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A STUDY OF A SIMPLE NONLINEAR MECHANICAL SYSTEM

S. CODREAN!)', Tb. COLOŞI” , M. BANCA"

Received 30 05 J994

ABSTRACT. - The aim of a paper is an analitical and numerical investigation of a nonlinear 
mechanical system. This system is a parametrically forced mechanical oscillator, with cubic 
nonlinearity We demonstrate that the system exlubits a very complicated dynamics, including 
equilibrium points, limit cycles and complicated chaotic attractors For the numerical simulation 
we have used an original method

Introduction. The irregular and unpredictable time evolution of many nonlinear 

systems has been called chaos or deterministic chaos It occurs m many and different domains 

of the science like physics, chemistry, astronomy, biology, economy etc [1], [2] For example 

it can be observed in mechanical oscillators such as forced pendula or vibrating object [3], 

[4], but also in rotating or heated fluids [5], [6], in nonlinear circuits [7], in laser cavities [8], 

m nonlinear optical devices [9], [10], in Josephson junction [11]-[13], in plasmas [14], in 

some chemical reactions [15]-[17], in biological and ecological models [18], [19] or in 

stimulated heart cells [20] and in Electroencephalogram data [21]

The central charactenstic of the systems which exhibit a chaotical dynamics is that the 

systems do not repeat their past behavior although they follow deterministic equations For 

chaotic systems the slightly different initial conditions lead to an error in prediction that 

grows exponentially in time This characteristic, which occurs only when the governing 

equations are nonlinear, is known as sensitivity to initial conditions The first who recognized

"llribcf-Holytv" University, Faculty o f  Phvucs, 3-100 C/uj-Napaca, Наташа 

"  Technical Univemty, 3-100 Cluj-Napoca, Наташа



S CODREANU, T COLOŞI, M DANCA

this phenomenon was Henn Poincare (1913) Although a chaotic system can resemble a 

stochastic one, (1 e a system subject to a random external force), the sourse of the irregularity 

is quite different For the chaos the irregulanty is part of the intrinsic dynamics of the system, 

not unpredictable outside influences If the dynamical system is descnbed by a set of first 

order differential equations the necessary conditions for chaotic motion are that the system 

has at least three independent dynamical variables and the equation of motion contain a 

nonlinear term

The equations can often be expressed in the form

dx

where /= 1 ,2 ,  , n (// a 3) and with F  for example of the form

F - axt 1 bx2 + c.\ ! + + fxu

where a ,b ,c jare constants For some choise of the constants, such systems are often chaotic

From historical point of view the development of the study of chaotic systems is a 

recent one, despite the fact that chaotic systems aie deterministic and are descnbed by many 

of the well known equations This is due to the fact that, with the exception of some first 

order equations, nonlinear differential equations are either difficult or impossible to solve 

analitically So, the solution of nonlinear differential equations generally requiies numencal 

methods The first who detected chaos in a nonlinear dynamical system by a numerical study 

was E Lorenz [22]

One Of the simplest physical system with a rich and complex behavior, which has been 

intensively analyzed, is the damped driven pendulum [23], [24] This is a based nonlinear 

model system for different more complicated physical problems (nonlinear oscillators) like
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the forced motions of a particle in a two-well potential (such an electron in a plasma) [25], 

[26], the magnetic pendulum [27], or the radio-frequency driven Josephson junctions [11], 

[28]

In the same class of nonlinear dynamical systems is also the motion of a shallow arch 

subjected to horizontal and vertical pulsating loads proposed by Szemplinska-Stupmcka [29] 

and recently explored by Lamarque end Malasoma [30] The aim of our paper is an analitical 

study of the stady states of this system and then a numerical integration of differential 

equation which models the system by using an original method proposed by one of the 

authors [31]

The model and its fixed points. The equation of motion for a particular shallow arch 

subjected to honzontal and vertical pulsating loads is'

X + OX — 0,5( l  -  2/COSŰ)/ -  ж 2 ) *  = / co sü )/  ( 1)

where a is the damping coefficient, / and cu are the amplitude and the circular frequency of 

parametric excitation

To analize the behavior of the system we consider the following system of autonomous 

equations, which is equivalent to the differential equation (1).

