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EPR STUDY ON RADIOTHERAPEUTIC GLASSES 
 
 

S. SIMON1, I. ARDELEAN1, D. ENIU2, V. SIMON1 

 
 

ABSTRACT. Rare-earth aluminium-silicate glasses of 
20M2O3·20Al2O3·60SiO2, (M = Y, Dy) systems were prepared 
by melts undercooling and activated by neutron irradiation. 
Besides Y-90 and Dy-165 respectively, no other radioisotopes 
were induced. The specific gamma activity of yttrium containing 
sample is about 2.5 times higher than that of dysprosium 
containing sample. In order to obtain more information about 
the neighbourhood of the induced radionuclides, important 
aspect concerning the glass stability in biological environments, 
the dysprosium sample 2 0 ( D y / G d ) 2 O 3 · 2 0 A l2 O 3 · 6 0 S i O2  

was structural investigated by electron paramagnetic 
resonance (EPR) of Gd3+ ions substituting up to 5 % the 
dysprosium ions. The sites occupied by rare earth elements are 
subjected to crystalline fields of strength depending on the heat 
treatment conditions. 

 
 
 INTRODUCTION 
 

 Radiotherapy glasses are radioactive glasses used for in situ 
beta or gamma irradiation. Aluminium-silicate glasses containing rare 
earth (RE) cations as Y, Sm, Ho and Dy have the advantage that by 
neutron activation radioisotopes such as Y-90, Sm-153, Ho-166, Dy-165 
can be obtained [1]. The relatively short half lives of these isotopes are 
important parameters for real time medical treatment. For example, 
since Y-90 has a half life of 64.1 hours, the radioactivity decays to a 
negligible level in about 21 days [2, 3]. The rare earth aluminium-silicate 
glasses are currently being evaluated for applications such as the 
irradiation of deseased kidneys prior to surgical removal, radiation 
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synovectomy of arthritic joints and irradiation of malignant tumours in the 
liver [4]. 

 This study aims to investigate two vitreous aluminium-silicate 
systems containing yttrium and dysprosium as rare earth elements that 
may be activated by neutron irradiation to become radioactive with 
possible applications as radiotherapeutic glasses. 
 

 EXPERIMENTAL 
 

 The investigated glass systems 20M2O3 20Al2O3·60SiO2 where M 
= Y or Dy (mol %) were obtained from component oxides of reagent 
grade purity, mixed in corresponding proportions for the desired 
compositions. The homogenised mixtures introduced in sintered 
corundum crucibles were successively heat treated in an electric furnace 
for 5 hours at 1200oC and at 1300oC. In order to obtain vitreous samples 
the reground mixtures were melted at 1400oC for 15 minutes and quickly 
undercooled by pouring on stainless steal plates at the room 
temperature. The recrystallisation heat treatment was performed in the 
same electric furnace at 1200oC for 5 hours. 

 The samples were irradiated for 83 days using an activation 
equipment with two isotopic sources Am-Be and Pu-Be providing a total 
flux of 6·107 neutrons/sec. The radioisotopes induced by neutron 
activation in the irradiated samples were identified by means of a high 
resolution Ge-Li gamma spectrometer. The specific gamma activity 
measurements were carried out on a 20160- RFT monochanel analyser 
equipped with a VA-S-968 scintillation detector and 51021-RFT counter. 
The analyser with Tl doped NaI crystal worked in integral regime at a cut 
voltage of 1.1 V. The photomultiplier voltage was of 760 V.  

 The electron paramagnetic resonance (EPR) spectra were 
recorded on powder samples, at room temperature, by using a JEOL-
type spectrometer in the X frequency band, with 100 KHz field 
modulation. 
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 RESULTS AND DISCUSSION  
 

The gamma spectra evidenced that in the neutron activated 
samples 20M2O3·20Al2O3·60SiO2 , (M=Y,Dy) were induced as 
radionuclides only Y-90 and Dy-165 respectively. No other peaks arising 
from possible, undesired, impurities were put into evidence in the 
gamma spectra of the investigated samples. 

The specific gamma activities are around 20 Bq/g for the glass 
containing Y2O3 and around 50 Bq/g for that containing Dy2O3. 

Despite the fact that after neutron activation resonance signals 
arising from defects induced by irradiation were expected, the EPR 
spectra recorded from these samples do not evidence any lines arising 
from irradiation defects. The absence of such signals denotes that the 
irradiation defects even if they are induced, are characterised, at the 
room temperature, by very short life times. In order to characterise by 
EPR the structural changes after different heat treatment procedures, a 
part of dysprosium ions (under 5 %) was substituted by gadolinium. This 
replacement was decided having in view that in this low concentration it 
is very probable that the substituent atoms will enter in the sites of 
substituted atoms. On the other hand the Gd3+ ions as resonant center 
offer by EPR technique useful information about the neighbourhood 
around the sites occupied by the rare earth elements in the host 
matrices. The structural stability of the radioisotopes in glass matrices 
can be correlated with the local symmetry around rare earth ions. 

 The structural changes in the local order were determined by 
sample heat treatment at different temperatures, for different times. The 
EPR data obtained from these samples depend on the applied heat 
treatments. Figure 1 shows the resonance spectra recorded from 
samples having the same composition but which were subjected to 
different heat treatments. After a 5 hours heat treatment at 1200oC (Fig. 
1a) the spectrum is typical of gadolinium ions disposed in sites of week 
crystalline field in polycrystalline systems [5]. By applying a new heat 
treatment at a higher temperature (1300oC) the Gd3+ EPR spectrum 
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reveals the U type spectrum features, consisting of resonance lines with 
g ≈ 2.0, g ≈ 2.8 and g ≈ 6.0 specific to the vitreous systems [6, 7]. One 

remarks that elements characteristic to the polycrystalline materials are 
further maintained (Fig. 1b). 

 This suggests that only a fraction of Gd3+ ions are disposed in 
sites with relatively distorted vicinity. The Gd3 EPR spectrum after 
melting heat treatment (Fig. 1) is predominated by the U type spectrum 
accompanied by features specific to the polycrystalline systems and a 
superposed narrow line at low magnetic fields, with g ≈ 20. We also 

remark the appearance of the line with g ≈ 4.8 assigned to the Gd3+ ions 

with a lower coordination than six, usually four. In the oxide systems, in 
general, and particularly in the vitreous matrices the number of the 
gadolinium ions disposed in sites of tetrahedral symmetries is extremely 
low. On the other hand the gadolinium ions prefer coordinations higher 
than six and this is in deed the typical behaviour of all rare earth 
elements [8]. The presence of the line with g ≈ 4.8 is better evidenced in 

the EPR spectrum of the partially recrystallised samples (Fig. 1d) 
showing that by heat treatment the host matrix imposes for a high 
fraction of gadolinium ions low coordinated environments. This result 
supports the assumption that a part of the Gd3+ ions occupy in the 
investigated samples the silicon sites specific of the aluminium-silicate 
systems, because in these systems the silicon atoms are preponderantly 
tetracoordinated [9]. This low coordinated gadolinium ions are from 
structural point of view more unstable than the higher coordinated 
species, so in biological environment they will be easier solved. The 
radiotherapeutic glasses must be stable so long their activity decreases 
at a negligible level. It would be also desirable their dissolution and 
elimination at the end of the therapy.  

The above presented EPR data show that the radioisotope 
coordination and therefore the stability of rare earth aluminium-silicate 
glasses can be controlled by partial devitrification heat treatment. 
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Fig. 1. Gd3+ EPR spectra of 20(Dy/Gd)2O3⋅20Al2O3⋅60SiO2 system 

 
  a) heat treated at 12000C for 5 hours; 
  b) heat treated at 13000C for 5 hours; 
  c) quenched after melting at 14000C for 15 minutes; 
  d) partially crystallised by heat treatment at 13000C for 5 hours after 
  (c) procedure. 
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CONCLUSIONS 
 

 The results of this study indicate that the applied neutron 
irradiation treatment leads to the activation of the rare earth elements 
contained in the glass samples and of no other undesired radioisotopes. 
The gamma activity arising from the sample containing dysprosium is 
about 2.5 times higher than that arising from the sample containing 
yttrium. The absence of radiation defects in the neutron activated 
glasses show a continuous glass network in these samples that is an 
important aspect for their stability in biological environments. The EPR 
data indicate that the sites occupied by the rare earth elements in this 
aluminium-silicate glass matrix are subjected to crystalline fields of 
strength depending on the heat treatment conditions. The increasing 
effect of devitrification heat treatment on low coordinated gadolinium 
ions fraction, more unstable species in biological environments, show 
the way to assure the stability of these rare earth aluminium-silicate 
glasses in human body only during the radiotherapy time.  
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MATRIX EFFECT ON OPTICAL ABSORPTION OF OXIDE  
GLASSES CONTAINING URANIUM 

 
 

V. ŞIMON1, M. TODICA1, I. ARDELEAN1, V. MIH1, S. ŞIMON1 
 
 

ABSTRACT. Four oxide glass systems xUO3 (100-x) 

[2P2O5.Na2O], xUO3 (100-x) [2P2O5.PbO], xUO3 (100-x) 

[3B2O3.PbO] and xUO3 (100-x) [3B2O3.SrO] were 
investigated by optical absorption spectroscopy in the UV-VIS 
range in order to evidence the glass matrix effect on the 
uranium incorporated in these glasses. The absorption bands 

centered at 18400 cm-1, 20400 cm-1 and 23100 cm-1 are 
observed in both phosphate systems. The absorption bands at 

16000 cm-1 and 22000 cm-1 occur only for uranium ions 
introduced in the lead-phosphate matrix, while the absorption 

band centered at 15750 cm-1 is recorded only from samples of 
soda-phosphate matrix. The main absorption bands in the 

borate systems occur around 15800 cm-1 and 23000 cm-

1.These results indicate that the phosphate matrices favourise 
the (3+), (4+) and (6+) valence states of uranium, with the 

preponderance of U4+ ions, while in the borate matrices only 

(3+) and (6+) states are evidenced and the U6+ ions 
dominates. 

 
 
 

 INTRODUCTION 
  

In the past decades extensive researches were devoted to glass 
composition under consideration for use as hosts in the immobilsation of 
nuclear waste [1-5]. Particular interest is accorded to uranium wastes. 
The uranium is a multivalent element and its valence state can be 
influenced by the host material wherein is incorporated. In order to 
assure a high stability of radionuclides the nuclear waste is disposed in 
multicomponent glasses [5, 6, 13]. In such systems the phase 
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separation is a common phenomenon that implies the appearance of 
boron poor and rich phases [8]. This is the reason to take into account 
also borate glasses despite the fact that in the borate glass matrices the 
most part of uranium ions appear in the (3+) and (6+) valence states. 
The solubility and stability of the uranium ions in oxide glass matrices 
also depend on the uranium valence states. On the other hand the 
presence of particular valence states of multivalent elements in glasses 
control important physical properties of glasses. Glass properties can be 
attributed to the occurrence of certain valence states that play a major 
role due to the applicability of these properties to fields as nuclear waste 
immobilisation, slag recycling and materials science [9].  
 Most multivalent elements of the actinide class (U, Pu, Np and 
other) dissolved in glass posses characteristic absorption spectra in the 
near-ultraviolet, visible and near-infrared regions. The origin of these 
electronic spectral bands is the d and f electron energy level splittings of 
an ion in a particular physical environment. The absorption bands for 
each ion are characteristic in terms of number, position, shape and 
intensity. The positions and shapes of the absorptions can be correlated 
to the ionic state and its local electronic environment (ligand and 
coordination site), whereas the intensities of the absorptions can be 
correlated to the concentration of that ion in the glass structure.  
 In order to establish the influence of the glass matrix on the 
valence states of the uranium ions and on the relative number of the 
identified uranium ions in different valence states we carried out an 
optical absorption study in the UV-VIS range on four glass matrices. 
 

 EXPERIMENTAL  
 The investigated samples are phosphate and borate glasses 
belonging to the systems xUO3(100-x)[2P2O5.MxOy], where M = Na, Pb 

and xUO3(100-x)[3B2O3.MO] where M = Pb, Sr. The samples were 
prepared from chemical pure compounds UO3, (NH4)2HPO4, 

Na2CO3.10H2O, PbO, H3BO3 and SrCO3 mixed in suitable amounts 
according to the desired compositions. Glasses were melted in an 
electric furnace with superkanthal bars, in sintered corundum crucibles 
directly introduced into the furnace at 1250oC and maintained at this 
temperature for 10 minutes. The melts were vitrified by fast undercooling 
at room temperature, by pouring onto stainless steel plates. The 
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composition range of the prepared glasses corresponds to 0≤ x ≤ 20 mol 
% UO3. 
 Optical absorption spectra were recorded at room temperature 
on a Specord UV-VIS spectrometer from thin plate samples in the wave 
number range 13000-30000 cm-1. 
 

 RESULTS AND DISCUSSION 
 The investigated glass matrices 2P2O5.Na2O, 2P2O5.PbO, 

3B2O3.PbO and 3B2O3.SrO evidence no absorption line in the UV-VIS 
range. By introducing uranium the samples give rise to absorption 
spectra that consist of band arising from uranium ions in different 
valence states. All samples containing uranium ions are lightly coloured, 
the phosphate samples in green and the borate ones in yellow-brown. 

The green colour is associated to U4+ ions, the yellow colour to U6+ 

ions, while red colour is typical for U3+ ions. The U5+ ions have no 
absorption in this spectroscopic range [10]. 
 Figure 1 illustrates the absorption spectra recorded from glass 
samples containing the same amount of uranium in glass matrices with 
different components. Absorption bands centered at 18000 cm-1, 20400 
cm-1 and 23100 cm-1 occur in both phosphate systems. The 15750 cm-1 
band appears only in the soda-phosphate glasses while the bands 
centered around 16000 cm-1 and 22000 cm-1 are recorded only from 
lead-phosphate glasses. The optical absorption spectra obtained from 
borate glasses consist of three absorption bands around 13800 cm-1, 
15800 cm-1 and 23000 cm-1 for the lead containing system and only of 
two bands around 15800 cm-1 and 23000 cm-1 for the strontium-borate 
system. 
 In oxide glasses the uranium ions generally may appear in 
valence states between (3+) and (6+). The valence state (4+) is 
preferred when the immobilisation of radionuclides is the desired 
application, because this is the best stabilised state in oxide glasses [9]. 
According to the attribution of the optical absorption bands to different 
valence states of uranium ions one remarks that the glass matrix 
influence the uranium valence states in samples prepared in the same 
conditions.  
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Fig.1. The optical absorption spectra of glass samples containing 10 mol% UO3 in  

(a) 2P2O5.Na2O, (b) 2P2O5.PbO, (c) 3B2O3.PbO and (d) 3B2O3.SrO matrices. 

 
 
 In the phosphate glasses are evidenced uranium ions in (3+), 
(4+) and (6+) valence states while in the borate glasses only (3+) and 
(4+) valence states are evidenced. The preponderance of U4+ ions in 
the phosphate matrices and of U6+ ions in the borate matrices is also 
supported by their color [10-12]. Considering the number of the ions in 
different valence states proportional to the intensity of the corresponding 
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absorption bands obtained for samples with 5 ≤ x ≤ 20 mol % one 
remarks that the number of U4+ ions is about seven times higher than 
that of U3 + ions and nine times higher than that of U6+ ions in 
xUO3(100-x)[2P2O5.PbO] glasses, whereas in xUO3(100-

x)[2P2O5.Na2O] glasses both these fractions (U4+/ U6+ and U4+/ U3+) 
are close to 3 [7]. As mentioned, in the borate samples investigated in 
this study, only U3+ and U6+ ions are evidenced. The number of U6+ 

ions in comparison with that of U3+ ions is approximately four times 
higher in xUO3(100-x)[3B2O3.PbO] glasses and two times higher in the 

in xUO3(100-x)[3B2O3.SrO] glasses. 
 

 CONCLUSIONS 
 The four glass matrices differently influence the uranium by 
structural effects, so that the absorption bands are not identical for glass 
samples containing the same uranium content. 
Absorption bands centered at 18400 cm-1, 20400 cm-1 and 23100 cm-1 
are observed in both phosphate systems, absorption bands at 16000 
cm-1 and 22000 cm-1 occur only from lead-phosphate glasses, while the 
absorption band centered at 15750 cm-1 is recorded only from soda-
phosphate samples. Two absorption bands at 15800 cm-1 and 23000 
cm-1 are developed both in lead- and in strontium-borate glasses. Only 
for the strontium-borate system occurs a week absorption band around 
13800 cm-1.  
 The position and intensity of the optical absorption bands in the 
UV-VIS range indicate the preponderance of U4+ ions relative to U3+ 

and U6+ ones in the phosphate matrices and of U6+ ions relative to U3+ 

ions in the borate matrices. The U5+ ions are not excluded from these 
glasses due to the fact that even if they are present they do not process 
any absorption bands in the investigated frequency range.  
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THERMAL PROPERTIES OF NiFe2-xAlxO4 SYSTEM 
 
 

Á. NÉDA 1, ZS. SÁRKÖZI 1 
 
 

ABSTRACT. The magnetic phase transition in the NiFe2-
xAlxO4 system was studied trough measurements of thermal 
diffusivity and thermal conductibility in the range of temperature 
100 - 600K. It was proved that the temperature dependence of 
the thermal diffusivity is adequate to point out the phase 
transition.  

 
 

 INTRODUCTION 
 The NiFe2-xAlxO4 system was studied earlier in detail from 
electrical and magnetical point of view [1], but thermal measurements 
was not performed until now.  
 The present study of NiFe2-xAlxO4 ferrites discusses the thermal 
properties (thermal diffusivity, thermal conductivity and specific heat) of 
the system.  
 It is shown in reference [2] that the temperature-dependence of 
the thermal diffusivity and thermal conductivity gives also information 
about the phase-transition temperature.  
 The aim of this study is to prouve by thermal measurements the 
existence of magnetic phase transition and also to make clear the 
thermal conductivity mechanismus.  
 

 EXPERIMENTAL 
 The samples were sinterized using oxides of p. a. purity. A series 
of samples was prepared with the concentrations x = 2 (I), x = 1. 4 (IV), x 
= 1. 2 (V), x = 1. 1 (VI), x = 1. 0 (VII). Thermal diffusivity was determined 
by the optical impulse method [3], specific heat was measured using the 
method of adiabatic calorimeter [4].  
 

 RESULTS AND DISCUSSION 
Fig. 1 shows an 1/T dependence of the thermal diffusivity in case of 
different samples (VII, VI, V). It results that one can distinguish three 
different domains for samples with reduced concentration of the Al 3+ 
ion (VII, VI, V) and only two different domains in case of greater 
concentration of the above-mentioned ion (Fig. 2 - sample I). These 
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domains are characterised by linear variation, while at certain 
temperature a modification in the slope appears. After Peirels [5], these 
modifications occur at the Debye temperature, respectively at those 
temperatures at which the phonon scattering mechanisms modify. 
According to this theory, thermal diffusivity is described as follows:  
 

λ ν= 1

3
l c,     (1) 

 

where l  is the mean free path for phonons, ν - the group velocity for 
phonons, c - the specific heat. The value of l  is given by different 
scattering mechanisms, like: the triphononic "u" processes ( l ff), the 
scattering on defects ( l fd), on electrons ( l fe) and - in case of 
magnetically ordered materials - on magnons ( l fm). Thus the resulting 
mean free path is: 

1 1 1 1 1

l l l l l
= + + +

ff fd fm fe

.   (2) 

 

 The l fd  can be considered invariant in the range of high 

temperatures. Below the high temperature range l ff  varies like 1/T, while 

for a low concentration of electrons l fe  remains constant in a wide 
temperature range.  
 It results that the temperature dependence of the mean free path 
is determined in fact by two phenomena: the triphononic "u" scattering 
process and phonon - magnon scattering. With regard to the mean free 
path given by this last mechanism, its variation follows the relation: 

l l
M T

Mfm = −









−

0

1

1
0

( )

( )
,    (3) 

 

where: M(T) - the magnetisation at temperature T, M(0) - the 
magnetisation at the perfectly ordered state, l 0 - the mean free path at 
the phase transition temperature. One notices that this quantity 
decreases with increasing temperature until the phase transition. Above 
this value it remains constant. Returning to Fig. 1., we can assume the 
following: the first slope modifications (in the low temperature range) for 
the samples VII, VI, V arises at Debye temperatures.  
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Fig. 1. Thermal diffusivity variation for samples VII, VI, V 
 
 

 
 
 

Fig. 2. Thermal diffusivity variation in case of samples I and IV 
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 Their values were confirmed by specific heat measurements. The 
second slope modification arises at higher temperatures. These values 
can be determined exactly from the medallion of Fig. 1 Thus, it appears 
at 464K for the sample VII, at 391K for the sample VI and at 370K in 
case of sample V. The values determined are in agreement (in terms of 
the errors of the measurement) with the values determined by L. 
Kozlowski [2] for the phase-transition. In the case of sample I (Fig. 2), 
the single slope modification temperature corresponds to the Debye 
temperature. For the sample IV (Fig. 2), the variation of the diffusivity is 
no longer linear for the intermediate temperature range. Thus it is not 
possible to determine the Debye temperature. We consider that this is 
due to the superposition of the two temperature-regions. The slope-
modification for this sample appears at 259K, which corresponds to the 
phase-transition temperature.  
 The variation of thermal conductivity is given by: 

λ =a ρ c ,     (4) 
where: a - thermal diffusivity, ρ - density, and it is represented  i n  F i g .3 
for samples VII, VI, V and in Fig. 4 for the sample IV. One founds that 
this variation curve presents a peak at the magnetic phase-transition 
temperature, peak that can be correlated with an anomaly in the specific 
heat. With regard to this data, see article [6].  
 

