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Cu2+ CONTAINING STRONTIUM-BORATE GLASSES STUDIED 
BY ELECTRON PARAMAGNETIC RESONANCE 

 
 

I. ARDELEAN*, M. PETEANU, R. CICEO-LUCACEL 
 
 

ABSTRACT. EPR absorption spectra of Cu2+ ions were 
investigated in 2B2O3⋅SrO and 2B2O3⋅SrF2 glasses over a wide 
concentration range. Octahedral environments axially distorted 
were detected. A great structural stability of the vitreous matrix 
when copper accumulate during the doping process, characterises 

the investigated systems. No clusters of Cu2+ ions were detected. 
Mixed valence states of copper ions were revealed, especially at 
high CuO content. The influence of composition changes when 
using SrO or SrF2 as network-modifier upon the valence state and 
distribution of copper ions was also revealed. 

 
 
 Introduction 
 There are several factors such as composition, melting 
temperature, cooling rate, etc. which determine the local order and 
consequently the properties of the oxide glasses. For study the ways in 
which these factors influence the glass structure and properties magnetic 
resonance methods were often used [1]. Borate glasses were investigated 
by means of both NMR of the 11B nucleus [2-4] and EPR of paramagnetic 
ions involved in their composition, one of the most sensitive to the matrix 
structure being Cu2+ [5-7]. The valence state of copper impurities 
introduced to probe the vitreous matrix depend on glass composition. 
There are vitreous systems where only the divalent state of copper ions 
was reported [8] and other containing both Cu+ and Cu2+ ionic species [9-
11]. 
 This paper aims to present our results concerning strontium-borate 
2B2O3⋅SrX glasses, for X = O, F2, investigated by means of EPR of Cu2+ 
ions introduced by controlled doping as paramagnetic probes. The purpose 
of research was to see how changes in the matrix composition may 
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influence the valence state of impurity ions and their distribution on various 
structural units building the glass. 
 
 Experimental 
 Structural details of two oxide vitreous matrices, namely 2B2O3⋅SrO 

and 2B2O3⋅SrF2, were investigated by means of EPR of Cu2+ ions 
introduced by controlled doping within a broad concentration range. 
Consequently, two series of samples:  
  (1) xCuO(100-x)[2B2O3⋅SrO] 
  (2) xCuO(100-x)[2B2O3⋅SrF2] 
both having 0.1 ≤ x ≤ 30 mol %, were analysed. Samples were prepared by 
using reagent grade compounds, i.e. H3BO3, SrCO3, SrF2 and CuO. The 
melting was performed in sintered corundum crucibles, in an electric 
furnace, at 1250oC. After 30 min. the molten material was quenched at 
room temperature by pouring on a stainless-steel plate. 
 The samples structure was tested by mean of X-ray diffraction. The 
diffraction pattern did not reveal crystalline phases up to 30 mol % CuO.  
 EPR measurement were performed using a JEOL-type 
spectrometer, in the X frequency band, at room temperature and a field 
modulation of 100 kHz. 
 
 Results and discussion 
 The recorded EPR spectra evidenced for both series of samples 
Cu2+ (3d9) ions entered the matrix as paramagnetic species. The shape 
and intensity of the EPR absorption line depend strongly of the Cu2+ ions 
concentration in the sample, that is the reached doping level. The evolution 
of the absorption spectra when increasing the CuO content of sample may 
be followed in Fig. 1 showing several representative spectra of the 
investigated systems. The absorption line is asymmetric, characteristic for 
Cu2+ ions in axially distorted octahedral symmetric sites. For both systems 
the spectrum keeps its asymmetric character within the entire 
concentration range proving the great structural stability of the vitreous 
system in accepting Cu2+ ions in units having more or less the same 
symmetry and configuration. 
 Within the low concentration range (0.1 ≤ x ≤ 5 mol %) the spectrum 
shows the hyperfine structure (hfs) due to the interaction of the unpaired 
electron spin with the nuclear one, I = 3/2, characteristic to Cu2+ ion. The 
hfs is well resolved in both parallel and perpendicular band of the 
spectrum. Its evolution when increasing the CuO content is presented in  
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Fig. 1. EPR absorption spectra due to Cu2+ ions in glasses of the xCuO(100-x)[2B2O3⋅SrO] 

system (a) and xCuO(100-x)[2B2O3⋅SrF2] system (b). 

 
Figs. 2 and 3 for some representative spectra of the two systems. The best 
resolution was obtained at the lowest degree of impurification. As rising the 
concentration of paramagnetic ions the resolution diminishes due to the 
individual hfs lines broadening, the hyperfine structure smears out,  



I. ARDELEAN, M. PETEANU, R. CICEO-LUCACEL 
 
 

 6 

 
 

Fig. 2(a). The evolution of hfs in the parallel band when increasing  
concentration in xCuO(100-x)[2B2O3⋅SrO] samples. 
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Fig. 2(b). The evolution of hfs in the perpendicular band when increasing  
concentration in xCuO(100-x)[2B2O3⋅SrO] samples. 
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so that for samples with high paramagnetic ions content the line reduces to 
the broad envelope of all contributions to the EPR absorption. The 
relatively broad range in which the spectrum shows a resolved hfs denote 
an appreciable degree of short range ordering in the vitreous matrix built by 
approximately identical structural units, involving Cu2+ ions. 
 For spectra with the best resolution, the A|| and A� hyperfine 
constants were estimated as separation between the central pair of peaks 
in the parallel, respectively perpendicular band, and the values of the 
corresponding g factor were calculated, in the midpoint of this. The values 
are given in Tables 1 and 2. The accuracy in estimating these parameters 
was compromised by the progressive broadening of the hfs components. 
 The obtained g|| and g� values satisfy the relationship g|| > g� > ge 

= 2.0023 characteristic to Cu2+ ions coordinated with six ligand atoms in a 
distorted octahedron, elongated along one axis. The values of the EPR 
parameters attest the predominantly ionic character of bonding between 
Cu2+ ion and the ligand atoms. Because Cu2+ is a network-modifier in our 
samples [12] there is a competition between Cu2+ and the network-forming 
cations in its neighbourhood (B3+ in our case) in attracting the oxygen 
pairs, available in its vicinity. The covalence of the Cu2+ - O bonds 
increases when the B-O bonds become weaker in structural aggregates 
involving them. 
 In the parallel band the hfs lines are almost equidistant whereas in 
the perpendicular band the separation between them increases with 
increasing the magnetic field. Another characteristic of the parallel hfs lines 
is their progressive broadening as following the m values (the magnetic 
quantum number denoting each hf transition). This is the effect of 
fluctuations in the ligands field involving Cu2+ ion from a structural 
aggregate to another. For samples containing x < 5 mol % CuO the shape 
and structure of the resonance line is typical to isolated Cu2+ ions in sites 
of axial symmetry. As rising the CuO content of the sample, the poor 
resonance line resolution is due to the individual line broadening as effect 
of dipolar interactions increasing and to ligand field fluctuations in the 
paramagnetic ion neighbourhood. Consequently the hfs peaks width 
become larger than the separation between them, so finally the line results 
as a large envelope of all contributions. As effect of inter ionic interactions 
increasing the g� factor values increase for both systems according to the 
data in Tables 1, 2. 
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Fig. 3(a) The evolution of hfs in the parallel band when increasing  
concentration in xCuO(100-x)[2B2O3⋅SrF2] samples. 
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Fig. 3(b) The evolution of hfs in the perpendicular band when increasing  
concentration in xCuO(100-x)[2B2O3⋅SrF2] samples. 



Cu2+ CONTAINING STRONTIUM-BORATE GLASSES STUDIED 
 
 

 11 

Table 1. EPR parameters corresponding to the resolved  
parallel band of the spectra 

 
System x 

[mol %] 
A|| 
[G] 

 
g|| 

(1) 3 142.85 2.3228 
 5 157.14 2.3174 

(2) 3 149.99 2.3118 
 5 155.71 2.3229 

 
Table 2. EPR parameters corresponding to the resolved  

perpendicular band of the spectra 
 

System x 
[mol %] 

A� 

[G] 

 
g� 

(1) 0.3 25.15 2.0605 
 0.5 23.21 2.0652 
 1.0 23.21 2.0626 
 3.0 23.49 2.0637 
 5.0 23.21 2.0648 

(2) 0.3 25.45 2.0613 
 0.5 25.45 2.0632 
 1.0 24.29 2.0640 
 3.0 21.78 2.0626 
 5.0 21.24 2.0623 

 

 From structural point of view the two systems have an similar 
evolution when adding CuO in their matrices, but the resonance line 
intensity changes differently when increasing concentration. The hfs 
resolution also differs for the two systems, hfs being better resolved on 
spectra corresponding to samples of system (2) than those corresponding 
to system (1). The absorption signal intensity, �, estimated as the 
absorption line integrate, is proportional with the number of spins involved 
in the resonance phenomenon, that is the paramagnetic ions 
concentration. We plotted in Fig. 4 the variation � = f(x) for the two 
systems. One notes higher values of � for samples of system (2) compared 
to those corresponding to system (1) and quite different evolution of these 
as increasing concentration. The values of � characteristic to system (1) 
increase up to 15 mol % CuO, then, the increase is practically stopped. For 
samples of system (2) the values of � increase almost within the entire 
concentration range with a slight change of slope of the variation curve at 
about 10 mol % CuO. There is a change in the � = f(x) evolution with 
concentration for both systems, i.e. in the progressive accumulation of 
Cu2+ ions during the doping process. � does not follow linearly the doping 
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level of the sample for x > 10 mol % CuO, suggesting some other valence 
state of copper ions, different from Cu2+, which now do not contribute to 
the EPR absorption. These new ions balance the paramagnetic Cu2+ ionic 
species so that for samples of system (1) the addition of CuO no more 
change the EPR line intensity. The Cu+ ionic species simultaneously 
present with the Cu2+ ones are the most probable, their apparition when 
preparing samples being favoured in the melt of system (1) more rich in 
oxygen that the melt corresponding to system (2). By replacing SrO by 
SrF2 in the vitreous matrix the (2+) valence state of copper was favoured. 

Consequently for samples of system (2) the Cu2+ ions concentration is 
higher than in samples of system (1), the EPR absorption lines are intenser 
and their hfs better resolved. Optical measurements data agree very well 
with these assumptions [12]. 
 

 
 

Fig. 4. Concentration dependence of the EPR line intensity corresponding to xCuO(100-
x)[2B2O3⋅SrO]...(*) and xCuO(100-x)[2B2O3⋅SrF2]...(.) glasses. 
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 Conclusions  
 Homogeneous glasses corresponding to [2B2O3⋅SrO] and 
[2B2O3⋅SrF2] glass matrices containing CuO within a broad concentration 
range (0.1 - 30 mol %) were obtained.  
 For all samples EPR absorption spectra due to Cu2+ ions were 
recorded. Up to 5 mol % CuO isolated Cu2+ ions in axially distorted 
octahedral sites (octahedron elongated along one axis) were detected. 
None of systems did not show resonance lines due to clustered formations 
of ions. The hyperfine structure resolved in both parallel and perpendicular 
bands of the spectra, show structural stable matrices when adding Cu2+ 
ions, within a relatively broad concentration range.  
 The interactions in which Cu2+ paramagnetic ions are involved 
revealed as dipole-dipole ones. The chemical bonding are preponderant 
ionic. The capacity of vitreous matrix in accepting copper ions in the (2+) 
valence state differs considerably from one system to another, the 
[2B2O3⋅SrF2] one presenting itself much more available than the other. By 

changing the network-modifier (SrF2 instead of SrO) the Cu2+ species 
concentration increases and consequently the intensity of the EPR 
absorption rises and spectrum’s resolution improves. For concentrations 
greater than 10 mol % CuO the Cu+ ionic species simultaneously enter the 
matrix with the Cu2+ ions during samples preparation. They do not 
contribute to the EPR absorption.  
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MAGNETOSTRICTION OF THE AMORPHOUS  

Tb0.27Dy0.73(Fe1-xCox)2 THIN FILMS 
 
 

S. SÁRKÖZI 1, J. BETZ 2, N. H. DUC3, K. MACKAY 2 

 
 

ABSTRACT. A series of amorphous Tb0.27Dy0.73(Fe1-xCox)2. 
Thin films were prepared. Magnetic and magnetostrictive 
measurements were performed. The partial substitution of Fe 
atoms by Co enhance magnetostriction. 

 
 

INTRODUCTION 
 Magnetostrictive thin films have been studied since at least 1976 
[1]. There is presently a renewed interest in these materials because of 
their potential use in microsystem applications [2],[3],[4]. The 
magnetostriction of  R-Fe based alloys originates from the coupling 
between the R (ions that have highly aspherical 4f orbital) and the Fe 
moments. 
 The aim of our research was to find materials with high 
magnetostriction at sufficiently low magnetic fields. In order to obtain this, it 
is necessary to have low macroscopic anisotropy. That was obtained earlier 
in the famous cubic compound Tb0.27Dy0.73Fe2, by combining two types 

of rare-earth, with positive and negative 4th order anisotropies [1]. An other 
way was to use amorphous materials [5]. 
 In this paper there are presented magnetic and magnetostrictive 
properties of the Tb0.27Dy0.73(Fe1-xCox)2 thin film series. The role of the 
substitution of the Fe atoms by Co is discussed. 
 

EXPERIMENTAL 
 A series of amorphous Tb0.27Dy0.73(Fe1-xCox)2 thin films were 
deposited on glass substrate (microscope cover-slips with a nominal 
thickness of 150µm), by RF magnetron sputtering [6]. The height of the 
films was measured by π-step with a precision of 5% and the typical film-
thickness was 1.2µm. The final composition of the films was determined by 
Scanning Electron Microscopy (SEM). X-ray diffraction was used to verify 
that no crystalline phase occurred. The samples were annealed for 1 hour 
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under a magnetic field of 2.2T in order to induce an in-plane anisotropy. 
Heat treatments were made at 1500C and 2500C.  
 Magnetic and magnetostrictive measurements were performed. The 
magnetisation was measured using Vibrating Sample Magnetometer (VSM) 
in fields up to 8T from 4.2K to 300K. 
 Magnetostriction was determined using an optical deflectometer 
(cantilever method) [7], [8],[9]. This allows the magnetoelastic coupling 
energy b of the film to be determined [10]: 

)1(6

E

h

h

L
b

s

s

f

2
s

ν
α

+
= , 

where α - the angle of the deflection of the sample as a function of the 
applied field. 
 L - the length of the sample (in the order of 10 mm) 
 hs - the thickness of the substrate 
 hf - the thickness of the film 
 Es - Young’s modulus of the substrate (it was taken to be 72GPa) 
 �s - Poisson’s ratio of the substrate  (0.21). 
For comparison, magnetostriction (λ) values were calculated, using: 

λ =
+b v

E
f

f

( )1
, 

where Ef and vf are the Young’s modulus and Poisson’s ratio of the film, 
taken to be 80GPa and 0.31, respectively. 
 We measured two coefficients at saturation, b// and b⊥, which 
correspond to the applied field direction parallel and perpendicular to the 
sample length and always in the film plane. In addition, the perpendicular 
direction corresponds to the easy-axis. The intrinsic properties of the 

material depend on the parameter bγ,2 (or λγ,2) which is just the difference 
b// - b⊥ (or λ//-λ⊥). 
 

RESULTS AND DISCUSSION 
 

Table 1. presents the concentration and the thickness of each prepared Tb0.27Dy0.73(Fe1-
xCox)2 film. 

 

Sample xCo hf (µm) 

1 0.00 1.45 
2 0.12 1.25 
3 0.31 1.55 
4 0.47 1.10 
5 0.65 1.55 
6 0.83 1.55 
7 1.00 1.50 
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 Fig. 1. shows the hysteresis-loops for the sample 4 before (curve a) 
and after annealing (curve b). One can see that the annealed sample 
reaches saturation of magnetisation in lower magnetic field, which means 
that the effect of annealing was to reduce the internal stress of the sample. 
 

