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ABSTRACT. We present an interferometric HHG-2ω0 scheme and compare it to the 
usual XUV-IR RABBIT method that is widely used in attosecond science. Both methods 
are able to reconstruct the properties of an attosecond pulse train and can be used 
to measure attosecond ionization time delays in atoms and molecules. While they 
have several similarities, they also have conceptual differences. Here, we present 
some particularities of the HHG-2ω0 method and its advantages and drawbacks, 
which would help to define situations where it can provide information inaccessible 
by other technics. 
 
Keywords: Attosecond, Photoionization, RABBIT 

 
 
INTRODUCTION 
 

With the advent of attosecond science (1 as= 10-18 s), it is now possible to 
have access to the natural timescale of electronic motion [1,2]. The extreme-
ultraviolet (XUV) one-photon ionization of an atom or a molecule produces an 
electron in the continuum with a kinetic energy that depends on the interaction 
properties with the ionic core [3]. While the electron escapes, it experiences the 
interaction with its parent ion, and it can therefore be used as a probe of the ionic 
potential. Depending on these forces, the emitted electron can be attracted (resp. 
repelled) by the potential, which can be interpreted as an advance (resp. delay) on 
the ionization time. Such electron dynamics contain the details of the fundamental 
photoelectric process, thus unravelling the structure of the continuum of an atom 
or a molecule [4]. 
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Nowadays, it is experimentally possible to observe electron dynamics in 
time-resolved experiments, thanks to the development of High-order Harmonic 
Generation (HHG). HHG provides a table-top solution to produce attosecond pulses 
with a high degree of reproducibility and an intrinsically low temporal jitter between 
the XUV and the fundamental pulse. One way to probe attosecond dynamics is the 
RABBIT (Reconstruction of Attosecond Beating by Interference of Two-photon 
Transitions) method [5]. It employs an attosecond pulse train (APT) generated by 
HHG in gas, spatio-temporally overlapped with a perturbative dressing field. Both 
beams are produced with the same femtosecond laser source at the central 
frequency (ω0). Measuring the photoelectrons resulting from the interaction 
between an atomic or molecular target with XUV pulses with attosecond accuracy 
allows measuring the photoionization time delay with both temporal and spectral 
resolution [6]. This powerful method has demonstrated its relevance in many 
physical systems [6-9]. The method is well suited for small atomic targets that can 
usually be considered as a single active electron system. However, for more 
complex targets, with more than one active electron and with extra degrees of 
freedom, this method can still work [8] but suffers from a rapid congestion of the 
experimental signal [10].  

Recently, we proposed a variant of the RABBIT method that allows the 
experimental separation of the attosecond dynamics of a two active electron 
system [11]. The principle is to use a 2ω0 dressing photon energy (instead of ω0 for 
the RABBIT method) to avoid introducing new features (sidebands) in the XUV 
induced photoelectron kinetic energy spectrum (KES). Following this scheme, the 
photoelectron KES does not significantly vary with the XUV-2ω0 delay. Nevertheless, 
the attosecond information remains encoded in the angle of ejection of the 
electron in the laboratory frame. Hence, it becomes possible to recover the 
attosecond information by measuring the angularly resolved photoelectron KES as 
a function of the relative delay between the two pulses. This can be performed 
using a velocity map imaging (VMI) spectrometer [12] that is well suited for this 
purpose. The measurement of the time-resolved anisotropy parameter allows for 
the reconstruction of the electron dynamics.  

This method can be used as an alternative approach to the RABBIT technique 
to both reconstruct the attosecond pulse train [13] and the photoionization time delays 
in molecules [11]. This scheme is not limited to the experimental arrangement 
presented here, it can also take place under different experimental configurations. 
For instance, an equivalent configuration can be obtained by generating both even 
and odd harmonics (HHGeven+odd) dressed by a perturbative pulse centered around 
ω0. HHGeven+odd can be performed in a gas target using a pulse composed by a 



ATTOSECOND INTERFEROMETRY USING A HHG-2ω0 SCHEME 
 
 

 
37 

combination of ω0 and 2ω0 carrier fields locked in phase [14,15]. Also HHGeven+odd 
can be generated in a non-centrosymmetric media such as HHG from plasma mirror 
[16]. Time resolved photoelectron measurements obtained by the interaction of an 
HHGeven+odd dressed by an ω0 photon is equivalent to the HHG-2ω0 presented here 
(i.e. HHGodd-only-2ω0). In both cases, the dressing field couples the consecutive 
harmonics to each other.  