 
 

Fig. 3. Thermal conductivity for samples VII, VI, V 
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 As it was shown, the above determined temperatures present 
coincidence with the data from the paper of Visinevski [1].  
 From Fig. 3 and Fig. 4 results also that thermal conductivity 
decreases with increasing Al 3+ concentration. We consider that this 
decrease arises from the substitution of magnetic Fe3+ ions from the 
host lattice with Al 3+ ions that have greater scattering section for 
phonons than Fe3+, as it was shown in [7].  
 
 
 

 
 

Fig. 4. Thermal conductivity for sample IV 
 
 

 CONCLUSIONS 
 Magnetic phase transition was put in evidence by thermal data.  
 It was proved that the thermal diffusivity is an adequate quantity 
to study the second order phase transition.  
 It was pointed out that the thermal conductivity varies 
considerably with the concentration of Al 3+ ions in case of ferrites.  
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LES PARAMETRES DE QUALITE DES NOYAUX MAGNETIQUES 
EN POUDRES, LEURS FACTEURS DETERMINANTS.  

RESULTATS EXPERIMENTAUX 
 
 

SABINA PICOŞ1 
 
 
 

 Les plus importants paramètres électriques et magnétiques des 
noyaux en poudres pressées sont la résistivité, les pertes magnétiques 
et le facteur de qualité. Les méthodes de déterminer leurs valeurs qui 
ont été utilisées dans les expériences sont les suivantes: 
 a) Pour mesurer la résistivité électrique des échantillons on a 
d'abord déterminé la résistance électrique R  en utilisant la relation: 

ρ=R 
L

S
     (1) 

ou la section S et la longueur L sont les caractéristiques 
dimensionnelles des échantillons. 
 Pour mesurer la résistance R des échantillons on a utilisé 
l'ensemble présente dans la fig. 1, avec les notations suivantes: PW - 
pont Wheastone - Thomson, G - instrument de zéro, U - source 
d'alimentation, Rh - rhéostat de réglage et V - voltmètre. 
 b) Evaluation des pertes magnétiques 
 Afin de déterminer les pertes magnétiques on a utilisé une 
méthode en pont qui rend possible la détermination de composantes 
active et réactive et de l'impédance d'une bobine ayant comme noyaux 
un tore de poudre ferromagnétique. Le schéma bloc de l'installation est 
donne par la figure 2; on y utilise les notations suivantes: G - générateur 
décadique TR-0202; PA - pont d'alimentation SWM-3-2; mVs - 
millivoltmètre sélectif TT-1301; VE - voltmètre sélectif TT-1302; T - 
échantillon et R - résistance calibrée. Du schéma de l'installation (fig. 2) 
on a séparé le schéma électrique de principe du pont d'admittance 
(fig.3). 
 Pour mesurer le champ où se trouve l'échantillon, le bobinage du 
tore a été lié en série à une résistance calibrée R = 1 Ω d'où on y 
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ramasse la chute de tension, mesurée à l'aide du voltmètre électronique 
VE et ainsi on détermine l'intensité I du courant, qui traverse le 
bobinage. Au pont PA on compose l'admittance de l' échantillon, en 
utilisant la relation: 
 

y G j B= − ⋅     (2) 
 

où G est la conductance et B = ωC est la susceptance, toutes les deux 
étalonnées, R et X = Lω 

R
G

G B
=

+2 2
;  X

B

G B
=

+

2

2 2
   (3) 

 

 A la fin on déterminé les pertes totales, données par tgδ. 
 

( )tg
R R R

L L
δ

ω
=

− − ′
− ⋅

0

0

    (4) 

où R0 et L0 sont la résistance, respectivement l'impédance du bobinage 
et ω est la pulsation du courant. On a effectué les déterminations pour 
une fréquence ν = 103 Hz. 
 c) L'évaluation du facteur de qualité Q 
 On a déterminé les valeurs du facteur de qualité Q pour des 
fréquences supérieure de la valeur de 103 Hz en utilisant quelques Q - 
mètres Rode-Schwartz BH-36711 et Hewllet-Packard. 
 

 RESULTATS EXPERIMENTAUX   

 La résistivité 
 Comme facteur déterminant de la qualité des noyaux 
magnétiques obtenus des poudres de fer électrolytique ( ME1 et ME2) et 
du frem (F1 et F2) la résistivité varie selon la composition, selon les 
dimensions et la distribution granulométrique de la poudre (tables 1 et 2 
et fig. 4.). Les poudres de fer frem et les poudres électrolytiques sont 
des poudres de fabrication différente. Les deux sortes de chaque 
catégorie de poudre ont de dimensions et des distributions granulaires 
différentes. En étudiant la représentation graphique, on peut constater 
que: 
• la dimension granulaire g des poudres influence la valeur de la 

résistivité dans le sens qu'elle enregistre un accroissement selon la 
réduction des dimensions des granules (

1 2EMq EMq>  et 
2 1Fq Fq> ) 
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puisque le degré de compactage et plus petit dans le cas des 
granules fins; 

• la distribution dimensionnelle des poudres ayant la même 
composition chimique exerce une certaine influence sur de  valeur 
de la résistivité électrique. 

 

Table 1.  La composition chimique des poudres utilisées % 
 

Norme de la 
poudre 

 
Fe 

 
C 

 
O 

 
Si 

 
SiO2 

 
Mn 

 
P 

 
S 

 
Cu 

 
N 

 
Ni 

 
Mo 

Electrolytique 
ME1 et ME2 

 
99.96 

 
0.00 

 
- 

 
0.006 

 
- 

 
0.01 

 
0.004 

 
0.003 

 
0.008 

 
- 

 
- 

 
- 

Frem F1 et F2 98 0.03 - - 0.035 0.04 0.025 0.025 - - - - 
 
 

Table 2.  Répartition granulométrique de la poudre 
 

Poudre La grandeur des 
granules (µm) 

Répartition 
% 

Forme de la 
granule 

Electrolytique ME1 sous 0,045 100 feuille 
polyédrique 

Electrolytique ME2 0,008...0,044 100 feuille 
polyédrique 

Frem F1 et F2 sous 0,04 100 polyédrique, 
irrégulière 

 

 Les pertes magnétiques 
 La relation entre les pertes totales magnétiques (tgδ) et le facteur 
de qualité Q est donnée par l'expression : 

Q
tg

=
1

δ
                         (5) 

 Considérant que le but de l'utilisation de noyaux magnétiques de 
poudres ferromagnétiques est la réduction de pertes magnétiques 
engendrées par les courants tourbillonnaires (tgδf) on peut écrire: 
 

tg
d L

Sfδ
π µ ν

ρ
= ⋅ −4 2 2 2

910     (6) 

 

Q
S

d L
=

⋅ρ

π µ ν

910

4 2 2 2
    (7) 

 La relation (6) montre que les pertes magnétiques varient 
inversement proportionnel avec la résistivité. Conformément a la 
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dernière relation de calcul le facteur de qualité Q enregistre une 
variation directe par rapport a la résistivité ρ. 
 Par la suite, les paramètres physiques des poudres agissent sur 
le facteur de qualité dans le même sens comme dans le cas de la 
résistivité électrique. 
 L'influence de la fréquence du courant d'alimentation sur les 
pertes magnétiques.  
 Utilisant les données expérimentales sur la variation des pertes 
magnétiques de fer électrolytique ME1 et ME2 de fer frem F1 et F2 on fait 
les représentations graphiques des figures 5 et 6 qui mettent en 
évidence les constatations suivantes: 
 

• le domaine de variation de fréquences pour les deux poudres 
obtenues par le même procédé peut être séparé en deux zones de 
fréquences νi et νs ou νi < νs; 

• pour la zone de fréquences νi les noyaux obtenus de granules plus 
fins ont des pertes magnétiques plus petites et pour celle de 
fréquences νs les pertes magnétiques sont plus réduites que dans le 
cas des noyaux aux granules plus grands.  

 
 La relation (5) montre que la perte magnétique de courants 
tourbillonnaires enregistre une variation inversement proportionnelle 
avec la résistivité qui, a son tour a une variation inversement 
proportionnelle par rapport aux dimensions des granules. Pour la zone 
de fréquences νs, la résistivité augmente pour des granules plus grands 
dans un rythme qui dépasse celui qui correspond aux granules plus 
petits. 
 

 LE FACTEUR DE QUALITE Q 
 
 Le facteur de qualité atteint la valeur maximale pour des 
granules plus fins, dans le domaine de fréquences νi pour des granules 
plus grands, dans le domaine de fréquences νs. On remarque aussi que 
les valeurs optimales du facteur de qualité se trouvent aussi dans des 
fréquences élevées pour des noyaux aux granules plus grands (figure 7 
et figure 8). 
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Fig. 7.  Le facteur de qualité fonction de la   Fig. 8.  Le facteur de qualité fonction de la    
fréquence (pour la poudre ME1 et ME2)   fréquence (pour la poudre F1 et F2) 
 
 
 CONCLUSIONS FINALES  
 
 
 La qualité de noyaux magnétiques de poudres de fer 
électrolytique et de fer frem se trouve dans une relation complexe 
d'interdépendance avec une série de facteurs physiques (les 
dimensions et la distribution des granules), chimiques (la composition 
chimique) et technologique (la méthode d'obtenir de poudres de 
noyaux). 
 Le facteur de qualité Q est direct dépendant de la résistivité 
électrique de noyaux et de la fréquence du courant électrique qui travers 
la bobine. 
 Il y a une fréquence optimale dans le cas des noyaux 
magnétiques pour laquelle le facteur de qualité est maximal et les pertes 
magnétiques minimales. L'utilisation des fréquences plus élevées ou 
plus petites que celle optimales, conduit a l'accroissement des pertes 
magnétiques influençant négativement le facteur de qualité. 
 Dans le cas de noyaux aux poudres de fer électrolytiques le 
facteur de qualité est supérieur a celui de noyaux aux poudres de fer 
frem. Les courbes de variation du facteur de qualité selon la fréquence 
pour les deux dimensions des granules de la même poudre, ont un point 
d'intersection qui déterminé la fréquence pour laquelle le facteur de 
qualité a la même valeur pour les deux dimensions des granules. Ainsi 
on sépare deux zones conventionnelles: la zone de fréquence moins 
élevée, favorable aux poudres fines et la zone de fréquence plus élèvée, 
favorable aux poudres avec des granules plus grandes. Ces zones 
contiennent sans doute les fréquences optimales correspondantes. 
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EVALUATION OF THE ACTIVATION ENERGY OF LOCAL 
DYNAMICS IN  POLYISOPRENE-TOLUENE-D8 SOLUTIONS 

 
 

M. TODICA1  
 
 

ABSTRACT. The temperature dependence of the spin-lattice 
relaxation time was observed for the polyisoprene toluene D8 
solutions and for the molten polyisoprene, by NMR method. In 
the extreme narrowing region the correlation time of the local 
dynamics of the polymeric chain can be directly calculated from 
this relaxation time. The temperature dependence of the 
correlation time is analyzed in the concept of the activation 
energy. 

 
 

 INTRODUCTION 
 The molecular dynamics in polymeric materials is a complex 
process which occur in a large spatial and temporary range. Generally 
the dynamic properties of macromolecules may be analyzed in two 
different space and time scales:  
- long-range fluctuations, which are observed in a large time scale and 
which are strongly molecular dependent; 
- short- range fluctuations, which corresponds to the rapid local motions 
of the skeletal bonds, and which occur within the dynamically screening 
length associated with the temporary entanglements. These fluctuations 
are molecular weight independent. 
 These two types of fluctuations are responsible of the 
viscoelastic behavior of the polymeric materials and are related to the 
terminal and transient zone of the dynamic relaxation modulus, [1]. 
Rheological measurements of the dynamic relaxation modulus can give 
rise only indirect information about the molecular dynamics and only 
about slow motions. 
 All kinds of molecular fluctuations in polymeric materials are 
generated by the elementary motions of the C-C and C-H links in the 
monomeric units, or by the motion of the polymeric segments which 
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include one or many monomers. These rapid motions are not perceived 
by the rheological measurements, but can affect the dipolar interaction 
between the nuclear spins and thus the NMR behavior, [2]. As a result 
the NMR method is an appropriate instrument to observe the local 
dynamics of the macromolecules. Thermal activation or the presence of 
the solvent molecules in the vicinity of the monomer units are important 
factors which can affect this dynamics. The aim of our work is the 
evaluation of activation energy of the local dynamics of the polymeric 
links, by NMR method, in polyisoprene-toluene solutions.   
 
 EXPERIMENTAL 
 

 We studied the molten polyisoprene and the polyisoprene-
toluene D8 solution, with the polymeric concentrations Φ=94%, 78% and 
58%. The conformation of the molten polymer is 92% cis and the glass 
transition temperature is Tg=200±5K. The polymeric sample was 
supplied by the Manufacture Michelin and the deuterated toluene was 
purchased from Spectrometrie Spin et Techniques, France. The 
samples were enclosed in NMR tubes (diameter 4mm) and sealed under 
a primary vacuum. The concentration of the solution was controlled with 
an accuracy better than 1%. 
 All the measurements were performed using a CXP Bruker 
spectrometer working at 45 MHz, in the temperature range of 254 K to 
344K. The spin-lattice relaxation time was measured using the inversion 
recovery method, [3]. The sample temperature was controlled within 1 K. 
 
 
 RESULTS AND DISCUSSION 
 

 The elementary motions which govern the dynamics of the entire 
chain are the rotations of the C-C and C-H links around the local 
symmetry axis. Every rotation modify the azimuthal angles of the links 
and the relative distance between the atoms attached to the polymeric 
chain and leads to a new local conformation. Every stable 
conformation is characterized by an minimum of the potential energy. 
When a macromolecule go from one given conformation to another 
one, the energy barrier which separate the two states must be 
overcome. Generally this energy is provided by the thermal activation. 
The presence of solvent molecules in the vicinity of the polymeric 
chain can modify the potential energy of each stable conformation of 
the macromolecule. But every local rotation of the polymeric links 
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determine a deplacement of the solvent molecules. The dynamics of the 
solvent molecules depends on its viscosity. In this case the activation 
energy requested for the modification of the polymeric conformation is 
an apparent activation energy which contain also the solvent 
contribution. This parameter is directly connected with the correlation 
time of the local motions. The correlation time is a microscopic 
parameter which can be obtained from the spin-lattice relaxation time. 
 In the polymeric samples the dominant mechanism of the 
relaxation process is the dipolar interaction between the neighboring 
protons. Now is well established that the spin-lattice relaxation rate is 
determined by the Fourier transform of the time-correlation function G(t) 
of the spin-spin interaction, [4]. Roughly we can write: 
 

( )1

1T
e dti t∝

∞

∫Re G t
0

ω

   (1) 
 
where w is the Larmor frequency. The function G(t) is definite by the 
equation 
 

( ) ( ) ( )( )G t e t ex x= −1

2
3 0 1

2

   (2) 
  

In this equation ( )e tx  is the unit vector in the direction of the 
polymeric link at the moment t. The brackets indicate an ensemble 
average. The time request for C-H vector reorientation is determined by 
how fast G(t) decays to zero. This time may be characterized by <s>, the 
time integral of G(t). 
 

( )τ σc G t dt= =
∞
∫
0    (3) 

 

 
Often this time is designed as the correlation time of the C-H rotational 
motion. 
 The shape of G(t) is related to the specific mechanism of C-H 
vector reorientation. If C-H vectors undergo isotropic rotational motions, 
G(t) is a single exponential function with a characteristic correlation time 
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t. In the most generally case, the reorientation of C-H vectors in 
polymers is not isotropic and then the function G(t) contains a 
distribution of time constants t described by the distribution function F(t), 
so that the correlation function is expressed by the relation: 

( ) ( )G t F t e dt
t

=
−∞

∫ τ

0    (4) 
 Many attempts have made to find the explicit form of the 
correlation function that describe quantitatively the proton relaxation 
data; single exponential function, nonexponential function, and 
distribution of correlation times [5,6,7]. Generally this is a difficult task 
which needs a well knowledge of the microscopic local dynamics of the 
polymeric links. However, in some particular situations, the correlation 
time can be calculated directly from the spin-lattice relaxation time. 

3.5

4.5

5.5

6.5

0.0025 0.003 0.0035

ln
(1

/T
1)

0.004 0.0045

1/T

100%
94%
78%
58%

 
Fig.1. The temperature dependence of the spin-lattice relaxation time of 

the molten polymer and the polyisoprene-toluene solutions. 
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When the extreme narrowing condition ωτ<<1 is fulfilled for all τ 

that contribute to G(t), then the correlation time τc is simply related to the 
spin-lattice relaxation time by the relation (5), where K is a constant 
which depends on the microstructure of the polymer. 

1 1

1 2T T
K c= = τ

    (5) 
 Therefore in the extreme narrowing region the spin-lattice and 
the spin-spin relaxation times are equal to each other and are 
independent of the Larmor frequency. Generally this condition is fulfilled 
in the region where the log(T1) is a linear function of 1/T. 
 We utilized this observations to analyze our experimental data. 
The temperature dependence of the spin-lattice relaxation time for the 
molten polyisoprene and some polyisoprene toluene solutions are 
shown in Fig.1. For each sample the minimum value of the relaxation 
time is observed for a characteristic temperature θmin. We estimated 
that the extreme narrowing region is situated in the domain of about 50K 
above the temperatures θmin. We take in this case τc=K/T1. The 
correlation time which we extract using this procedure is an weighted 
average of all the time constant that enter in the description of the local 
polymeric motion. This effective time contains a contribution of the fast 
local motion of the skeletal bonds, which is described by the correlation 
function Gi(t), and a contribution of the very slow long-range motions, 
perhaps and-over-and motions, described by the correlation function 
G0(t). Then the total correlation function is G(t)=a G0(t)+(1-a)Gi(t). The 
parameter "a" is a constant much less that 1, (a<<1), so that we can 
assume that G(t)=G0(t) and the integral of Gi(t), the fast part of the 
correlation function, represent the correlation time of the local motions of 
the skeletal bonds, [8]. The correlation time can give information about 
the energy needed to activate the local motion. The first approach to 
analyze the experimental data of τc is based on the Kramers theory, 
applied to the simplest liquids, [9]. This theory is based on the passage 
of a particle over a potential energy barrier. The solvent is treated as a 
random frictional force opposing passage across the barrier. Any spatial 
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and temporary correlation in the solvent motion is neglected. Helfand 
has applied Kramers theory to the case of conformational translations of 
the polymers, [10]. In the high friction limit the rate constant of the 
isomerization depends on the friction coefficient of the solvent ζ and the 
energy barrier of the rotational motion, Ea. 
 