 
Fig. 1. Hysteresis-loops in case of sample 4 

 

 
Fig. 2. Magnetisation for several cycles of heating and cooling in case of the 

oxidation-protected film 



S. SÁRKÖZI, J. BETZ, N. H. DUC, K. MACKAY 

 
 

 18 

 In order to verify the conservation of amorphous state, we 
measured the magnetisation for an oxidation-protected, supplementary 
sample in several cycles of heating and cooling (Fig. 2.). The protection 
against the oxidation was insured by a Ta layer ( non magnetic) deposited 
on top of the film. The composition of this film was xCo = 0.55. The 
following thermal cycles were performed: 340-450K, 340-560K, 340-660K, 
340-720K. Above 560K, the magnetisation process is no longer reversible, 
so at greater temperatures than this, the crystallisation process appears. In 
case of this sample we found the compensation temperature to be at 420K. 
The Curie-point could not determined because of the crystallisation of the 
sample. This is in agreement with values measured by K.Lee and 
N.Heiman [11]. 
 In Fig. 3. and Fig. 4. we show the variation of the magnetostriction 
as a function of the applied magnetic field, for the two extreme 
compositions of the series. Before annealing, Tb0.27Dy0.73Co2 presented 
a typical easy-plane anisotropy, characterised by λ// = -λ�[5]. After 
annealing an enhancement from 1 to 10 of the � �// / ��� ratio was observed. 
One can see that the effect of annealing was in this case also the creation 
of an easy-axis of magnetisation. In case of the sample Tb0.27Dy0.73Fe2 
the measurement indicate that the sample’s own internal stresses (due to 
the deposition) before annealing were relaxed after. The installation of an 
easy-axis didn’t appear. 
 We present in Fig. 5. the curves of magnetostriction for all the 
annealed samples that were measured. As it is shown, the presence of 
both Fe and Co atoms can give rise to greater magnetostriction values than 
those obtained in case of  Tb0.27Dy0.73Co2 or Tb0.27Dy0.73Fe2 films. 
The very best performances are obtained in case of the 
Tb0.27Dy0.73(Fe0.53Co0.47)2 . That is to say that this sample presents 
the greatest magnetostriction value at saturation and also in very low 
magnetic fields. For this property the xCo= 0.47 compound could be useful 
in microactuator-applications. The phenomena of enhancement of the 
magnetostriction by partly substituting Fe atoms by Co, could be explained, 
based on [12]. The amorphous Co sublattice is a well ordered ferromagnet 
whereas for an amorphous Fe sublattice, the opposing Fe-Fe exchange 
interactions lead to a sperimagnetic structure with a low Curie temperature. 
However, the Fe moment being larger than the Co one, the R-Fe exchange 
energy is larger that the R-Co one. The substitution of Fe for Co thus 
increases the overall R-T exchange energy. However, when more Fe is 
added, a sperimagnetic sublattice starts to form thus reducing it 
effectiveness.  
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Fig. 3. Magnetostriction before (the empty character) and after the thermal 
treatment in case of sample 7 

 

 
 

Fig. 4. Magnetostriction before (the empty characters) and after the thermal 
treatment in case of sample 1 
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Fig. 5. Magnetostriction curves 
 
 
 

CONCLUSIONS 
 
 We would like to point out that the creation of a well defined uniaxial 
anisotropy is advantageous for the enhancement of magnetostriction. The 
role of the partial substitution of Fe atoms by Co was to enhance 
magnetostriction, probably by strengthening the exchange interaction 
energy leading to better oriented rare-earth moments. 
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NMR AND EPR EVALUATION OF THE CORRELATION TIME OF 

LOCAL DYNAMICS IN POLYISOPRENE SOLUTIONS 
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E. MATEI, C. COSMA, D. STANILA 

 
 

ABSTRACT. The correlation time of the local dynamics of 
polymeric segments is evaluated from the temperature 
dependence of the spin-lattice relaxation time. The mathematical 
function for fitting the experimental data is based on the energy 
activation model of segmental reorientation. The values of the 
correlation time obtained from NMR are compared with the values 
of correlation time of nitroxide molecules introduced in the 
polymeric solutions. 
 
 
INTRODUCTION 

The dynamics of polymeric chain is a complex process, which occur in a 
large spatial and temporary scale. This dynamics lie from the elementary 
motion of the C – H bonds inside the monomeric unit, to the diffusion of the 
entire chain along the reptation tube, [1, 2]. 
To understanding this complex mechanism, an important step is the 
knowledge of the elementary motions which appears inside the monomeric 
units or the dynamics of few neighboring monomers. Direct observation of 
these motions is difficult task and request special techniques for labeling 
different part of the polymeric chain. However important information can be 
obtained by studying the influence of this kinds of motions on the different 
interactions which appears between the atoms of the chain, like the nuclear 
magnetic dipolar interaction. Also, the study of the dynamics of labeled 
molecules introduced in the vicinity of the chain is a reach source of 
information concerning the local dynamics of the chain. 
The aim of our work is to estimate the correlation time of the elementary 
motions of the polymeric chain, by analyzing the spin-lattice relaxation time 
of the protons attached to the chain and the EPR spectra of some labeled 
molecules placed in the vicinity of the chain. 
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EXPERIMENTAL 
We studied some polyisoprene-CCl4 solutions with the polymeric 

concentration Φ=94% Φ=77% and Φ=59%, in the temperature range of 
234K to 350K. The isomeric conformation of the polyisoprene sample was 
92% cis-1,4, the glass transition temperature Tg=201±4K and the thermal 
expansion coefficient α=6.7 10-4 K-1. The samples were enclosed in NMR 
tubes and sealed under a primary vacuum. Spin-lattice relaxation time of 
the protons was measured using the inversion-recovery sequence (π-τ-π/2), 
[3]. All the measurements were performed at 45 MHz, using a CXP Bruker 
spectrometer. 
EPR measurements were made using a JEOL-JES spectrometer in X band, 
at room temperature. 
 

RESULTS AND DISCUSSION 
The dominant mechanism which govern the spin-lattice relaxation of the 
protons attached to the polymeric chain is the dipolar interaction between 
the nuclear spins located within one given chain segments, [4]. This 
interaction depends on the relative orientation of the spins and decreases 
rapidly with the distance between the spins so that only the neighboring 
spins the are taken into account. 
The relative orientation of spins is affected by the local dynamics of the 
chain, and is described by the auto-correlation function G(τ). 

G e e( ) ( ( ). ( ))τ τ= 〈 − 〉
→ →

1
2

23 0 1   (1) 

were the e
→

( )τ  is the unit vector in the spin-spin direction at time τ, [5]. 

In a qualitative sense the auto-correlation function G(τ) describes the 
persistence of dynamical property of the molecular system before being 
averaged out by the molecular motion. This persistence depends on the 
frequency of the local reorientation of the spins. For a complex system the 
local reorientation of the spins can not be characterized by a single 
frequency. The distribution of motional frequencies and their intensities is 
described by the spectral density function J(ω), [5]. This function is the 
Fourier inverse of the auto-correlation function G(τ) and 

J G die( ) ( )ω τ τωτ=
∞

−∞
−∫     (2) 

represents a transformation from the time to frequency domain. 
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Assuming a purely spin-spin relaxation mechanism, the expression 
for spin-lattice relaxation time T1, for identical spins is given by equation (3), 
where r is the distance between two spins, ω is the Larmor frequency of the 
spins, and γ is the gyromagnetic ratio: 

[ ]1 3

20
4 2

1

2 2

6T r
J J= +

γ ω ωh
( ) ( )   (3) 

To describe the local local dynamics it is necessarily to know the spectral 
density function J(ω). Estimation of the function J(ω) requires a description 
of the time decay of G(τ). The correlation function is derived on the basis of 
specific models for polymer motion. For neat liquids and solutions, the 
decay process is assumed to be exponential, with a characteristic time 
constant τc, [6]: 

G e
c

( ) ( ) .expτ τ
τ

= 〈 〉 −








2 0    (4) 

Under these assumption the spectral density function is, [7]: 

J e c

c

( ) ( )ω τ
ω τ

= 〈 〉
+

2 02
2 21

   (5) 

From the relations (3) and (5) we obtained for the spin-lattice relaxation rate 
the relation: 

1

1

4

1 41 2 2 2 2T
K c

c

c

c

=
+

+
+













τ
ω τ

τ
ω τ

  (6) 

The constant K depends on the distance between the interacting spins 

K
r

∝ 1
6

    (7) 

The spin-lattice relaxation rate is temperature dependent and reach 
its maximum where the conditionωτc ≈ 0 616.  is fulfilled. In our 

experiments the minimum of the spin-lattice relaxation time was observed 
for each sample for a characteristic temperature θ(φ). Using the above 
relation we can calculate the correlation time of segmental motion of the 
polymeric chain, corresponding to these temperatures. We found the value 
τc (Φ(φ)) ≈10-9s. But we are interested to know the correlation time to any 
temperature. To do this we must know the temperature dependence of the 
correlation time. 



M. TODICA, V. SIMON, I. ARDELEAN, E. MATEI, C. COZMA, D. STANILA 
 
 

 26 

One of the most used frame-work for quantitatively estimations of 
the correlation time of, the molecular dynamics in solutions is based on the 
Kramer and Helfands theory, [8], [9]. This theory is based on the passage 
of a particle over a potential energy barrier. Two different stable 
conformations of the polymeric chain are separated by a barrier potential 
energy of height Ea. The energy required for conformational translation is 
provided by the thermal activation. The solvent is treated as a random 
frictional force opposing passage across the barrier. Any spatial or temporal 
correlation in the solvent motion are neglected. Under these assumptions 
the temperature and viscosity dependence of the correlation time is: 

c
aA

E

RTτ η= 





. .exp    (8) 

The pre-factor A is a constant independent of temperature. The 
temperature dependence of the viscosity can be often described with an 
Arrhenius form: 

η η φ η=










0
( ).exp

E

RT
   (9) 

Under these conditions: 

c
a

B
RT

B
RT

E E E
τ η=

+







 =









.exp .exp

exp
 (10) 

where B is a constant and. expE E Ea= + η  is the experimental 

activation energy (apparent activation energy). It is clear that in the case of 
the pure polymer, the viscosity of the solvent can be replaced by a 
constant, and the apparent activation energy contines only the contribution 
of the polymer. 

The relation (8) became 

c
aB

E

RTτ = 





.exp     (11) 

Using the expression (10) or (11) in equation (6) we obtained the 
temperature dependence of the spin-lattice relaxation rate for the molten 
polymer and the solutions. Many parameters are unknown in this equation: 
the activation energy Eexp, the pre-exponential factor B and the constant 
K. The activation energy can be calculated from the Arrhenius plot of the 
experimental data of T1 versus the inverse of the temperature. When the 
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extreme narrowing condition ωτc«1 is fulfilled, then the equation (6) simplify 
to 

1
5

1T
K

E

RTc= ∝








τ exp

exp
  (12) 

Eexp is calculated from the best fit slope of the plot ln (T1) versus 
(1/T) over the temperature range of interest (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 
 
Fig.1. Arrhenius plot of the experimental T1 data for the molten 

polymer and solutions. 
 

The activation energy depends on the concentration of the polymer. 
It decrease when the solvent concentration increase. This fact indicates an 
increasing of the mobility of the polymer in the solutions when the solvent 
concentration increases (Fig. 2). The values of the activation energy were 
utilized to fit the experimental data of T1. B and K were treated as 
adjustable parameters. K depends only on the characteristic of the polymer 
(distance between the neighboring protons, gyromagnetic ration of the 
proton, Planck constant) so that its value is the same for the molten 
polymer and for the solutions. 
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Fig. 2. The concentration dependence of the experimental activation energy 

obtained for the polyisoprene –CCl4 solutions. 
 
 

There are many pairs of parameters K and B which can fit our data. 
From the minimum condition of T1, ωτc ≈ 0 616.  we known the value of 

the correlation time corresponding of the temperature θ(φ). We selected 
only the pairs of parameters K and B, which provided the same value of τc 
when they are introduced in equation (6).The best values of the parameter 
B are listed in the table 1. 

 
 

Table 1. 
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The fit of experimental data of T1(T), using these parameters, is 

satisfactory (Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The fit of the experimental data T1(T) using the equation 6 

 
 
We can consider that the equations (6) and (10) can describe in the 

first order of approximation the temperature dependence of T1(T). We can 
calculate now the value of the correlation time for each solution at any 
temperature. Particularly we are interested for these values at room 
temperature, in order to compare the values of τc obtained by NMR method 
with those obtained by EPR method. These values are represented in Fig. 
6. 

EPR technique is based on the observation of the behavior of the 
unpaired electronic spins attached to the chain or attached to solvent 
molecules situated in the local environment of the chain. Indirect 
information about the dynamics of the chain can be obtained from labeled 
molecules introduced in the vicinity of the polymeric chain by means of 
different solvents. In our study we utilized free nitroxide radicals as labeled 
molecules, 2,2,6,6, tetramethyl piperidin-l-yloxyl (Tempo). 

Different polymeric concentrations are obtained by evaporation of 
the solvent. Two situations are of interest: 
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a) High concentration of the solvent (CCl4) so that the labeled 
molecules be insulated from the polymer. 

b) Low concentration of the solvent, so that labeled molecules can 
interact directly with the polymeric segments. 

The interaction is analyzed observing the modifications of the ESR 
spectrum of the labeled molecules. Each spectrum consists on three lines 
due to the hyperfine coupling of the unpaired spin with the nitrogen nucleus 
of the labeled molecules. An isotropic spectrum is obtained when the 
labeled molecules are completely free to move or in the case when these 
molecules are placed into isotropic medium. This situation is characteristic 
for the polymeric solution with high solvent concentration (Fig. 4). We can 
assume that only the labeled molecules are surrounded by the solvent 
molecules and do not interact with the polymeric links. The vicinity of the 
labeled molecules is isotropic, so that all the directions are equivalent. 

The spectrum became anisotropic when the labeled molecules are 
not completely free to move. This situation is characteristic for the 
concentrated solutions (Fig. 5). It is possible in this case that the labeled 
molecules interact directly with the polymeric segments and then theirs 
motions are not isotropic. 

 
 

Fig. 4. The EPR spectrum of the polyisoprene-CCl4 solution 

 with the concentration Φ=59%. 
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Fig. 5. The EPR spectrum of the polyisoprene-CCl4 solutions with the 

concentration Φ=98%. 
 
The correlation time of the rotation of the labeled molecules is 

calculated from the amplitude of the resonance lines using the relation [10]: 

( )τ τ τc z xy= +1

3
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For a given temperature, the correlation time increases with the 
polymeric concentration (Fig.6). 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Concentration dependence of the correlation time τc of the nitroxide 
molecules disolved in the polyisoprene-CCl4 solutions  

(EPR and NMR measurements). 
 
However the values of the correlation time of the labeled molecules 

is much smaller than those of the local motion of the polymeric segments 
obtained from NMR measurements. The motion of the nitroxide molecules 
is faster than the local motion of the polymeric segments. This fact 
indicates only a weak interaction between the labeled molecules and the 
polymeric links. 
 

CONCLUSION 
The model of polymeric local dynamics based on the Kramer’s 

theory of the passage of a particle over a barrier potential energy, provide, 
in the first order of approximation, good values for the activation energy of 
the polymer conformational transformation. 

This model, in addition with assumption of the exponential decay of 
the correlation function of the spin dynamics leads to a good description of 
the temperature dependence of the experimental spin-lattice relaxation 
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data and allow the evaluation of the correlation time of the polymeric local 
dynamics at any temperature. 

The values of the τc obtained by EPR measurements, are smaller 
that those obtained by NMR measurements which indicate only a weak 
interaction between the labeled molecules and the polymeric segments. 
However EPR measurements provide additional information which allows 
to estimate the correlation time of the local dynamics of the polymeric 
segments. 
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OXIDATION OF SOME TERPENES IN 13X ZEOLITE 
 
 

I. BARBUR∗∗∗∗, L. DAVID*, I. BATIU*, O. STAN**, C. CRACIUN* 

 
 

ABSTRACT. The behavior of three terpenes (verbenone, carvone 
and citral) in 13X activated zeolite was investigated by EPR. 
Owing to the thermal treatment of the zeolite, the organic terpenes 
can accept a H+ ion which confers theirs radicalic character. All 
three species give the same EPR spectrum of one single gaussian 
line close to g0=2. 0023 value for the free electron. There are some 
differences in the intensities and shapes of these spectra because 
of the steric effects and partial recombination (in the citral case).  

 
 
 INTRODUCTION 

In order to understand the catalytic processes, the EPR 
investigation of radical and radical cations generated to zeolites is of great 
interest. As catalysts, zeolites are used in the synthesis of fine chemicals 
and in the petrochemical industry [1]. A great deal of research has been 
carried out on the structures and properties of zeolites, but very little is 
known about the mechanisms of the organic reactions which take place in 
them. EPR has proved to be a useful tool in investigating these reactions 
and possible transformations induced by zeolites [2].  
 Thermal treatment of several zeolites leads to defects in the zeolite 
structure, which can accept an electron from an organic molecule with a 
sufficiently low ionization potential (below 11 eV) [3]. The observed radical 
cation is usually persistent without important recombination effects and the 
EPR spectrum can be measured over a wide range of temperature.  
 In our previous paper [4] we have reported the EPR investigation of 
gamma-irradiation effect on some hydrazine derivatives and the new 
compounds resulting from the condensation of the hydrazine derivatives 
with some terpenoides (verbenone, carvone and citral) (Fig. 1). This class 
of compounds is present in some natural products and the investigation of 
theirs radiolysis products is important for radiation processing and 
sterilization in food and drug production.  
                                                           
*   "Babes-Bolyai" University, Faculty of Physics, Cluj-Napoca, Romania 
** "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, 
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Fig. 1. Molecular structures of three terpenes verbenone (a), carvone (b) and citral (c) 
 
In this paper we present EPR investigation of the radicals resulted 

from the reaction between these terpenes and the 13X zeolite.  
 
