, Effects
of explicit feature traceability on program comprehension, Proceedings of the 2019 27th

82 ANETT FEKETE AND ZOLTÁN PORKOLÁB

ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2019, pp. 338–349.

11. Jacob Krüger and Regina Hebig, What developers (care to) recall: An interview survey
on smaller systems, 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2020, pp. 46–57.

12. Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich, Do
you remember this source code?, Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 764–775.

13. Jaap MJ Murre and Joeri Dros, Replication and analysis of ebbinghaus’ forgetting curve,
PloS one 10 (2015), no. 7.

14. Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi Mat-
sumoto, and Daniel M German, Quantifying programmers’ mental workload during pro-
gram comprehension based on cerebral blood flow measurement: a controlled experiment,
Companion proceedings of the 36th international conference on software engineering,
2014, pp. 448–451.

15. Zoltán Porkoláb, Tibor Brunner, Dániel Krupp, and Márton Csordás, Codecompass: an
open software comprehension framework for industrial usage, Proceedings of the 26th
Conference on Program Comprehension, 2018, pp. 361–369.

16. Dong Gue Roe, Seongchan Kim, Yoon Young Choi, Hwije Woo, Moon Sung Kang,
Young Jae Song, Jong-Hyun Ahn, Yoonmyung Lee, and Jeong Ho Cho, Biologically
plausible artificial synaptic array: Replicating ebbinghaus’ memory curve with selective
attention, Advanced Materials 33 (2021), no. 14, 2007782.

17. Utku Ünal, Eray Tüzün, Tamer Gezici, and Ausaf Ahmed Farooqui, Investigating the
impact of forgetting in software development, arXiv preprint arXiv:2204.07669 (2022).

18. Weifeng Xu, Dianxiang Xu, and Lin Deng, Measurement of source code readability us-
ing word concreteness and memory retention of variable names, 2017 IEEE 41st An-
nual Computer Software and Applications Conference (COMPSAC), vol. 1, IEEE, 2017,
pp. 33–38.

Eötvös Loránd University,, Faculty of Informatics, Egyetem tér 1-3.,, 1053
Budapest,, Hungary

Email address: afekete@inf.elte.hu

Eötvös Loránd University,, Faculty of Informatics, Egyetem tér 1-3.,, 1053
Budapest,, Hungary

Email address: gsd@inf.elte.hu

	1. Introduction
	2. Related work
	3. Using Radare2 to obtain the static call graph
	3.1. IDA Pro alternatives
	3.2. Radare2 usage and commands
	3.3. Generating the static call graph

	4. Comparing Radare2 with IDA Pro
	4.1. Comparison metrics
	4.2. Dataset
	4.3. Results

	5. Conclusions and future work
	Acknowledgements
	References
	1. Introduction
	2. Related Work
	3. Dataset Description
	4. Proposed Approach
	4.1. Model Overview
	4.2. Models Architectures

	5. Experiments and Results
	5.1. Experimental Setup and Results
	5.2. Discussion and comparison to related work

	6. Conclusions and Future Work
	References