X “  у

у  = - a y  + 0,5(1 -  2/cosz)x -  0 ,5т3 + /cosz  (2)

z = (O

We can see that this set of equations (or this flow) describes a dissipative system for 

any a > 0 A system is dissipative if an arbitrary volume V, enclosed by some surface S in

5
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the phase space of the vanables of the system, contracts The surface S evolves by having 

each point on it follow an orbit generated by (2) If the system (2) has the general form

£ = F ( £ ) , X = (*, ■=> X , Xj = y , x, *» z)

The statement of divergence theorem is

dv
~dt

(3)

and the dissipative system is defined by < 0

In the case of the flow defined by (2)

= -aV  or П О  = "я‘ (4)
at

l e the volume element contracts exponentially in time for a > 0

If the parametnc excitation is swiched off (f=  0), the system (2) becomes

x ~ y  (5)у  = -a y  + 0,5.v -  0,5.v3 '  ^

and from F(2) = 0, we find the following fixed points of the system (5)

£,(0, 0), *,(-1,0), £3(1, 0) (6)

If/ *  0, from (2) one finds the fixed points (the steady states)

*1(1.0,0), £2ţ-i.+ -8/,o,oj, .r3|-l-Iyi-8/,(),°) (7)
with the obvious condition of reality of them /  =s 1

The stability of the steady states. First we investigate the stability of the fixed points 

(6) For £,(0,0), the matrix of stability is
0 I 

0,5 -a

and the characteristic equation

6
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-X 1 
-0,5 -л-Х (8)

The eigenvalues of (8) are

l ( - a ± \ / a : + 2 (9)

and we have > 0 and ^  < 0 for any a > 0 Thus the origin (x = 0) is a saddle fixed point

For the fixed points Y2(-1, 0) and Y3(1, 0), the characteristic equation is

-X 1
» о-1 -a-X

with the eigenvalues'

i-(-a ± \/a 2-4  ) (10)

In this case X, < 0 and >̂  < 0 for any a  a 2 If X, 2 has the form X, 2 = X' ± /X" we 

observe that X1 < 0 for any a > 0 Thus x = -1 and л: = 1 are stable fixed points, or stable 

equilibrium

The stability of the fixed points (7) is investigated by the same method One finds for 

x = 1, the characteristic equation
-X 1 0

-1-/ -a-X 0 
0 0 -X

0

with the eigenvalues

0, \  }-(-a± \la '-  4(1 +/) )
1 2

If -1 s f  ■£. _ ,  X, is real and negative, also if / <  - 1, X3 is teal and negative If8 4
a2 1__ - 1 < / s  Xj j “ X ± /Л with X < 0 for a > 0 Thus x = 1 remains a stable fixed point in4 8

the presence of the parametric excitation (/VO)

For the fixed points x = ,l(- l + l - 8/ )  and x =■ _i(-l - \j 1 - 8/ ) ,  the eigenvalues of 

the characteristic equations are

7
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\ - o

X-, » _,̂3 2 - a ± ( a 2 + 8 / -  1 ± 3 l / i -8  / Г

with L, > 0 and Xj < 0, respectively Xj < 0 and X3 > 0 We conclude that for о < /  < _L these8

fixed points are unstables

But the system has, beside the steady states, also the other important behaviors like 

limit cycles with different periods, which form a cascade of period doubling cumulating m 

chaos, as the amplitude of parametric excitation is used as a control paramater We observed 

this benhavior by numerical investigation of (2) for different values of f  ш and a being 

constants

The numerical study. We have performed a numerical investigation of equation (1), 

or of equivalent set of equations (2), by using a new method of integration based on local 

linearization iterative (L L I ) This method realises, with remarcable performances, the 

numerical approximation of the solutions through the segments of straight, considered in the 

neighbourhood of a pivot moment With this method the relative errors cumulated was smaller 

than 0,1%, for sufficient large characteristic time intervals Also, in the same domain of 

errors, the computing time is smaller than those spent with usual fourth order Runge-Kutta 

method

By fixing the parameters at the following values a = 1,5, ш = 8, except the amplitude 

of parametric excitation/ which was used as a control parameter, we have constructed the 

projections of the trajectories in the phase space for a wide range of the control parameter 

Thus, for f  = 0, when the parametric excitation is awiched off, we found the stable