( )k E RTa∝ −1

ζ
exp /

    (6) 
 

 The correlation time measured by NMR experiments is inversely 
proportional with the rate constant of isomerization. Then the 
temperature and viscosity dependence of τc predicted by 
Kramers'theory can be expressed as:  
 

( )τ ηc aA E RT= exp /     (7) 
 

 The factor A is a constant independent of temperature and 
viscosity and η is the viscosity of the solvent. This equation must 
describe the correlation time of the polymeric solutions. In the case of 
the molten polymer there are not solvent molecules in the system and 
then the presence of the viscosity factor in the equation (7) is not 
necessarily. The viscosity in equation (7) can be replaced by a constant. 
We obtain: 

( )τ c aA E RT= 'exp /     (8) 
 

 If we take into account that τc=K/T1, we can calculate the 
activation energy of the isomerization motion of the molten polymer from 
the Arrhenius plot of ln(1/T1) versus the (1/T) variable, Fig. 2.  
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Fig.2. Arrhenius plot of the spin-lattice relaxation time whe the viscosity 

of the solvent is not take into acount. 
 

 We found the value Ea=28 Kj/mol for the molten polymer. It is 
interesting to see that if we utilize the equation (8) to analyze the data of 
the solutions, it seems that the Arrhenius behavior is also respected, Fig. 
2, and we can calculate an apparent activation energy for each solution. 
These values are concentration dependents, Fig. 3. It is clear that this 
apparent activation energy contain also the contribution of the solvent.  
 To extract the contribution of the polymer to the total apparent 
activation energy, we must take into account the viscosity factor in 
equation (7). But it is clear that the contribution of the viscosity in 
equation (7) depends on the concentration of the solvent. For high 
solvent concentration the factor h may have an important contribution, 
but this contribution must decrease when the polymeric concentration 
increase. This leads to a power law relationship between the correlation 
time and the viscosity, as it was suggested by Fleming, [11]. 
 

( )τ ηαc aA E RT= exp /    (9) 
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The power exponent is 0<a<1. Ediger found the value a=0.41 for 
polyisoprene-toluene solutions with 9.7% polymeric concentration, [12]. 
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78%
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1/T

 
Fig.3. Arrhenius plot of the spin-lattice relaxation time when the viscosity 

of the solvent is take into acount. 
 

 We can assume that a is concentration dependent, so that α=0 
for the molten polymer and α=1 for the pure solvent. In this case the 
activation energy can be calculated only if α(Φ) and η(Φ) are known for 
each concentration. When the temperature dependence of η(Φ) and the 
parameter α(Φ) are known, then the activation energy of the polymer in 
solution, can be calculated from the Arrhenius plot of [ln(1/T1)-α ln(η)] 
versus (1/T) variable. For the toluene the temperature dependence of 
the viscosity is given by the relation η=A(B+T)-C in the temperature 
range of [273K-380K], with A=1895.4, B= -160.16 and C=1.65, [13]. The 
values of α can not be calculated from a single solvent. In this case we 
can not calculate the exact value of activation energy of the polymer. 
However we can estimate the range domain of values of Ea if we take 
into account the extreme values α, α=1 and α=0. We assume a linear 
dependence of [ln(1/T1)-a ln(h)] versus (1/T) variable to calculate the 
extremes values of Ea. For α=0 the dependence of [ln(1/T1)] versus 
(1/T) is represented in Fig. 2. and for α=1 the dependence of [ln(1/T1)-α 
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ln(η)] versus (1/T) is represented in Fig. 3. The apparent activation 
energy is calculated from the slopes of straight lines of these 
representations. The values obtained are reported in Fig. 4. The 
maximal values correspond to α=0 and the minimal values to α=1. We 
found in this way the domain range of the activation energy of the 
polymer for each concentration.  
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Fig.4. The concentration dependence of the domaine range of the 

activatin energy of the polymer  in solutions. 
 

 Extrapolation of ours results to the concentration of 10% show 
that the value Ea=12Kj/mol found by Ediger at this concentration, with 
α=0.41, lie in the domain range of ours results. This fact indicate that 
ours method is a good way to have a roughly estimation of the activation 
energy. The exact values of Ea can be obtained only if a is known with 
great accuracy. 
 

 CONCLUSION 
 The local dynamics of the polymeric motion can be investigate by 
measuring the spin-lattice relaxation time T1 of the protons attached to 
the polymeric chain. This macroscopic NMR parameter is directly 
connected with the correlation time of the local motions, which is a 
microscopic parameter. The temperature dependence of the correlation 
time can be expressed by a Cramers-Fleming power law described by 
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equation (7). The power exponent α of this equation lies in the range of 
0 to 1. The extremes values of α may us to estimate the domain range of 
the values of the activation energy of the local motion for each 
concentration. The exact value of the activation energy can be 
calculated only if the temperature dependence of the solvent viscosity 
and the power exponent a are well known. 
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GAMMA RADIATION EFFECTS ON SOME BIOMOLECULES 
 
 

V. CHIŞ1, G. DAMIAN1, L. DAVID1, O. COZAR1, 
V. ZNAMIROVSCHI1, L. KAZIMIRSKI1, D. RISTOIU1 

 
 

ABSTRACT. The yielding of the free radicals as a function of the 
irradiation dose in some gamma-irradiated anti-inflammatory drugs 
(Aspirin, Indomethacin and Piroxicam) and aminoacids (Glycine, 
L-Glutamic Acid, DL-Serine and DL-Asparagine) is analyzed using 
ESR spectroscopy. The constants of destroying the free radicals 
by the radiation are obtained by fitting the dose dependence of the 
ESR signal intensity assuming a first order kinetics of the free 
radicals formation. The values of the saturation doses are one 
order of magnitude greater for the irradiated drugs than those 
corresponding to the irradiated aminoacids.  

 
 
 
 INTRODUCTION 
 

 Free radicals produced in gamma-irradiated crystalline 
biomolecules are relatively stable intermediate products of a sequence of 
events, which, as in tissue, is started by the initial absorption of radiation 
energy. Therefore, quantitative and qualitative analysis of the free radicals 
may provide a more biologically relevant dosimetry, particularly since the 
free radicals are key intermediates in the processes leading to biological 
damage of cellular components.  
 This work is aimed to study the formation kinetics in four gamma-
irradiated aminoacids (Glycine, L-Glutamic Acid, DL-Serine, and DL-
Asparagine) and three gamma-irradiated anti-inflammatory drugs (Aspirin, 
Indomethacin and Piroxicam) and to compare the yielding of free radicals in 
these samples with the case of alanine. This kind of studies could provide 
very useful information about the possibility to use this type of biological 
samples for radiation control purposes.  

                                                        
1 Babeş-Bolyai University, Faculty of Physics, RO-3400 Cluj-Napoca, Romania 
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 The structure of the free radicals obtained in the above mentioned 
gamma-irradiated aminoacids at room temperature was discussed in 
another paper [1]. The identity of the radio-induced free radicals in these 
samples was established by analyzing the hyperfine structure of their ESR 
spectra and by using the microwave power saturation method. It was 
shown that the room temperature stable free radicals in these samples are 
produced by deamination or hydrogen abstraction mechanism.  
 We have made also a study of the gamma-irradiated Aspirin, being 
able to identify three different free radicals produced by gamma rays at 
room temperature [2]. It was shown that the ESR spectrum of gamma 
irradiated Aspirin has changed by increasing the radiation dose suggesting 
that different radicals are formed at different levels of adsorbed dose. For 
high values of doses, the total spectrum represents a sum of the spectra 
corresponding to the three different free radicals simultaneously present in 
the sample: the radical ROO formed by hydrogen abstraction from the 
carboxyl group, the second one of the form R-CH2 formed by hydrogen 
abstraction from the methyl group and the last one formed by hydrogen 
addition at one of the carbon atoms of the ring.  
 

 EXPERIMENTAL 
 

 The powdered samples investigated were irradiated in air at room 
temperature using the "Gamma Chamber 900" unit which give a compact 
and uniform density of radiations in the 1000cm3 volume. The dose rate of 
the source was determined using a Fricke ferrous sulfate dosimeter. The 
irradiation doses were in the range 2. 4 - 160 KGy for drugs and 1. 5-16. 5 
KGy for aminoacids. The samples were irradiated at the lowest dose, 
observed and re-irradiated to each of the successive cumulative doses. 
ESR spectra were recorded at room temperature with an ESP 300 
BRUKER X-band spectrometer with a field modulation frequency of 100 
KHz. . The ESR signal intensity, which is proportional to the relative yield of 
radicals, represents the area under the absortpion curve and it was 
determined by double integration of the corresponding ESR spectrum. The 
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samples investigated were purchased from Sigma Chemical Co. and used 
without further purification.  

 RESULTS AND DISCUSSION 
 

 The absorbed dose was measured using a Fricke dosimeter which 

give a precision of 1-2% in the range of 20-400 KGy of the absorbed dose. 

The principle of the Fricke dosimetry consist in the radiolitical oxidation of 

the Fe2+ ions to obtain Fe3+ ions [3]. The absorbed dose in the solution is 

calculated using the equation [4]: 

 

[ ]D Gy
D

Fe Fe G l
( ) .

( ) ( )
= ⋅

−+ +9 64 106
3 2

∆
ε ε ρ

  (1) 

 

where ∆D is the optical density of the probe solution, ε the extinction 

coefficient, ρ the probe density, l the thickness of the probe solution in the 

spectrophotometer and G is the radiochemical efficiency, defined as the 

number of molecules of a specific radiation product formed per 100 eV of 

energy deposited in the sample. Molar extinction coefficient ε(Fe2+) can be 

neglected due to the fact that ε(Fe2+)/ε(Fe3+) ratio is 5⋅10-4 for λ=303nm [5]. 

We have used a standard Fricke solution: 10-3 M FeSO4 and 10-3 M NaCl in 

a high purity 0. 4 M H2SO4 solution. In these conditions, the radiochemical 

efficiency is G=15. 6 [6]. The solutions were saturated with oxygen before 

irradiations. For different irradiation times, the optical density ∆D and the 

extinction coefficient ε were measured using a SPECORD UV-VIS 

spectrophotometer working in the range 54000-12500 cm-1. The measured 

absorbed dose as a function of irradiation time is shown in Fig. 1. An 

average debit dose of D=35. 27Gy/hour is obtained from our 

measurements.  
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Fig. 1. Dose dependence vs. the irradiation time.  
 

 ESR spectra of gamma-irradiated Indomethacin and Piroxicam do 
not show significant qualitative changes by increasing the radiation dose in 
the range 2. 4-160KGy. These spectra show only a single central line 
centered at g≈2. 004, having a width of ≈15G for Indomethacin and ≈12G 

for Piroxicam. Due to the fact that no hyperfine structure can be detected, 
the assignment of these spectra to a certain free radical is very difficult. 
However, g factor and line-widths parameters are characteristic to the 
radical ROO or RO [7] formed by hydrogen or hydroxyl abstraction from the 
COOH group of the neutral molecules. Because there is no evidence of the 
signal from OH radical which should be very anisotrop [7, 8] we attributed 
the spectra of Indomethacin and Piroxicam to a radical of the form ROO 
formed by hydrogen abstraction in which the unpaired electron is probably 
delocalized over the entire carboxyl group [9].  
 The formation kinetics of the free radicals is described by an 
equation of the form: 
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( )[ ]R = R 1- - Dlim exp κ    (2) 

 
where Rlim represents the steady state concentration of the radicals, D 
represents the irradiation dose and κ is the constant of destroying the free 

radicals by the radiation [10].  
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Fig. 2. The relative yield of radicals in four γ-irradiated aminoacids as a function of 
dose. The continuous lines represent the best fit calculated values.  

 
 The shape of the ESR spectra corresponding to the four 
investigated aminoacids doesn't change by increasing the irradiation dose 
and it implies that even if in the irradiated sample are more radicals 
simultaneously present they are not forming in steps but appear at the 
same value of dose and the detected radicals do not result one from 
another. The dose response of the investigated gamma-irradiated 
aminoacids from 1. 5 to 16. 5 KGy recorded immediately after irradiation is 
shown in Fig. 2. As it can be seen, for all the investigated sample and for 
low values of doses, the number of the generated free radicals increases 
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rapidly and almost linear in the dose range up to 4KGy. The curves for DL-
Serine and L-Glutamic Acid remain almost linear in the whole range of the 
irradiation dose while for Glycine and DL-Asparagine they present a 
saturation over about 8 KGy. These last curves can be explained taking 
into account that the distance between radicals decreases by increasing of 
their concentration and the radical-radical reactions compete with radical 
yielding, so that the radicals are being destroyed at a rate approaching that 
at which they are being created [11].  
 Experimental data were fitted by a first order kinetics (eq. 2). The fit 

procedure is based on a least square method and the corresponding best 

fit parameters κ are given in Table 1. These values are in very good 

agreement with those generally found for polipeptideds [12]. Using the fit 

parameters and the ratio R/Rlim=0. 98 one obtains the following saturation 

doses: ≈10KGy for Glycine, ≈20KGy for DL-Asparagine, ≈25KGy for DL-

Serine and ≈45KGy for L-Glutamic Acid, values which are of the same 

order with the value corresponding to a radiosterilized drug [13].  

 
Table 1. Best fit parameters of the yielding of free radicals  

in four gamma irradiated aminoacids.  
 
 

  κ(KGy-1) 

Glycine  0. 498 

L-Glutamic Acid  0. 092 

DL-Serine  0. 161 

DL-Asparagine  0. 221 
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Fig. 3. The relative yield of radicals in three γ-irradiated drugs as a function of dose.  
The continuous lines represent the best fit calculated values.  

 
 The dose response of the investigated gamma-irradiated drugs 
from 2. 4 to 160 KGy recorded immediately after irradiation is shown in Fig. 
3. Experimental data were fitted also with the first order kinetics and the 
best fit parameters corresponding to the three drugs are given in Table 2. 
As shown in Fig. 3 the number of the generated free radicals increases 
almost linear for low values of dose for all the samples.  
 

Table 2. Best fit parameters of the yielding of free radicals  

in three gamma irradiated anti-inflammatory drugs.  

 
  κ(KGy-1) 

Aspirin  0. 006 

Indomethacin  0. 017 

Piroxicam  0. 014 
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 This information implies that the free radicals must result from a 
reaction which follows very rapidly from the primary step of radiolysis. At 
higher values of the irradiation dose, the intensity of the ESR signal tends 
slowly to saturate. This dependence implies that the process of destroying 
the radicals by the radiation became comparable with the rate of their 
formation process. The values of the κ parameter are very close to those 
corresponding to other aromatic compounds [14]. Using the fit parameters 
κ and the ratio R/Rlim=0. 98 the following values of the saturation doses are 
obtained: ≈650 KGy for Aspirin, ≈230 KGy for Indomethacin and ≈280 KGy 
for Piroxicam. These values are much over the dose of 25 KGy 
corresponding to a radiosterilized drug [13]. The dose dependence of the 
relative yield of the radicals is comparable with the case of alanine [15], 
suggesting the possibility to use these anti-inflammatory drugs as gamma 
dosimeters. The tissue-equivalent drugs samples also appear to be 
appropriate for radiation therapy level dosimetry.  
 
 CONCLUSIONS 
 

 ESR spectroscopy is a very useful tool for the investigation of 
gamma-radiation effects in crystalline biomolecules which have no zero 
dose signal and the radiation induced free radicals are stable. The shape 
of the ESR spectra of gamma-irradiated Indomethacin and Piroxicam 
doesn’t change by increasing the irradiation dose suggesting that only one 
radical is produced by gamma rays in these samples at room temperature.  
 The relative yield of free radicals in the investigated samples is 
described by a first order kinetics. The constants of destroying the free 
radicals by the radiation corresponding to the four aminoacids and to the 
three anti-inflammatory drugs are in very good agreement with the values 
obtained for polipeptides and aromatic compounds, respectively.  
 The relative yield of radicals in gamma-irradiated aminoacids is 
linear dependent with the irradiation dose only for low values of doses and 
it is rapidly approaching a limiting value over about 8 KGy, especially for 
Glycine and DL-Asparagine. The saturation doses for the aminoacids 
investigated are comparable with the dose corresponding to a 
radiosterilized drug. The relative yield of radicals in gamma-irradiated drugs 
is almost linear dependent with the irradiation dose under 100 KGy and the 
saturation doses are one order of magnitude greater than that 
corresponding to a radiosterilized drug.  
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SPECTROSCOPIC AND MAGNETIC PROPERTIES OF THE 
DIMERIC [CU(SO4)⋅⋅⋅⋅(1,4-DIHYDRAZINOPHTALAZINE)⋅⋅⋅⋅H2O]2 

COMPLEX 
 
 

L. DAVID1, O. COZAR1, V. CHIŞ1, D. RISTOIU1, C. BĂLAN1  
 
 

ABSTRACT. Copper (II) sulphate complex with 1,4-
Dihydrazinophtalazine (DHP) was prepared and investigated by 
UV/VIS, IR and ESR spectroscopies and magnetic susceptibility 
measurements. The complex appears to have a square-pyramidal 
arrangement of C4v symmetry with four nitrogen atoms in the 
basal (xOy) plane and an apical oxygen atom from a coordinated 
water molecule. Powder ESR spectrum and magnetic 
susceptibility measurements show the existence of dimeric 
species characterised by a fairly strong antiferromagnetic 
exchange coupling (2J = -92 cm-1).  

 
 
 

 INTRODUCTION 
 1,4-Dihydrazinophtalazine (DHP) is a drug with diminution effects of 
the blood pressure, being also used for the preparation of other kinds of 
drugs [1]. The structural formula of DHP (Fig. 1) suggests that it can 
function as multifunctional ligand because it contains six nitrogen atoms.  
 

 
 

Fig. 1. Molecular structure of 1,4-Dihydrazinophtalazine (DHP).  
 

                     
1 Babeş-Bolyai University, Faculty of Physics, 3400, Cluj-Napoca, Romania 
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 The therapeutical effects often depend on the presence or absence 
of the metallic ions; thus any information concerning the interaction 
between metallic ions and DHP molecules are usefully and welcome .  
 For obtaining further information on the local structure of the metal 
ion the [CuSO4⋅DHP⋅H2O]2 compound was prepared and investigated by 
electronic, IR and ESR spectroscopies and by magnetic susceptibility 
measurements.  
 

 EXPERIMENTAL 
 The [CuSO4⋅DHP⋅H2O]2 was prepared as previously reported [3]. 
The electronic spectra were recorded using a SPECORD UV-VIS and 
diffuse reflectance spectra with a VSU-2G Carl-Zeiss Jena 
Spectrophotometer, in MgO pellets. Infrared spectra were recorded in the 
range 400-4000 cm-1 with a UR-20 Carl-Zeiss Jena Spectrophotometer, in 
KBr pellets. ESR measurements were performed at 9. 4 GHz (X-band) 
using a Varian E9 Spectrometer. Low temperature spectra were recorded 
by using an Oxford Instruments ESR 9 liquid-helium continuous-flow 
cryostat. The magnetic susceptibility of the powder sample was measured 
in temperature range 2. 4-300 K in a field of 2 T using a Metronique 
Ingenierie MSO3 SQUID magnetometer. Diamagnetic corrections were 
estimated from Pascal's constants.  
 

 RESULTS AND DISCUSSION 
 The diffuse reflectance spectrum of the title compound exhibits a 
band at 17500 cm-1 with a shoulder at 16500 cm-1 assigned to the t2g→b1g 
(d-d) transition. This can be correlated with a D4h distorted symmetry 
particularly with a pentacoordinated species of C4v symmetry [3-5]. It was 
found that dimeric species also exhibit a band in this range [6,7].  
 The values of the most important absorption IR bands are given in 
Table 1. The bands from 3500-2800 cm-1 region are characteristic for N-H 
and O-H stretching vibrations and those from 1700-1600 cm-1 region for the 
deformations of hydrazine group and water molecules [8,9]. Only one 
broad band at 1615 cm-1 is observed in the spectrum of Cu(II) complex, but 
there are two bands (δNH2, δH2O) in the IR spectrum of DHP⋅H2SO4⋅2H2O.  
 The sulphate derivates exhibit the absorption bands at 1200-900 
cm-1 (symmetric and antisymmetric stretching of the sulphate ion) and at 
650-400 cm-1 (deformations of the same ion) [10]. The presence of ionic 
sulphate groups is suggested by ∆ν3(A2) splitting (Table 1) which has 
different values for different symmetries [∆ν3(C2v)=120 cm-1; ∆ν3(C3v)=90 
cm-1; ∆ν3 (uncoordinated, ionic) = 35-60 cm-1]. Thus we can assume as a 
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result from Table 1 that the sulphate groups are present as non-
coordinated counter ions.  
 