 EXPERIMENTAL 

All three terpenes (verbenone, carvone and citral) in the highest 
available purity were used in liquid form. The 13X zeolite of high purity was 
used in powder form. The 13X zeolite was activated by heating in air to 380 
K and than left at this temperature for 4 hours. The terpenes were adsorbed 
onto the zeolite at 380 K.  
 ESR spectra were recorded using a JOEL-JES-3B modified X-band 
spectrometer. The instrument settings are: microwave frequency 9. 5 GHz, 
modulation frequency 100 KHz, cavity TE102 sensitivity 3x1011 spins/Gauss 
and microwave power 10 mW.  

The calibration of magnetic field for g factor was performed by using 
NMR proton signal from one magnetometer of MJ 100 R type.  
 
 RESULTS AND DISCUSSION 

The three terpenes (verbenone, carvone and citral) were adsorbed 
onto inactivated and activated 13X zeolite. No EPR signal was obtained for 
terpenes adsorbed onto the inactivate zeolite. Fig. 2 presents the EPR 
spectra obtained for the three terpenes adsorbed onto the activate 13X. 
Each spectrum consists of one simple gaussian line. The g factor values 
(g=2.0020 for verbenone, g=2.0025 for carvone and g=2.0019 for citral) are 
very close given the g0=2.0023 value of the free electron. It is the indication 
that all the EPR spectra from the terpenes adsorbed in 13X zeolite are 
assigned to the radical cations of corresponding terpenes. These radicals 
are formed as a consequence of the heat treatment of 13X zeolite, which 
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leads to defects in the structure. These defects can accept an electron from 
one organic molecule (or equivalent can yield one proton).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. ESR spectra ofthree terpene adsorbed on to 13X activated zeolite 
(a) verbenone, (b) carvone, (c) citral 

 
There are two mechanisms, which can appear by heating the zeolite. 

The nature of mechanisms and the concentration of the organic molecules 
adsorbed onto the activate zeolite too influence directly the reactions’ 
character.  
1. The Bronsted acid site of the zeolite [6] is characterized by the fact that 

one hydrogen atom coordinate the bonding oxygen atom between two 
cationic atoms of the zeolite. This site can initiate a variety of reactions 
like polymerization and dehydrogenation. After a thermal treatment, one 
conversion of the Bronsted acid site to Lewis acid site occurs. This 
conversion is responsible for the spontaneous generation of radical 
cations (being induced a Bronsted acid catalysis process).  
 
In this case, the small alkenes and the quasilinear structures have the 

great reactivity with the zeolite. The cyclic compounds were found to take 
part in dimerisation reaction [5,7]. In this case, EPR spectra for structures 
with S=1 are expected.  
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2. The zeolites, by heating, can lose hydrogen atoms (terminal hydrogen 
atoms or the protons resulted through the decomposition of water 
molecules from the zeolites’ canals) like in γ-radiolysis process [6]. The 
hydrogen atoms can coordinate the oxygen and carbon atoms of the 
organic molecules, resulting the radical cations with S=1/2 spin. The 
EPR spectrum is formed by one single signal at g≅2.0. The 
paramagnetic hole is delocalised over the organic molecule, especially 
for the cyclic molecules.  

 
The reaction between the organic molecule and the proton (H+) can be 

reaction proceed via intermediate (par example a carbonium ion) or via 
transition state [5,9].  

The carbonium ion can be instable and one recombination process 
appears. In this situation, the amplitude of the signal is small, only some 
molecules being in radicalic state.  

The fact that the obtained spectra have no hyperfine structure show that 
the paramagnetic hole is not localized to any hydrogen atom, being 
delocalised over the molecule.  
 

The EPR spectra obtained from the three samples are identical to 
each other. We can suppose that the process nature is the same for the 
three terpenes. Like for the other terpenes [5], the most probable effect is 
that of the protonation of double bond C=C (situation 2) [8]. The steric 
effects upon protonation of organic molecules may be very important too 
[10].  

In the citral case, the small EPR intensity of the ligand appears 
because of a double possibility of the reaction citral-zeolite. One reaction 
lead to a radical without one double bond, EPR active. Another way of 
reaction consists of the protonation of citral molecule in the first time and 
then her deprotonation. In this case the molecule is EPR inactive.  

The difference of the intensity of the spectra for verbenone and 
carvone may be because of steric effects. The little differences in theirs 
shapes are determined by the geometric implications and the distortions of 
the molecular rings [7].  
 

CONCLUSIONS 
Three terpenes (verbenone, carvone and citral) were adsorbed onto 

13X zeolite. The verbenone and carvone are cyclic compounds and citral is 
quasilinear. The zeolite was treated thermal at 380 K, eliminating H+ ions. 
These ions react with the organic molecules, resulting the radicalic 
compounds EPR actives by the protonation of double bond C=C.  
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The obtained EPR spectra consist of one single line. No hyperfine 
splitting due to the interaction of the paramagnetic hole with hydrogen 
nuclei of terpenes was observed. This indicates his electrons’delocalisation 
on the molecule, in each case. The differences of the intensity and shape of 
the spectra result from steric effects and recombination process.  
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THE METAL-LIGAND BONDING IN SOME CU(II)-COMPLEXES 
WITH LIGANDS OF BIOLOGICAL RELEVANCE. 
PART I: CU(II)-ANTIINFLAMMATORY DRUGS 
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ABSTRACT. The ESR and optical spectra of Cu(II)-complexes 
with some anti-inflammatory drugs (aspirinate and indomethacin) 
in different solvents (pyridine, dimethylformamide) and adsorbed 
on NaY zeolite have been used to investigate the solute-solvent 
interaction, spin-Hamiltonian constants of the complexes, metal-
ligand bond parameters and the environment around the metal ion. 
The molecular coefficients were calculated using the LCAO-MO 
method. The character of σ and π-bondings and the local 
symmetry around the Cu(II) ion are sensitive to the solvent and 
ligand nature. 

 
 

INTRODUCTION 
The copper (II) complexes of active medical ligands have been 

shown to be more active than the ligands themselves [1]. The magnetical 
and optical properties of Cu(II)-complexes with some medical drugs have 
been investigated by ESR and UV-VIS spectroscopies in order to elucidate 
the structure and nature of the bonding between the metal ion and the 
ligand atoms. We used as ligands the molecular systems with biological 
relevance: aspirinate and indomethacin–antiinflammatory agents (Part I); 
diazepam, oxazepam and nitrazepam-tranquilizing sedative-hypnotic and 
myorelaxant agents (Part II). 

The antiinflammatory drugs indomethacin (ind) and aspirinate (asp) 
(Fig.1) have been used for the preparation of [Cu2(Ind)4](H2O)2 and 
[Cu2(Asp)4](H2O)2 complexes respectively. The pyridine (Py) and 
dimethylformamide (DMF) solutions of these complexes and the solutions 
adsorbed on NaY zeolite have been investigated in order to determine the 
local structure around the copper (II) ion.  

                                                           
* "Babeş-Bolyai" University, Faculty of Physics, Cluj-Napoca, Romania 
** University of Oradea, Departament of Physics, Romania 
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EXPERIMENTAL 
The [Cu2(Ind)4](H2O)2 and [Cu2(Asp)4](H2O)2 complexes were 

prepared as previously reported [2,3]. The Py, Py-DMF and DMF solutions 
having a concentration of 20 mg/cm3 were then prepared. The powder NaY 
zeolite was impregnated in the respective solution for one hour. The excess 
of the solution was decanted and the powder was dried in air. ESR 
measurements were performed at 9.4 GHz (X-band) using a standard 
JEOL-JES-3B equipment at 295 K. 

 

Fig. 1. The molecular structure of indomethacin (a) and aspirinate (b) 
 
RESULTS AND DISCUSSION 
The solution ESR spectra of studied compounds (Fig.2) suggest the 

presence of Cu(II) pseodotetrahedral monomeric species [4]. The 
characteristic isotropic parameters are g0≈2.16 and A0≈62 G. No resolved 
superhyperfine structure due to the interaction of the paramagnetic electron 
with nitrogen atoms of pyridine molecules was observed. 
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Fig.2. ESR spectrum of a 60% DMF +40% Py Cu(II)-aspirinate solution at 295 K 
 
 

Anisotropic spectra with four hyperfine lines in the gII region and a 
strong signal in the perpendicular band were obtained for the solutions of 
Cu(II) complexes adsorbed on NaY zeolite. They suggest that mononuclear 
Cu(II) species prevail in these samples.  

The ESR spectrum of DMF Cu(II) aspirinate solution adsorbed on 
NaY zeolite show the presence of two magnetically nonequivalent 
monomeric species (Fig.3). 

One of these which is characterized by gII=2.370 and AII=131.2 G 
may be of Cu(DMF)4 cromophore with a planar-distorted tetrahedral (Td) 
symmetry around the metallic ion. The other set of parameters corresponds 
to Cu(Asp)2(DMF)2 specie with an elongated tetrahedral-octahedral 
symmetry due to the coordination of solvent molecules at Cu2+ ion along the 
Oz axis [5]. 

The spectra of 40% Py +60% DMF Cu(II)-complexes solutions also 
show the presence of two different mononuclear species (Fig.4). 
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Fig. 3. ESR spectrum of a DMF Cu(II)-aspirinate solution adsorbed on NaY zeolite 
at 295 K 

 
 
One of these (gII=2.273, AII=156 G) is Cu(Asp)2(DMF)2 or 

Cu(Ind)2(DMF)2 respectively, previously described. The other set of 
parameters show that in this case the copper(II) ion is bonded in a trans 
square-planar arrangement at the nitrogen atom of two pyridine molecules 
and to one carboxylate oxygen from each of two ligand anions [6].  

The existence of CuN2O2 cromophore is confirmed by the 
appearance of nitrogen superhyperfine lines in the perpendicular band of 
the spectra (g⊥ region)(Fig.4 b). 
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Fig.4. ESR spectrum of a 40%Py+60%DMF Cu(II)-Indomethacin solution adsorbed 
on NaY zeolite (a). Extended perpendicular absorbtion (b) 

 
 In Py Cu(II)-solutions only ones monomeric species occurs (Fig.5). 
The ligands molecules are completely substituted by solvent molecules [7]. 
The weak resolution of nitrogen superhyperfine lines are due to the dipole-
dipole interactions between the copper (II) ion and the neighboring pyridine 
molecules. 

 
 

Fig.5. ESR spectrum of a pyridine Cu(II)-aspirinate solution adsorbed on NaY 
zeolite at 295K 
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The characteristic ESR parameters of all monomeric species are 
given in Table1 and Table 2. 

 
Table 1. ESR and covalency parameters of mononuclear species obtained in  

Cu (II)-Aspirinate solutions adsorbed on NaY zeolite 
 

Solvent 100% DMF 40% Py + 60% DMF 100% Py 
Monomeric 

Species 
Cu(DMF)4 Cu(Asp)2(DMF)2 Cu(Asp)2(DMF)2 Cu(Asp)2(Py)2 Cu(Py)4 

g II 2.370 2.325 2.324 2.285 2.243 
g⊥⊥⊥⊥ 2.071 2.058 2.059 2.052 2.059 
AII 

(10+4cm -1) 
144.4 163.2 161 184.9 183.6 

aN 
(10+4cm -1) 

- - - 14 14.5 

αααα2 0.88 0.88 0.87 0.89 0.84 
αααα'2 0.18 0.18 0.19 0.18 0.25 
ββββ2 0.90 0.79 0.79 0.68 0.62 
δδδδ2 1.12 0.91 0.94 0.80 0.97 
Cromophore 
and 
symmetry 

CuO4→Td CuO4 →Oh CuO4 → Oh CuO2N2→ D2h CuN4→D4h 

 
 

Table 2. ESR and covalency parameters of mononuclear species obtained in  
Cu(II)-Indomethacin solutions adsorbed on NaY zeolite 

 
Solvent 20% Py + 80% 

DMF 
40% Py + 60% DMF 100% Py 

Monomeric 
Species  

Cu(Ind)2(Py)2 Cu(Ind)2(DMF)2 Cu(Py)4 

g II 2.287 2.318 2.273 2.248 
g⊥⊥⊥⊥ 2.073 2.073 2.057 2.049 
AII 

(10+4cm -1) 
189.3 168.1 183.9 190.2 

an 
(10+4cm -1) 

14.5 - 14 14.1 

αααα2 0.91 0.89 0.87 0.86 

αααα'2 0.15 0.17 0.20 0.22 
ββββ2 0.67 0.76 0.66 0.61 
δδδδ2 1.11 1.14 0.90 0.78 
Cromophore 
and 
symmetry  

CuN2O2→D2h      CuO4→Td CuN2O2→D2h CuN4 →D2h 

 
With the experimental values determined by ESR (the principal 

values of the g tensor, hyperfine structure tensor A and hyperfine ligand 
tensor aLig.) the LCAO-MO coefficients which give the information about the 
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nature and the strength of metal-ligand bonding ca be evaluated.The 
ground state and the first excited states for the paramagnetic hole in the D4h 
symmetry are described by the following antibonding orbitals [8]: 
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 The B1g state represents the in-plane σ-bonding, B2g represents the 
in-plane π- bonding and the double degenerate Eg state corresponds to the 
out-of-plane π bonding. The A1g state does not affect the magnetic 
parameters in the second order of the perturbation theory and so is not 
relevant to the present discussion. α, α1, α’ and α1

’ are the σ-bonding 
parameters, and β, δ, β’, and δ’ are the π-bonding parameters. α, β and δ 
are the coefficients which point to the ionic character of the orbitals B1g, B2g, 
Eg. The squares of these coefficients are the messier of the covalent 
character of the corresponding orbitals. 
 The Hamiltonian for Cu2+ ion in a tetragonal crystal field is given by 
[9]: 

)()([0 yyxxzzIIyyxxzzII ISISAISASBSBgSBgH +++++= ⊥⊥β  

where β0 is the Bohr magneton and B is the applied magnetic field. When 
the ligand superfine structure is present the paramagnetic electron interacts 
with the neighbours of the metallic ion and an additional term of the general 

form S an I n∑  is necessary. Here S is the total spin operator, an is the 

superfine structure tensor for the n ligand atoms and In is the ligand atom 
nuclear spin. 

Resolving the equation for the proper values of the spin-Hamiltonian 
in an axial symmetry the following relations between g and A ESR 
parameters and the molecular orbitals MO coefficients just described are 
obtained [9,10,13]: 
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where ge=2.0023 is the giromagnetic factor for the free electron, λ is the 
spin-orbit coupling constant (for copper(II) ion λ=-828 cm-1), k0=0.43±0.02 is 
the Fermi contact term for the copper(II) ion, P=-0.036 cm-1. ∆Exy and    ∆Exz 
are the electron transition energies of 2B2g←2B1g and 2Eg←2B1g respectively, 
whose values are ∆Exy=14200 cm-1 and ∆Exz = 23800 cm-1 , for both 
complexes. 
 The in-plane σ-covalency parameter α2 was calculated following 
Kivelson and Neiman’s simplified expression [9]: 
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α  

 The α2 value accounts for the fraction of the unpaired electron 
density located on the copper (II) ion.  

The squares of the in-plane and out-of-plane metal π-bonding 
coefficients β2 and δ2 respectively, are obtained from the following first order 
approximate equations [11]: 
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 Table 1 gives the ESR parameters and MO coefficients of the 
monomeric species obtained in Cu(II)-Aspirinate solutions. The ionic 
character of bondings is stronger for the DMF solution due to the Td 
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symmetry. The higher the pyridine percentage, the more covalent is the in-
plane π-bonding, due to the strong interaction between the Cu(II) ion and 
the nitrogen atoms of the pyridine [12]. The values of β2 coefficient are 
greater for the monomeric species containing 4 DMF molecules then for 
those with 2 DMF molecules, because of the different local symmetry 
around the metal center. There is a growth of the β2 values and a decrease 
of the covalent character with the increase of the symmetry (D4h→Td, Oh) 
[13]. 
 The values of the ESR parameters and the MO coefficients of 
monomeric species obtained in Cu(II)-Indomethacin are given in Table 2. 
The values of α2 coefficients for these complexes are among 0.86÷0.91 
corresponding to weak ionic character of in-plane σ-bonding while the 
values of β2 (0.61÷0.76) indicate a dominant covalent character of the in-
plane π-bonding. This dominant covalent character appears as 
compensation to the ionic character of the in-plane σ-bonding. α’2 values 
shows that the unpaired electron is less delocalised towards the ligand for 
the σ-bonding. 

 
CONCLUSIONS 
The ESR spectra of Cu(II)-Aspirinate and Cu(II)-Indomethacin 

complexes in various Py-DMF solutions suggest the presence of 
pseudotetrahedral monomeric species. The powder-like spectra of these 
solutions adsorbed on NaY zeolite suggest the appearance of different 
monomeric species due to the partial or total coordination of the solvent 
molecules at the metal ion. The local symmetry may be planar-distorted 
tetrahedral or elongated tetrahedral-octahedral for CuO4 chromophore and 
square-planar for CuN2O2 and CuN4 units. The values of the molecular 
orbital coefficients indicate an ionic environment for the in-plane 
σ–bonding. Also, in the case of the in-plane π-bonding , the unpaired 
electron is more localized toward ligands in the chromophore with great 
number of nitrogen atoms. The role of the ligand nature is detected in the 
out-of-plane π-bonding. The unpaired electron spends more time in the 
ligand orbitals of Cu(II)-Aspirinate compounds then in the case of Cu(II)-
Indomethacin. 