In the present work, we first present the HHG-2ω0 method in details: its 
experimental implementation, the produced signal, its particularities, and specific 
analysis. Second, we show an example of extraction of the ionization phase differences 
between two electronic states from an experimental signal. Finally, the differences 
with the RABBIT method are discussed. 
 
METHOD 
 

HHG in gas targets generated by a linearly-polarized femtosecond laser 
pulse centered around the central frequency (ω0) results in a spectral comb 
composed by odd harmonics of the fundamental laser frequency due to the centro-
symmetric configuration [17]. Such harmonics are separated by twice the fundamental 
frequency (2ω0). HHG is a non-perturbative process, where the nth order high harmonic 
yield does not follow the non-linear perturbation rule (yield∝In), but the high 
harmonics can have similar intensities leading to an intensity plateau up to the cut-
off energy given by Emax=Ip+3.2Up [18] (with Ip the ionization potential of the 
generating atom and Up the ponderomotive energy). Using a fundamental central 
frequency (ω0) in the near infra-red (ħω0 up to ~1.5 eV), HHG leads to a frequency comb 
in the XUV range (ħωXUV>10 eV). Since such harmonics are phase locked, the comb 
can correspond, in the temporal domain, to an attosecond pulse train (APT) [5,19]. 

The interaction of this APT with a single active electron system can lead to 
the ionization of the target because the XUV-photon energy is usually above the 
ionization potential of atoms and molecules. In the photoelectron KES, it results in 
peaks around the difference between the photon-energy and the ionization 
potential of the target (ħωXUV-Iptarget). The measurement of the resulting angularly 
resolved photoelectron KES by itself (cf. Fig. 1(a,d)) does not allow to reconstruct 
the phase of the emitted photoelectron wave packet because it corresponds to a 
squared modulus of the amplitude probability. The traditional way to access phase 
information relies on the use of interferometric technics. To this aim, it is possible 
to use a weak dressing field that couples the ionization channels. Hence, quantum 
interferences can take place and they carry the information on the relative phases 
of the electron wave packets. The attosecond information can be retrieved by 
scanning the linear spectral phase of the dressing pulse, which corresponds, in the 
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time domain, to the delay between the APT and the dressing pulse. The RABBIT 
method proposes to use a single ω0 photon to couple ionization channels between 
each other (Fig. 1(b,e)). This has the advantage to produce a signal on an a priori 
“background-free” photoelectron region and all the relevant information is 
gathered in the phase of the oscillation of the electron signal intensity. In contrast, the 
HHG-2ω0 method uses a single 2ω0 photon field to couple the ionization channels (Fig. 
1(c,f)). In this case, the oscillating signal is no longer measured on background-free 
conditions, and no significant changes can be observed in the angularly integrated 
photoelectron KES. However, the attosecond information remains present, and the 
oscillation appears as an asymmetric redistribution of the electron signal on each 
side of the laser polarization axis (vertical in Fig. 1). The electrons are preferentially 
redistributed either on the upper or lower side in the laboratory frame, involving 
odd β terms (βodd) of the Legendre polynomial expansion to describe the 
photoelectron angular distribution [20]. This asymmetry oscillates with respect to 
the delay between the APT and the dressing pulse frequency (2ω0). 

 

 
 

Fig. 1 (a-c) Numerical simulation of the angularly resolved photoelectron distribution with a 
vertical polarization (along the py-axis) of the pulses where the APT pulse is (a) alone, (b) dressed 
by an ω0 photon (RABBIT-scheme) and (c) dressed by a 2ω0 photon (HHG-2ω0 configuration). (d-f) 
Energetic diagram corresponding respectively to (a-c). The harmonics (vertical black arrows) are 
ionizing an electronic state (gray solid line) to the continuum. The dressings photons (red arrows 
for RABBIT and blue arrows for HHG-2ω0) lead to the one-photon energy redistribution of the 
photoelectrons. Interferences occur at the energies indicated by horizontal dotted lines. 
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In the present work, we consider the HHG-2ω0 process under the lowest 
order of perturbation theory (i.e. weak dressing field). In this case, the resulting 
electron wave function depends on several ionization paths. The derivation of the 
dipole transition has been presented in Laurent et al. [14,15,21]. Different paths can 
lead to a given final photoelectron energy (see Fig.1(f)) as summarized in Table 1: 

 
Table 1. Summary of the photo-absorption paths at the lowest order of perturbation theory, 

and the paths combinations that lead to a specific oscillating term in the interference. 
 