 

Table 1. IR absorption bands (cm-1) 
 

 DHP⋅H2SO4⋅2H2O [Cu(SO4)⋅DHP⋅H2O]2 

νNH2: νas(E)+ 
    νs(A1) 

νOH2: νas(B1)+ 
    νs(A1) 

3500 
3330 
3100 
2850 

3460 
3400 
3220 
2860 

δNH2(E) 
δOH2(A1) 

1632 
1665 

1615 

δM-OH2  755 

ν3(SO4) (A2) 
ν1(SO4) (A1) 
ν4(SO4) (F2) 
ν2(SO4) (E) 

1120 
990 
615 
470 

122; 1075; 1060 
980 
610 
472 

 
 

 According to literature data [11] the 755 cm-1 band was assigned to 
M-OH2 deformation vibrations.  
 Thus we may consider that the molecule of prepared compound 
contains basically two CuN4O cromophores, the four nitrogen atoms being 
provided by two DHP molecules and the oxygen by a water molecule. A 
similar coordination mode has been recently reported by Ferraro et al. [12] 
in the case of copper(II)-bilirubinate (BR) complex where the Cu2+ is 
bonded to four nitrogen atoms coming from two molecules of BR. The 
water of hydration upon crystallisation is also coordinated at Cu2+ ion.  
 The powder ESR spectrum of the compound exhibits at room 
temperature an absorption typical for randomly oriented triplet state (S=1) 
of dimeric species having an axial symmetry with a small rhombic distortion 
[13]. The parallel (z) and the perpendicular (xy) allowed )Ms="1 fine 
structure transitions resulting from the zero-field splitting are shown in Fig. 2.  
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Fig. 2. Powder ESR spectrum of Cu2(SO4)2⋅2DHP⋅2H2O  

complex at room temperature 
 

 The strong central signal (≈3200 G) may be attributed to the 
contribution of dimeric By1,y2 absorption and also to the mononuclear 
impurities of spin S=1/2. The half field absorption (≈1590 G) is due to the 
forbidden Ms=±2 transitions characteristic to dimeric species in which the 
Cu-Cu distance is longer than in the copper acetate-like dimers [14].  
 The spectrum of dimeric species can be described by the following 
spin Hamiltonian [15]: 

H= ( )β gSB + D S -
2

3
+ E S -S  z

2
x
2

y
2







 1 

where $ is the Bohr magneton, B is the external magnetic field, g is the 
anisotropic Landé splitting tensor, S is the total spin vector, D and E are the 
zero field splitting parameters.  
 The magnetic field resonance absorption values allowed us to 
calculate g, g⊥, D, E and J parameters, following the procedure described 
by Chasteen [16]. We have obtained the values: 2J=-92 cm-1, g=2. 214, 
g±=2. 089, Dexp=0. 080 cm-1, Ddd= -0. 159 cm-1, Dex=0. 239 cm-1, E=-0. 026 cm-1.  
 The monomeric species absorptions (≈3200 G) increase with the 
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decrease of temperature (Fig. 3). The central part of the 4. 2 K spectrum is 
typical for isolated Cu2+ in a square-planar environment in the xOy plane. 
Characteristic values of the ESR parameters (g= 2. 207, g⊥=2. 056, 
A=190 G) suggest the presence of CuN4 chromophore [17]. The intensity 
of "half-field" transition decreases with the decrease of temperature and it 
can be shown even at 4. 2 K.  

 
 
 
 
 

Fig. 3. Powder ESR spectra of Cu2(SO4)2⋅2DHP⋅2H2O 
complex in the 4÷125 K temperature range.  

 
 

 The magnetic susceptibility data show also the presence of dimeric 
species characterised by an antiferomagnetic coupling (Fig. 4). The 
separation between singlet and triplet state (2J) obtained by the fitting of 
experimental data with a H=-2JS1S2 Hamiltonian [18] are in agreement with 
those obtained from ESR spectra. The fitting values for the magnetic 
susceptibility data are: 2J= -92 cm-1; g=2. 014; R=0. 032 [19].  
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Fig. 4. Temperature dependence of χmT for [CuSO4⋅DHP⋅H2O]2 complex. The solid 

line represent the best fit calculated values.  

 

 
 CONCLUSIONS 
 

 IR spectra of the ligand and metal complex show that only one 
water molecule is coordinated at Cu ion and the others crystallised water 
molecules and SO4

2- ion are ionic bonded. The diffuse reflectance 
spectrum suggests the existence of the C4v local symmetry for the metal 
ions and the presence of dimeric species. ESR spectra at room 
temperature confirm the presence of dimeric species characterised by a 
fairly strong antiferromagnetic exchange coupling. The monomeric species 
of CuN4 chromophore in the xOy plane prevail at 4. 2 K. The magnetic 
susceptibility data showed also the presence of dimeric species 
characterised by an antiferomagnetic coupling with a singlet-triplet 
separation of 92 cm-1.  
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THEORETICAL CALCULATION FOR THE IONIZATION-
EXCITATION OF THE HELIUM 

 
 

L. NAGY1, ZS. FÜLÖP1 
 
 

ABSTRACT. The ionization-excitation cross-sections of the 
helium for proton and antiproton (electron) impact have been 
evaluated. We have performed theoretical calculations taking into 
account electron-correlation and time-ordering. We have used a 
perturbation expansion in the projectile-electron interaction, and 
have included in our calculations the first-order and the time-
ordered second-order (TS2) terms. Electron correlation have been 
taken into account in the ground state by the use of configuration-
interaction (CI) wavefunctions. Our results are in reasonable 
agreement with the experimental data.  

 

 
 INTRODUCTION 
 The many-electron processes in atomic and molecular collisions, 
like double ionization, ionization-excitation, double excitation, double 
capture, transfer excitation, have attracted much interest in the last decade.  
 The single electron transitions are relatively well understood. The 
electron correlation may be neglected in the description of these 
processes, and the independent electron approximation (IEA) is valid.  
 In the last years it has become clear, that in the interpretation of the 
two-electron transitions in atoms induced by charged particles and photons 
one must go beyond the independent-electron approximation. The study of 
these transitions is of fundamental importance in the understanding of few-
body dynamics and the investigation of electron correlation effects. 
Theoretical [1-13] and experimental [14-19] studies have shown that at 
moderately fast velocities cross sections for negative projectiles are higher 
than those obtained with positive projectiles. The two-electron transitions 
may be described in terms of a coherent sum of first- and second-order 
amplitudes of a Born expansion in the interaction strength Z (projectile 
charge). The square of such a first- plus second-order amplitude yields to a 
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Z3 contribution to physical observables such as transition probabilities and 
cross-sections. These Z3 effects are reproduced by theoretical calculations 
only, if electron correlation is taken into account. In the IEA the first- and 
second-order amplitudes are 900 out of phase, and do not interfere.  
 The most studied target concerning the two-electron transitions was 
the helium atom. There have been published several experimental data 
and theoretical results for the different two-electron processes in the helium 
by charged particle impact. Calculations have been made for the double 
ionization [3-5], double excitation [6-10] and for the ionization-excitation 
[11,12] of the helium. Reading and Ford [4] have made the first elaborate 
calculations for a two-electron transition, the double ionization of helium, 
using the forced impulse method. They have shown that, for the double 
ionization, even for relatively high energies, there are significant non-dipole 
contributions, and the Z3 terms are important. They have reproduced the 
difference in the cross sections for positively and negatively charged 
projectiles. In a recent, more complete work [4] they have reported very 
good quantitative agreement with experimental data for the double-
ionization cross-section of helium by charged particles.  
 Theoretically the double excitation have been investigated by 
several authors using the coupled channel method [7,8]. One of us have 
performed a perturbation-expansion calculation for this process [10], and 
have obtained good quantitative agreement with the experimental data.  
 Less studied process is the simultaneous excitation and ionization. 
Cross-sections for the ionization-excitation of helium following electron and 
H+, H2

+ and H3
+ ion impact have been measured [14,19]. The most recent 

measurements [14] have been performed for the velocity range from 3. 8-8. 
5 a. u. for electrons, 1. 4-7. 5 a. u. for protons and 1. 4-4. 0 a. u. for H2

+ and 
H3

+ ions. The cross-section ratio of ionization-excitation to excitation have 
been also examined. The experimental data for the helium by proton and 
electron impact show that cross sections obtained with negative projectiles 
are higher than those for positive projectiles for the velocities above 3 a. u. 
(similarly to the double ionization).  
 There are only a few theoretical calculations for this two-electron 
transition. Rudge [11] have performed first-Born calculations. The first-order 
approximation for a two-electron transition is valid only for very high 
projectile velocities. This is the reason why at moderately high velocities the 
results of Rudge fail to reproduce the experimental data.  
 One of us have made second-order perturbation-expansion 
calculations for the ionization-excitation [12]. In those calculations electron-
electron interactions have been taken into account by a mean-field 
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potential. In spite of this approximation, our method have gone beyond the 
IEA, because the change in the mean-field potential during the collision and 
the time-ordering effects have been taken into account. By this method the 
first-order amplitude is totally due to the shake mechanism (the relaxation 
of the second electron orbital after the transition of the first caused by a 
projectile-electron interaction). Electron correlation in the initial and the final 
states have been neglected. This is the reason why we have obtained our 
cross sections below the experimental data, and the difference between 
the data obtained positive and negative projectiles was too small.  
 In the present paper we present the improvement of the previous 
calculations taking into account the electron correlation in the ground state.  
 

  
 THEORETCAL FRAMEWORK 
  
 We have adopted the semiclassical approximation, meaning that 
the projectile is treated classically, and moves on a straight line trajectory. 
Further, as described in more detail in Ref. 2 and 3, we perform a 
perturbation expansion in terms of the projectile-electron interaction, and 
stop at the second-order term. The perturbation potential is the sum of the 
two projectile-electron interactions 
 
 
 

V(t)=V1(t)+V2(t).     (1) 
 

 The first- and second-order transition amplitudes can be written [2] 
 

a i dte f V t V t i
i E E tf i( ) ( ) [ ( ) ( )]1

1 2= − +
−∞

∞
−∫   (2) 

 

 a dte f V t V t k
k

i E E tf k( ) ( ) [ ( ) ( )]2
1 2= − + ×∑ ∫ −

−∞

∞

 

 × +− ′

−∞
∫dt e k V t V t ii E E t
t

k i, ( ) [ ( ) ( )]1 2 .    (3) 
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In these formulae |i> stands for the initial state, |k> for the intermediate and 
|f> for the final state of the two-electron system. The cross section is 
obtained by squaring the modulus of the sum of the two amplitudes and 
integrating over the impact parameter 
 

σ = ∫ |a
(1)

+ a d b( ) |2 2 2
    (4) 

 The two-electron wavefunctions i f, and k  cannot be 
calculated exactly. A good approximation can be reached by the use of 
configuration-interaction (CI) wavefunctions, which are written as a sum of 
products of one-electron orbitals: 
 

i c i il
l l

l

=∑ 1 2     (5) 

f d f fj
j j

j

=∑ 1 2     (6) 

k b k ks
s s

s

=∑ 1 2     (7) 

 

Introducing the initial and final-state correlated wavefunctions in the first-
order amplitude, one gets a sum of products of overlap integrals and one-
electron transition amplitudes 
 

a i c d f i dte f V t il j
j l i E E t j l

jl

f i( ) * ( ) ( )1
2 2 1 1 1= − −−

−∞

∞

∫∑∑  

− −

−∞

∞

∫∑∑i c d f i dte f V t il j
j l i E E t j l

jl

f i* ( ) ( )1 1 2 2 2   (8) 

 

  
 These terms can be interpreted as follows. The term containing the 
basic configurations both from the initial and the final states (l=1 and j=1, c1 
and d1 being the largest coefficients), can be regarded as the shake term. If 
the one-electron orbitals from the initial and the final basic configurations 

have the same symmetry, the overlap integral f ii i
1 1  (for i equals 1 or 2) 

may be non-zero, and the shake process contributes to the transition of the 
second electron.  
 The terms with j=1 and l¹1 are responsible for the initial state 
correlation, while those with j¹1 and l=1 express the final-state correlation. 
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The terms with j¹1 and l¹1 contain both initial- and final-state correlation, but 
usually are less important, because both coefficients cl and dj are small.  
 In case of the ionization-excitation the final-state correlation is less 
important, because one electron leaves the atom, and the other remains 
bound. This is the reason why the final-state wavefunction is approximated 
by a simple product of two one-electron wavefunctions, where the 
continuum electron is screened by the excited one. In these conditions the 
first-order amplitude becomes 
 

a i c f i dte f V t il
ex l i Et c l

l

( ) ( )1
2 2 1 1 1= − −

−∞

∞

∫∑ ∆  

−
−∞

∞

∫∑i c f i dte f V t il
c l i Et ex l

l
1 1 2 2 2

∆ ( ) .    (9) 

 

Here DE is the energy transfer to electron system, V1 and V2 are the 
interaction potentials of the projectile with electron 1 and 2 respectively. 
The first term can be interpreted as the transition of one electron due to the 
interaction with the projectile to the continuum followed by a relaxation of 
the other electron to the final excited state (shake-up), while in the second 
term the projectile-electron interaction causes directly the excitation of one 
electron followed by a relaxation of the other electron to the continuum 
(shake-off). The initial-state correlation is very important, because 
neglecting it, the shake-up to the final p state would not be possible 
because the overlap integral of the initial s and the final p state would be 
zero. Taking into account the correlation, we have important contribution to 
the initial state from configurations of type npn’p.  
 In the second-order term the transition is caused by two 
consecutive projectile-electron interactions, meaning that the second-order 
process is possible without electron correlation. Assuming that the electron 
correlation would lead only to a small correction to the second-order 
amplitude, we have neglected the ground-state correlation in this term, 
taking into account for the initial state only the basic configuration.  
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 With this approximation, the second order amplitude can be written: 

a dte f V t i dt e f V t i

dte f V t i dt e f V t i

i E E t ex i E t c
t

i E E t c i E t ex
t

ion ion
f
c

ex
f
c ex

( ) ( ) ( )

( )

( ) ( )

( ) ( )

2
2 2 2 1 1 1

1 1 1 2 2 2

0 1

0 1

= − ′ ′ −

− ′ ′

− + ′

−∞−∞

+∞

− + ′

−∞−∞

+∞

∫∫

∫∫

∆ ∆ ∆

∆ ∆ ∆

ε

ε
(10) 

 

 In this term we keep track of the time ordering: the energy transfer 
to the individual electron depends on the order of the interactions. If the 
excitation occurs first, followed by an ionization, the energy transfer to the 
excited electron is ∆E ex , and the ionization potential is ∆ ∆E E ex

0 − . If the 

ionization is first, then the ionization potential is ∆E ion, and the excitation 
energy is ∆ ∆E E ion

0 −  . Here ∆E Ef
ex

0 02
= −ε  is the total energy transfer 

without the continuum state energy, and ∆E ex  and ∆E ion are the 
experimental single ionization and excitation energies.  
 In the present calculation the final-state continuum one-electron 
wavefunctions have been calculated numerically. For the initial CI 
wavefunction we have used the wavefunctions computed by Nesbet and 
Watson [20]. The most important 7 configurations are products of 
1s,2s,3s,2p and 3p one-electron orbitals 
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Here the numbers in brackets represent magnetic quantum 
numbers. The wavefunctions are normalized.  

 
 

Fig. 1. Ionization-excitation cross-section of the helium by charged particle 
impact as a function of the projectile velocity. The dashed line represents our 
results for antiprotons and the solid line is for protons. ∗ stands for the 
experimental data obtained with protons and � for equivelocity electrons [14].  

 
 RESULTS AND DISCUSSION 
 

 We have performed calculations for the simultaneous ionization 
and excitation of the helium to the 2p state by proton and antiproton 
(electron) impact for projectile velocities above 3 a. u. The initial state is 
described by correlated wavefunctions and the final state by a product of 
two one-electron wavefunctions. In the calculation of the amplitude and 
cross-sections, integrals over angles have been performed analytically, 
while the radial integrals in the matrix-element, the integrals over time, 
ejected electron energy, and the impact parameter have been calculated 
numerically.  
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Figure 1 shows our calculated cross sections as a function of the 
projectile velocity compared with the experimental data of Bailey et al [14]. 
Relative to our previous results [12] the calculated cross sections are much 
closer to the experimental data. Furthermore, the electron correlation in the 
initial state contributes substantially to the interference of the first- and 
second-order amplitudes leading to a larger difference in cross sections 
obtained for negatively and positively charged projectiles.  

However, our results does not fit perfectly the experimental data. 
Electron correlation in the intermediate state (scattering correlation) may be 
important, too, and should be taken into account in further calculations.  

 

 
Fig. 2. The ratio of the ionization-excitation cross section to excitation 
of the 2p state as a function of the projectile velocity. Dashed line 
stands for antiproton results, solid line for protons, while stars 
represent experimental ratio for protons and crosses for electrons 
[14].  
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 On figure 2 is represented the cross-section ratio of ionization-
excitation to excitation. The figure shows a good qualitative agreement with 
the experimental data, but the experimental data are approximately two 
times higher than our calculated values. The high-velocity limit of this ratio 
tend to about 1%.  
 
 CONCLUSIONS 
 

 We can conclude that the inclusion of the CI wavefunctions in the 
description of the initial state of the target have improved substantially our 
previous calculations for the ionization-excitation of the helium by charged 
particle impact [12]. Our calculated cross-sections are in satisfactory 
agreement with the experimental data, and at the moment are the only one 
to reproduce the dependence of the ionization-excitation cross section on 
the sign of the projectile charge.  
 Further improvement may be reached by taking into account the 
electron correlation during the collision (scattering correlation).  
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QUANTUM CHAOS IN MULTI--MATRIX MODELS 
 
 

E. VINTELER1 
 
 

ABSTRACT. We propose a possible resolution for the problem 
of why the semicircular law is not observed, whilst the random 
matrix hypothesis describes well the fluctuation of energy 
spectra. We show in the random 2-matrix model that the 
interactions between the quantum subsystems alter the 
semicircular law of level density. We consider also other types 
of interactions in the chain- and star-multimatrix models. The 
connection with the Calogero-Sutherland models is briefly 
discussed.  

 
 

 1. INTRODUCTION 
 In heavy nuclei, the complicated many-body interactions lead to 
statistical theories which explain only the average properties. One of 
these theories is the random matrix hypothesis [1][2] (see also the more 
recent book [3]). It supposes that the nuclear hamiltonian in a arbitrary 
basis of functions is a N×N matrix with N large and elements distributed 
at random. The joint probability function of the eigenvalues λ1…λN of this 
matrix model is given by: 
 

P(λ1…λN)=exp(-Σi=1
N λi

2) Πi<j(λi-λj)
β  (1. 1) 

 

where β=1, 2, 4 for orthogonal, hermitean and, respectively unitary 
ensembles.  