8



A STUDY OF A SIMPLE NONLINEAR MECHANICAL SYSTEM

equilibrium x = -1 and x = 1 Because the trajectory goes to one or another fixed point, for 

different initial conditions, we drew the basins of attraction of these coexisting stable 

solutions Figure 1 ahows the basins of attraction in the phase space region defined by -20 

i r s 2 0 ,  and -20 £ y  £ 20 The basin of equilibrium point x = -1 is colored in white, while 

that of x  = 1 is in black In Figure 2 we present two projections in XOY and XOZ planes of 

the trajectory in this case 

With parametric excitation (fc0), the focus x=l 

remain a solution of equation (1) This point is 

numerically found to be a stable equilibrium 

state until the amplitude /  is /«29,28, when a 

limit cycle is created The projections in XOY < - 2 0 , - 2 0  >

plane of the trajectories with/=5 and/=20 are 

shown in Figures 3 and 4 Figure 5 shows two Fig I

projections in XOY and YOZ planes of the trajectory when/ =  29,28 When j  = 29,29713 we 

can see, from Figure 6, that a cycle limit is created In Figure 7 a and b we present the cycle 

limit for/ =  32 in two projections on XOY and ZOX planes This penod-1 limit cycle is also 

stable until am p litu d e /is / -  45,5 when a penod-2 motion is created (see Figure 8) At / =  

47,5 we can see, from Figure 9, that a penod-4 motion is generated As /  increases further, 

a period doubling cascade followed by chaos is clearly visible We presents this in Figures 

10-12 for/ =  4 7 ,7 ,/=  48 and/ =  55 A t/ =  65 a new penod-1 limit cycle is cieated (see 

Figure 13), and the same scenano of penod doubling cascade followed by chaos is visible 

We have earned out extensive numencal simulation and we found the same behavioi foi
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different values of f  Figures 14-16 show some particular trajectories

D a m p . coef. = I .5000000000E+00 Amplitude = О .OOOOOOOOOOE+OO Circ. freq. = S .О О О О О О О О О О Е Ю О
X .ООООООООООЕЮОY init= a .ООООООООООЕ;ос Z i n i t — О . ООООООООООЕ Ю О  U Scale- 3.ООООООООООЕЮО!H Scale- 3 iOOOOOOOOOOE+O I

Fig 2
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X<t >

Y< t >

Danp. c o e f . = 1.5 0 0 0 0 0 0 0 0 0 E + 0 0  A m p l i t u d e  = 5 . O O O O O Q O O O O E + O O  Cire, f r e q . = 8 . 0 0 0 0 0 0 0 0 0 0 E + 0 0
X i n i t = - l . 0 0 0 0 0 0 0 0 0 0 E + 0 0  Y  init= 2 . 0 0 0 0 0 0 0 0 0 0 E + 0 0  Z init= O .O O O O O O O O O O E + O G  U S c a l e =  2 . 5 0 0 0 0 0 0 0 0 0 E + 0 1 H S c a l e =  2 . 5 0 0 0 0 0 0 0 0 0 E + 0 1

•Fig U
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X(t )

Y< t )

D a n p . coef. = 1.5 Q O O O Q 0 O O Q E + O Q  finplitude = 2 . O O O O O O O O O O E + O l  Circ. freq. = 8 . O O O O O O O O O Q E + O O
X i n ţ t = - l . O O O O O O O O O O E + O O  Y  in л t — 2 . O O O O O O O O O O E + O O  init= О . O O O O O O O O O O E + O O  = 2 . 5 0 0 0 0 0 0 0 0 0 E + 0 1H S e a  le S e a l e = 2 . 5 0 0 0 0 0 0 0 0 0 E + 0 1

Fig.5
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D a n p . c o e f . A n p 1 itude = G i rc . freci.
= 1 .5000000000E+00 2.9280G00000E+01 = 8 . O O O O O O G O O O E + O O
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Fig 6
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Datip . c o e f  . 
A m p  1 i tude = Circ. f r e q .
X V  Z 
U H

= I .5 Q 0 0 0 0 G 0 Q 0 E + 0 0  2 . 9 2 8 0 0 0 0 0 0 Û E + 0 1  = 8 . 0 0 0 0 0 0 0 Ü 0 0 E + 0 0
in i ţ = - l .O O O O O Ü O O O O E + O Q  init= 2 . O O Q O O O O O O O E + O O  in i t = О .O O O O O O O O O O E + O O  S c a 1e = 1 . O O O O O O O O O O E  +01 S c a l e =  5 . O O O O O O O O O O E - O l

Fig 7
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Danp, coef. А м р 11tude = Circ. fren.
= J. . 5 0 0 0 Q 0 Q Ö 0 0 E + Ü 0  a . 9 2 8 7 1 3 Q Q 0 Q E + 0 1  = 8 . 0 Q Q Q 0 0 0 Ü 0 Ö E + 0 0