 
Paths 

  ħωXUV     (i) 
  ħωXUV + ħωdress    (ii) 
  ħωXUV - ħωdress    (iii) 

 
Interferences 

   (i) +(ii)   : βodd ; Yield=constant    ; Oscillation 2ω0  (1) 
   (i) +(iii)  : βodd ; Yield=constant    ; Oscillation 2ω0  (2) 
  (ii)+(iii)  : βeven ; Yield=vary            ; Oscillation 4ω0 (3) 

 
(i)The direct absorption of an XUV photon (ħωXUV), (ii) the absorption of an 

XUV photon and a dressing photon (ħωdress= 2ħω0), and (iii) the absorption of an 
XUV photon with a stimulated emission of a dressing photon. The interference (1) 
between the paths (i) and (ii) involves paths with a different number of photons. 
This results in an asymmetrical redistribution of the electron angular distribution 
with respect to the polarization axis (only βodd) maintaining constant the yield (2π 
angular integration of the photoelectron distribution). The corresponding oscillation is 
expected at the dressing field frequency (2ω0). A similar scheme appears in the 
interference (2), between the paths (i) and (iii) producing electrons at the same final 
kinetic energy.  

The interference (3) can take place between the paths (ii) and (iii). This 
interference corresponds to the RABBIT-like scheme, as shown in Fig.1 (e) where 
the central harmonic does not play any role. This interference is significantly 
different from the interferences (1) and (2) because, in this case, both paths involve 
the same number of photons leading to an interference that significantly changes the 
photoelectron KES. Since the transition parity is preserved, a symmetric redistribution 
of the electrons on each side of the polarization axis (βeven) is expected. This pattern may 
oscillate at twice the dressing field photon energy, hence at 4ω0. The interference (3) can 
easily be distinguished from the interferences (1) and (2) by measuring the oscillation 
frequency and the electron ejection anisotropy. Moreover, the interference (3) is 
expected to appear at higher dressing field intensity because more than one-
dressing photon is involved in the process.  
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The interferences (1) and (2) can be treated separately, their resulting 
intensities are summed up [14]. The asymmetric oscillation ΔSn(t) of the angular 
distribution that appears on the top of the XUV-only harmonic peaks (of the order 
n) can be written as: 

 

                                         (4) 
 

with t being the delay between the APT and the dressing pulse (t>0 corresponds to 
a dressing pulse that arrives later). An and ϕn are respectively the amplitude and 
phase of the one-photon ionization following the absorption of the nth order 
harmonic. Similarly, An±2 and ϕn±2 denote the corresponding amplitude and phase 
of the two-photon ionization following the absorption of a photon at the harmonic 
order n±2 accompanied with the one-photon emission or absorption of the dressing 
field. The amplitudes A depend on the photo-absorption cross-section and the HHG 
and dressing field intensity. The phases ϕ contain the dipole transition phase, the 
harmonics phase and the Coulomb interaction phase. The two contributions are 
oscillating at 2ω0 frequency, so their sum also oscillates at the 2ω0 frequency. The 
experimental signal Sn(t) at the harmonic location n can hence be re-written as a 
simple oscillation as follows: 
 
                                                                         (5) 

 
where Bn and φn are respectively the global oscillation amplitude and phase on the 
top of the harmonic n. Only Bn and φn terms are experimentally measurable by 
recording the time-resolved photoelectron KES on one side of the laser polarization 
axis. The measurable parameters (Bn and φn) are both depending on 6 parameters 
(An, An-2, An+2, ϕn, ϕn+2, ϕn-2).  