This probability distribution gives the familiar phenomenon of 
level repulsion: the likelihood of having neighboring energy levels 
separated by an energy spacing ∆λij=λi-λj becomes vanishingly small as 
∆λij→0. For two levels λ1, λ2, the plot of the probability P(∆λ) in terms of 
energy spacing ∆λ=λ1-λ2 shows a rise from zero for ∆λ=0, reaches a 
peak (known as Wigner's surmise) and then decreases rapidly. This 
behaviour is completely different from the classical one, given by the 
Poisson distribution P(∆λ)=exp(-∆λ).  
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Integrating over eigenvalues λk+1…λN we get the joint distribution 
function for few levels: 
 

P(λ1…λk) = ∫ dλk+1…dλN P(λ1…λN)  (1. 2) 
 

All these joint distribution functions can be expressed in terms of the 
Dyson correlation function K(λ1, λ2): 
 

P(λ1…λk) = Σσ(-1)σK(λ1, λσ1) …K(λk, λσk): 
 

where (is the permutation of k levels.  
In the special case k=1 the Dyson correlation function coincides 

with level density K(λ, λ)=P(λ).  
The density of levels for the 1-matrix model satisfies the 

semicircular law: 
 

P(λ)= (βN/2- λ2)1/2 
 

and the Dyson correlation function behaves for σ<<(as: 
 

K(λ-σ/2, λ+σ/2)≈sin(πσP(λ)/ (πσ(βN/2)) 
 

 Many experimental data of level distribution in nuclei confirm the 
statistical properties of the random matrix theory. There exists a 
universality of level fluctuation laws, as described by the Dyson 
correlation function. The fluctuation properties are shared by broad 
classes of models: several chaotic models [4], mesoscopic systems [5], 
etc. The random matrix hypothesis is in some respects a disappointing 
theory: although it predicts beautifully the observed level fluctuations, it 
fails to describe adequately the density of levels. The semicircular law 
was never observed in the experiments.  

A possible resolution of problem is to consider instead one 
random matrix few random matrices in interaction. As we will see, even 
a small interaction gives a calitatively new behaviour for the level 
density.  
 An interesting generalization of the random matrix hypothesis is 
to consider q matrices describing q nuclear systems in interaction. The 
total action of such system is: 
 

S1=Σα=1
q Σi=1

N (tα(λi
(α))2 + uαλI

(α)) + Σα=1
qΣi=1

N cαλi
(α)λi

(α+1)  (1. 3) 
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 This system describes a chain of matrices with neighbour 
interaction. We can add a term describing the two-body interaction of 
constituent nuclear subsystems: 
 

Σ|α-β| ≠1Σi=1
N cα, βλi

(α)λi
(β)  

 

 We have different sets of energy levels λ1
(α) …λN

(α), α=1…q with 
distribution probability: 
 

P(λ1
(1), … λN

(1) … λ1
(q), …λN

(q))= exp(S)Πi<j (λi
(1) -λj

(1)) (λi
(q) -λj

(q)) (1. 4) 
 

 We have level repulsion only for the first and last energy level 
set. Hence for this model the intermediate energy level sets are 
"classical" and interact with "quantum" first and last energy level sets. 
Integrating over all intermediate matrices we remain with a two-matrix 
model.  

Kharchev and others have considered the so-called conformal 
matrix models that contain additional repulsion terms also for 
intermediate matrices [6].  

Another special random matrix model is the star-matrix model 
having the action: 
 

S2=Σi=1
N (t0 (λi

(0))2 + u0λi
(0))+Σα=1

qΣi=1
N (tα(λi

(α))2 + uαλi
(α)) +  (1. 5) 

+Σα=1
qΣi=1

N cαλi
(α)λi

(0)   
 

 The joint distribution of this model reduces again to that of 2-
matrix model.  
 

 2. QUANTUM CHAOS IN TWO-MATRIX MODEL 
 In the more wide context of quantum chaos, the one-matrix 
model describes the statistical properties of the non-integrable model 
with hamiltonian [7]: 

H=H0+uϕ 
 

the hamiltonian H0 is deterministic and (is an external random 
perturbation.  
 For example, the one-matrix model could describe hydrogen in a 
random magnetic field.  
 The two-matrix model describes the correlation between the 
energy spectra of two systems with the hamiltonians: 
 

Hα=Hα0+uαϕ, α=1, 2 
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 For example, it could describe an electron moving in a ring 
threaded by a magnetic flux (described by the hamiltonians Hα0) and 
with the electron scattering on impurities in the ring (described by the 
random interaction ϕ). This example is important in the study of 
mesoscopic systems [8], [9].  
 In this section we show that the 2-matrix pure probability 
distributions P(λ, λ'), P(µ, µ’) do not behave qualitatively different from 
those of 1-matrix model. The spectra are only shifted and rescaled due 
to the interaction ϕ.  
 Instead, the mixed probability distribution P(λ, µ) is specific only 
to the 2-matrix model. When the two spectra of H1 and H2 are rescaled 
identicaly (the rescalings are equal a1=b1 in rel. (2. 5) or ε=0 in rel. (2. 
17)), the hamiltonians H1=H2 and reduces to that of the 1-matrix model. 
In this case P(λ, µ) reduces to the usual semicircular law.  

When we have a small asymmetry in the spectra (ε≠0 in rel. (2. 
17) we get a qualitatively new picture: P(λ, µ(λ) presents peaks and 
valeys as we increase the asymmetry ε. The observed behaviour is the 
quantum analog for chaotical behaviour of two interacting classical 
oscilators.  
 For equal frequencies, the two oscilators are resonant and 
behave as a single oscilator. From the quantum point of view, the 
spectra are equally spaced and there is no energy transfer between the 
oscilators. When the frequencies are slightly different the probability P(λ, 
µ) describes the quantum analog of beating.  
 We apply the orthogonal polynomial method [2] to our two-matrix 
model. Other useful approaches (not used here) to study these models 
are the saddle-point method [10] and the supersymmetric method [11].  
 We introduce the distribution probability: 
 

 
P(λ1…λN, µ1…µN)=expΣi=1

N (V1(λi)+ V2(µi)+ci λiµi)Πi<j(λi-λj)(µi-µj) (2. 1) 
 

with Vα=t(τ2 + u(τ, α=1, 2 and the joint distribution function: 
 

P(λ1…λi, µ1…µj) = ∫ dλi+1 …dλN dµj+1…dµN P(λ1…λN, µ1…µN) (2. 2) 

 We study the particular case of the probability distributions for 
the correlation between only 2 energy levels.  
 

 2. 1. The pure probability distributions P(λ, λ'), P(µ, µ') 
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 We demonstrate that the level densities P(λ), P(µ) and the joint 
probability distributions P(λ1, λ2), P(µ1, µ2) coincide with those of the 
hermitean 1-matrix model with distribution probability (1. 1.): 
 

P(λ)=PHerm(λ'), P(µ)=PHerm(µ')   (2. 3) 
P(λ1, λ2) =Pherm (λ1’, λ2’), P(µ1, µ2) =PHerm(µ1’, µ2’) 

 

 The new joint probability distributions P(λ, µ) behave in a 
different way because we have not energy repulsion between levels of 
different sets.  

If we set from the beginning the coupling c=0 we get two 
independent orthogonal 1-matrix models and we have:  

 

P(λ, µ) =POrth(λ')POrth(µ')  
 

 For c ≠0, P(λ, µ) behaves like the 1-matrix Dyson correlation 
function: 

P(λ, µ) ≈K(λ, µ) 
 

When c (0, P(λ, µ) does not split into two orthogonal 1-matrix models.  
Here λ', µ' are related with the coefficients of the potentials V(in relation 
(2. 1): 

λ'=(λ-a0)/ (2a1)
1/2, µ'=(µ-b0)/ (2b1)

1/2  (2. 4) 
 

through the relations: 

a
c

b
c

a
c

a
c

0
1
2

1

0
1
2

1

1
1
2

1

0
1
2

1

=
−

=
−

= −
−

= −
−

c u - 2 t u

4t t

c u - 2 t u

4t t

2 t

4t t

2 t

4t t

1 2 2 1

1 2

1 1 1 2

1 2

21

1 2

11

1 2

, ,

,

   (2. 5) 

 

 In the rest of this section we demonstrate the above relations.  
 Orthogonal polynomials (and η:  
 

ξn (λ) = λn+…, ηn (µ) = µn +… 
 

satisfy the orthogonality condition: 
 

∫ dαdµξn (λ) ηm (µ) exp(V1+V2+cλµ) = hn δnm  (2. 6) 
 

where hn=h0 R
n and R=c/(4t1t2-c

2).  
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For quadratic potentials as those in (2. 1) we have the following 
recursion relations of the orthogonal polynomials: 
 

λξn (λ) = ξn+1 (λ) + a0 ξn (λ) + a1 ξn-1 (λ)  (2. 7) 

µηn (µ) = ηn+1 (µ) + b0 ηn (µ) + b1 ηn-1 (µ) 

Solving these recursion relations it follows that ξ, (are Hermite functions: 
ξn (λ) = αn Hn(λ’), ηm (µ) = βm Hm (µ’) 

 

 To get the proportionality coefficients αn, βm we use the 
orthogonality relation and the Gauss transform: 
 

(2πu)-1/2 ∫ dy exp [-(x-y)2/2u] Hn(y) = (1-2u)n/2 Hn((1-2u)-1/2 x)  (2. 8) 
 

Writing the action as: 
 

S=V1(λ)+V2(µ)+cλµ=t1 λ2 + u1λ+ t2 µ2 + u2 µ+c λµ= 

    =S0+t2[µ+(u2+cλ)/2t2]
2-[(λ-a0)/(2a1)

1/2]2 

with: 
S0= - (t1u2

2 + t2u1
2-c u1u2)/(4t1t2-c

2) 
we have: 

∫ dλdµξn (λ) ηm (µ) exp(V1+V2+cλµ) =  

=αnβmδnm exp (S0) 2π(2c)n n!/ (4t1t2-c
2)(n+1)/2 =  (2. 9) 

= h0δnm [c/(4t1t2-c
2)]n 

In conclusion 
ξn (λ) = (2(n!)-1/2 2-n/2 (2a1)

n/2 Hn (λ’)  (2. 10) 
ηm (µ) = (2(n!)-1/2 2-n/2 (2b1)

n/2 Hn (µ’) 
and 
   h0 = (4t1t2-c

2)-1/2 exp(S0) 
We can now calculate the joint probability distribution P(λ, µ). 

Since we can write the two Vandermonde determinants in terms of 
orthogonal polynomials ξn, ηm 
 

∆(λ)∆(µ)= Σn ξn (λ1) Ξn (λ2…λN)Σm ηm (µ1) Θm (µ2…µN) 
 

and the algebraic complements satisfy: 
 

∫ Πi=2
Nd (dλi dµi) Ξn (λ2…λN) Θm (µ2…µN) = (N-1)! δnm 
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we get for the joint probability distribution the following relation: 
 

P(λ, µ)= (1/N) exp(S) Σn=0
N-1 hn

-1 ξn (λ)ηn (µ) 
 

 It is easy to derive the expression for symmetric joint distribution 
of pairs of eigenvalues in terms of P(λ, µ): 
 

P(λ1…λk, µ1…µk) = Σσ(-1)σP(λ1, µσ1) … P(λk, µσk) 
 

 Integrating in λj+1 …λk we obtain the asymmetric joint distribution 
of eigenvalues: 
 

P(λ1…λj, µ1…µk) = Σσ(-1)σP(λ1, µσ1) … P(λj, µσj) P(µσj+1) P(µσk) 
 

 In the limit of large N we have the usual behaviour of semi-
circular law: 

P(λ)= (2N- λ'2) 1/2, P(µ)= (2N-µ'2)1/2λ 
 

 2. 2. The mixed probability distribution P(λ, µ) 
 To calculate the joint distribution of two eigenvalues P(λ, µ) in the 
large N limit we associate it with the quantum mechanical system : 
 

[1/2pλ
2+pµ

2)/2+V1(λ)+V2(µ)+cλµ]ϕn(λ)ψm(µ)=Enm ϕn(λ)ψm(µ) 
 

where pλ=iδ/δλ, pµ=iδ/δ(are the usual momenta operators and 
 

ϕn(λ) = exp(-λ'2/2)ηn(λ)  (2. 12) 
ψm(µ) = exp(-µ'2/2)ξm(µ) 

For c=0 we get two decoupled quantum systems: 
 

(pλ
2+λ'2)ϕn(λ)=2E1, nϕn(λ)        (2. 13) 

(pµ
2+µ'2)ψm(µ)=2E2, mψm(µ)   

where Enm=E1, n+E2, m.  
In the large N limit Enm behaves like ≈N and since we are 

searching for symmetric solutions we have E1, n=E2, m ≈N/2. The joint 
distribution of two eigenvalues P(λ, µ) will be: 
 

P(λ, µ)= (2E1, n-λ'2)1/2 (2E2, n-µ'2)1/2  (2. 14) 
or 

P(λ, µ)= (N-λ'2)1/2 (N-µ'2)1/2 
 

 We can see that for c=0, P(λ, µ) is the product of density energy 
levels for orthogonal ensembles. If we integrate the last matrix, we get 
the 1-matrix model. In our case this is equivalent with the condition 2E2, 

m=pµ
2+V2(µ)=0 in (2. 13) or in other words the second system has no 
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contribution in the joint distribution of two eigenvalues. The equation (2. 
14) is replaced by: 

P(λ)= (N-λ'2)1/2 
 

For c(0, after summing relation (2. 11) and using the asymptotic formula 
(n large) for the Hermite polynomial (near the origin): 
 

Hn=exp(x2)[Γ(n+1)/Γ(n/2+1)] cos [(2n+1)1/2-nπ/2]+O(n-1/2) 
 

we obtain (up the exponent S+(λ'2+µ'2)/2): 
 

P(λ, µ)≈sin [(2N)1/2(λ'-µ')]/ [πN(λ'-µ')], λ, (near 0)(2. 15) 
 

We also get for arbitrary λ, (with |λ-µ|<< λ, µ: 
 

P(λ, µ)≈[\sin (2N-(αl)2)1/2 (αλ)ε]/[πN ε(αλ)] (2. 16) 
where: 

ε= 1/ (2a1)
1/2 - 1/ (2b1)

1/2 
α= (1/ (2a1)

1/2 - 1/ (2b1)
1/2)/2             (2. 17) 

 

 This result was also obtained independently by [12] (see also the 
paper [13]) in the more general case when λ, (are arbitrary with no other 
restrictions. (I would like to thank D'Anna for pointing me out his paper 
with Brezin and Zee [12])  
For the asymmetric potential t1=1/(a+τ)2, t2=1/(a-τ)2, (τ<< a) and a small 
interaction c≈0, we have ε≈τ/a2, α≈1/(2a) and ε<< α. When τ→0 
(symmetric potential) P(λ,µ≈λ) tends to the level density of hermitean 1-
matrix model PHerm(λ). The interaction (even a small one) of asymmetric 
energy levels changes dramatically the level density P(λ, λ) of the 
system.  

 If for τ→0 we get the usual semicircular law, a small asymmetry 
creates some peaks in the level density P(λ, λ) (see figure 1).  

 In figure 1 we represent the level density P(x, x) in terms of the 

energy x=αλ and the asymmetry y=Nε. For y=0 we have the semicircular 
law P(x, x)=(2N-x2)1/2 and for small y \neq 0 we get the oscilations of 
level density. (see formula 2. 16).  
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Figure 1 represents the level density P(x, x) in terms of the energy x=α(and the 
asymmetry y=Nε. For y =0 we have the semicircular law P(x, x)= (2N-x2)1/2 and for small 
y (0 we get the oscilations of level density.  
 
 
 3. q-MATRIX MODEL 
 As a random q-multimatrix model we choose the model with 
partition function: 
 

Z= ∫  Πα=1
q l(∆(l1) ∆(lq) exp(Σα=1

q t(λα
2 + Σα=1

q-1 c(λ(λα+1 (3. 1) 

We show that the joint probability is : 
 

P(λα, λβ)=Pherm (λα', λβ'), 1((≤((q  (3. 2) 
where: 

λα'=λα/ (2aα)1/2 
 

The parameters a(are the coefficients of the Q-matrices.  
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 To calculate the joint probability P(λα, λβ) we integrate over all 
other eigenvalues dλI

(γ), γ(α, β. In this way we obtain the joint probability 
of two-matrix model for which we already know the result.  
 However, the physics of the multi-matrix model is richer than that 
of the 2-matrix model. But this could be observed only in the joint 
probabilities with at least 3 energy levels. Another issue is that we can 
study the interaction between the intermediate " classical" (or Poisson) 
sets of energy levels (those with 2(α(q-1 and linear potentials Vα= s(λα) 
and the "quantum" sets (with α=1, q). We can interpret the q-matrix like 
an one-dimensional chain of atoms with localized states. Disorder is 
introduced through the boundary "quantum" atoms. The interesting 
problem is to compute the necessary conditions to have extended, 
conducting states. A concrete application of this model is the chain of 
polyacetilene.  

The Q(α) have only three non—vanishing diagonal lines, the 
main diagonal and the two adjacent lines.  
 

Q(α) =b(I+ +a(ε-   (3. 3) 
 

where in the particular cases we know that b1 =1 and aq = R. We can 
write the parameters in terms of the determinants of two matrices 
(weuse the results of the paper [14]): 
 

b(= (-1)((c1c2… cα-1)
-1 det Xα-1 

R = (-1)(c1c2… cα-1 det Xq   (3. 4) 
a(= (-1)(c1c2… cα-1 det Xα+1 / det Xq 

 

The matrices X(and Yα, are given by relations:  
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X

t c

c t c

c t

t c
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0 0 0 2
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t c

c t
q q

q q

− −

−



























  (3. 5-3. 6) 

 

Of course Y1=Xq.  
 Besides the usual orthogonal polynomials (which could be 
introduced as in 2-matrix models case), we introduce also the basic 
intermediate functions (this was made previously for multi-matrix models 
in [15]): 

ξn
(α)

 (lα) = ∫ Πβ=1
α-1 dl_{β}ξn(λ1)exp (Sα)  (3. 7) 

ηn
(α)

 (lα) ∫ Π_{β=α+1}^{q} dlβexp (Sα')  (3. 8) 

where we denote 
Sα=Σβ=1

α-1 t(λβ
2 +Σβ=1

α-1 c(λ(λβ+1 

Sα’=Σβ=α+1
q-1 t(λβ

2 +Σβ=α
q-1 c(λ(λβ+1 

Obviously we have: 

ξn
(1)(l1)=ξn(λ1),   ηn

(q)((q)=ηm(λq).  

 In the general case for arbitrary potentials one sees immediately 
that ξ(α) and η(α)

 are not polynomials anymore. In the case of gaussian 
potentials these intermediate functions are again Hermite functions, but 
with different arguments. In the general case, they still satisfy an 
orthogonality relation 
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∫  Πγ=α
(dλ(ξn

(α)(λα) exp(S-Sα-Sα')(λα)ηm
(β)(λβ) =δnmhn, c (3. 9) 

 

The equations satisfied by basic intermediate functions are: 
 

λαξ(α)=Qαξ(α), 1((≤q   (3. 10) 

    λαη(α)=Qαη(α), 1((≤q 

 

These equations together with the explicit form of Q-matrices permits to 
find the basic intermediate functions ξn

(α), ηm
(α): 

 

λ(ξn
(α) (λα) = bαξn+1(λα) + aαξn-1(λα)  (3. 11) 

λ(ηn
(α) (λα) = (a(/R) ηn+1(λα) + bαR ξn-1(λα) 

 

Solving these recursion relations it follows that ξ(α), η(α) are Hermite 
functions for gaussian potentials: 
 

ξn
(α) (λα) = (2(n!)-1 2-n/2 (2a1)

n/2 Hn(λα'),  

ηn
(α) (λα) = (2(n!)-1 2-n/2 (R2/2a1)

n/2 Hn(µα') 

 

Using intermediate basic functions we get for joint probability: 
 

P(λα, λβ)= ∫  (Πi=2
N dλi

(α)d(i
(β)) (Πi=1

NΠγ=α+1
β-1 dλi

(γ)  

detij[ξi
(α) ((j

(α))]detij[ηi
(α) ((j

(α))]exp(S-Sα-Sβ')  (3. 12) 

 

 Integrating over eigenvalues dλi
(γ), γ=α+1, \… β-1 we obtain the 

joint probability of two-matrix model for which we already know the 
result. Hence we get the result (3. 2).  
 All the derivation above is valid also for more general potentials, 
polynomial-like Vα(τ)=Σk=1

p(tkτk or not.  
 The sufficient ingredients are the coefficients of the Q-matrices.  
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 4. STAR-MATRIX MODEL 
 This model is interesting because it is supposed to describe the 
q-Potts model on a random lattice [16]. It was also used to describe the 
cristal growth. The limiting cases q(0 and q(1 describe the tree-
polymers, and the percolation respectively.  