 
 



C. CRACIUN, C. BALAN, C. AGUT, D. RISTOIU, O. COZAR, L. DAVID 
 
 

 50 

 
 
 

REFERENCES 
 
 
1. J. R. J. Sorenson, in Metal Ions in Biological Systems (Siegel H., ed.), 

77(1982). 

2. L. David, O. Cozar, V. Chis, A. Negoiescu and I. V las in, Appl. Magn. 
Reson. 6, 521(1994). 

3. O. Cozar, L. David, V. Chis, C. Cosma, V. Znamirovschi, G. Damian, 
I. Bratu and Gh. Bora, Appl. Magn. Reson. 8, 235(1995). 

4. H. Yokoi, A. W. Adisson, Inorg. Chem. 16, 1341(1977). 

5. C. D. Samara, P. D. Iannakoudakis, D. P. Kess issoglu, G. E. 
Manoussak is, D. Mentzafos, A. Ters is, J. Chem. Soc. Dalton Trans. 
3259(1992). 

6. L. Abuhi j leh, C. Woods, E. Bogas, G. Gnennion, Inorg. Chim. Acta, 195, 
67(1992). 

7. M. F. Ot tav iani, Colloids and Surfaces 12, 305(1984). 

8. H. Maki, McGarvey, J. Chem. Phys. 29, 31(1958). 

9. D. Kive lson, R. Neiman, J. Chem. Phys. 35, 146(1961). 

10. F. A. Cot ton, J. J. Wise, Inorg. Chem. 6, 915(1967). 

11. D. E. Bi l l ing, B. J. Hathaway and Nichol ls, J. Chem. Soc. A, 316 (1969). 

12. R. K. Ray and G. B. Kauf fman, Inorg. Chim. Acta 173, 207(1990). 

13. R. K. Ray and G. B. Kauf fman, Inorg. Chim. Acta 174, 237(1990). 



STUDIA UNIVERSITATIS BABEŞ-BOLYAI, PHYSICA, XLIII, 2, 1998 
 
 

 
THE METAL-LIGAND BONDING IN SOME Cu(II)-COMPLEXES 

WITH LIGANDS OF BIOLOGICAL RELEVANCE. 
PART II: Cu(II)-TRANQUILIZING SEDATIVE-HYPNOTIC 

AND MYORELAXANT AGENTS 
 
 

C. BALAN*, C. CRACIUN*, D. RISTOIU*, O. COZAR*, L. DAVID* 

 
 
 

ABSTRACT. The ESR and optical spectra of CuL2X2 (L-diazepam, 
oxazepam, nitrazepam; X-Cl, Br) complexes were measured both 
in Py, DMF, CH3Cl solutions and in solutions adsorbed on NaY 
zeolite, in order to elucidate solute-solvent interaction, metal-ligand 
bond parameters and the environment around the metallic ion. The 
molecular coefficients were calculated by LCAO-MO method and 
then used for the evaluation of the covalency degree of σ- and π- 
bondings between the Cu(II) ion and the nitrogen and oxygen 
atoms of the ligands.  

 
 
 
 

INTRODUCTION 
Diazepam, oxazepam and nitrazepam (Fig.1) are three benzodiazepines 

used for their tranquilizing sedative-hypnotic and myorelaxant properties [1-5]. 
The copper(II) complexes of these medical ligands are more 

efficient as drugs because they annihilate some negative effects of the 
ligands themselves. Therefore, the CuL2X2 complexes (L = diazepam, 
oxazepam, nitrazepam; X = Cl, Br) were investigated by ESR and optical 
measurements. The aim of this work was the investigation of the 
compounds v structure and the character (ionic or covalent) of Cu(II)-ligand 
bondings. For this purpose, pyridine (Py), dimethylformamide (DMF) and 
clorophorm (CH3Cl) solutions of these complexes and solutions adsorbed 
on NaY zeolite have been prepared. 

The ESR parameters obtained from the spectra of these solutions 
helped us to evaluate the molecular coefficients using Kivelson and 
Neiman’s simplified expression and to establish the degree of covalency for 
σ- and π- bondings for each investigated compound. 

                                                           
* "Babes-Bolyai" University, Faculty of Physics, Cluj-Napoca, Romania 
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EXPERIMENTAL 
The CuL2X2 complexes were prepared as previously reported [1,5]. 

The solutions of CuL2X2 in DMF, DMF-Py, Py and CH3Cl (concentration = 
10 mg/cm3) were prepared. Each obtained solution was adsorbed onto NaY 
zeolite, for one hour. The insoluble precipitates were filtered off and the 
solution was dried in air.  
 ESR spectra were recorded at room temperature using a JEOL-
JES-3B X band spectrometer.  

 
 

C

N

O

C

N

CH-R1

R2

R3

 
Fig.1. The molecular structure of diazepam (R1=H; R2=CH3; R3=Cl), oxazepam 

(R1=H; R2=H; R3=NO2), nitrazepam (R1=OH; R2=CH; R3=Cl). 
 
 
 
RESULTS AND DISCUSSION 
The isotropic ESR spectra of the Cu(II)-diazepam compound in 

CH3Cl solution and of Cu(II)-nitrazepam and Cu(II)-oxazepam compounds 
in Py and DMF solutions suggest the presence of pseudotetrahedral 
monomeric species [6] (Fig.2). 

The four signals correspond to the isotropic hyperfine interaction 
between the paramagnetic electron and the Cu(II) nucleus. 
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Fig.2. ESR spectrum of Py CuL2Cl2 (L-nitrazepam) solution at room temperature 

 
 
The spectra of Cu(II)solutions adsorbed onto NaY zeolite are 

anisotropic with four hyperfine signals in the paralel band and a strong 
signal in g⊥ region (Fig.3). 

 
Fig.3. ESR spectrum of chloroform CuL2Cl2 (L-diazepam) solution  

adsorbed onto NaY zeolite. 
 

The ESR parameters of Cu(II)-diazepam complexes (Table 1) and the 
appearance of five superhyperfine lines in the g⊥ region, due to the interaction 
of the odd electron with two equivalent nitrogen nuclei (IN=1, aN=16G and 
20G, respectively), confirm the existence of a CuN2X2 chromophore. 
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Table 1. 

MO coefficients for Cu(II)-diazepam CH3Cl solution adsorbed onto NaY zeolite 
 

Compound Solvent g⏐⏐ g⊥ A⏐⏐ 
(10+4 cm-1)

A⊥ 
(10+4 cm-1)

α2 β2 δ2 α2 

CuL2Cl2 2.391 2.068 155.6 15.4 0.94 0.84 0.65 0.13 

CuL2Br2 
CH3Cl 2.374 2.062 163.4 19.2 0.94 0.80 0.59 0.13 

 
 
 
The values of the ESR parameters for these compounds suggest a 

planar-tetrahedral distorted local symmetry at the Cu2+ site, with the 
paramagnetic electron in a 3dxy+4pz mixed ground state [7,8]. 

Information on the nature and the strength of metal-ligand bonding 
can be inferred from the evaluation of LCAO-MO coefficients (α2, β2, δ2, α’2), 
which were calculated following the previously described method [4, Part.I] 
with ΔExy=13400 cm-1 ¿i ΔExz=15400 cm-1. 

In the case of Cu(II)-diazepam compound, the α2, values 
correspond to a dominant ionic character of the σ-bonding. Smaller values 
of β2 indicate a ionic character of the in-plane π bonding and δ2 values 
indicate a strong covalent character of the out-of-plane π bonding. 

The non-coplanarity of the copper ions with Cl and Br ligand atoms 
determines the ionic character of σ and in-plane π bondings, but the 
covalent character for the out-of-plane π bonding. The value of 0.13 for α’2 
indicate the fact that the odd electron of Cu(II) spends 13% of the time in 
the donor states of the ligand. 

The anisotropic spectrum of 100% Py CuL2Cl2 (L-oxazepam) 
solution adsorbed on NaY zeolite (Fig. 4) contains a hyperfine splitting in 
the g⊥ region (aN=18G), resulted from the interaction of the paramagnetic 
electron with the nitrogen nuclei. This fact and the ESR parameters of this 
spectrum suggest the presence of a CuN4 chromophore, having a square-
planar local symmetry. The halogen atoms were completely substituted by 
pyridine molecules [9].  
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Fig. 4. ESR spectrum of 100%Py CuL2Cl2 (L-oxazepam) solution adsorbed 

onto NaY zeolite (a), the central part of the field (b) 
 

This anisotropic spectrum contains a signal attributed to "forbidden" 
ΔMS=±2 transitions at half-field, which suggests the presence of dimeric 
species, due to the coordination of Cu(II) ions at the same keto-oxygen 
from one oxazepam molecule.  

The ESR spectrum of 60%Py+40%DMF CuL2Br2 (L-Oxazepam) 
solution adsorbed on NaY zeolite is presented in Fig.5.  

 

 
Fig. 5. ESR spectrum of 60%Py+40% DMF CuL2Br2 (L-oxazepam) solution 

adsorbed onto NaY zeolite 
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The analysis of hyperfine structure from the parallel band indicates 
the presence of two magnetically nonequivalent monomeric species, in the 
region g≈2.0. The characteristic ESR parameters of all identified 
monomeric species are given in Table 2. 

 
 

Table 2. ESR parameters of mononuclear species obtained in DMF and Py Cu(II)-
oxazepam solutions adsorbed on NaY zeolite, at room temperature 

 
 
Compound Solvent g⏐⏐ g⊥ A⏐⏐ (G) α2 β2 δ2 α’2 Chromophore 

and symmetry 
100%DMF 2.384 

2.368 
2.087 125 

155 
0.843
0.916

0.916
0.808

0.934
0.860

0.223
0.143

CuO4→Td 
CuN2O2O2

∗→Oh 
60%DMF+40%Py 2.418 

2.002 
2.088 
2.222 

120 
170 

0.867
0.873

0.970
0.708

0.919
0.742

0.195
0.197

CuO4→Td 
CuN2O2N2

∗→D4h
∗ 

 
 
 
CuL2Cl2 

 

 
100%Py 2.248 2.062 175 0.819 0.678 0.678 0.268 CuN4→D4h 
100%DMF 2.397 

2.332 
2.088 123 

165 
0.852
0.903

0.935
0.882

0.935
0.882

0.212
0.158

CuO4→Td 
CuN2O2O2

∗→Oh 
60%DMF+40%Py 2.372 

2.300 
2.070 123 

156 
0.816
0.830

0.772
0.758

0.772
0.758

0.254
0.249

CuO4→Td 
CuN2O2N2

∗→Oh 

 
 
 
CuL2Br2 

100%Py 2.363 
2.309 

2.065 126 
178 

0.812
0.904

0.718
0.645

0.718
0.645

0.276
0.168

CuN4→Td 
CuN2N4

∗→Oh 
 
 

The values between 0.81÷0.92 obtained for the molecular 
coefficient α2 suggest a weak ionic character of the σ-bonding along the 
metal-ligand axis [10]. One may observe that the values of α2, β2, δ2 
parameters decrease with the decreasing of DMF percentage, the CuO4 
chromophore being changed into CuN4 chromophore. The values of β2 and 
δ2 range from 0.6 to 0.9, indicating a weak to dominant covalent character 
of the in-plane and out-of-plane π-bondings, upon the DMF percentage. 
The α’2 coefficient, which indicates the degree of delocalization of the 
paramagnetic electron towards the ligand atoms, it is seen to increase with 
the lowering of DMF percentage. 

ESR spectrum of Py-Cu(II)-nitrazepam solution adsorbed onto NaY 
zeolite suggest also the presence of two magnetically nonequivalent 
monomeric species, as a result of partial or total substitution of the ligand 
atom by Py molecules (Fig.6). The existence of a CuN4 unit is confirmed by 
the appearance of nine nitrogen superhyperfine lines (aN=14G) in the g⊥ 
region. 
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Fig.6. ESR spectrum of Py CuL2Cl2 (L-nitrazepam) solution adsorbed onto  
NaY zeolite a). Extended perpendicular absorption b). 

 
 
 
Table 3 gives the characteristic ESR parameters and the proposed 

symmetry of all identified monomeric species. The spectra of DMF-Cu(II)-
nitrazepam solutions adsorbed onto NaY zeolite show also the coexistence 
of two monomeric species. One of these species with the CuN2O2 chromophore 
is due to the coordination of solvent molecules at the Cu(II) ion. The other 
set of parameters confirms the existence of CuO4 chromophore, with 
planar-tetrahedral (Td) distorted symmetry [11]. The nitrazepam ligand 
molecules and the halogen atoms are completely substituted by DMF 
molecules. 
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Table 3.  

ESR parameters of mononuclear species obtained in Cu(II)-nitrazepam solutions 
adsorbed onto NaY zeolite at room temperature 

 
Compound Sol-

vent 
g⏐⏐ g⊥ A⏐⏐ 

(G) 
α2 β2 δ2 α’2 Chromophore 

and symmetry 
Cu L2Cl2 
 
Cu L2Cl2 

 
Cu L2Br2 
 
Cu L2Br2 

DMF 
 
Py 
 
DMF 
 
Py 

2.393 
2.353 
2.282 
2.249 
2.383 
2.351 
2.297 
2.251 

2.081 
 
2.059 
 
2.083 
 
2.062 

122 
170 
163 
178 
125 
170 
169 
174 

0.84 
0.94 
0.82 
0.83 
0.84 
0.94 
0.86 
0.82 

0.94 
0.75 
0.69 
0.60 
0.92 
0.75 
0.69 
0.61 

0.87 
0.78 
0.64 
0.64 
0.89 
0.80 
0.64 
0.68 

0.22 
0.11 
0.26 
0.26 
0.23 
0.12 
0.22 
0.27 

CuO4→Td 

CuN2O2→D2d 

CuN2N4
∗→Oh 

CuN4→D4h 

CuO4→Td 

CuN2O2→D2d 
CuN2N4

∗→Oh 

CuN4→D4h 
 
 

The values of about 0.8-0.9 for α2 coefficient state for a weak ionic 
character of the σ-bonding. For the in-plane π-bonding, a dominant covalent 
character is suggested by the low values of β2 coefficient (0.61÷0.75), while 
the larger values of β2 (0.92-0.94) correspond to a ionic character. The out-
of-plane π-bondings have a ionic character for the complexes in DMF-solutions 
and dominant covalent character for theirs Py-solutions [11]. 
 

CONCLUSIONS 
The ESR parameters and the shape of the spectra obtained for the 

Cu(II)-diazepam in different solutions suggest a planar-tetrahedral distorted 
local symmetry at the Cu2+ site. 
 From the molecular coefficients obtained we conclude a dominant 
ionic character for σ-bonding and for the in-plane π-bonding, while the out-
of-plane π-bonding was proved to have a strong ionic character. The ionic 
character of all σ- and π- bondings in these complexes can be explained by 
the non-coplanarity of the Cu ions with the Cl and Br ligand atoms. 
 The values obtained for the molecular coefficients in the case of  
Cu(II)-oxazepam compounds state for a weak ionic character of the σ-
bonding. The weak or dominant covalent character of the in-plane and out-
of-plane π-bondings was seen to depend on the DMF percentage of the 
solvent, the CuO4 chromophore being changed into CuN4 chromophore, 
accordingly. 
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 The presence of the monomeric species, having a planar-tetrahedral 
distorted symmetry, was also confirmed in the spectra of Cu(II)-nitrazepam 
compounds. The values of α2 coefficient indicate a weak ionic character of the 
σ-bonding, while the character of the in-plane and out-of-plane π-bondings 
depends of the solvent nature. 
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MICROSTRUCTURE INFLUENCE OF THE LOCAL DYNAMICS IN 
MOLTEN POLYBUTADIENE 

 
 

M. TODICA* 
 
 

ABSTRACT. The spin-lattice relaxation  time of the 
protons attached to the polymeric chain was measured 
by NMR method for some molten polybutadiene with 
different vinyl concentrations, in a large temperature 
range. The correlation time of the local motion of the 
polymeric segments calculated from the experimental T1 
data depends on the vinyl concentration.  