As a comparison, in the usual RABBIT method, an oscillation of the yield is 
observed in the sidebands with respect to the delay between the pulses. The 
sideband oscillation phase can be established from the phases ϕn+1 and ϕn-1, and 
the sideband oscillation amplitude from the amplitudes An+1 and An-1. At the lowest 
order of perturbation theory, the dressing field does not ionize, but redistributes the 
photoelectron intensity over different electron kinetic energies. Hence the RABBIT 
photoelectron yield on the harmonics peaks (bands) are also oscillating maintaining 
constant the total ionization yield. The oscillation of such bands depends on the 
interferences with the surrounding sidebands. Therefore, this band oscillation is 
comparable with the one of HHG-2ω0 method, because its expression is similar to the 



ATTOSECOND INTERFEROMETRY USING A HHG-2ω0 SCHEME 
 
 

 
41 

one presented in Eq. 4 with both terms negative (not only the second one). In the 
RABBIT method, despite that all the relevant information can be extracted from the 
sideband oscillation amplitude and phase, the analysis of the bands can also be used to 
refine the reconstruction due to the redundancy of the information [22]. Both bands 
and sidebands indeed encode the same (A, ϕ) parameters in a different way. 

The correspondence between (A, ϕ) and (B, φ) is not straightforward. The 
measured (B, φ) can dramatically change by slightly changing (A, ϕ). The (A, ϕ) terms 
can both be set experimentally using XUV optics such as metallic filters [23] that 
can modify the harmonic distribution and/or its spectral phase. In the following, we 
show the typical changes in (B, φ) due to amplitude (Fig. 2(b,e)) and phase (Fig. 
2(c,f)) shaping, from a reference condition (Fig. 2(a,d)).  

 
Fig. 2. Numerical simulation of Eq. 4 corresponding to the HHG-2ω0 method. (a-c) are the  
(A, ϕ) terms in solid blue line and orange circles respectively. (b) corresponds to an amplitude 
narrowing of (a), (c) four times stronger parabolic spectral phase compared to (a). (d-f) The 
corresponding amplitude B (blue) and phase ϕ (orange) of the 2ω0 oscillation using the 
respective spectra shown in (a-c). In the simulation, the ionization potential has been 
chosen to be 15.6 eV (close to the Ip of N2 and Ar), and ħω0=1.55 eV. 

 
The reference (A, ϕ) condition shown in Fig. 2(a) represents a comb of 

harmonics with a Gaussian envelope and a small quadratic spectral phase (chirp) of 
2000 as². Its corresponding oscillation, (B, φ) terms, are shown in Figure 2(d). The chirp 
appears as a linear distribution of the φ phase terms due to the consecutive phases 
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differences in Eq. (4). On the top of this tendency, a phase−jump (about π) appears 
close to the maximum of the Gaussian envelope. It corresponds to a sign change in the 
equation (4) where the term (An-2-An+2) becomes positive or negative (i.e. -1=eiπ). This 
implies a change in the most intense term in Eq. 4. In a first approximation, the B term 
distribution follows the product between the Gaussian envelope and its derivative, 
showing the highest oscillation where the slope of the envelope is pronounced. 

The narrowing of the A distribution by a factor of 4 (maintaining ϕ shape 
constant) leads to significant changes in both (B, φ) terms (see Figure 2 (b) and (e)). 
The linear slope in ϕn is still apparent, and the phase−jump is more pronounced due 
to a sharper difference between the (An-2-An+2) coefficients. The B amplitudes 
distribution is narrowed and more pronounced compared to the reference due to 
a significant change in the (An-2/An+2) ratio. A moderate narrowing of the A terms 
can lead to a very different set of (B, φ) terms. 

An increase by a factor 4 of the quadratic chirp (maintaining the A terms 
distribution) also leads to significant changes in both (B, φ) terms (see Figure 2 (c) 
and (f)). The resulting phases ϕ are linearly increasing with a stronger slope with a 
smooth phase-jump. On the other hand, the oscillation amplitudes B are enhanced 
compared to the reference because the terms in equation 4 do not efficiently 
cancel each other.  

In general, the use of an XUV filter affects both the amplitude and the phase 
of the harmonics that directly modify the (A, ϕ) set. Such changes can dramatically 
affect the (B, φ) distributions due to the coupling between the parameters. Let us 
notice that the flat phase case over an A terms plateau produces the lowest 
oscillation amplitude B increasing required performances of the experiment. This 
flat phase case is usually sought because it corresponds to the shortest attosecond 
bursts (when atomic/molecular effects are weak).  

In order to characterize a light-matter interaction, it is usually necessary 
to reconstruct the amplitude and the phase terms (A, ϕ) from an experimental 
measurement (B, φ). This task is not straightforward because of the high dimensionality 
of the problem and the correlation between the parameters. An experimental 
example is presented in the following. 
 