We study the star-matrix model with partition function: 
 

Z=(Πi=1
N (dli

(0)Πα=1
q dli

(α)) Πi<j [(λi
(0) -λj

(0)) Πα=1
q(λi

(α) -λj
(α))]  

exp{Σi=1
N [V0 (λi

(0))+Σα=1
q Vα(λi

(α)) +Σα=1
q c(λi

(α)λi
(0) ]}  (4. 1) 

 

We define the orthogonal polynomial basis as ξn and (instead of one 
conjugate polynomial ηm q+1 polynomials ηm

(α): 
 

∫ dλ(0)Πα=1
q dλ(α)ξn

(α)q (λ(0)) exp[V0 (λi
(0))+Σα=1

q (Vα(λi
(α)) + c(λi

(α)λi
(0))] ×Πα=1

q 

ηmα
(α) (λ(α))=hn δnm, m=mα, α=1, … q    (4. 2) 

 

This basis is unusual but it works quite well at least for gaussian 
potentials: 
 

Vα(τ)=tατ2+u(τ, α=0, 1, … q.  
 

We introduce Q-matrices as: 
 

∫ dλ(0)Πα=1
q dλ(α)ξn

(α)q (λ(0)) λ(α) exp[V0+Σα=1
q (V(+ c(λ(α)λ(0))] ×Πα=1

q  

ηmα
(α) (λ(α))=hn Qα, nm, m=mα, α=1, … q   (4. 3) 

 

The coupling conditions are: 
 

q P0+2t0Q0+u0+Σα=1
q c(Q(= 0 

Pα+2t(Qα+uα+c(Q0 = 0, α=1, … q.   (4. 4) 

 

With the following parametrization of Q-matrices: 
 

Q0 = I++a0I0+a1ε-    (4. 5) 

Q(= bα/R(I++d(I0+Rαε_-, α=1, … q 

 
we arrive at the equations: 
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2 t(Rα+c(a1=0 
2 t(bα+n+c(Rα=0 
2 t(dα+uα+c(a0=0 
2 t0 +Σ(c(bα/ Rα)=0    (4. 6) 
2 t0 a0+u0+(c(dα=0 
2 t0 a1+qn+(c(Rα=0 

 

By solving the coupling conditions we get : 
 

a1 = - (2q/ A),  a0=(1/ A)[Σ(c(uα/ tα)-2u0] 
bα= - (1/ 2tα

2)[{cα
2 q/ A)+tα],  Rα=(c(q/ t(A) 

dα= (1/ Atα)[c(u0- 2t0 uα+u(Σ(cα
2 / 2tα) - c(((c(uα/2tα)] 

 

where A= 4t0-(cα
2 / tα.  

 
 We can obtain the basic functions for star matrix model, in the 
same way we get them for q-matrix model: 
 

ξn(λ(0))= Hn (λ(0) '),  
ηm

(α)(λ(α))=Rα
n Hn(l

(α) ‘),  α=0, 1…q 
with: 

λ(0)’ = (λ(0) - a0)/(2a1)
1/2,  λ(α)’ = (λ(α) - dα)/(2bα)1/  (4. 8) 

 
Since these basic functions satisfy the relation: 
 

ηn(l
(0))= ∫  exp[V0+Σα=1

q (V(+ c(λ(α)λ(0))] ηn(l
(α))  (4. 9) 

 
we can integrate over Vandermonde determinants: 
 

detij[ηi
(0)(λj

(0))]= ∫  exp[V0+Σα=1
q (V(+ c(λ(α)λ(0))] detij [ηi

(α)(lj
(α))]  (4. 

10) 
 
 Then we have for the joint probability of two eigenvalues the 
simple expression: 
 

P(λ(α), λ(β))(Pherm(λ'(α), λ'(β)),  α, β=0, 1… q  (4. 11) 
 

with λ', µ' given by equation (4. 8).  
 5. GENERALIZED CALOGERO-SUTHERLAND MODEL 
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 The connection with Calogero model permits the calculation of 
the joint distribution functions for random multimatrix models for other 
ensembles, different from the hermitean one. This relation is interesting 
due to the fact that such matrix models might be directly related with 
conformal field theories with the central charge c=1-6(√β-1/√β})2, as was 
stated in [17] (where β=1, 2, 4 for orthogonal, hermitean and unitary 
matrices respectively).  

We obtain the Calogero model related to the 2-matrix model. The 
eigenvalue problem for Calogero model follows from the heat equation 
satisfied by the Itzykson- Zuber integral.  

We introduce the kernel: 
K(X, Y| t)= <X|exp{-t D}|Y>=   (5. 1) 

=(2(t)-N2/2 ∫  dU exp[-(1/ 2t)Tr (XUYU+)] 
 

which is related with the Itzykson-Zuber integral K(X, Y| t=1)=exp(- (1/ 
2t) Tr(X2+Y2))I(X, Y): 

I(X, Y)= ∫  dU \exp[Tr (XUYU+)]=   (5. 2) 

=(detij (exp {xi yj}) / (∆(X)∆(Y))β/2 
 

where β=1, 2, or 4 depending on how are the matrices X, Y: orthogonal, 
hermitean or unitary respectively.  

The kernel (5. 1) satisfies the heat equation [18][19]: 
 

(d /d t+DX) KK(X, Y|t)=δ(X, Y)   (5. 3) 
 

where KK(X, Y|t)=(∆(X)∆(Y))β/2 K(X, Y| t) and the laplacian is: 
 

DX= - (1/ 2) Σi d
2 /d xi

2 +(β/ 2)((β/2)-1)Σi<j [1/ (xi-xj)
2]  (5. 4) 

 

Solving equation (5. 3) gives: 
 

KK(X, Y|t)=(2(t)-N2/2 Σ(η(exp[- (1/ 2t) Σi (xσ(i)-yi)
2] (5. 5) 

 

from which follows the expression for the Itzykson-Zuber integral ((is the 
permutation).  
 We introduce the function: 
 

ϕ(X|t)= ∫  KK(X, Y|t)ϕ(Y) dY   (5. 6) 

that fulfills the heat equation with initial condition ϕ(X|t=0)=ϕ(X).  
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 We can search for stationary solutions in the form 
ϕ(X|t)=Σnϕn(X)exp{-En t} where ϕn(X) satisfies the Calogero equation 
(without potential term): 
 

[- (1/ 2) Σi d
2 /d xi

2 +(β/ 2)((β/2)-1)Σi<j [1/ (xi-xj)
2] ϕn(X) =En ϕn(X) (5. 7) 

 

 The eigenvalues of matrix X are chosen such that y1<y2… <yn. 
These eigenvalues y1… yn are mapped by the kernel KK(X, Y|t) into xσ(1) 

… xσ(N).  
For t(0, the kernel KK(X, Y|t) tends to Σ(η(δN(xσ(i)-yi). Hence if we consider 
ψ(X) as a particular solution of Calogero model with x1<x2… <xn, the 
function ϕ(X|t=0) is the general solution for eigenvalues xi in arbitrary 
order, being the linear combination of functions ψ((X) : 
 

ϕ(X|t=0)=Σ(ψ((X), ψ((X)=η(ψ(X) 
 

where (is the permutation of eigenvalues xi ; η(=-1 for free fermions (β=2 
for hermitean matrices) and η(=+1 for free bosons (((0 for harmonic 
oscillator). We see that for generic value of (the system describes 
particles with fractional statistics (anyons).  
 For t going to infinity the dominant contribution is given by the 
vacuum configuration ϕ0(X). The kernel KK(X, Y|t) plays the role of 
instanton propagator connecting the initial vacuum configuration 
ψ0(Y)=(∆(Y))β/2 to final vacuum configuration ϕ0(X)=(∆(X))β/2.  

For 2-matrix model we can define the generalized Calogero 
system: 

 

{(β/ 2)((β/2)-1)Σi<j [ (λi-λj)
-2 + (µi-µj)

-2] - (1/ 2) (Σi d
2 /d λi

2 +Σi d
2 /d µi

2) 
 ×ϕn(λ) ψm(µ) = Enm ϕn(λ)ψm(µ)    (5. 8) 

 

 This system describes 2 interacting systems of anyons. Hence all 
results valid in the 2-matrix model with β=1can be extended to arbitrary 
(and given a meaning in terms of the generalized Calogero's anyons.  

When c=0 the generalized system splits into two Calogero 
systems: 

 

[- (1/ 2) Σi d
2 /d λi

2 +(β/ 2)((β/2)-1)Σi<j [1/ (λi-λj)
2+ Σλ’2] ϕn(λ) =E1, n ϕn(λ) 

[- (1/ 2) Σi d
2 /d µi

2 +(β/ 2)((β/2)-1)Σi<j [1/ (µi-µj)
2+ Σµ’2] ϕn(µ) =E2, n ϕn(µ) (5. 9) 

The ground states can be written in terms of the eigenfunctions (2. 11): 



QUANTUM CHAOS IN MULTI--MATRIX MODELS 
 
 

 83 

 

ϕ0(λ)=(detij ξi (λj))
β/2exp(-Σi λi'

2/2)  (5. 10) 

ψ0(m)=(detijηi (mj))
β/2exp(-Σi mi'

2/2) 

 

We can see that the probability of amplitudes (5. 10) is the partition 
function of the 2-matrix model: 
 

Z= ∫  dλ1 … dλn |ϕ0(λ)|2= ∫  dm1 … dmn |ψ0(m)|2 
 

The system (5. 10) permits us to calculate the joint probability P(l, m) for 
general ensemble. It coincides with formula (2. 14) (for c=0) where we 
replace N by (N/2: 
 

P(λ, µ)={(N/2-λ'2}1/2{(N/2-λ'2}1/2  (5. 11) 
 

 6. CONCLUSIONS 
 These models present interest in the study of quantum chaos for 
q systems interacting in various ways. The density of levels depends on 
the total energy which behaves like N, for large N. The interaction of q 
subsystems redistribute the energy between the subsystems and 
change in non-trivial way the joint distribution functions. Different kinds 
of interaction (chain or star- type) give different probabilities for energy 
levels.  
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CUMULATIVE EFFECTS OF CRYSTALLIZATION FROM 
SOLUTION 

 
 

E. VINTELER1 
 
 

ABSTRACT. The experimental data of crystallization from 
solution show that the samples behave differently when the 
crystal samples grow in near null magnetic field or in 
geomagnetic field. In near null magnetic field are produced 
more nuclei, which grow slower. The experimental data can be 
explained by assuming that geomagnetic field modifies the 
mobility of the ions on the growing surface. To explain the 
macroscopic changes on the nucleation and crystal growth 
rate, we suppose that the geomagnetic effect cumulates due to 
the correlation in time. This cumulative effect is due to the special 
properties which appear at the crystal-solution interface.  

 
 

 INTRODUCTION 
 In work [1] was shown that the crystallization of different 
substances (NaCl, MnCl2, FeCl2, Fe(NH4)2(SO4)2) from solution behaves 
differently when the crystal samples grow in near null magnetic field or in 
geomagnetic field. The experimental results are in agreement with other 
related to crystallization and precipitation of different inorganic systems. 
The results can be stated as follows: 
 - the near null magnetic field did not change the total time 
required to get a complete crystallization; 
 - the near null magnetic field significantly decreased the NaCl 
nucleation and crystal growth rate; 
 - the symmetry axes of the grown crystals in the presence of the 
geomagnetic field are independent on its direction. A comparison of the 
X-ray spectra for samples in geomagnetic and in near null magnetic field 
at the end of crystallization process shows that the near null magnetic 
field had no effect on the crystalline lattice.  
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 The experimental data can be explained only by assuming that 
geomagnetic field modifies the mobility of the ions on the growing 
surface (there are no structural changes of the crystalline lattice). The 
geomagnetic energy interaction is much smaller than the thermal noise 
energy. This implies that in usual conditions, the geomagnetic effect is 
"forgotten" after a short (relaxation) time. To explain the macroscopic 
changes on the nucleation and crystal growth rate, we suppose that the 
geomagnetic effect cumulates due to the correlation in time. The system 
has "memory" and its further evolution depends on the present state. 
This cumulative effect is due to the special properties which appear at 
the crystal-solution interface.  
 Our theory can be applied also to other systems where the 
energy of external perturbation is much smaller than the thermal noise 
energy. The cumulative effects can appear only in systems where the 
studied process (crystallization, precipitation etc. ) consists of a chain of 
elementary reactions with back-reaction, in other words when the last 
reactions of the chain catalyze the first reactions.  
 

 THE MACROSCOPIC THEORY 
 The nucleation rate depends on the excess free (nucleation) 
energy at criticality: 

IN = ν exp( - gc / kT)    (1) 
 

(where N0 is the number of lattices sites per unit area and ν - the number 
of molecules arriving per unit time towards the critical nucleus).  
 The nucleus, an incomplete monomolecular layer of a critical 
size, is created on the heterogeneous surface (glass) by thermal 
fluctuations. Assuming a circular layer of radius r, the excess free energy 
of the total system has the formula: 
 

g(r) = - kT ln s ( π2 / a2 )+ γ (2 π/a)  (2) 
 

 The supersaturating ratio s=[Cl]-/[Cl]-sat is expressed in terms of 
the concentration of Cl anions, and [Cl]-sat the concentration of the same 
anions at the saturation point. The other parameters are: γ- the edge 
free energy per molecule and a- the lattice pace.  
 The thermodynamic probability of eq. (2) has a minimum equal 
to: 

exp (- gc / kT) = exp ( - π (γ / kT)2/ ln s)  (3) 
 



CUMULATIVE EFFECTS OF CRYSTALLIZATION FROM SOLUTION 
 
 

 87 

 From the experimental results, it can be deduced that the rate of 
nucleation in near null magnetic field is greater than the rate value 
obtained under the geomagnetic field B=0. 047 mT. This means that: 
 

(gc)B=0 mT< (gc)B=0. 047 mT    (4) 
 
 According to eq. (3) the required decrease in the value of the 
excess free energy could be due to: i) the edge free energy per molecule 
γ<γB in the near null magnetic field is decreased. The magnetic 
interaction can be introduced by a linear term µγ B, where µγ is the 
effective magnetic momentum of charged ions. The edge free energy in 
geomagnetic field γB is related to the value in near null magnetic field by 
the formula:  
 

γB = γ+µγ B    (5) 
 
 The edge free energy is compared to thermal energy kT and a 
brief comparation shows that µB/kT<< 1, hence the geomagnetic effect 
is negligible when compared to thermal noise. The magnetic interaction 
cannot explain alone the decrease of the excess free energy. ii) the 
supersaturating ratio s is increased in the near null magnetic field. The 
saturation concentration [Cl]-sat cannot be modified, as the 
crystallographic lattice of the NaCl crystal does not change. The 
increase of s might be explained by supposing that the near null 
magnetic field increase locally the probability of an encounter between 
Na+ and Cl- by acting on the Brownian motion of the charged ions. The 
supersaturating ratio sB in geomagnetic field is related to the value in 
near null magnetic field by the formula:  
 

sB=s exp(µs B/ kT)   (6) 
 

where µs is of the same order of magnitude as the effective magnetic 
momentum µγ of ions. The variation of the applied magnetic field seems 
too low to induce alone such a mechanism (in the critical free energy 
formula (3) s stands under a logarithm, hence for change of n orders of 
magnitude of the value s we get a n times change in gc). Because this, in 
the following considerations we will consider only the effect of 
geomagnetic field on the edge free energy γ.  
 
 The conclusion of macroscopic theory is that neither explanation 
i) and ii) is a solution of our puzzle. Because this, we pass to 
microscopic theories, first in near null magnetic field and after to our 
original contribution - the microscopic theory in magnetic field.  
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THE MICROSCOPIC THEORY IN NEAR NULL MAGNETIC FIELD 
 To understand better the process of nucleation we consider the 
microscopic theory developed by Becker-Doring [2] and Frank [3] (see 
also [4], [5], [6]). They took a sequence of processes passing through a 
sequence of stages with first-order rate constants: 
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where fn and bn are the forward and backward transition rate constants 
to and from stage n: 

fn/bn = exp [-(gn-gn-1)/ kT]   (7) 
 

The free energy for stage n is given by: 
 

gn = - ( kT / ln s) n + 2 γ n1/2   (8) 
 

which reduces to eq. (2) for a circular cluster of radius r.  
The kinetic of the system is governed by the system of equations: 

 

Jn = fn Qn-1 - bn Qn   (9) 
dQn / dt = Jn - Jn+1 

 

where Qn is the occupation number of stage n and Jn is the net transition 
rate from stage n-1 to stage n.  
 The equations (9) can be rewritten in the following form: 
 

Jn = (Vn-1 - Vn) / Rn   (10) 
 

characterized by the coefficients: 
 

Vn = Qn / Cn  
Rn = 1 / (bn Cn)    (11) 

Cn = 
i

n

=
∏

1

(f_i/b_i) 

 

When a steady state of occupation is realized, the common rate of 
transition J is given by: 

J = V0 /
n=

∞

∑
1

 Rn   (12) 
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 In this case, the coefficients Cn, Rn are equilibrium constants and 
are expressible in terms of the free energy gn (using eq. (7)): 
 

Cn = exp ( - gn / kT ) , (C0 = 1) 
Rn = (bn )

-1 exp ( g_n / kT ) 
 

The maximum energy is: 
gn

* = γ(n*)1/2 
at n* = (γ / kT ln s)2  (13) 

 

Using these expressions, the steady rate nucleation J of eq. (12) is 
dominantly determined by the terms Rn in the summation Σ Rn within ∆n 
of n* for which gn is within about kT of its quasi-parabolic maximum gn* 
(gn* - gn ≅ kT). By use of Taylor expansion of eq. (8) about n* we have: 
 

∆ n = ( |(d2 gn / d
2 n)n*| / π kT )1/2 

 

 he nucleation rate is given by: 
 

IN = J/S = ( bn* / ∆ n) (V0 / S) exp ( -gn* / kT )  (14) 
 

which is similar to eq. (1) up to correction ∆n (by making the 
identifications ν = bn* = fn* and V0 / S = N0).  
 

 THE MICROSCOPIC THEORY IN MAGNETIC FIELD 
 In this subsection we consider the microscopic theory of 
nucleation taking in consideration the cooperative effects.  
 The rate constants in the presence of magnetic field B have the 
form: 

fi
B / bi

B = (fi / bi ) exp ( µi B / kT )  (15) 
 

 We introduce the new coefficient µi which represents the 
effective magnetic momentum at i-th stage. If we consider that the 
geomagnetic field influences only the edge free energy γ, then using 
relations (5) and (7) we have for great i: 

µi = - µγ i  
 

 If instead the geomagnetic field influences only the 
supersaturating ratio s, then using relations (6) and (7) we have: 
 

µi = µs 
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 Hence, using µi we can study the influence of geomagnetic field 
on both parameters of theory, the free energy γ and supersaturating ratio 
s.  

The new coefficients are (see eqs. (11)): 
 

Cn
B = Cn exp (−

=
∑

1

1kT i

n

 µi B)   (16) 

Rn
B = Rn exp (+

=
∑1

1kT i

n

 µi B) 

 

The coefficients Rn
B can be rewritten in the form: 

 

Rn
B = ( bn )

-1 exp ( gn
B / kT ) 

 

where the free energy in the presence of magnetic field B is: 
 

g n
B = g n+ B 

i

n

=
∑

1

µi 

 

The minimum of free energy: 
 

dg

dn

dg

dn

n
B

n= + µn B = 0 

 

fixes the critical number of steps nB* in magnetic field: 
 

nB* = [ γ / ( kT ln s- µ B) ]2   (17) 
 

which can be approximated in terms of n* = (γ / kT ln s)2 (n* is the critical 
number of steps without magnetic field (13): 
 

nB* ≅ n* + 2n* µn* B / (kT ln s) 
 

The critical free energy has the form: 
 

(gn
B* / kT ) ≅ (gn* / kT) + 2n* µn* B / (kT) +

=
∑

1

1kT i

n*

µi B 

 

Introducing the last expression in the formula of nucleation rate (14) we 
get: 
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IN
B = IN exp [ - 

B

kT
( 2n* µn* +

=
∑
i

n

1

*

µi )]  (18) 

 

 We make a rough estimate considering that γ / kT ≅ 1 is a typical 
value in a solution. Then, for a super-saturation of 10% or s=1. 1 we 
have in near null magnetic field gn* / kT ≅10 and the critical number of 
steps is n* ≅ 100.  
 We make the following estimates for the relative variations of the 
edge free energy ( γB-γ ) / γ ≅10 -3 and of the super-saturation ratio 
energy ( sB-s ) / s ≅ 10 -3 (this means that the interaction energy is much 
smaller than the thermal energy kT, of the order 10 -3). Using these 
estimates, we calculate the nucleation rates in external magnetic field in 
2 cases, when variation of nucleation rate is due entirely to:  
1. variation of edge free energy and  
2. variation of super-saturation ratio.  
 