 
 
 

INTRODUCTION 
 Some physical properties of the polymeric materials, like the 
viscoelasticity or mechanical rigidity are determined by the dynamic 
behavior of the polymeric chains, [1]. The molecular dynamics of the 
macromolecules is a complex process which includes many kinds of 
motions, going from the elementary motions inside the monomeric unit to 
the diffusion of the entire chain along the reptation tube [2]. 
 The microscopic description of the elementary motions of the 
polymeric chain is based on the observation of the physical interactions 
between the neighboring atoms of the chain. Many techniques can be 
utilized to observe these interactions, but one of the most useful is the 
Nuclear Magnetic Resonance. 
 NMR is based on the observation of the interactions between the 
atomic nuclear spins of the chain and provides information in the 
microscopic range [3]. The characteristic environment of the nuclear spins 
due to the temperature or microstructure is reflected by the modification of 
NMR parameters. Our interest is to observe the dependence of the spin-
lattice relaxation time in function of the microstructure of the polymer. 
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EXPERIMENTAL 

 We investigated some polybutadiene samples with different vinyl 
contents: 
  BR1200   1% vinyl 97% cis 110000 g/mol 
  PB1009   8% vinyl 38% cis   70000 g/mol 
  PB1507  40% vinyl 24% cis 190000 g/mol 
 The polymeric samples were supplied by the Manufacture Michelin, 
France. The samples were enclosed in NMR tubes (diameter 4mm) and 
sealed under a primary vacuum. All the measurements were performed 
using a CXP Bruker spectrometer working at 45 MHz, in the temperature 
range of 254 K to 344K. The spin-lattice relaxation time was measured 
using the inversion recovery method, [4]. The sample temperature was 
controlled within 1 K. 
 
 

RESULTS AND DISCUSSION 
 The elementary motions which governs the dynamics of the entire 
chain are the rotations of the C-C and C-H links around the local symmetry 
axis. Every rotation modify the azimuthal angles of the links and the relative 
orientation of the nuclear spins within the segmental or monomeric units. 
 Now it is well-known that the dominant mechanism which governs 
the spin-lattice relaxation process of the protons attached to the polymeric 
chain is the dipolar interaction between the nuclear spins located within the 
given chain segment [5]. This interaction decreases rapidly with the 
distance between the spins, so that only the neighboring spins are taken 
into account [6]. For identical spins the spin-lattice relaxation time is given 
by: 
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The constant K depends on the distance between the interacting 

spins K
r

∝
1
6

 and ω is the resonance frequency of the protons, [6, 7]. τc 

represents the correlation time of the orientational motion of the nuclear 
spins and its mathematical expression is derived on the basis of specific 
model for the polymer motion. One of the most used model for 
quantitatively estimations of the correlation time is based on the Kramer’s 
and Helfand theory concerning the passage of a particle over a potential 
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barrier energy [8, 9]. Two different stable conformations of the polymeric 
chain are separated by a barrier potential energy of height Ea. The energy 
required for conformational transition is provided by thermal activation. 
Under these assumptions the temperature dependence of the correlation 
time is: 
 

τc
aB

E

RT
=









exp     (2) 

 
B is a constant depending on the nature of the polymer and Ea is the 
activation energy. Combining the relations (1) and (2) we can obtain the 
temperature dependence of the spin-lattice relaxation rate. This relation will 
contain some unknown parameters: the activation energy Ea, the constants 
B and K. One of the aims of this work is to determine these parameters 
from experimental data. 
 The activation energy can be calculated from the Arrhenius plot of 
the experimental data of T1. When the extreme narrowing condition ωτc<<1 
is fulfilled, then the equation (1) simplifies to: 
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exp     (3) 

 
Ea is calculated from the best fit slope of the plot ln(T1) versus 1/T over the 
temperature range of interest. In the case of our samples the condition 
ω⋅τc<<1 is fulfilled in the domain range of higher temperatures. We obtained 
linear dependencies of ln(T1) versus 1/T for each sample (figure 1), which 
allows us to calculate the activation energies. 
  

The values of the activation energies are listed in table 1: 
 

Table 1 
 

sample vinyl contents Ea (KJ/mol) 
BR1220 1% 19.5±10% 
PB1009 8% 17.8±10% 
PB1507 40% 16.6±10% 
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Fig. 1. Arrhenius plot of the experimental T1 data 
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We observed a little dependence of Ea on the vinyl concentration 
but the values obtained are very close to each other for these samples. 
This result is not surprising because all the samples have the same 
chemical composition of the monomeric unit and identical conformation in 
proportion of more than 50%. The difference is given only by the spatial 
orientation of the CH and CH2 groups in the vinyl conformation. We can 
associate the lower values of  Ea for the samples with high vinyl contents 
with the spatial orientation of CH and CH2 bonds inside this group. 
 If the value of the activation energy is known, there would remain 
only two parameters unknown, K and B, in equation (1). The parameter K 
can be calculated from the minimum condition of the temperature 
dependence of the spin-lattice relaxation. From equation (1) results that T1 
reaches its minimum when the condition ω0*τc≅0.616 is fulfilled. (ω is the 
Larmor frequency). In this case we obtain the simple relation 
 

1
5 035 10

1

9 1
T

K s= − −* . *     (4) 

 
This is a simple way to calculate the constant K. 
 
 For the samples PB1507 and PB1009 the minimum values of T1 
were observed at the temperatures θ=290K, respectively θ =258K, (see 
figure 2). The minimum value of T1 is T1min=65±3ms for both the samples. 
The correlation time corresponding to these temperatures is τc=2.1*10-12 s 
and the value of constant K obtained from relation (4) is K≅2.9*109 for both 
the samples. For the sample BR1220 the minimum of T1 is not observed, 
but we can estimate its minimum value and the corresponding temperature 
θ by extrapolation. We estimate that T1min=65±ms, like in the case of other 
two samples and θ =245±5K, (see also figure 2). So we can appreciate that 
the minimum value of T1 is the same for all the samples. The physical 
support of this assumption is based on the fact that the constant K depends 
on the distance between the interacting spins. But the chemical structure of 
the monomeric units of our samples are very close to each other, so that 
we can characterize all the samples by the same average distance 
between the interacting spins. Using this value of K and the corresponding 
activation energies we have fitted the experimental data for each sample. 
From the best fit we have estimated the values of parameter B, which 
allows us to calculate the correlation time of the elementary motions for 
each temperature. The values calculated with equation (2) for the 
correlation time are shown in figure 3. 
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Fig. 2. The best fit of spin-lattice relaxation time 
for molten polybutadienes with different vinyl contents, using equation (1). 
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Fig. 3. The temperature dependence of the correlation time  

calculated with equation (2) 
 
 
For a given temperature we observed that the correlation time increases 
with the vinyl contents of the sample. Polymeric samples with great vinyl 
contents are characterized by long correlation times. This means a weak 
mobility of the links. On the other hand, the correlation time decreases with 
the increasing of the temperature, which indicates an increase of the local 
mobility with the thermal activation. The molecular weight of 
macromolecules do not affect the local dynamics. 
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CONCLUSION 
 The local mobility of the polymeric links can be investigated by 
measuring the temperature dependence of the spin-lattice relaxation time. 
The correlation time of rotational motions of the links can be calculated in 
the first order of approximation using a model based on Kramer and 
Helfand`s theories. This correlation time decreases with the temperature, 
indicating an increasing of the local mobility.For a given temperature, the 
vinyl contents of the samples modify also the correlation time of these 
motions. This correlation time increase with the vinyl contents, indicating a 
lowering of the local mobility. We can conclude that the microstructure of 
the polymer is an important factor which affect the local mobility of the 
chain. 
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EVALUATION OF THE HIGHER-ORDER APPROXIMATIONS TO 

THE TRANSPORT PROPERTIES FROM MORSE-MORSE-SPLINE-
VAN DER WAALS INTERMOLECULAR POTENTIAL 

 
 

I. COROIU1 
 
 
 

ABSTRACT. The Chapman-Cowling and Kihara higher 
approximations to the transport coefficients have been calculated 
from an improved intermolecular potential, Morse-Morse-Spline-
van der Waals (MMSV) potential, proposed by R.A. Aziz et al. 
[J.Chem.Phys., 94(2), 1034 (1991)]. The results are tabulated over 
a large temperature range, kT/ε from 0.1 to 400. The treatment 
was completely classical and no corrections for quantum effects 
were made. These results would be employed to predict gaseous 
transport properties of different spherical and quasispherical 
molecules, especially for hexafluorides. The knowledge of transport 
coefficients has huge importance for the isotope separation technologies. 

 
 
 
 
 INTRODUCTION 

 The kinetic theory of gases can elucidate the macroscopic 
properties of gases in terms of the motion and interaction of molecules. The 
theory advanced by Enskog and Chapman [1] is able to show how the 
transport properties of gases, like as: viscosity, thermal conductivity, 
diffusions are connected to the properties of their molecules. The most 
significant feature of this theory is that if the intermolecular pair potential for 
the interaction of the molecules is known, it is possible to calculate the 
transport properties of a gas consisting of these molecules to any desired 
degree of accuracy at any temperature. Hence, each of the transport 
coefficients of the gas can be expressed in terms of well defined integrals 
over the intermolecular potential for each of the possible binaries 
encounters in the system. Leave out very simple and physically unrealistic 
potential forms, the calculations of collision integrals involve extensive 
numerical integration. 
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 The inverse question [2] is also valid. Information concerning 
intermolecular forces may be achieved from the temperature variation of 
gaseous transport coefficients by means of Enskog and Chapman theory. 
Such information is helpful in correlating other properties of liquid and solid 
states [2], so that it is appear encouraging for future simulations of solids 
and liquids [3]. 
 Numerous intermolecular potential forms have been proposed to 
date for the study of transport phenomena and bulk properties of diverse 
substances. These include: the Lennard Jonesn-mfunction [4], Kihara 
spherical core potential [5], Buckingham-Corner potential [6], modified 
Buckingham (Exp-Six) potential [7], Boys and Shavitt potential [9], Dymond-
Rigby-Smith potential [10], Barker-Pompe potential [11], Barker-Bobetic-
Maitland-Smith (BBMS) potential [12], Parson-Siska-Lee potential (a Morse 
Spline-van der Waals potential) [13], Smith-Thakkar potential [14], Morse-
Hermite interpolation-Smith-Thakkar (MIST) potential [15], Hartree-Fock 
HFD potential [16], HFD-Aziz potential [17], spherical shell model (SSM) 
function [18], Simon-Parr - Finlan modified Dunham expansion function 
[19], n-6-4 potential function [20], etc. 
 Any one results accomplished for any potential function may be 
acceptable merely if it is reproduce the analogous experimental data with 
minimal errors. 
 Several effective isotropic pair potential functions [4-7, 12, 18] have 
been proposed to describe the bulk properties of quasispherical molecules 
and in particular the hexafluorides, lacking much success. Not long ago, 
R.A. Aziz et al. [21] have been constructed a Morse-Morse-Spline-van der 
Waals (MMSV) potential. The MMSV potential incorporates the 
determination of C6 dispersion coefficient [22] and it satisfactorily correlates 
second virial and viscosity data of sulphur hexafluoride at the same time. 
 The purpose of this paper is to calculate for the first time the higher-
order approximations to the transport properties from this more realistic 
potential form. The tabulated results over a large temperature range can be 
helpful for prediction the transport properties of any spherical and 
quasispherical molecules. 

V r   =   V x*( ) ( )ε     (1) 
 
 

The Morse-Morse-Spline-van der Waals (MMSV) functional form is given by 

where 
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and x=r/rm. 

 The significance of the symbols in the above Equation is given in 
Reference [21]. 
 
 GENERAL FORMULAE 

 The transport coefficients like as: diffusion, viscosity and thermal 
conductivity, quantify the difficulty of the transport of mass, momentum and 
energy respectively in a gas subjected to gradients of concentration, 
velocity or temperature. Because, in a gas, this transport is achieved by 
motion of molecules, the nature of the collisions that the molecules undergo 
influences the difficulty of transport. Further, because the form of the 
intermolecular potential determines the outcome of the binary collisions, 
these potential influences the transport coefficients in a complicated way. 
 Nevertheless, the fundamental kinetic theory for the transport 
coefficients can be formulated to involve only a set of well-defined collision 
integrals besides molecular mass (m), temperature (T) and pressure (p). 
These collision integrals represent variously weighted, energy-averaged 
cross sections for binary encounters between molecules of the gas and are 
defined [1-2, 23] by  
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where T*=KT/ε is the reduced temperature, k is the Boltzmann's constant, T is 
the absolute temperature, E*=E/ε is the reduced relative kinetic energy of the 
collision and Q(l)*(E*) represents the reduced transport cross-sections. Q(l)*(E*) 
are defined by equation 
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where b*=b/σ is the reduced impact parameter and χ is the deflection angle in 
binary collision. 
 This angle is given by 
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where r*=r/σ is the reduced intermolecular separation, ro
*=ro /σ is the reduced 

closest distance of approach, V*(r*)=V(r)/ε is the intermolecular potential with 
parameters σ and ε. 
 It is useful to define some combinations of reduced collision 
integrals that occur in kinetic theory expressions for the transport 
coefficients [1-2, 23]. 
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 The values of the transport coefficients [1-2, 23] may be expressed 
as infinite series, and higher-order approximations to the coefficients are 
obtained the more terms of the series that are taken. Fortunately, the 
convergence is rapid, and very few terms are needed. Hence, any transport 
coefficient can be defined by the equation 
 

[ ] [ ]X X fn x
n= 1    (7) 

 
whereX=λ, η, D; n=1,2,..., and fx

(n) is the higher-order approximations. 
 These higher order approximations have been evaluated for two 
schemes. The first scheme is the Chapman-Cowling [1] method that implies 
a particular approximation way for obtaining solutions to an infinite set of 
simultaneous equations. The alternative method has been developed by 
Kihara [24]. In general the latter scheme leads to somewhat simpler 
formulae, which to an equal order of approximation are more accurate than 
the corresponding Chapman-Cowling expressions. However, the Kihara 
approximation is not available for all the transport properties of binary gas 
mixture. 
 The viscosity of a pure gas can be expressed in the following way: 
 
a) for the first-order approximation 
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b) for the second-order Chapman-Cowling approximation 
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c) for the third Chapman-Cowling approximation 
 

[ ] [ ]η η η3 1
3= f ( )     (11) 

 

{ [ ]
[ ] }201222021121200120201221100

201110020211120100)2()3(

)H(H)H(H)H(HHHH2HHH

)H(HH/)HHHH(Hff

−−−+×

−−+= ηη
 (12) 

 
where, besides previously defined quantities,  
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d) for the second-order Kihara approximation 
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 The thermal conductivity of a pure gas can be expressed in the 
following way: 
 
a) for the first-order approximation 
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b) for the second-order Chapman-Cowling approximation  
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c) for the third-order Chapman-Cowling approximation 
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d) for the second-order Kihara approximation 
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 The self-diffusion coefficient-of a pure gas can be expressed in the 
following way: 
 
 
a) for the first-order approximation 
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b) for the second-order Chapman-Cowling approximation 
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c) for the second order Kihara approximation 
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 RESULTS AND DISCUSSIONS 

 To estimate the higher-order approximations to the transport 
properties from Morse-Morse-Spline-van der Waals potential form, first it 
must to calculate different reduced collision integrals and some 
combination of these. For calculation of the reduced collision integrals we 
have chosen the programme catalogue number ACQN, authors H. O’Hara 
and F. J. Smith [25]. This programme was adapted to run in double 
precision on IBM computers by P.D. Neufeld and R.A. Aziz [26] and 
subsequent adapted by us to run on PC computers. The programme 
contains an efficacious calculation method with a high degree of simplicity 
and accuracy. This method advanced by Clenshow and Curtiss [27] 
computes the definite integrals through the integrant growth in a finite 
series of Cebishev polynomials and the integration of each term of series. 
The inherent computational error is estimated to be of the order of 0.1% 
except for very small T*, where it may be larger. 
 Figures 1 and 2 show the behaviour of the most important reduced 
collision integrals Ω(2,2)* and respectively, Ω(1,1)*, computed from Lennard 
Jones 12-6 potential [2], modified Buckingham (Exp-Six), (α=15), potential [2] 
and Morse-Morse-Spline-van der Waals potential, for T* variation. These reduced 
collision integrals are involved in the first-order approximations of the 
viscosity, thermal conductivity and self-diffusion coefficient, respectively. 
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Fig. 1. Temperature variation of the Ω(2,2)* reduced collision integrals: 
 a) for Lennard-Jones 12-6 potential ( ¦  ); 

b) for modified Buckingham (Exp-Six), (α=15), potential ( � ); 
c) for MMSV potential ( ∆ ). 

 
 
 

 It is observed that the most integrals lie near unity because of the 
reduction by their rigid-sphere values and they decrease monotonically with 
increasing temperature excepting the region from 0 to 0.5. This featureless 
behaviour contrast greatly with the form of the intermolecular potential 
function from which they were derived. The changes in the collision 
integrals are small by comparison with the changes in the potentials, a 
result that occurs because the collision integrals at a fixed temperature 
arise from the effects of the potential over the entire trajectories of many 
binary collisions, at many impact parameters and energies. 
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Fig. 2. Temperature variation of the Ω(1,1)* reduced collision integrals: a) for 
Lennard-Jones 12-6 potential (¦ );b) for modified Buckingham  
(Exp-Six), (α=15), potential (� );c) for MMSV potential (∆ ). 