X in it = --1.Y in it = a .Z in it = 0 .U Sca le:= aH Sca le:= 2

O O O O O O O O O Q E + O O  O O O O Q O O O O O E + O O  . Q O O O O O O O O O E + O l  . O O O O O O O O O O E + O l

Fig.8
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D a n p . c o e f . = 1.5 Q Q 0 0 Q 0 0 0 0 E + 0 0  A m p l i t u d e  = 3 . 2 0 Q 0 0 Q 0 0 Ü Q E + 0 1  Circ. freq. = 8 . 0 Ü Q 0 0 0 Ü Ü Q 0 E + 0 0
XYZU
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Fig 9
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D a n p . c o e f . A n p l i t u d e  = Circ. f r e q .
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Fig 13
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Conclusions. This work investigated the nonlinear dynamics of a mechanical s y s u , 

with cubic nonlinearity and parametric excitation, by using the LLI .  technique We ha\>. 

constructed different trajectories in the phase space as the amplitude of parametnc excitation 

was used as a control parameter and shown that the system exhibits different chaotic 

behaviors The route to chaos is shown to be via period-doubling bifui cations
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ABSTRACT. - Using the S-matnx formalism and Feynman’s diagram-technique, the 
gravitational scattering of the minimally coupled vector, tensor and spin-3 /2 (Ranta-Schwmger) 
particles on Schwarzschild background is studied for any value of the scattering angle

We mention that accordingly to our knowledge the previous works in this branch 
dealed only with the small angle cases As it has been shown, in the small angle appioximation 
and ultrarelativistic case, the differential cross-sections coincide with those corresponding to 
the photons, neutrinos, massless Rarita-Schwinger particles, gravitinos and gravitons, i e , the 
gravitational particle scattering is spin independent, in agreement with marţ' autors’ results, 
obtained by other means

As particulariy interesting result, we point out that the differential cross-section for 
scattering of the vector particles m the backward direction and ultrarelativistic case is finite and 
the hehcity is not conserved, while, for tensor and spin-3/2 particles m the same case the 
differential cross-section is clearly unlimited

In this paper, using the 5-matnx formalism and Gupta’s linear approximation [1]

44g» • *r- W' (1)
where g11', ti"'' and y"' are the metric tensor, the Minkowski tensor - diag (+1,-1,-1,-1) -and 

the tensor of the weak gravitational field, respectively, g = detg^ and * = \Jl6itG (in natuial 

umts, G being the Newton constant), the scattering of the massive 1, 2 and 3/2 spin particles 

in the external gravitational field described by Schwarzschild meine iS' studied Also we 

discuss the differential backward-cross-section as an important particular case

In order to obtain the first-order interaction Lagrangians between the gravitational and
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the massive vector, tensor and Ranta-Schwmger fields we use the principle of minimal 

coupling [2] According to this principle, for vector and tensor fields, we must add to the 

expression of the gravitational field Lagrangian the complex massive vector and tensor field 

Lagrangians written m the curved space [3, 4]

a » ,-  / 7  | - - i g ^ G ; vGaß+ (2)

f -g  g №g vP( g x“^ / / aßp+ тгф ^ ф р р ) ’ ( 3 )

It is easy to see that for the vector field we considered the Proca formalism Here 

G ° 5(lv (B being the covariant denvative of the vector field function) is the tensor 

of the massive vector field Concerning the tensor field we must emphasize that we followed 

a Schwinger’s idea [5] using the third rank tensor

|̂lа” ФуЛ,/ ФцХ.у” ФцуЛ > ( ) > (4)

where Ф̂ л is the covariant denvative of the tensor field function We note in passing that a 

remarcable analogy between the massive tensor and lineanzed (weak) gravitational fields is 

revealed by this Lagrangian’s choice In the case of the Ranta-Schwinger field, besides 

pnnciple of minimal coupling, we also used the "vierbein" formalism [6], so that, the 

Lagrangian of this system can be written as follows

■££. + Sf2, (5)

where

se, = g,,v + « i ţ t (6)
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%. " ~ (ypJjV  + УхУрЛУр ) 4»,. (7)

being the usual derivative of the Rariţa-Scbwinger field fimction 

The above expression for S2j and S?2 have been obtained inserting the expression of the 

covariant of the spin-vectors:'

VpH’v - Hvr rH% . 4\УМ= фУ4 + ijivr p, (8)

where Гц are the Fock-Ivanenko spin coefficients of the affine connection [7] As it is known 

they have the following expression:

r . - ţ V f 1. (9)

where are the generalized Dirac matrices [8,9]:

f  = I M(a)y(a) , Yp °  ip(a)Y(a), (Ю)

Y(a) being the usual Dirac matrices The expression for y^  is

Y ^' YPUp (11)

In relations (10) I м (a) and LJa) are the "vierbein" coefficients satisfying the following 

constraints.