1. For the special case of constant magnetic momentum µi = µs the 
nucleation rate in external magnetic field simplifies to: 
 

IN
B = IN exp (-3n* µs B / kT ) 

 

2. For the case µi = - µγ i , we apply relation (18) and we have: 
 

IN
B = IN exp [ - (2n* + n * ) (µs B / kT )] 

 

 Using these relations and the estimates of free energy and 
super-saturation ratio we have the following estimate for the variation of 
nucleation rate: 

(IN
 - IN

B) / IN ≅ 0. 5 
 

 The conclusion is that small relative variations of the edge free 
energy and of the super-saturation ratio of the order 10-3 can produce 
observable changes in the nucleation rate IN in the presence of 
geomagnetic field.  

A small interaction energy is required to produce such changes. 
The obtained results are useful in explaining other experimental data 
concerning different systems (for ex. precipitation, adsorption etc. ) 
where the weak effect cumulates.  
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BRST COHOMOLOGY FOR THE INDUCED W3-GRAVITY 
 
 

C. BUIA1, L. TĂTARU2 
 
 

ABSTRACT. A new method for finding out the BRST 
cohomology for the induced W3-gravity, based on the existence 
of an operator δ which allows us to decompose the space-time 
derivative d as a BRST comutator is presented. The BRST 
differential algebra is obtained by imposing the zero curvature 
conditions for the underlying Lie algebra SL(3) decomposed 
with respect to an SL(2) subalgebra. 

 
 

 W-algebras have turned out to interwines internal symetries with 
space-time ones in two dimensions and, due to this fact, to be of central 
interest in two dimensional physics. Originally introduced [1] as an 
extension of the conformal algebra by the spin-3 primary field, it soon 
became clear that W-algebras are related to other structures of the 
theoretical physics such as gauged WZNW-models [2],[3],[4] and Toda 
field theories [5]. In the reduction of WZNW theories to Toda field theory 
[3],[4] an important ingredient is the identification of a SL(2) subalgebra 
of the underlying Lie algebra and the arrangement of the remaining 
generators in irreducibile representations with respect to the SL(2) 
subalgebra. The W-currents correspond to the highest weight genetators 
in the SL(2) decomposition and they are conformally covariant tensors 
with one exception, the SL(2) current, which behaves as a projective 
connection. 
 The dynamical realization of W-algebra arises in W-gravity [6],[7] 
where W-currents couple to some W-gauge fields which are 
generalizations of the Beltrami differentials. In some models of W-gravity 
[7],[8] the W-currents are no longer holomorphic and the Ward identities 
for W-symetry are anomalous. These anomalies must satisfy the Wess-
Zumino consistency conditions [9] and these conditions allow us to 
define anomalies as nontrivial solutions of a BRST equation of the form: 
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s∆ = 0     (1.1.) 
 

where ∆ is the integral of a local polynomial in the fields and their 
derivatives and s is the BRST differential. 
Writting ∆ ∫ A, where A is a two form, eq.(1) translates into the local 
conditions: 

sA + dQ = 0     
sQ + dQ1 = 0    (1.2) 
sQ1 = 0     
 

where Q and Q1 are local polynomials in the fields. The equations occur 
due to the vanishing cohomology of the external differential d. They are 
called descent equations. 
 In this paper we have adopted a purely algebraic point of view 
introduced by Garajeu, Lazzarini, and Grimm [10] (see also [11]) and we 
have considered the W-algebra in terms of differential BRST algebra 
generated by W-currents, W-gauge fields and W-ghosts and by the 
BRST differential s. The structure of W-algebra as well as its BRST 
transformations can be obtained from the zero curvature conditions and 
the Russian formula.Within this algebraic formalism one can look for 
nontrivial solutions of the consistency equation (1). 
 

 STRUCTURE OF W3 -GRAVITY 
 We shall work in two space-time dimensions with the complex 
coordinates (z, z). 
 The W-currents, W-gauge fields and W-ghost fields can be 
constructed by starting with a simple Lie algebra G which can be 
arranged in reprezentations with respect to the principal SL(2) 
subalgebra. Introducing the Lie valued gauge potentials: 
 

A = dz Az (z, z) + dz Az (z, z)      (2.1) 
 

and the Lie valued ghost fields ( and writting down their BRST 
transformations for A and ( in the form of Russian formula: 
 

F=dA-AA=F=dA-AA    (2.2) 
where: 

d=d+s 
A=A+ω 
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In addition we shall perform : 
 

* a convenient field dependent redefinition called the conformal 
parametrization, of A and ω 

* the highest weight parametrization 
* the zero curvature conditions 
* the projective parametrization. 
 

 All these transformations and conditions do not change the form 
of the Russian formula, which can be used all the time. Thus we will 
obtain the general form of the solutions of the descent equations and 
afterwards we will impose these conditions to the find answers.However 
in the calculation we will take into consideration the field redefinitions 
and the zero curvature conditions. 
 In order to solve the descent equations we define the conformal 
parametrization: 

Γ =g o A=g o Ag o
- 1 +g o dg o

- 1    (2.3) 
c =g o ωg o

- 1 +g o s g o
- 1  

 

with g0=exp[α0L0], L0, L−, L+ being the generators of the subgroup SL(2). 
 Next we impose the zero curvature condition: 
 

g o F=d Γ - Γ 2 =0  
 

 Furthermore we shall use two methods to solve the descent 
equation. The first is based on the Sullivan theorem regarding the 
decomposing of a Lie algebra in a minimal subalgebra and a contractive 
one that we shall apply to the BRST algebra. The cohomology group of 
the contractive part is trivial so the cohomology group of the minimal 
subalgebra coincides with that of the given Lie algebra. Because of this 
we can limit ourself to solve the descent equation in the minimal 
subalgebra fact that simplifies our work. This method is a little more 
complicated but permits us to calculate solutions of different ghost 
number as well as solutions containing matter fields. 
 In the second method we shall follow Sorella [14],[15]. First we 
introduce a even differential of degree zero δ: 
 

δ Γ =0  
δc =+ Γ     (2.5.) 
δ ξ =+ Γ 2  
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with ξ = dc . Due to the zero curvature conditions F = 0 the differentials 
d,s and δ obey the following algebraic relations: 
 

[ s , δ ] = -d     (2.6) 
[ d , δ ] =0     (2.7) 

 

 In particular (2.6) shows that the operator δ decomposes the 
exterior derivative d as a BRST commutator.Eq. (2.7) is a direct 
consequence of the zero curvature conditions. 
 Eq. (2.6),(2.7) define an algebraic setup which gives a simple 
procedure for solving the tower of descent equations.In order to 
accomplish this task we shall use the following identity: 
 

e δ s e - δ =s +d     (2.8) 
 

which is a direct consequence of (2.6),(2.7).Eq. (2.8) can be written in a 
more useful way: 

e δ s = (s +d )e δ    (2.9) 
 

The simplest nontrivial solution of the equation: sω=0 is the ghost 
monomial: 

ωo
2n 11

(2n 1)!
tr(c )=

+
+    (2.10) 

with: c=cαTα 
 This fact is a direct consequence of the BRST transformations for 
the ghost cα. Besides, it can be proved that in our case (n=1) it is the 
unique solution with the ghost number three. 
 By application of identity (2.9) to (2.10) one gets: 
 

( s +d ) [ e δ ω0 ( c ) ] = ( s +d ) ω0 ( c - Γ )=0  (2.11) 
 

 By projecting out from (2.11) the terms with a given ghost 
number, one obtain the descent equations. 
 The most general solution of eq.(2.11) has the form: 
 

ω= ω0 ( c - Γ )+ ( s +d ) η    (2.12) 
where η(cΓ) is an arbitrary form. The anomaly can be calculated from 
ω0(c-Γ) by projecting out the term with the ghost number 1. In fact we 
eventually find: 

 
A=k t r ( c Γ 2 n )     (2.13) 
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with k-numerical constant. 
 From eq.(2.13) we can obtain the anomalies for W2n+1-gravity. 
However if one wants to obtain the concrete expansion of A then we 
have to take into account the aditional conditions imposed on Γ and c. 
These conditions can be solved in the general case but we shall limit 
ourself to the W3-gravity. 
 

 BRST STRUCTURE OF W3-GRAVITY 
 Now, in order to fix the notations, let us consider a decomposition 
of a given Lie algebra SL(3) with respect to some SL(2) 
subalgebra.There are two possible decompositions, corresponding to 
two different W3-algebras of Zamolodchikov [1] and Polyakov and 
Bershadsky [12],[13]. We shall consider in the sequel only the 
decomposition W3

(1) in which the eight generators of SL(3) are split into 
three {L±1, L0} and five {T±2, T±1, T0} (i.e. SL(2) spin two). The comutation 
relations for this generators are: 
 

[ L k ,  L l ] = ( k - l ) L k + l 
[ L k ,  T m ] = (2k -m)T k + m     (3.1.) 
[ T m ,  T n ] = -1 /3 (m-n ) (2m 2 +2n 2 -mn -8 )L m + n  
( k , l = -1 ,0 ,+1 ;    m ,n= -2 , -1 ,0 ,+1 ,+2 )  

 

 From a concret three-dimensional representation of these 
generators (given in [10])it is easy to calculate the matrix g a b =g b a =Tr  
(T a ,  T b ) , necesary in the sequel: 

g 1
- + = -4 ,  g 1

0 0 =2  
for{L0, L±} and 

g t
- 2 , + 2 =16 ,  g t

- 2 , + 1 =-4 ,  g t
0 0 =8 /3  

 

for {T±2, T±1, T0} the rest of the elements being zero. W-currents and W-
ghost fields can be obtained from the 1-form Lie algebra valued 
potential: 

A=A k L k +A 1
m T m =dz  A z +dz  A z   (3.2) 

 

the Lie algebra valued Fadeev-Popov ghosts: 
 

ω= ω k L k + ω1
m T m     (3.3) 

 

and the covariant matter fields: 



C. BUIA, L. TĂTARU 
 
 

 98 


















∑

∑

∑

=∑

−

+

0     (3.4) 

by the method described in §2. In adition we have to introduce the 
matter field ∑(z, z) transforming under the group G as: 
 

g Σ =U(g ) Σ     (3.5) 
 

in some reprezentation U(g) of the group. Second, the BRST 
transformation of A and ω can be obtained from the "Russian formula" or 
the Maurer-Cartan horizontality conditions: 
 

F=F ,D Σ =D Σ    (3.6) 
 

where the field strenght F and the covariant derivative DΣ are defined 
by: 

  F=dA-AA  
D Σ =d Σ +A Σ     (3.7) 

 

 The W-gauge structure given by the fields A and Σ is a special 
gauge called the conformal parametrization. This gauge consists in a 
redefinition of the A and Σ which has theb form of a gauge 
transformation of the form: 

g e
L

0

0
0= α
    (3.9) 

 

such that the part of the gauge potential Az
- corresponding to L -  and dz 

is 1, i.e.: 
go

z
A − = 1     (3.10) 

 

Since the action of g0 on A is given by (2.3) and g0 has the form (3.9), 
eq.(3.2) yields: 

go
a
k

a
k ka

go

A A e

A A e

ρ ρ

α

=
=

−

± ± +

0

0
   (3.11) 

and the condition (3.10) gives: 
α0 = − −ln A x     (3.12) 

 

The gauge potential in conformal parametrization is defined by: 
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Γ Γ Γ Γ Γ= = + = +go k

k a
pk

pk
a

z zA L T dz dz  (3.13) 
 

The ghost field in the conformal parametrization is defined by: 
 

c =g 0 ω  g 0
- 1 +g 0 s g 0

- 1    (3.14) 
 

and the matter field by: 
Ψ = g 0 Σ     (3.15) 

with the covariant derivative: 
 

D( Γ ) Ψ =d Ψ + Γ Ψ = g 0 D(A) Σ   (3.16) 
 

It is important to observe that the gauge potentials Az and Az are 
conformally covariant of weight (1,0) and (0,1) respectively and the new 
gauge potential (3.13) has definite conformal weight. Thus  
 

Γa
k

a
k

z
kA Aρ ρ= −( )  

 

has the conformal weight (k,0), 

Γ−
−

−= + = + =dz dz
A

A
dz dzz

z
z
z zυ υ   (3.18) 

 

has the conformal weight (-1,0), 
 

( ) ( )Γ0 0
0

0 0= − = + + + =
= + =

− −A d dz A A dz A A
dz dz

z z z z

z z

α ∂ ∂
χ χ χ

ln ln  (3.19) 

 

has the conformal weight (0,0) and  
 

zzzzz

zzzz

zddz

AAzdAdzA

λλλ =+=
=+=Γ −+−++

   (3.20) 

 

has the conformal weight (1,0). 
 In the sequence we impose the highest weight gauge condition: 
 

Γ z
k =0      (3.21) 

 

where k = -2 , -1 ,0 ,+1 , and using the zero curvarure conditions we 
project the horizontality conditions for the gauge potentials: 
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F F( ) ( )Γ Γ= = 0   (3.22) 
 

for different ghost numbers.From (3.22) we obtain the following relations 
between gauge potentials and also between ghost fields (grouped for 
the SL(2) substructure and respectively SL(3) structure): 
 

χ ∂ υ υ χ

∂ χ ∂ χ λ υ λ

∂ λ ∂ λ λ χ λ χ

∂ χ

z z
x

z
x

z

z z zz z
z

zz z z

zz zz zz z zz z z z

z z
zc c c

= +

= − + −

= + − −

= +

+ −

+ −

2 2 16

4

2 2

2 1

Γ Γ

Γ Γ
  (3.23) 

 

Γ Γ
Γ Γ Γ
Γ Γ
Γ Γ Γ Γ
Γ Γ Γ Γ Γ

z z z z

z z z z zz z

z z zz z

z z z z z
z

z zz z

z z z z z z zz z

z

z zz

zz

c c c
c c c c
c c c
c

− − −

− − − −

+ −

+ + + +

+ + + + +

− − −

− − −

+ −

+

= +
= + +
= +
= − + +
= − + +

= +
= + +
= +

1 2 2

0 1 1 2

1 0 1

2 1 1 2 0

2 2 2 2 1

1 2 2

0 1 1 2

1 0 1

2

2
2 4
3 3
4 4 2

2 2
2

2 4
3 3
4

∂Γ χ
∂Γ χ λ
∂Γ λ
∂Γ χ υ λ

∂ χ χ λ
∂ χ
∂ χ λ
∂ λ

= − + ++ + +∂ χ λc c c cz
z

z zz
1 1 2 04 2Γ

  (3.24) 

 

as well as the BRST transformations for gauge and ghost fields: 
 

s c c c c c c c
s c c c c
s c c c c c c c
s c c c c
s c c c c

z
z z

z
z z

z z z z z

z z
z

zz z

z z
z

z
z

zz z z z z

zz z zz z z z

z z zz z z z

υ ∂ υ χ
χ ∂ λ
χ ∂ υ λ
λ ∂ λ χ
λ ∂ λ χ

= − + − + + −
= − + −
= − + − + + −
= + − −

= + − −

+ − + − − −

+ −

+ − + − + − + −

+ −

+ −

4 2 2
2 2 16
2 2 16 16 2 2

4
4

1 2 1 2 0 1 0 1

2 2

2 2 2 2 1 1 1 1

2 1

2

Γ Γ Γ Γ
Γ

Γ Γ Γ Γ
Γ
Γ 1 2 1 1 0 1 04 2 2+ + −+ − + +c c cz z zΓ Γ Γ

 (3.25) 

 

s c c c c c
s c c c c c c c
s c c c c c
s c c c c c c c

z z z z
z z

z

z z z z
z z

z zz z z

z z
z z

z zz z z

z z z z
z z

z zz z z

Γ Γ Γ
Γ Γ Γ Γ
Γ Γ Γ
Γ Γ Γ Γ

− − − − −

− − − − − −

+ + − −

+ + + + + +

= + − − +
= + − − + + −
= − + + −
= + − − + + −

2 2 2 2 1 1

1 1 1 1 0 0 2 2

0 0 1 1 1 1

1 1 1 1 2 2 0 0

2 2
2 2 4 4

3 3 3 3
4 4 2 2

∂ χ υ
∂ χ υ λ
∂ υ λ
∂ χ υ λ

s c c c c c
s c c c c

z z z zz z z

z z z zz

Γ Γ Γ
Γ Γ

+ + + + + +

+ + + + +
= + + + −
= + + +

2 2 2 2 1 1

2 2 2 2 1
2 2
2 2

∂ χ λ
∂ χ λ

 (3.26) 
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sc cc c c c c
sc c c c c c c
sc c c c c c c

z z

z
z

z z

= + −
= + −
= + −

− + −

− + − +

− + +

4 2
2 16 2

4 2

2 1 1 0

2 2 1 1

1 2 0 1
   (3.27) 

 

sc c c cc
sc c c cc c c
sc c c c c
sc c c cc c c
sc cc c c

z

z
z

z
z

z
z

z

− − −

− − −

+ −

+ + +

+ + +

= − +
= − + +
= − +
= − − +
= − +

2 1 2

1 0 1 2

0 1 1

1 2 1 0

1 2 1

2
2 4
3 3
4 2
2

    (3.28) 

 

In an analogue way from (3.6) we obtain for the matter fields the 
relations: 
 

∂ ψ χ ψ λ ψ ψ
∂ ψ χ ψ λ ψ ψ ψ
∂ ψ ψ λ ψ
∂ ψ υ ψ ψ ψ λ ψ ψ

∂ ψ ψ χ ψ
∂ ψ χ ψ ψ υ ψ ψ ψ

z z z zz z
z

z z z zz z z
z

z zz
z

z
z

z z z z zz
z

z
z

z
z

z

z
z

z
z

z
z
z

z z z

= − +
= − − +

= −

= − + − −

= −

= − + + − +

+

+ +

+ − +

− −

2 4
2 2 4

2 2

2
4

3
2 2 2

2
2

3
2 2 4

2

1 2

1 1 1

0 1 2

Γ
Γ Γ

Γ Γ Γ

Γ Γ Γ

  (3.29) 

 

as well as the BRST transformation: 
 

s c c c c

s c c c c c

s c c c c c

z z z
z

z
z z z

z z

z z z z
z

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

= − − +

= − + + − −

= − + + − +

+ +

+ − +

− −

2 2 4
4

3
2 2 2 2

2

3
2 2 4

1 2

1 1 1

0 1 2

  (3.30) 

 

Furthermore we define an operator δ (see [14],[15]): 
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0

0

0

000

000

00

20

11

2

2200

1112

22

=
=
=

=Γ=Γ=
=Γ=Γ=

=Γ=

Γ=Γ==
Γ=Γ==

Γ==

+

+−

−

++

++−−

−−

z

z

z

z

zz

zz

ccc

ccc

cc

δψ
δψ
δψ

δδδλ
δδδχ

δδυ

δδλδ
δδχδ

δυδ

 

 
so that it satisfies the following relations: 

[ δ , s ]=d  
[ δ , d ]=0  

 
 In conformity with the Sullivan theorem one can decompose the 
BRST algebra in a minimal subalgebra and a contractive one. Now we must 
identify this decomposition. Looking to the relations (3.25),(3.26),(3.27), 
(3.28) and (3.30) it is rather easy to see that {cz,c,cz,c

-2,c-1,c0,c+1,c+2,ψz,ψ,ψz} 
are the generators of the minimal subalgebra. Now, all that we have to do is 
to search for solutions of eq.(1.1) in the form of linear combinations of the 
minimal algebra generators of ghost. 3. In order to simplify even more our job 
we define an new operator  

∆ 0 = 







s
c

,
∂

∂
 

 
 It is easy to see from eq.(3.25),(3.26) and (3.30) that all fields are 
eigenfunctions of the operator ∆0 which is in fact an even derivative i.e. it 
obeys the Leibnitz rule: 
 

∆ 0 (AB)= ∆ 0 (A )B+A ∆ 0 (B )  
 The eigenvalues of this operator called the weight can be used to 
filter out the trivial solutions of eq.(1.1). One can prove that a solution ω 
of the eq.(1.1) which satisfy the relation 
 

∆ 0 ω=p ω  
 



BRST COHOMOLOGY FOR THE INDUCED W3-GRAVITY 
 
 

 103 

for p ≠ 0  is a trivial one, so we have to search for solutions of weight 
zero. A non trivial solution with weight 0 is: 
 

ω = − − + + −
− − +

− + − − +

− + − + +
c cc c c c c c c cc c
cc c c c c c c c
z

z
z z

z z
4 2 8

4 2

2 1 1 0 2 2

1 1 1 2 0 1  (3.31) 

 

 It is interesting to point out that not all solutions of eq.(1.1) whith 
weight 0 are non trivial.Indeed one can see that the forms: 
 

ω
ω

1
0 1 0 1

2
1 2 2 1

= +
= −

+ −

− + − +
c c c c c c
c c c c c c

z
z

z
z

 

 

are solutions of eq.(1.1) with weight 0 but they are in fact trivial since  
 

ω
ω

1
2 2 1 1

2
2 2

1

2
= −

= −

− + − +

− +

s c c c c

s c c

(2 )

( )
 

 

The same result with (3.31) can be obtained by using the general 
method for Y-M cohomology ([14],[15]), i.e.: 
 

ω = =tr c c c tr T Ta b c
a b c(c ) (T )3   (3.32) 

 

and furthermore it is worth emhasizing that this is the only possible 
solution of pure ghost 3. 