 
 

 Some combinations of the reduced collision integrals calculated 
from MMSV potential that appear in the expressions of the higher-order 
approximations to the transport coefficients are tabulated for the reduced 
temperature ranging from 0.1 to 400 (see Table 1). The third-order 
Chapman-Cowling approximations to the viscosity and the thermal 
conductivity, and the second-order Chapman-Cowling approximation to the 
self-diffusion coefficient, calculated from MMSV potential are presented in 
Table 2, also for a large temperature kT/ε, ranges from 0.1 to 400. The 
second-order Kihara approximations to viscosity, thermal conductivity and 
self-diffusion coefficient calculated from MMSV potential for the same 
temperature domain are given in Table 3. 
 The higher-order correction factors to the transport properties fη

(3), 
fλ

(3), fD
(2), fη

K(2), fλ
K(2) and fD

K(2), differ from unity by only 1 or 2 per cent over a 
wide temperature range. For purpose of comparison we represented the 
higher-order correction factors fη

(3) calculated from Lennard-Jones 12-6 
potential [2], modified Buckingham (Exp-Six), (α=15), potential [2] and 
MMSV potential in Figure 3. The depiction was made only in the domain 
over unity for more comprehensibility. It is seen that the change in the 
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correction from one potential to another is almost the same for Lennard 
Jones 12-6 potential [2] and modified Buckingham (Exp-Six), (α=15), 
potential [2], but it is greater for MMSV potential. An explanation would be 
that the MMSV potential is more sensitive to higher-order approximations 
than the others. It is also nonneglijibile the development of the 
computational technique in the last years. 

 
Fig. 3. Temperature variation of the Chapman-Cowling’s higher-order correction 
factors fη

(3) : a) for Lennard-Jones 12-6 potential (¦ );b) for modified Buckingham 
(Exp- Six), (α=15), potential (� );c) for MMSV potential (∆ ). 

 
 

 
 CONCLUSIONS 

 In conclusion, we present the calculation from MMSV potential and 
tabulation of some combinations of the reduced collision integrals and 
Chapman-Cowling’s and Kihara’s higher-order approximations to the 
transport coefficients over a large temperature range, kT/ε from 0.1 to 400. 
The higher-order correction factors both Chapman-Cowling and Kihara 
differ from unity only 1 or 2 per cent. 
 These accomplished results can be profitable for studies of the 
gaseous transport properties and bulk properties of spherical and quasispherical 
molecules and in particular the hexafluorides. 
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Table 1. Some combinations of the reduced collision integrals calculated  
from MMSV potential 

 

T* A* B* C* E* H* 
0.10 1.071663 1.135208 0.906457 0.931146 0.970302 
0.20 1.059806 1.129023 0.923175 0.955264 0.975226 
0.30 1.067752 1.173676 0.918844 0.955532 0.966467 
0.40 1.077611 1.202497 0.907747 0.938788 0.956793 
0.50 1.082103 1.207642 0.898948 0.922626 0.949805 
0.60 1.082411 1.193433 0.893419 0.910891 0.944387 
0.70 1.078557 1.183412 0.892756 0.905589 0.941592 
0.80 1.074043 1.167526 0.893508 0.903516 0.940510 
0.90 1.069908 1.148904 0.896006 0.903964 0.941133 
1.00 1.064346 1.131261 0.898676 0.906234 0.941717 
1.20 1.054220 1.110269 0.906948 0.914061 0.944656 
1.40 1.048306 1.094463 0.916123 0.921196 0.949553 
1.60 1.042731 1.079065 0.923288 0.928211 0.953717 
1.80 1.037583 1.066384 0.929371 0.934798 0.957185 
2.00 1.034035 1.057632 0.935234 0.940393 0.960629 
2.50 1.028312 1.045700 0.948084 0.951647 0.968661 
3.00 1.024929 1.038995 0.957099 0.959007 0.974304 
3.50 1.022178 1.033817 0.962920 0.963701 0.977615 
4.00 1.020128 1.030048 0.967156 0.966975 0.980093 
4.50 1.018598 1.027740 0.970504 0.969764 0.981952 
5.00 1.017672 1.026280 0.973374 0.971689 0.983552 
6.00 1.016168 1.023130 0.977421 0.974629 0.985999 
7.00 1.015146 1.022312 0.980392 0.976809 0.987563 
8.00 1.014318 1.021494 0.982460 0.978532 0.988657 
9.00 1.013726 1.020435 0.984019 0.980008 0.989652 
10.00 1.013085 1.019245 0.985036 0.981294 0.990299 
12.00 1.012358 1.017829 0.986592 0.983284 0.991353 
14.00 1.012102 1.016864 0.987819 0.984948 0.992397 
16.00 1.011997 1.016060 0.988725 0.986391 0.993308 
18.00 1.011978 1.015314 0.989398 0.987656 0.994111 
20.00 1.012053 1.014667 0.989942 0.988775 0.994858 
25.00 1.012494 1.013535 0.990972 0.991061 0.996516 
30.00 1.013117 1.012789 0.991719 0.992841 0.997954 
35.00 1.013745 1.012223 0.992247 0.994276 0.999163 
40.00 1.014360 1.011790 0.992643 0.995458 1.000206 
50.00 1.015517 1.011206 0.993212 0.997289 1.001932 
60.00 1.016546 1.010850 0.993595 0.998634 1.003302 
70.00 1.017447 1.010627 0.993866 0.999657 1.004413 
80.00 1.018237 1.010486 0.994063 1.000454 1.005330 
90.00 1.018932 1.010403 0.994211 1.001085 1.006099 
100.00 1.019548 1.010358 0.994323 1.001590 1.006751 
200.00 1.023139 1.010645 0.994660 1.003502 1.010026 
300.00 1.024629 1.011161 0.994598 1.003506 1.011004 
400.00 1.025330 1.011620 0.994471 1.003062 1.011258 
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Table 2. The Chapman-Cowling’s higher-order approximations  
to the transport coefficients calculated from MMSV potential 

 

T* fηηηη
(3) fλλλλ

(3) fD
(2) 

0.10 1.002486 1.003745 1.003300 
0.20 1.004325 1.006520 1.005000 
0.30 1.005276 1.007721 1.004559 
0.40 1.004287 1.006048 1.003460 
0.50 1.002907 1.004041 1.002688 
0.60 1.001938 1.002721 1.002246 
0.70 1.001565 1.002229 1.002194 
0.80 1.001292 1.001912 1.002246 
0.90 1.001232 1.001869 1.002430 
1.00 1.001366 1.002087 1.002636 
1.20 1.001899 1.002907 1.003343 
1.40 1.002493 1.003812 1.004226 
1.60 1.003173 1.004839 1.004984 
1.80 1.003899 1.005928 1.005678 
2.00 1.004591 1.006959 1.006392 
2.50 1.006289 1.009442 1.008113 
3.00 1.007631 1.011368 1.009446 
3.50 1.008615 1.012769 1.010362 
4.00 1.009428 1.013901 1.011055 
4.50 1.010051 1.014775 1.011621 
5.00 1.010528 1.015440 1.012118 
6.00 1.011324 1.016534 1.012835 
7.00 1.011850 1.017263 1.013378 
8.00 1.012248 1.017815 1.013763 
9.00 1.012592 1.018285 1.014055 

 10.00 1.012874 1.018670 1.014248 
 12.00 1.013258 1.019201 1.014544 
 14.00 1.013544 1.019596 1.014780 
 16.00 1.013771 1.019909 1.014954 
 18.00 1.013960 1.020168 1.015084 
 20.00 1.014116 1.020383 1.015188 
 25.00 1.014409 1.020779 1.015386 
 30.00 1.014608 1.021051 1.015530 
 35.00 1.014754 1.021250 1.015630 
 40.00 1.014863 1.021399 1.015706 
 50.00 1.015015 1.021605 1.015813 
 60.00 1.015112 1.021735 1.015884 
 70.00 1.015175 1.021820 1.015934 
 80.00 1.015217 1.021876 1.015970 
 90.00 1.015245 1.021913 1.015997 
100.00 1.015264 1.021938 1.016016 
200.00 1.015244 1.021905 1.016070 
300.00 1.015152 1.021774 1.016052 
400.00 1.015063 1.021649 1.016025 



EVALUATION OF THE HIGHER-ORDER APPROXIMATIONS TO THE TRANSPORT PROPERTIES 
 
 

 83 

Table 3. The Kihara’s higher-order approximations to the transport coefficients 
calculated from MMSV potential 

 

T* fηηηη
K(2)  fλλλλ

K(2) fD
K(2) 

0.01 1.002151 1.003346 1.002147 
0.10 1.002456 1.003820 1.003368 
0.20 1.004334 1.006742 1.005102 
0.30 1.005035 1.007833 1.004611 
0.40 1.003855 1.005997 1.003483 
0.50 1.002554 1.003973 1.002704 
0.60 1.001725 1.002683 1.002268 
0.70 1.001419 1.002208 1.002220 
0.80 1.001234 1.001919 1.002280 
0.90 1.001220 1.001897 1.002476 
1.00 1.001370 1.002131 1.002695 
1.20 1.001923 1.002991 1.003431 
1.40 1.002536 1.003945 1.004346 
1.60 1.003233 1.005028 1.005139 
1.80 1.003970 1.006175 1.005866 
2.00 1.004667 1.007260 1.006611 
2.50 1.006333 1.009851 1.008397 
3.00 1.007617 1.011849 1.009778 
3.50 1.008551 1.013302 1.010727 
4.00 1.009296 1.014460 1.011447 
4.50 1.009877 1.015364 1.012032 
5.00 1.010317 1.016049 1.012544 
6.00 1.011036 1.017167 1.013285 
7.00 1.011520 1.017919 1.013843 
8.00 1.011886 1.018489 1.014238 
9.00 1.012196 1.018971 1.014540 

 10.00 1.012450 1.019366 1.014739 
 12.00 1.012803 1.019916 1.015046 
 14.00 1.013067 1.020326 1.015289 
 16.00 1.013276 1.020652 1.015470 
 18.00 1.013448 1.020920 1.015604 
 20.00 1.013591 1.021142 1.015713 
 25.00 1.013854 1.021551 1.015918 
 30.00 1.014035 1.021832 1.016067 
 35.00 1.014166 1.022037 1.016171 
 40.00 1.014265 1.022191 1.016249 
 50.00 1.014401 1.022402 1.016360 
 60.00 1.014486 1.022534 1.016433 
 70.00 1.014541 1.022620 1.016485 
 80.00 1.014578 1.022677 1.016522 
 90.00 1.014601 1.022713 1.016549 
100.00 1.014616 1.022736 1.016569 
200.00 1.014588 1.022692 1.016621 
300.00 1.014496 1.022549 1.016602 
400.00 1.014409 1.022415 1.016572 
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TRANSPORT CROSS-SECTIONS ESTIMATED FROM MORSE-
MORSE-SPLINE-VAN DER WAALS INTERMOLECULAR 

POTENTIAL 
 
 

ILIOARA COROIU1 
 
 

ABSTRACT. Transport cross - sections have been calculated from 
an improved intermolecular potential, Morse - Morse - Spline - van 
der Waals (MMSV) potential proposed, by R.A. Aziz et al. {J. 
Chem. Phys., 92(2), 1034 (1991)]. The results are tabulated over a 
large reduced kinetic energy range, from 0.01 to 500. The 
treatment was exhaustively classical and no corrections for 
quantum effects were made. From these results the comparable n-
m Lennard - Jones potential was approximated. It was unearthed n 
= 46 and m = 7. The virial coefficients and viscosity data of 
uranium hexafluoride assessed by us from MMSV potential fit very 
well the related data evaluated from the 46 - 7 Lennard - Jones 
potential. 

 
 
 INTRODUCTION 
 The successful determination of the intermolecular potentials has 
proved a slow and tortuous process and even now these functions are not 
known quantitatively in all cases. Often the most reasonable and direct 
procedure is to build up the potential in a piece-wise manner by combining 
data from a variety of sources. Ample information about intermolecular 
forces can be obtained from thermally averaged properties such as second 
virial coefficients and dilute gas transport properties [1-9]. The molecular 
beam scattering [10-12] and spectroscopy of van der Waals dimers [14-17], 
can also provide detailed information about certain aspects of 
intermolecular potentials. In general, all the spectroscopic methods (UV, IR, 
NMR, Raman scattering, quadrupole relaxation) give information only about 
the well region of the intermolecular potential, although in the case of 
continuous spectra the short - range repulsive region is also probed. 
Because averaging over internuclear distance and over thermal energy 
distributions is involved for transport and equilibrium properties, significant 
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differences between the shapes of proposed potentials were observed, 
even between the potentials that gave a relative agreement with these 
properties. Therefore, the important requirement for any proposed potential, 
irrespective of its method of determination, is that it should fit all available 
data within experimental errors.  
 Several effective isotropic pair potential functions [2, 18-20] have 
been proposed to characterise the bulk properties of quasispherical 
molecules and in particular the hexafluorides, but none got a success. 
Unfortunately these potentials have steeper repulsive walls than those 
which describe the hexafluorides. That these intermolecular potentials are 
not quite adequate is shown by lack of complete agreement between theory 
and experiment even for the rare gases. Not long ago, R.A. Aziz et al. [21] 
have constructed a Morse- Morse-Spline-van der Waals (MMSV) potential. 
The MMSV potential incorporates the determination of C6 dispersion 
coefficient [22] and it reasonable correlates second virial and viscosity data 
of sulphur hexafluoride at the same time. More, we were found [23] that the 
MMSV potential is able to predict simultaneously virial, viscosity, thermal 
conductivity and self diffusion data of the uranium hexafluoride. 
 The Morse-Morse-Spline-van der Waals (MMSV) functional form is 
given by 

V r   =   V x*( ) ( )ε     (1) 

where 
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and x=r/rm.  
 The significance of the symbols in the above Equation is given in 
Reference [21, 23]. 
 The aim of the present paper is to count for the first time the transport 
cross-sections from this more realistic potential form. The results are tabulated 
over a large relative kinetic energy range and then these are used for 
approximation of the resembling n - m Lennard-Jones potential. 
 

GENERAL FORMULAE 
The simplest situation to examine theoretically is the elastic collision 

between a pair of particles that interact with a spherical symmetrical potential 
V(r). In practice, it is usually possible to make measurements at pressures 
where three - and higher body interactions are so rare that their effect on 
collision properties is either negligible or easily applied as a small 
correction [24]. We shall consider those gas densities which are high 
enough on the one hand so that a typical molecule undergoes many more 
collisions with other molecules than it does with the walls of the container, 
but which are low enough so that the majority of collisions involve only one 
other molecule. The first condition implies that the mean free path of the 
gas molecules is much smaller than the dimensions of the vessel, whereas 
the second requires that the thermodynamic state of the gas should be 
adequately described by a virial expansion up to and including the second 
virial coefficient. 
 In these conditions the transport cross-sections, Q(l)(E) are defined 
by 

[ ]Q E       
+ l

    b dbl
l

0

l( ) ( )
( )

( )
( cos )= −

+ −
−

−
∞

∫2 1
1 1

2 1
1

1
χ   (3) 

where χ is the deflection angle in binary collision, E is the relative kinetic 
energy of the collision and b named impact parameter is the distance of 
closest approach in the absence of the potential V(r) and hence in the 
absence of any deflection. 
 The deflection angle χ has been related to the intermolecular potential 
energy function V(r) by the  

[ ]
χ π( )

/

( )
/E,b   =     b 

dr r

  -  b /r   V r / E or

−
−

∞

∫2
1

2

1 22 2
  (4) 

where r is the vector that joints the centre of mass to the position of the particle 
of reduced mass of system µ and r0 is the distance of the closest approach in 
a collision, so named turning point. 
 Collision with a large positive χ can be attributed to the repulsive 
portion of the potential acting at small impact parameters. As b increases, χ 
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decreases until at a value where the net force is zero and there is no 
deflection.. For higher value of b, χ passes through a minimum χr and soon 
afterward converges to zero as b tends towards infinity. The angle χr at which 
dχ/db is zero, is called the rainbow angle. As the relative velocity decreases 
(also the relative kinetic energy), the depth of minimum in χ increases and for 
small values of this velocity become infinite at the value b=b0 named the 
orbiting value. 
 It is convenient to introduce the following reduced quantities: 

r
r* =
σ

 ,     b
b* =
σ

 ,     V
V* =
ε

 ,     E
E* =
ε

 ,   (5) 

where σ and ε represent the potential parameters. 
 By defining additional reduced variables Eqs. (3) and (4) become 
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and 
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 RESULTS AND DISCUSSIONS 
 To calculate the transport cross-sections Q(l)(E) from Morse-Morse-
Spline van der Waals potential form we used the programme catalogue 
number ACQN (authors O’Hara and Smith [25]) adapted to run in double 
precision on IBM computers by Neufeld and Aziz [26]. This programme, that 
involves a Clenshow and Curtiss method [27], was subsequently adapted by 
us to run on PC computers. The method of Clenshow and Curtiss implies the 
appraisal of definite integrals through the integrand growth in a finite series of 
Chebyshev polynomials and integration of each term of series. 
 If a certain integral, after different variable exchanges, yields the form 