L^(a)L\a) = g»  , £„(«)£» - g(lv (12)

Since all our considerations refer only to the first-ordei approximation we give below the 

"limarized" relations for the quantities which appear in calculations [4,7]

g ^ x f - k h '“ (13)

Аг/ kK- (14>

Л).Р=ЛР-у 0 х Г . Л|,У- j vl"У , У = у“ (15)
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Г^= 2.А:(л̂ ,+ ЛД- *£,) (the Chnstoffel symbols) 

Y)L=Yx+3 fcYAe > / “ Y*--i*Y(̂ p (17)

(16)

It is very simply to show that the ££2 term m (5) has no contribution in the first-order 

approximation Indeed we h^ve

° -L k % fy ay ^ { h ^ -h ^ )  =_LaÍP /(yY - yT)4>mV x='0’ (18)

where the well known anticommutation rules have been used:

{y\yy} = yY+yY  = 2Ô̂V (19)
Taking into account the previous considerations the first-order interaction Lagrangian between 

the weak gravitational and the massive Rarita-Schwinger fields reads

Passing to the flat space

sf ik * ) -  y - w l ) hiiv-

■ _ A:' " V v 3 ,,‘V

(2 0 )

= t, x J, 0  = 1 ,2 ,3 ) -*xJt 0 = 1 ,2 ,3 ) ,  x4 = it, (2 1 )

/ - »  % ,  Y0“* Y4 . tT “ » - ÔMV> (2 2 )

the first-order interaction Lagrangians between the gravitational and massive vector, tensor 

and Rarita-Schwinger fields, respectively, are

sCi(*) - - fc(rv rv wv,+ >»2в;ваКа) (23)

aí2(*) ï * : ,// ,

-* у "  зф;«ф,у|  ̂ *A КлФ,.,. /  K ; ~ h>V, ) •* C l)
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+ ФМА»*+ ^ nT  '’.» .(.K J

S©*) - 1  к ( - î ï A v  ) - 4  kmÿjï>ay ,1 . (25)

where

и ° y - - l ô  Vpv »'pv ^ (iv'aa

ó  ~ в  -  в  ■ нUV *VJJ u.v » ll*Jyv ^ v j i  ji.v * |tvX TvX.n T pX,v »pv,X *

(26)

(27)

ß ' and being the usual derivatives of the vector and tensor field functions, respectively. 

Also we have taken advantage of the Rarita-Schwinger field equation

~m%  (28)

and its adjoint

According to the standard quantum field theory the parts of the (23), (24) and (25) 

Lagrangians-casted into the normal form - which describe the interaction of the, massive 

vector, tensor and 3/2-spin particles, respectively, with gravity are [4]

-Л*)] -  -4 g; (-)M g£>M C M  *m М А ^М зСм] (29)

-„ (* ) ]  = * { ф £ ! М [ з ф & М  - ф & М  -  Ф ™ л м ]  +  ф ^ М  X

Х [фь.аМ + ф£,уМ + Ф«лМ] + Ф^аМ  [ф2,уМ + Ф^лМ  -  3 Фь,ам ]  -

-  2т 2Ф ^>(^)Ф^>М } С 'М  “ * { [ф ^ М  + Ф^уМ  -Ф ^ дМ ]  х (30 )

х [ф^лМ + Ф^уМ -ф ^ м ]  - у « 2Ф '̂>МФ” М }у“'М +
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+*{[ф£ м + ф;> ) ! ф£? W [ c w +О*)' -  /С м } +

+фГ м [ф& м +ф£*ю  -ф& м ) [ c w < M - C w ] }  

/ ф ^ м ]  » - 'PL'V^’lC w  ]>C M - (31)
4

The processes are descnbed by the following Feynman’s diagram type, where p  and (r) and 

also p' and (s) are the four-momenta and polarization indices {r,s = 1 to 2s+l, where s is tlie 

spin of the particle) of the initial and final particles, and q is the four momentum of the 

virtual graviton

Fig 1 The wavy line represents a graviton 

The solid lines repiesent either vector, 

tensor or spin-3/2 quanta

Using the 6-matrix formalism we deduced the Feynman-type rules for diagrams in the 

external gravitational field (descnbed by Schwarzschild metnc) which allowed us to calculate 

the matnx element </F|S|g> in the mentioned approximation.