 
EXPERIMENT 
 

In a recent work, we used the HHG-2ω0 strategy to extract the relative 
ionization time delay between two electronic states of the N2 molecule [11]. The two 
uppermost levels, the X-state (2Σg

+, IpX=15.6 eV) and the A-state (2Πu, IpA=16.98 eV) in 
N2

+ ions are separated from each other by 1.4-1.7 eV in the photoelectron KES, 
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depending on the vibration level of the A-state. Following a standard RABBIT 
protocol using a standard Ti:Sa femtosecond-Laser as a seed (ħω0=~1.5 eV), the 
bands of an electronic state can overlap with the sidebands of the other electronic 
state [24]. In that case, an HHG-2ω0 protocol is well suited to separate the dynamics 
of the electronic states of this molecule. 

In the X-state of N2
+, a shape resonance appears at photon energy around 

30 eV [25]. The shape resonance has two consequences, first the absorption cross-
section experiences a maximum and second the phase of the escaping electron is 
significantly affected. A rapid change in the phase (ϕ), as a function of the photon 
energy (E), can be interpreted as a delay in the photoionization time, following the 
Wigner theory [26] τw=ħ∂ϕ/∂E. Since the X and A states are measured in similar 
experimental conditions, all the sources that affect the observations (phase of the 
harmonics, continuum-continuum phase, ...) can be considered as identical. The 
energy difference between the two states is small, and the A state has no resonance 
in this spectral region (τw(A)≈0). Therefore, it is possible to use the A-state as a 
reference to measure the dynamics induced by the shape resonance in the X-state. 

The experimental measurement is shown in Fig. 3. The measurement 
shown in Fig.3(a) represents the photoelectron distribution angularly integrated 
over the upper part of the VMI detector (over the range [-π/2 : π/2] with respect to 
the laser polarization axis) as a function of the time delay between the XUV and the 
dressing pulse. Since the attosecond oscillations represent only a few percent of 
the overall signal, the photoelectrons generated by the XUV-pulse measured alone 
have been subtracted to highlight the oscillating part of the signal in Fig. 3(a).  

 
Fig. 3. (a) HHG-2ω0 measurement in N2 (adapted from [11]) and (b) its corresponding 
Fourier transformation resolved in kinetic energy. (c) Amplitude of oscillation at 2ω0 (red) 
and 4ω0 (blue) compared to the mean oscillation amplitudes (black) of the Fourier 
transformation at other frequencies. 
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The Fig. 3 (b,c) shows the amplitudes of the oscillations as a function of the 
photoelectron energy. The oscillation amplitudes are extracted by performing a 
Fourier transformation of the temporal signal for the measured kinetic energies 
considered individually. Note that the amplitude is in log-scale which illustrates the 
difference in two orders of magnitude between the XUV-only photoelectron 
distribution (frequency=0 fs-1) and the HHG-2ω0 oscillation (frequency=0.75 fs-1, i.e. 
period of 1.33 fs). Fig. 3(c) shows the oscillation amplitude in a linear scale and 
compares them with the estimated noise level that is taken as the mean oscillation 
amplitude of the other frequencies (all frequencies except 0, 0.75 and 1.5 fs-1). This 
figure shows a SNR of about 10 between the amplitude of oscillations at 2ω0 
compared to the estimated noise level. It can be noticed that no oscillation is 
observed at the 4ω0-frequency (frequency=1.5 fs-1, i.e. period of 666 as). This 
indicates that the dressing field is weak enough and does not produce significant 
RABBIT-like oscillations in the observable (interference path (3)). 

In order to extract the ionization phases of the X and the A states of N2, it 
is necessary to reconstruct the (A, ϕ) terms from both (B, φ) terms extracted from 
the measurement shown in Fig. 3. An analytical reconstruction solution of the ϕ 
terms has been proposed by Laurent et al. [15] (iPROOF) from the experimental (B, φ) 
assuming that the A terms are measured separately. In principle, the A distribution can 
be associated to the photoelectron KES measured when the XUV pulse is alone. In 
our case, we do not strictly follow this principle because the focal size of the 
harmonics depends on their wavelength leading to a different effective overlap 
with the dressing field. In our case, the A terms are considered as free parameters, 
but the reconstructed effective HHG spectrum may gradually follow the directly 
measured HHG distribution. The reconstruction is given by an optimization algorithm 
that directly uses the equation 4. The determination of the initial guess is critical due 
to the presence of several local optimums in the optimization landscape.  