The possible anomaly can be obtained from (3.31) or (3.32) by 
applying twice the operator δ. Both equations yield: 
 

A c c c c c c
c c c c c c

c c c c c c
c c

z
z

z
z

z
z

z z z

z z z
z z z

z z

= − − − − − −
+ + + + + + −
− − − − − − +
+ +

− + − + − +

− − − − + − + − +

− + − + − + − + − + − +

+

2 2 2 8 8 8
4 4 4 16 16 16
2 2 2 8 8 8
4 4

2 1 2 1 2 1

1 0 1 0 1 0 2 2 2 2 2 2

1 1 1 1 1 1 1 2 1 2 1 2

0 1 0

λ χ λ υ χυ λ λ
λ λ χ χ
χ χ υ υ
υ υ

Γ Γ Γ Γ
Γ Γ Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ Γ Γ
Γ Γ+ ++1 0 14czΓ Γ

(3.33) 

 

Our purpouse now is to express it in terms of W--currents, W--gauge 
fields and W--ghost fields. For this we perform the projective 
parametrization and then we exprime the BRST algebra in function of: 
• W z3

2= +Γ  corresponding to the W-currents, 

• υz
zz

z= −Γ 2 corresponding to the W-gauge fields, 
• c z z =c - 2  corresponding to the W-gauge transformation 
• υz

z z
zzc, ,Λ  which apartain to the SL(2) substructure. We obtain: 
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zzz
zz

z
z

z

zz
z

zz
zzz

z
z

z
zzz

z
zzz

zz
zzz

z
z

z
zzz

zzzz

z

z
zz

cWccc

cc

WW

W

3
2

33
3

3

8
2

1

2

1

)23(82

8
2

1

2

1
2

1

0

−Λ+=

=

+−Λ+Λ+=Λ

−Λ+=

Λ=

=
=

∂

∂

∂υ∂υ∂υ∂υυ∂∂

υυ∂υλ

λ

χ
∂υχ

 

Γ

Γ Λ

Γ Λ Λ

Γ Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ Λ

z z
zz

z z
zz

zz z
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z z
zz

zz z
zz

zz z
zz

z z
zz

zz z
zz

zz z
zz

zz z
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z
z

zz z
zz

z
zz

zz z
zz

zz z
zz

zz z
zz

zz z
zz

zz zz z
zz

zz

W

W

−

+

+

=

= +

= + +

= + + + + +

= + + + + +

+ +

1

0 2

1 3

2 4 2 2
3

2

3
5 3 2 2 3

1

2

1

2

1

3

5

6

1

24

1

12

7

24

8

24

1

4

1

24
2 9 15 10

16 16

∂ υ

∂ υ υ

∂ υ ∂ υ ∂ υ

∂ υ ∂ υ ∂ ∂ υ ∂ υ υ υ

∂ ∂ υ ∂ υ ∂ ∂ υ ∂ ∂ υ ∂ υ
∂ υ

(
2

3 3

1

0 2

1 3

2 4 2

2 2
3

3

1

2

1

6

1

3

5

6

1

24

1

12

7

24

8

24

1

4

∂ υ υ ∂ ∂ υ

∂

∂

∂ ∂ ∂ ∂

∂ ∂

∂ ∂ ∂

z
zz

z
z

z

zz

zz
zz

zz

zz
zz

zz
zz

zz

zz
zz

zz
zz

zz
zz

zz
zz

zz z

W W

c c

c c c

c c c c

c c

c c c c c W

) + +

=

= +

= + +

= +

+ + + +

−

+

+

Λ

Λ Λ

Λ

Λ Λ Λ
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Using these relations the consistent anomaly will be: 
 

A dz dz c c c c

c c

c c c c

z
z z

z
z z

z
zz zz

zz
zz

zz
zz

z
zz

zz z
zz

zz z
zz zz

z
zz zz

z
zz zz

z
zz

zz
zz

zz z
zz zz

= − − + +

+ + + + +

+ − + −

Λ Λ

Λ Λ Λ

Λ Λ

[ (

) ( )

( )]

∂ υ ∂ ∂ υ ∂ ∂ υ ∂ ∂

∂ ∂ υ ∂ υ ∂ υ ∂

∂ υ ∂ ∂ υ ∂ ∂ υ ∂ ∂ υ ∂

2 2 4 2

2 4 2 2

2 3 3 2 2 2

1

3
2

10
1

3
2 10

1

3
2 2

(3.34) 

 

 This anomaly could be found out from the general solution (2.12) 
if one uses the one-form gauge potential (3.13). Thus eq.(2.12) 
becomes: 

ω η= − − + +tr dz dz sz z(c ) (d )Γ Γ 3   (3.35) 
 

and for η=0 the solutions of the descent equation (1.2) are given by: 
 

A tr c dz dz
Q tr dz c dz
Q tr

z z z z

z z

= −
= +
=

3
3 2 2

1 3

(c )
(c )
(c )

Γ Γ Γ Γ Λ
Γ Γ    (3.36) 

 

 We can use the ambiguity of the solution (3.35) to write it down in 
a most economical way ([10],[16]). If one takes η of the form: 
 

η = +3 3tr dz z tr c dzz z z( ) [ ( )]Γ Γ Λ Γ  
 

then the new solution,which is related to (3.36) by some s-exact and d-
exact terms, has the form: 
 

A tr s c dz dz s c g dz dz
Q tr c c c dz c dz
Q tr c

z z z z
a

z
b a

z
b

ab

z z

' ( ) ( )
' [( ) ]
' ' ( )

= − = −
= − + +
=

3 3
3 2 2 2

3

Γ Γ Γ Λ Γ Γ Γ Λ
Γ Γ

∂ ∂
∂  (3.37) 

 

?From (3.37) one can obtain the compact form of the anomalies given 
by [10](see also [16]) by using the concret forms of the matrix gab and 
the BRST transformations: 
 

A c s W sW dz dzz
zz z

z
zz

zz
z
zz= − − −6 8 3 3[ (c )]∂ υ ∂ υΛ Λ Λ  
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 Comment 
 A natural question is the uniquness of the anomalies obtained in 
this way. In fact the problem of uniquness leads down to the problem of 
the solution of the equation 

sω0 0=     (4.1) 
 

for the ghost number three.We shall show that the general solution of  
(4.1) with the ghost number three has the form  
 

ω = tr(c )3     (4.2) 
 

 Indeed if one introduces the operators: 

i
ca a

= ∂
∂

 

 

L s i
L L L

i L

a a

a a

a a

=
=

=

{ , }
2

∆
 

we can write: 
L s s2 = +∆ ∆  

 

 This relation shows that a non trivial solution of eq.(4.1) must be 
G-invariant and it belongs to the hierarchy 
 

s i i s
s i i s
s i i d

a a a

a b a b ab

a b a b
abc

( )
( )
( )

ω ω ω
ω ω ω
ω ω

= → =
= → =
= → =

0
0
0

   (4.3) 

 

where dabc is totaly symmetric G-invariant tensor and {,} means the 
symmetrization. In our case dabc has an unique form: 
 

d a b c =s t r (T a T b T c )  
 

with str the symmetrized trace and therefore the hierarchy (4.3) has the 
unique solution (4.2) 
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ABSTRACT. The Physics methodology training at our college 
includes videotrainings during which teaching applicants 
perform microteaching activities and demonstration 
experiments in order to improve skills in teaching Physics. 
Presentations are discussed on the basis of evaluation sheets. 
Good points are emphasized, mistakes and the opportunities of 
further development are pointed out.  

 
 
 
 

 INTRODUCTION 
The method of microteaching was worked out at Stanford 

University in the 1963. [[[[1.]]]] Since it is applicable in almost all the areas of 
teacher training [[[[2.]]]], it spread rapidly worldwide. This method combined 
with the use of video has been applied in more and more teacher 
training institutions in Hungary since the mid-70s. Experience gained 
during the application of microteaching are communicated by instructors 
in videoconferences, periodicals and methodology publications. It is 
used for different purposes: to practise continuous verbal 
communication, to develop questioning skills, to improve illustration 
skills, to prepare, control and monitor students' individual work and 
evaluate students' achievements. Each microteaching last 15 minutes in 
a small group of 5 to 10 students. Within the framework of 
microteaching, teaching applicants teach either primary school students 
or their own classmates. Presentations are videotaped and after being 
reviewed they are evaluated by teaching applicants. [[[[3., 4., 5.]]]] 

It has been used in education classes and in the methodology 
training of different majors including Physics at Bessenyei György 
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Hungary 



KATALIN BOGDÁN 
 
 

 110 

Teachers' Training College since 1979. I will give an account of this 
training in my essay. 

 
 I. The Methodology Training of Teaching Applicants of Physics 

 Teaching applicants of Physics trained in Hungarian teachers' 
training colleges will teach students between 12 and 16 years of age. 
Teaching applicants have to learn physics and methodology in 
possession of which they will develop the right scientific aspect and way 
of thinking in students. Methodology subjects link the theoretical and the 
practical trainings of teaching applicants. We aim at putting subjects in a 
complex unity, which will contribute to the professional development, 
provide a firm basis to the teaching practice in primary schools and the 
teaching profession. Therefore videotrainings are included in the training 
programme during which teaching applicants give presentations and 
demonstrate physical experiments. Then teaching applicants present 
teaching activities individually for the first time. 

Standards set up by the curriculum and the experience gained 
during our visits in primary schools had special importance in planning 
the programme. Trainees had several problems with motivating 
students, performing demonstration experiments, the way of asking 
questions and the continuous verbal communication. These problems 
rose theoretical and practical issues whose clarification and practice are 
inevitable for teaching Physics. [[[[6.]]]] 
 
 

 1. Introduction to the Methodology Training 
Teaching applicants get acquainted with the process of teaching 

Physics and the principles of methodology in a one-hour lecture in the 
second semester of the second year. The two-hour seminars running 
parallel with the lecture include short presentations by students and 
roundtable discussions. Teaching applicants spend three classes a 
week in methodology laboratories. They get acquainted with the 
experiments, the experimental tools and the methodology exercises of 
teaching Physics. We aim at familiarizing teaching applicants thoroughly 
with the techniques and the methods of experiments. 
 
 

 2. Exercises for Teaching Physics 
Students practise in methodology laboratories for four hours a 

week in the first semester of the third year. They review primary school 
physics material in scientific and methodological terms. The purpose of 
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the applied methods, presentations, discussions, illustrations, carrying 
out experiments and measuring, is twofold; not only do students revise 
their knowledge of physics and methodology, but they also have an 
opportunity of improving their teaching skills. Each class includes two or 
three presentations by different students. Their subject can be concept 
building, familiarizing students with the laws of Physics, doing exercises, 
revision, testing and evaluation supported by experiments carried out 
either by the teacher or the students. In the absence of real primary 
school children, classmates act as students. Thus it is not a real-life 
situation, yet it is useful for practising certain teaching activities. It is also 
a role play for students in which it comes out to what extent teaching 
applicants are familiar with the way of thinking, the vocabulary and the 
level of knowledge of physics of primary school children. For a few 
years, our teaching applicants have also had the chance of performing 
teaching activities among primary school children in courses for talented 
students and summer physics camps.  
 Teaching applicants receive their tasks, which they have to 
prepare for on the basis of given guidelines at the beginning of the 
semester. Their performances are videotaped, which are discussed after 
being reviewed. The discussion is always started by the teaching 
applicant. He/she tells the class to what extent he/she managed to 
realize what he/she had planned, how he/she could correct his/her 
mistakes. It is followed by the remarks of the classmates. Discussions 
are finished by the evaluation of the teaching applicant's performance by 
the instructor. 

Discussions are based on evaluation sheets. (Each teaching 
applicant fills in an evaluation sheet while reviewing his/her 
presentations). The structure of evaluation sheets are similar to the ones 
in the Appendix; their guidelines always concern the current task. 
Teaching applicants who do not satisfy any of the guidelines, receive 
0 point. Activities well done are evaluated in the positive section, bad 
ones in the negative. Evaluation sheets do not count in seminar 
marks. They serve as means of emphasizing the good points, finding 
the bad ones and examining the opportunities of further development. 
They are also means of comparing the opinions of the instructors and 
the teaching applicants. The opinions of people who evaluate the 
teaching applicant's performance are marked with different lines: the 
instructor's with a continuous one, the class's with a broken one while 
the self-evaluation of the teaching applicant who gave the 
presentation is marked with dot-line-dot. Diagrams show that the 
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opinions of the class and the instructor are similar, though sometimes 
the former is less strict. The self-evaluation of the teaching applicants, 
however, are not always correct. 
 

 II. Microteaching Tasks  
 Exercises for practicing different skills in teaching Physics can be 
of several kind as regards their content and form. Sometimes all the 
teaching applicants may work on different topics with similar methods, 
another time a group of teaching applicants may do together the same 
exercises with different methods. Thus 4-5 teaching applicants teach a 
45-minute class in 10-15 minute shifts. I will give an account of the three 
most frequent exercises below. 
 

 1. Videotaped Demonstration Experiments  
Demonstration experiments presented in front of the class show 

how teaching applicants can carry out and apply them. Each student 
performs an experiment in class in front of the camera at least three 
times during the training. We selected to demonstrate the experiments 
which are not only included in primary school curriculum and contribute 
to the methodological development of the classmates but also reveal the 
teaching applicants' theoretical and practical knowledge. Students 
prepare for the experiments with the help of formerly given guidelines. 
They have to talk about not only the experiment but also the questions 
marked with an * in Appendix 1 in order to practise continuous verbal 
communication. They may prepare the tools and try their experiment 
before the demonstration. Each teaching applicant has 10 minutes to 
perform his/her experiment. The order of the formerly given guidelines is 
free, the teaching applicant has the opportunity of organizing his/her 
demonstration individually. Although the demonstration experiment is not 
a classic microteaching exercise, it is useful for practising important 
teaching activities. 
 

 2. Microteaching Exercises for Presenting New Material 
Microteaching activities introducing new material are always 

accompanied by demonstration experiments and illustrations. Teaching 
applicants prepare for their microteaching by writing lesson plans, 
preparing illustration tools and practising their experiment before their 
presentation. They have the opportunity of consulting their instructor and 
each other. The videotaped performances are discussed after being 
reviewed on the basis of the evaluation sheet in Appendix 2. Since 
several guidelines are included on the evaluation sheet, each classmate 
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observe only one of the guidelines marked with letters A to G. These are 
the followings: 
 

 A: Preparation before introducing new material. 
 B: Relation between the applied method, the tools and the 
 objective. 
 C: Requirements of the demonstration experiments. 
 D: Analysis of the experiment, conclusions. 
 E: Questions and answers during the microteaching. 
 F: Professional and general verbal skills. 
 G: Body language. 
 
 3. Microteaching Exercises for Managing Student Experiments 

Since we do not have enough time, all the teaching activities 
cannot be performed by all the teaching applicants. Student 
experiments, however, should be managed by each teaching applicant. 
It is a difficult task even for experienced teachers. They required both to 
focus and divide their attention at the same time. Teaching applicants 
usually have a lot of difficulties in doing that. Therefore each teaching 
applicant should have the chance of practising this task at least once 
during his/her training. The teaching applicant can realize his/her own 
positive qualities and mistakes on the videotape including the ones that 
escaped his/her attention while he/she was teaching. 

The main objective of managing student experiments is either 
concept building or explaining laws of physics. Since these are usually 
measure experiments, experiment planning, the selection and the testing 
of appropriate tools are especially important. Teaching applicants 
prepare a worksheet for the class. The first task of the teaching 
applicant is to decide the objective of the experiment and connecting it 
with the material already covered. Then the teaching applicant instructs 
the students to perform the experiment. Students read the instructions in 
the worksheet and after having understood them they start the 
experiment. By following the experiment instructions and the observation 
guidelines, they put down their observances. The teaching applicant has 
to monitor the students' work and help those who have difficulties in 
setting up the experiment instruments or performing the experiments. If 
more than one student make the same mistake, he/she interrupts the 
work to clear up the problems. Then the experiment may go on. Putting 
the observances to students, is followed by a discussion during which an 
explanation is given for the observed phenomenon. For this, teaching 
applicants are encouraged to apply the Socratic mode of inquiry. 
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Teaching applicants very often have problems with the technique of 
asking questions. They do not always manage to ask questions that are 
exact, clear and appropriate to the age of students. That is why the 
videotaped presentations are discussed in methodology classes from 
the point of view of the way of asking questions. The evaluation sheet 
included in Appendix 3 is used for evaluating student experiments. Since 
there are several evaluation guidelines, each participant observes only 
one teaching activity. The evaluation guidelines can be grouped as the 
followings: 
 

 A: Teacher's tasks up to the start of student experiment. 
 B: Relation between the experiments, the applied tools and the 
 objectives of the experiments. 
 C: Relation between students' individuality and teacher's help. 
 D: The factors of confident class management. 
 E: Teacher's tasks after finishing the experiment. 
 F: Questions and answers during the experiment. 
 G: Professional and general communication skills. 
 H: Body language. 
 

The last two guidelines are always discussed regardless the kind 
of teaching activity videotaped. The teaching applicants welcome any 
remark and suggestion which help them correct their mistakes. 
 

 The Experience of Applying the Method 
We get to the point of applying the above described method after 

several steps. It has been used in methodology training in our 
department for ten years. It makes a heavy demand on instructors and 
teaching applicants as well. Since every teaching applicant participates 
in every class, they have to prepare for each. One time he/she teaches 
or manages a student experiment, acts as a student while others teach 
or participate actively in classroom activities. The following time he/she 
may give a presentation or leads a discussion. Teaching applicants are 
only given the tasks; planning and realizing the methods and the use of 
tools are their responsibility. They spend a lot of time on library research. 
The analyses of the videotaped presentations do not only give teaching 
applicants the opportunity of further development, but also improves the 
classmates' knowledge of methodology. It is impossible for each 
teaching applicant to perform each experiment or teaching activity in 
methodology classes. Some shots of the videotaped presentations are 
often shown as illustrations in seminars. I think teaching applicants 
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benefit from this work during their teaching practice and later in the 
teaching profession. The trainees' classes and their closing lessons 
show good results. Evaluation sheets are also used during the teaching 
practice. Teaching applicants who participated in the training programme 
give clearer guidelines, take more care of the way of asking questions, 
pay more attention to the visibility of teaching tools and they are more 
confident of managing student experiments than those who did not 
receive such training. 
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