I F x dx=
−

+

∫ ( )
1

1

     (8) 

the integrand may be expanded into finite Chebyshev series 

F x a T xr r
r

N

( ) ( )''=
=
∑

0

    (9) 

The sign ″ marks that the first and the last terms are halved in summation of 
Eq. (9). It must be emphasised that the function F(x) have to a good behaviour 
(no rapid oscillations) both inside of the interval and in -1 and +1 points. The 
term ar is given by the relationship 

a
N

rs

N
F

s

Nr
s

N

=










=
∑

2

0

'' cos cos
π π

    (10) 
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 The Chebyshev series may be integrated term by term and the result 
will be the following quadrature 

I h F
s

NN s
s

N

=










=
∑ cos

π
0

    (11) 

where 

( ) [ ]
h

N N

s

N

i s N

is
s

i

N

= −
−

+
−
−=

∑1
2

1

4 2 1

2 12
1

1/2

sin
sin ( ) /( )π

  (12) 

and 

( )h h NN
N
N

0
2 1

1= = −
−

, for 1 1< < −s N  
 Generally, the applied method for computation the deflection angle χ 
and cross-section Q(l)(E) integral consists in adequate variable exchanges for 
fulfilled -1 and +1 as integration limits, required to develop the integrand into 
finite Chebyshev series. 
 If for the repulsive part of intermolecular potential calculations are 
relative simples, some difficulties come into view for the minimum part of the 
internuclear potential where the orbiting phenomena must be taken into 
account. Mathematical difficulties occur in the integrand of Eqs. (4) or (7) from 
the singularity at orbiting value b0. For the integrand of Eqs. (3) or (6), this 
involves an infinite number of oscillations in the b=b0 vicinity. Despite, the 
orbitings turn up only at energies lower than a critical energy Ec, important 
oscillations of the integrand of Eqs. (3) or (6) may be exist in proximity of Ec 
energy, in the lack of the singularity. Consequently, three separate regions 
were considered: E < Ec, Ec < E < 10Ec and E > 10Ec. For the Ec < E < 10Ec 
region the deflection angle χ has a negative minimum (the rainbow angle) at 
br. In this point, the integrand b(1-coslχ) can exhibit oscillatory behaviour. 
Using suitable variable exchanges all these problems were solved and the 
counts were accomplished at high accuracy. The inherent computational error 
is estimated to be of the order of 0.1% except for very small E*, where it may 
be larger. 
 With MMSV potential, the values of the reduced cross-sections are 
given in Table 1 for E* that range from 0.01 to 500. 
 Even though integral and differential cross-section measurements 
have been widely used to obtain information concerning intermolecular 
potential energy functions [10-12] we have not experimental data for 
hexafluorides at our disposal. Therefore, we endeavored to compare our 
calculated data with other experimental measurements. For this reason, we 
used the Bernstein’s method [24, 28] that approximate from the slopes of log 
Q(E) vs. log E representation the corresponding n-m Lennard - Jones 
potential. 
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TABLE 1. The reduced cross-sections from MMSV potential 
 

E* 
 

Q(1)* Q(2)* Q(3)* Q(4)* Q(5)* Q(6)* 

 0.01 22.29910 17.39680 25.83220 22.53260 28.07160 25.41890 
 0.03 15.55300 12.27170 18.06040 15.84830 19.60720 17.90490 
 0.10 10.53570  8.45459 12.26420 10.83620 13.31830 12.2071 
 0.20  8.48592  6.82096  9.86089  8.73027 10.69140  9.82372 
 0.30  7.53895  6.01377  8.72260  7.70703  9.43170  8.67485 
 0.40  6.98148  5.50502  8.03156  7.06513  8.65834  7.95543 
 0.50  6.61812  5.14842  7.56363  6.61314  8.12939  7.44683 
 0.60  6.36925  4.88327  7.22726  6.27299  7.74554  7.06066 
 0.70  6.19520  4.67879  6.97670  6.00573  7.45694  6.75324 
 0.80  6.07365  4.51728  6.78610  5.78929  7.23525  6.50008 
 0.90  5.99091  4.38772  6.63954  5.61008  7.06298  6.28623 
 1.00  5.97000  4.27183  6.53926  5.46332  6.95700  6.20816 
 1.20  5.79318  4.25470  6.21615  5.37842  6.55466  6.02036 
 1.40  5.43183  4.27937  5.95629  5.33919  6.27346  5.86168 
 1.60  5.05972  4.22656  5.76022  5.25689  6.11208  5.75489 
 1.80  4.74546  4.10128  5.58091  5.13008  5.98301  5.65025 
 2.00  4.49785  3.93539  5.39985  4.97414  5.84453  5.52467 
 2.50  4.09478  3.50250  4.94937  4.54711  5.43120  5.12901 
 3.00  3.86325  3.16370  4.56439  4.16065  5.01506  4.71899 
 3.50  3.71052  2.93137  4.27444  3.85275  4.67368  4.37358 
 4.00  3.60021  2.77556  4.06699  3.62013  4.41702  4.10708 
 4.50  3.51794  2.66840  3.91919  3.44787  4.22825  3.90686 
 5.00  3.45648  2.59085  3.81105  3.32023  4.08710  3.75521 
 6.00  3.37590  2.48280  3.66146  3.14848  3.88790  3.54062 
 7.00  3.32497  2.40668  3.55634  3.03288  3.74510  3.38698 
 8.00  3.28282  2.34933  3.47516  2.93976  3.63248  3.26334 
 9.00  3.24547  2.30509  3.41117  2.86193  3.54212  3.16171 
 10.00  3.22091  2.27272  3.36483  2.80905  3.47676  3.08905 
 12.00  3.18424  2.22882  3.30163  2.73686  3.38859  2.99099 
 14.00  3.15628  2.19648  3.25505  2.68458  3.32476  2.92086 
 16.00  3.13411  2.17162  3.21923  2.64501  3.27645  2.86837 
 18.00  3.11600  2.15190  3.19080  2.61407  3.23867  2.82772 
 20.00  3.10087  2.13585  3.16767  2.58925  3.20837  2.79542 
 25.00  3.07184  2.10635  3.12512  2.54459  3.15387  2.73818 
 30.00  3.05083  2.08621  3.09606  2.51505  3.11784  2.70116 
 35.00  3.03473  2.07158  3.07494  2.49426  3.09249  2.67566 
 40.00  3.02189  2.06049  3.05890  2.47895  3.07383  2.65732 
 50.0  3.00242  2.04475  3.03614  2.45818  3.04853  2.63330 
 60.00  2.98810  2.03411  3.02072  2.44499  3.03247  2.61885 
 70.00  2.97695  2.02642  3.00954  2.43603  3.02156  2.60961 
 80.00  2.96789  2.02057  3.00102  2.42962  3.01376  2.60346 
 90.00  2.96030  2.01594  2.99426  2.42486  3.00796  2.59923 
100.00  2.95379  2.01217  2.98874  2.42120  3.00350  2.59625 
200.00  2.91544  1.99277  2.96005  2.40572  2.98452  2.58796 
300.00  2.89470  1.98303  2.94543  2.39876  2.97584  2.58549 
400.00 
500.00 

 2.87999 
 2.87331 

 1.97573 
 1.97014 

 2.93442 
 2.93138 

 2.39283 
 2.39007 

 2.96839 
 2.96199 

 2.58210 
2.58012 
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 Thus from log Q(E) vs. log E plot (see Fig. 1) we have roughly 
estimated [24, 28] the equivalent n-m Lennard-Jones potential. The low - 
energy (velocity) limiting slope corresponds to the r-7 attractive potential. At 
high energy (velocity) the repulsive r-46 branch of the potential dominates the 
scattering and the mean slope of log Q(E) vs. log E approaches -2/46. We 
selected Q1(E) and Q2(E) because these cross - sections are predominantly 
used to characterise the transport properties. For checking, we also 
considered the cross - sections evaluated from 12-6 Lennard - Jones 
potential. 
 

 
 
Fig. 1. Q(1).(E). and Q(2).(E) cross - sections as a function of relative kinetic energy: 
a) for MMSV potential (x) and (◆) b) for 12-6 Lennard-Jones potential (++++) and (▼). 
 
 Afterwards, we were compared the second virial coefficient and 
viscosity data estimated by us from MMSV potential [23, 29] with that 
estimated from 46-7 Lennard-Jones [30] both for uranium hexafluoride (see 
Fig. 2 and Fig. 3). It is obvious that there is a good agreement between our 
data and that obtained from 46-7 Lennard-Jones [30]. The root mean square 
percentage deviations of virial coefficients predicted from MMSV potential [29]  
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Fig. 2. Temperature variation of the second virial coefficients of UF6 predicted on 
the basis of: a) the MMSV potential (++++); b) the 46-7 Lennard- Jones potential (▲). 

 

 
Fig. 3. Temperature variation of the viscosity of UF6 predicted on the basis of: a) 

the MMSV potential (++++); b) the 46-7 Lennard-Jones potential (▲). 
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amounts to 2%, underestimating by up to 6% the results obtained from 46-7 
Lennard-Jones potential [30] in lower temperature range. For the viscosity 
data [23, 30] the root mean square percentage deviations alternate about 
1.4%. The potential parameters of uranium hexafluoride are ε/k = 764±2K and 
rm = 5.19Å for MMSV potential [23] and ε/k = 835.8±2K and rm = 5.381Å for 46-
7 Lennard-Jones potential [30].  
 
 CONCLUSIONS 
 In conclusion, we present the numerical values of the transport cross - 
sections for MMSV potential, over a large reduced kinetic energy range E* 
from 0.01 to 500. For purpose of comparison with experimental data we were 
approximated the analogous n-m Lennard Jones potential. It was found a 
good agreement between the second virial coefficient and viscosity data of the 
uranium hexafluoride predicted from MMSV potential and 46-7 Lennard - 
Jones potential. 
 
 Acknowledgment. The author is indebted to Mr. T.Beu for the 
uranium hexafluoride data set at her disposal. 
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STORING STATIC AND TEMPORAL SEQUENCES OF PATTERNS 
IN ASSOCIATIVE MEMORIES WITH GRAY NEURONS 

 
 

M. ANDRECUT1 
 
 

ABSTRACT. A noniterative learning rule for storing static and 
temporal sequences of patterns in associative memories with gray 
neurons is presented. The learning and generalization rates 

)and( GL PP  are expressed as functions of NP=α , where P 

is the number of learned patterns and N is the number of neurons 
in the network. The numerical simulations shows that the proposed 
learning rule is optimal, 1=LP  and 1=GP , for 10 << α . 

 
 
 INTRODUCTION 
 After the famous paper of Hopfield [1], most of the investigations 
have concentrated on the ability of neural networks to function as 
associative memories which retrieve a complete stored pattern if a noisy or 
incomplete version of the associated pattern is presented to them as an 
input. 

A possible way to realize an associative memory is to construct a 
dynamical system whose attractors in the configuration space coincide with 
the prototype patterns. Then every such a pattern has its basin of 
attraction. Any initial condition which represents one of the permitted 
patterns falls into a certain attraction basin. In the course of time, such an 
initial pattern is then transformed into the attractive pattern of this basin, i.e. 
into one of the memorized prototypes. In this sense, an associative memory 
also represents a special case of pattern recognition. 

The “learning phase” in associative memories consists in setting the 
synaptic matrix, W, so that the relation 

kk Wxy = .    (1) 

is satisfied for all pairs ),( kk yx , where ][ kxX =  and ][ kyY =  

),,0( Nk αK=  are two sets of N-dimensional vectors (patterns) that one 
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wanted to associate ( Tk
N

kk xxx ),,( 1 K=  and Tk
N

kk yyy ),,( 1 K= ). In case 

of bipolar neurons every component of these vectors takes the values 
{ }1,1 +− . 

For example, the Hopfield-Little [2, 3] model with bipolar neurons, 
stores NP 14.0=  random patterns using the Hebbian learning rule 

TYXNW 1−= .     (2) 

The dynamics in the traditional Hopfield-Little model is governed by 

)]([)1( tWxsigntx =+ ,   (3) 

where  





<−
≥+

=
01

01
)(

xif

xif
xsign    (4) 

 An optimal solution corresponds to the Moore-Penrose pseudo-
inverse matrix [4], which can store up to N linearly independent N-bit 
patterns )1( =α . The pseudo-inverse solution minimizes the quadratic 
error  

22 YWX −=ε     (5) 

and it is given by 
+= YXW ,     (6) 

where +X  is the pseudo-inverse matrix of X: 

1)( −+ = TT XXXX .    (7) 

The maximum storage capacity of the network for random patterns 
is 2=α  [5] and can be reached by using the perceptron algorithm [6-7]. 
Unfortunately, the iterative perceptron algorithm is proved by Krauth and 

Meyard [8] to diverge as 1)2( −− α  for 2→α .  
In these conditions the pseudo-inverse solution is very attractive for 

its simplicity and deterministic aspect. The major drawbacks of this solution 
are: 

(i) The prototype patterns must be linearly independent [1, 4]; 
(ii) The bad generalization rate (due to overfitting) [9, 10]; 
(iii) In case of auto-associative memories, where the input vector is 

associated with itself )( YX = , the pseudo-inverse solution become 
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trivial, because from (6-7) results immediately that NIW = , where 

NI  is the NN ×  identity matrix. 

 In this paper we derive a simple learning rule which eliminates the 
drawbacks of the pseudo-inverse solution. Also, the learning rule is derived 
in the general case of gray (or multi-states) neurons. 

 
THE LEARNING RULE 
Let us to consider the case of associative memories with gray 

neurons. The prototype patterns, which have to be associated, are 

represented by formal N-dimensional vectors ][ kxX = , ][ kyY = , 

),,2,1( Nk αK= . Every component of these vectors is an independent 
random variable that takes the following discrete values 
{ }SS ...,,1,1...,, −−  )1( ≥S  with equal probabilities. For 1=S  one obtain 
the case of bipolar neurons. 

Let ][ kγ=Γ , ),,2,1( Nk αK=  be the matrix of the corresponding 
noise in the space of input patterns. After applying the noise the input 
vectors are given by 

kkk xr γ+= ,  ),,2,1( Nk αK=  or Γ+= XR . (8) 
The output of the network is then given by: 

kk Wrx =ˆ , ),,2,1( Mk K= .    (9) 
Because the patterns are random generated, in average we have 

0==== ryx γ .    (10) 

Also, we consider that the patterns and the noise are uncorrelated, that is: 

0==== TTTT yyxx γγγγ .   (11) 

 The quadratic error is then given by 

)ˆ()ˆ(ˆ 2
2 XYXYXY T −−=−=ε   (12) 

and 
22 YRWYYWRWRWR TTTTT +−−=ε . (13) 

We choose W such that it minimizes the quadratic error (13). It 
results that  

02 =∇ εW .    (14) 

The solution of equation (14) is straightforward [10]: 
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( ) 1−
ΓΓ+= TTT XXYXW .  (15) 

Also, for white noise we have: 

N
T I2σ=ΓΓ ,    (16) 

where 2σ  is the dispersion of the noise, and NI  is the NN ×  identity 

matrix.  
It results that for a given pair of sets of prototype patterns, 

][ kxX = , ][ kyY =  the optimal learning rule in presence of noise is given 
by 

12 )( −+= IXXYXW TT σ .   (17) 

 It is important to observe that, for 0>σ , the inverse 
12 )( −+ IXX T σ  always exist and can be easily calculated using any 

standard method. 
 Obviously, the Hopfield dynamics (3-4) must be adapted here for 
gray neurons. We propose the following dynamical equations: 

))(()1( tWsroundts =+ ,   (18) 

where the function )(xround , rounds the value of x to the nearest integer. 

The function )(xround  can be easily obtained using the function )(xfloor  
which gives the greatest integer smaller than x, and which is present in all 
computer languages: )5.0()( += xfloorxround . 

 
STORING THE STATIC PATTERNS 

 In this section of the paper we refer to the case of auto-associative 
memories. As we have mentioned in the introduction, the major drawbacks 
of the pseudo-inverse solution (6) appear in the case of auto-associative 
memories, when XY = . 
 In order to investigate the pattern recognition capability of the 
network we define two recognition rates: 
i) the learning rate (PL) , which is the probability for a pattern to verify the 

equation: 

)(Wxroundx =   if  ][ kxXx =∈ ;   (19) 
ii)  the generalization rate (PG) , which is the probability for a pattern to 
verify the equation: 

)(Wxroundx ≠   if  ][ kxXx =∉ .   (20) 
We have tested the recognition rates by numerical simulations for 

different values of N, S, α and 2σ . The simulations have been carried out 
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for 1=σ , 32 1010 ≤≤ N  and 103 runs with different inputs were averaged 
for each ]2,0[∈α . We have found that the learning rate takes the 
maximum value: 

201)( ≤<= αα ifPL ,   (21) 

 and the generalization rate exhibits a steep transition at 1=α : 





≥
<<

=
10

101
)(

α
α

α
if

if
PG  .   (22) 

The numerical simulation shows that these results do not depend on the 
value of the discrete variable 1≥S . 
 