Figure 4 shows the result of the extraction of the relative ionization phase 
between the X and A-states in N2. The reconstruction of (A, ϕ) is performed for the 
two states considered separately. The experimental B term (Fig. 4(a)) is defined by 
integrating the oscillation over the peak width. The corresponding experimental 
phase is the center of mass of the phase over the width of the peak weighted by the 
oscillation amplitude terms. The reconstruction of the amplitudes A is not exactly the 
same for the two states due to slightly different photo-absorption cross-sections. The 
ϕ  terms shown in Fig. 4(e) present a slightly different behavior. Fig. 4(c) shows the 
first derivative of the phases for the two states considered separately. This term is 
defined as the difference between two consecutive reconstructed ϕ phases and is 
centered between the two considered harmonics orders. In this illustration, the 
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shape of the A-state is mainly due to the harmonics and the continuum-continuum 
phases since the molecular phase is assumed to be negligible in this energy region. 
The difference between the measurements are mainly due to differences in the 
derivatives of the phases of the dipole matrix elements describing the transitions 
to the X and A states. This provides the difference in ionization time delay between 
the two states. Ionization delays up to 50 attoseconds have been measured 
experimentally on the peak of the shape resonance around 30 eV (around the harmonic 
order 20), and positive delays are also observed at lower photon energies [11]. 

 
Fig. 4. Reconstruction of the ionization phase differences between the X and A-states of N2

+ 
represented in black and red respectively. Measured amplitude B (a) and phase φ (d) of 
oscillation at 2ω0. Reconstructed amplitude A (b) and phase ϕ (e) terms and (c) the 
corresponding phase derivative of the two states, considered separately, in attoseconds. 

 
 

CONCLUSION 
 

The HHG-2ω0 scheme is an alternative solution to the RABBIT method that 
provides the same attosecond information on the dynamics of a quantum system. 
However, the HHG-2ω0 and RABBIT methods have significant conceptual differences. 
The HHG-2ω0 method does not significantly change the photoelectron KES but 
relies on electron momentum βodd asymmetry, while the RABBIT method duplicates 
the number of contributions that oscillate with the sidebands appearance described by 
βeven angular terms. In the HHG-2ω0 method, both the spectral amplitude and phase 
of the initial pulse has an influence on both the amplitude and the phase of the 
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oscillations. In RABBIT, only the system’s phases play a role on the phases of the 
sideband oscillations. The HHG-2ω0 scheme provides a better contrast when using 
a harmonic comb that has a rapidly varying envelope and a non-flat phase, while 
RABBIT sidebands measurements exhibit a higher contrast. Let’s notice that the 
analysis of the RABBIT oscillation measured over the harmonics peaks is conceptually 
close to the HHG-2ω0 method. The reconstruction of the HHG-2ω0 method involves 
both the amplitude and phase of the experimental oscillation. In both methods, the 
attosecond oscillations appear at twice the dressing field 2ω0. Both methods allow 
us to reconstruct the temporal profile of an attosecond pulse train [13, 15] and 
measure the ionization time delay in atoms and molecules [11, 24, 27].  

The present HHG-2ω0 method is however unique when photoionization 
proceeds through several open channels, which leads to spectral congestion in the 
usual RABBIT measurements due to many overlapping contributions. This is already 
the case for small molecules such as nitrogen [11] and atoms with a strong spin-
orbit coupling such as Xenon, so that one can expect that the HHG-2ω0 method 
would be even more useful in complex molecules where the number of ionization 
channels is much larger. Also, it is of interest when both even and odd harmonics 
are generated and more generally, in all the configurations where only one 
attosecond pulse is present per optical cycle of the dressing field [14, 16, 28].  

Nowadays, many RABBIT-like interferometric scheme appear to access the 
attosecond information under various experimental conditions. For example, using 
the free-electron-laser radiation, the harmonics are separated by 3ω0 and the system 
can be dressed by one and two ω0 photons [29]. The development of different 
interferometric configurations can extend the “toolbox” of attosecond science to 
get suitable experimental arrangements for the study of attosecond dynamics in a 
large variety of quantum systems.  
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