STORING THE TEMPORAL SEQUENCES OF PATTERNS 
 Above we discussed the storing capacity of static patterns in 
associative memories. However, there are many tasks which require 
storage and associative recall of temporal sequences of patterns.  

The human memory stores not only pictures, but also melodies and 
poems which can be retrieved by presentation of their short or distorted 
fragments. Another important function of the neural nets is generation of 
rhythmic motor patterns, which controls for instance, locomotion or 
heartbeats etc. Clearly, the same abilities are desirable in artificial systems 
of information processing. 

 Suppose we have an ordered set of orthogonal patterns: ][ kxX = , 

Tk
N

k
1

k )x...,,x(x = , )N...,,2,1k( =  and ij
jTi xx δ= , where 1=ijδ  if ji =  and 

0=ijδ  otherwise. We want to construct a neural network which will 

generate a periodic sequence of patterns: 

...,x,x,x...,,x,x 21N21
    (21) 

 For this particular case of orthogonal patterns, the storage problem 
can be easily solved by choosing the following asymmetric synaptic matrix 

∑
=

+=
N

k

kk xxW
1

1 ,     (22) 

where we assume 11 xx N =+ . 
 Suppose we start at 1=t  with the first pattern, then we find 

2

1
1

1

1

111 xxxxxWx
N

k
k

k
N

k

kk === ∑∑
=

+

=

+ δ .   (23) 

At the next step this neural network will generate the third pattern, and so 
on until the N-th step after which it generates again the first pattern and the 
cycle is repeated. 



M. ANDRECUT 
 
 

 100

 It can be easily seen that for the learning rule (17) with the 
dynamical equation (18), the restriction to the particular case of orthogonal 
patterns is completely eliminated. For this learning rule, it is sufficiently to 
put: 

21 xy = , 32 xy = , …, NN xy αα =−1 , 1xy N =α .  (24) 
Also, the maximum number of N-dimensional patterns (vectors) is N, it 
results that using the learning rule (22), the maximum length of the 
sequence is N. In case of the learning rule (17) the length of the sequence 
is NN >α .  
 

CONCLUSION 
In conclusion, we have derived an optimal learning rule for 

associative memories with gray neurons, which eliminates the drawbacks 
of the pseudo-inverse solution. The learning rule was deduced with respect 
to noise influence in the space of input patterns. The pattern recognition 
capability of the system was also discussed. 
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INTERACTING POPULATIONS IN THE "GAME OF LIFE" 
 
 

MIRCEA ANDRECUT * 
 
 

ABSTRACT. The Conway's celebrated game of life deals with one 
population of cells. Here, we present a generalization of the 
Conway's game of life by considering a finite number of interacting 
populations. The computational study shows that the game of life 
with interacting populations generates an extremely complicated 
dynamics with a self-organization mechanism between the 
populations. 

 
INTRODUCTION 
Cellular automata (CA) are modeled by cells and interaction rules1-3. 

Intuitively, CA are indefinitely extended networks of trivially small, identical, 
uniformly interconnected, and synchronously clocked digital computers. 
From the mathematical point of view, CA are given by a tuple },,,{ fQNC  

where C is the cellular space (usually a regular lattice such as n,...,ZZ,Z 2 ), 
N is the neighborhood (which is usually the same for all the sites in the 
cellular space), Q is the finite set of states and f is the local transition 
function which associates a new state to each site, depending on the site 
state itself and the each state configuration in the neighborhood, i.e. 

QQf n →+1: ;  QqqqfQqqq inii
n

inii ∈→∈ + ),,,(),,,( 1
1

1 KK ,  (1) 

where ),,( 1 ini qq K  is the state configuration of the neighborhood of the site 

i. The dynamics of the automaton is given by the synchronous application 
of the local function, f, to all the sites in the cellular space, i.e. for the site i, 

),,( 1
1 t

in
t
i

t
i

t
i qqqfq K=+ .   (2) 

 
In fact, CA provide explicit means for parallel computation on a space-

time background. One can see that the CA paradigm is developed on basis 
of a few important principles: 
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a) CA are local because each site is only affected by its finite 
neighborhood; 

b) CA are homogeneous, or translation invariant because the 
neighborhood for each site in the system is defined in the same way, 
and each site updates according to the same rule; 

c) CA are deterministic because the rules are so; 
d) CA are discrete in time because the sites update at discrete times; 
e) CA are discrete in space because their universe is a lattice; 
f) CA are dynamical systems because the sites update at each time step; 
g) CA are parallel because the sites update synchronously. 

The numerous complex phenomena unified under these principles 
include: self organization and order-disorder transition, far from 
thermodynamic equilibrium, foundation of relativity, quantum computation, 
particle physics, artificial intelligence, artificial life etc. In fact, CA paradigm 
represents the expression of the profound similarities between the 
fundamental mathematical models, which are used to describe the 
cooperative behavior of active systems in physics, chemistry, biology and 
social sciences. 

The generic models of cooperative behavior deal with systems made of 
simple elements. It is obvious that this assumption is not representative for 
biological, social or even physical systems where the elements have a very 
complicated structure. But, closer examination reveals that in cooperative 
interactions these elements act as simple units that can be described by a 
set of a few variables. Their internal complexity is not directly manifested in 
their interactions. 

As was noted by Von Bertalanffy4, Corning5, Nicolis and Prigogine6, 
living systems represent hierarchies of self-organized subsystems. At each 
level of hierarchy, we have a system of sufficiently autonomous units that 
interact in a simple manner one with another. Their interactions create a 
cooperative coherent behavior, which turn plays the role of an element of 
the next level. 

Contrary to the living systems, the laws of statistical physics tell us that 
a physical system tends towards a state of equilibrium in which activity 
ceases. The only exception is observed in "open systems" that receive a 
flux of energy and dissipate is further into the environment. All living 
systems have such permanent input. These observations lead to the theory 
of self-organization in "open systems" which was largely developed by 
Prigogine and coworkers6.  
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THE CONWAY'S "GAME OF LIFE" 
The theory of self-organization and the results obtained via CA 

simulation have lead to the appearance of a new idea, the possibility of 
constructing artificial living systems. John Von Neumann used this idea to 
create a complex cellular automata (with 29 states) which was able to 
produce non-trivial self-reproducing patterns7.  

A particularly interesting approach to the artificial life is provided by the 
Conway's game of life8. More specifically, he defined the following criteria: 
a) There should be no initial pattern for which there is a simple proof that 

the population can grow without limit; 
b) There should be initial patterns that apparently do grow without limit; 
c) There should be simple initial patterns that grow and change for a 

considerable period of time before coming to an end in three possible 
ways: fading away completely (from overcrowding or from becoming too 
sparse), settling into a stable configuration that remains unchanged 
thereafter, or entering an oscillating phase in which they repeat an 
endless cycle of two or more periods. 
The game was first published in the Scientific American in October 

1970, in Martin Gardner's "Mathematical Games" column8. Since then a 
great deal of work has been done for understanding the complex dynamics 
of the game of life.  

Let us define the game of life. The universe is an infinite two-
dimensional grid, or 2Z . At the each moment of time, t , the sites on the grid 

are occupied by a population of cells, },,|{ Ztjix t
ij ∈ . Each cell can be in 

one of two states 0 and 1, which we think as dead or live, respectively: 





=
dead

live
x t

ij   is cell  theif0

  is cell  theif1
.    (3) 

The neighborhood of each cell corresponds to the eight nearest neighbors. 
The sum over the neighborhood, at each moment t , is given by 

t
ij

n m

t
mjni

t
ij xxn −= ∑∑

−= −=
++

1

1

1

1
, .   (4) 

In a condensed form, the rule for the game of life is specified as follows: 

)3())2((1 =∨=∧=+ t
ij

t
ij

t
ij

t
ij nnxx ,   (5) 

where ∨∧,  stands for the logical operators AND, respectively OR.  
One can see that, the rule of the game of life is one-bit "semitotalistic". 

The rule is one-bit because it has only two possible states and choosing 
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between two states requires only one bit of information. The rule is 
"semitotalistic" because a cell's next state depends on the sum over the 
eight nearest neighbor states and the state of the cell itself. For a "totalistic" 
rule, a cell's next state depends only on the sum 

∑∑
−= −=

++

1

1

1

1
,

n m

t
mjnix .      (6) 

The game of life is characterized by an especially complex dynamics. It 
generates sophisticated sequences of patterns, which are extremely 
sensitive to the initial conditions. For example, one of the most famous 
patterns is the glider, 

110

101

100

,     (7) 

a pattern that moves across the cellular automaton array at a speed of one 
diagonal cell every four generations. If a CA rule uses nearest neighbors 
only, the fastest that a pattern can move is one cell per generation. This is 
sometimes called the speed of light, so one can say that game of life's 
gliders move at one-fourth the speed of light. 

Another interesting pattern is the R pentomino 

010

011

110

,     (8) 

a five-cell start pattern which creates an amazing amount of activity. The 
pattern keeps growing and evolving through 1103 generations, at which 
time a 51 by 109 pixel rectangle of stable debris is left, as well as six 
receding gliders. Large collection of patterns, programs and documentation 
on the game of life can be obtained via  Internet9, so, we will not discuss 
here any other aspects of these problems, but we will refer shortly to 
different variants and generalizations of the Conway's game of life. 

The question is. Why these patterns are interested ? Turing invented a 
machine which is an ideal computer (no computer of today can reach its 
capability). As is well known by now, the Conway's game of life has the 
infinite power of a universal Turing computer10. The proof of this is based 
on the glider gun patterns which can shoot out a stream of gliders. Using 
gliders streams to represent bits, all logic gates (AND, OR, NOT) can be 
produced. It results that these patterns could be used to construct the basic 
building blocks of a computer. 
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GENERALIZATIONS OF THE CONWAY'S GAME OF LIFE 
One can see that the game of life rule (6) can be easily expressed by 

the following simple formula: 
23/3 SBlife = ,    (9) 

where 3B  means that a dead cell will come alive in the next generation if 
and only if exactly three of its eight neighbors are alive (the birth rule), and 

23S  means that a living cell will survive in the next generation if there are 
either two or three neighbors also alive (the survive rule); otherwise a living 
cell will die of over crowding or of exposure. 

A simple idea to extend the game of life is to consider other formula for 
the birth and survive rule. We give here a short description of a few 
important rules (there are 162  possible rules in a two-dimensional space !): 
1) 1357/1357 SB (Replicator)-(Exploding) In this remarkable universe 

every pattern is a replicator.  
2) 23/36 SB (High Life)-(Chaotic) This rule has a surprise replicator 

pattern. There is no known replicator in Conway's game of life. 
3) 34/34 SB (34-Life)-(Exploding) The First explored alternative to 

Conway's life. It creates an exploding universe with a very rich 
dynamics. 

4) 34678/3678 SB  (Day & Night)-(Stable) So named because dead cells 
in fields of live cells act by the same rules as live cells in fields of dead 
cells. There are obviously other rules which have this symmetrical 
property, but this rule was chosen because it has some interesting high 
period of patterns. 

5) 5/345 SB (Long Life)-(Stable) This rule is called "Long life" because of 
the extremely high period patterns that can be produced in this 
universe. 

6) 5678/35678 SB  (Diamoeba)-(Chaotic) Creates solid diamond-shaped 
"amoeba" patterns that are surprisingly unpredictable.  
Another simple idea is to extend the game in a tree-dimensional space 

and to rescale the birth and survive conditions adequately. Note that in a 
tree-dimensional space, each cell has 26 nearest neighbors. Also, the 
number of possible rules, in a three-dimensional space, is enormous, 522 . 

Evans and Griffeat11 have proposed a generalization of the Conway's 
game of life. Larger than Life (LtL) is a four-parameter family of two-state 
CA that generalize the game of life as follows:  
- At each time, each site dZx ∈  is either live or dead; 
- The neighborhood of the origin is N, a finite subset of the d-dimensional 

space dZ ; The translation Nx +  is the neighborhood of x; 
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- A dead cell at time t, become live at time 1+t  if it sees between 1β  and 

2β  live cells in its neighborhood; 

- A live cell at time t survives to the time 1+t  if it sees between 1δ  and 

2δ  live cells in its neighborhood; otherwise it become dead. 
LtL family of CA introduced a rich collection of new interesting patterns, 

called bugs, which have a similar behavior to gliders. 
 

GAME OF LIFE WITH INTERACTING POPULATIONS 
In this paper, we present a generalization of the Conway's game of life 

by considering a finite number of interacting populations )1( ≥P . The game 
of life with interacting populations is defined as follows: 
- The universe is  dZ ; 
- The populations are described by: 



 ∈

=
cell deada by  occupied is site theif0

},...,2,1{ population from cell livea by  occupied is site theif Ppp
x t

ij ;   

(10) 

- The neighborhood of the origin is N, a finite subset of the d-dimensional 
space dZ ; The translation Nx +  is the neighborhood of x; 

- The following partial sums are defined at each moment t, over the 
neighborhood: 

),(),()(
,

, pxpxpn t
ij

Nmn

t
mjni

t
ij δδ −= ∑

∈
++ ,  },...,2,1{ Pp ∈ , (11) 

where 
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- The birth rule for the population p is given by: 
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1
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1 qqt
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(13) 

where ¬  is the logical operator NOT; 
- The survive rule is given by: 

}],...,{[)0(if 21
1

1 ppt
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The game of life with interacting populations is a P2 -parameter family 
of CA, and for 1=P , is reducing to the four-parameter family of Larger 
than Life CA. In fact, for regions occupied by one kind of population, the 
dynamics of the game of life with interacting populations is governed by the 
Larger than Life CA. The differences appear when a neighborhood contains 
cells from different populations in competition for the central site. 

The computational study of the game of life with interacting populations 
is very difficult for a large number of populations, but it is accessible for a 
small number of populations. We will consider the following particular case: 
- The universe is 2Z ; 
- 2=P , two populations: 









=
cell deada by  occupied is site theif0

2 population from cell livea by  occupied is site theif2

1 population from cell livea by  occupied is site theif1
t
ijx ; (15) 

- The neighborhood of each cell corresponds to the eight nearest 
neighbors, as in the game of life. The partial sums over the 
neighborhood are given by 

),(),()(
1

1

1

1
, pxpxpn t

ij
n m
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mjni

t
ij δδ −= ∑∑

−= −=
++ ,   }2,1{∈p ;  (16) 

- The birth and survive rules are given by (13) and respectively (14), but 
the parameters β  and δ  are those from the game of life, i.e. 

321 == pp ββ  and 21 =pδ , 32 =pδ . With these parameters the update 
rule is: 
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(17) 

One can see that in regions occupied by only one population, the 
dynamics is governed by the rules from the Conway's game of life. It results 
that the system will show a game of life like dynamics with an interaction 
between the two populations at the frontier. 

We have simulated this system starting from a random initial 
configuration. If tξ  denotes the state of the system at time t started from a 
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random initial configuration, then tξ  can be thought of as a Markov process 

since the sites update independently from all preceding times except the 
current one. Also, the Markov process is degenerate since the transitions 
are deterministic. 

Fig. 1 shows the evolution of the system starting from a random initial 
configuration. The populations are initialized in a small array )1212( × , with 

equal probabilities 41)2()1( == PP . It is interesting to see that the 
behavior of the system is different than of the game of life. In the game of 
life, the density of population decrease, but here the density remains almost 
constant. Also, a self-organization mechanism appears as a consequence 
of the interaction between the two populations. It seems like the 
populations cooperate in constructing a frontier which separate regions 
occupied by one type of population. In this regions the dynamics is 
governed by the rule of the game of life. The frontier increase continuously. 
The irregular shape of the frontier generates new patterns in both 
populations and play the role of a factory which generates patterns that can 
move and interact. 

Now, we will change the rule 23/3 SB  with 34/34 SB , which is an 
interesting alternative for the game of life. The update rule in this case will 
be: 
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In Fig. 2 we give the results of the numerical simulation. This time, the 
system has a completely different evolution. After a few time steps, the 
population are completely separated and forms two large random areas 
that resemble amoebas and that are in permanent contact. Internal to the 
random areas is chaos. The edge vascillates wildly, and patterns tend to 
grow. The more they grow, the more certain their survival. Also, the 
patterns move continuously in space. 

Obviously, following the procedure described above, one can define 
many other rules, which describes the interaction of populations in the 
Conway's game of life. The given examples demonstrate that the game of 
life with interacting populations has a complex dynamics with interesting 
effects of self-organization. 
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Fig. 1. Temporal evolution of the  game of life with interacting populations, rule 
(17). 
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Fig. 2. Temporal evolution of the  game of life with interacting populations, rule 
(17). 
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CONCLUSIONS 
We have presented a generalization of the Conway's game of life by 

considering a finite number of interacting populations. The computational 
study shows that the game of life with interacting populations generates an 
extremely complicated dynamics with a self-organization mechanism. The 
quantitative analysis of the patterns emerged from this model, in large 
(multi-dimensional) systems, is a difficult task from the computational point 
of view. These difficulties can be avoided only by a parallel computational 
approach. New technology such as the Cellular Automata Machine (CAM)12 
could give greater empirical progress in understanding how such systems 
behave. 
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