Thus we find that [4].

Taking into account the Founer transform of the static external gravitational potential

36
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у ~ т
1 Г„-iii кМ Y „ кМ

(2л)и J 4ïï}?[ (2я)“ |?Р (36)

(where М  is the mass of the central body that creates the gravitational field and |£| is the

distance to this centre), the matrix elements in the external field approximation, corresponding 

to the diagram in fig 1 are respectively

- <p‘\S\p> -------^ÍP')pí][e«(P)P»- e?(P')pa] X
2(2n f jp lPc P a №

x |6vA' ■ + III 4 ('V')ear)(p)ôv.ôa,}ô(p'- p -  q )  (Pq “ F ( p ' ,p ) b ( p l  -  Pa ) (37)

s p P = <P '\S\p> »-- \ ^ ^ { l e £ ( P , )P v [ ie b (P )P a- e £ (p )p v -e % (p )p k) +
U b i f p l P o

+ е$(р')р![е£(Р)Ра + е£(р)Р^ +е%(р)рк) + ^ V ) / L (* ,£(/% . + e « (? ) f t  "

~^4v(P)Pa) [(e£V'W +e $ (P ')p !  ~ ^ { p ' ) p l  ) *

x {<‘£(P)P>.+ ep.(PPK - ê (P)Pn) - I'-'tivV) 1 + t ( e W  + e/v (Д' )Л -

)<£(/0 ţ^.0rf- ^ j e v+ |ôv.ôo.-^ôTOjôy- ̂  V - i ö ^ j  -

- e% (P ')  [eiï<P)P>. + e$ (P )P . - ) ( jú,ö„. - -1 ö̂ jöv. + |öy,0ц, - i.övuj x

* V  К -  -  A ö V )  Ц  }ft(/7 / - p -  cf) ,Pq -  1‘(р' .р)ЩГ1) < i S )
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С ' ” V N / »  - ,khnM í^ { [ /^ i7 :V ')Y „ ^ V )ö ,.ó ..  . 
4 ( 1 л ? Щ } I* I*

+ \P‘ * '» K W  )K W )\H p ' - p - ^)}íl\l (U))

= f(p ',PM pI -p 0),

where ep\p ), e^(P), “,М(Д)> [“»'(P) = and p0 on the one hand, and

e^(p‘ ), e^ip 1 ), u^(p'), [йр\р ')  = and p0' on the other hand are the vectors, tensors,

spin-vectors and the energy of the initial and final particles, respectively, and<?0° pÓ о 

states for the energy conservation law We have denoted by the common notations m,p and 

p0 the charactenstical quantities (the mass, 4-momentum and the energy) for the all three 

fields respectively

The differential cross-section is given by the well known expression

i/o = (2 я )2 < £  IF{p' ,p)I2 >,„ Pa (40)
ftp

where dQ = 2n sin0 d0, 0 being the scattering angle In order to evaluate the differential 

cross-section we must find the expression for < £  \Hp', P)\2>IV For 1l'\p',p)\2 we get fiom 

(37), (38) and (39) relations respectively

\ F (p ' , p )\2 - /

/JP

k2M

\ K p ' ,P ) V ’

8(2л ? р 0р 2 sin2.

k 2M

W ,P ) Y

where t is given by

8(2*)V0/;2sin2_

k 2 in M

[ e , Г
[q , „ J p '  / ') f

(41)

( 1 ' .

\ 6 ( b l ) 2p0{pa -  HI2 ) Sill2 —
H 11

I ”  2 í у , /А, ' "»

IS
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Then, the expression < E  \F{p‘ ,p)\1>tJp for vector, tensor and respectively Ranta-Schwinger
f*P

fields are

< E \f (p '>p)\2>Iip
fsp

fjp

k \\t Ÿ

8(2л:)2ра(Ра ~ m1)sin2

k\M Ÿ

8(2л)2р0(Ро - M 1) s in i i
 ̂ 2 )

(45)

(46)

< E  \f(p ‘>p)\2>̂
k2 in M

16(2nfp0{p0 - m2 )sin2_
- ^ E  \ u«Xp ' )<uÏXp)V4

k1inM
16(2л)2p0(p0 -in1) stn2_ i S » 1- ] -

( « )

where E  QL, . E  6/L and E  Q*-s are ^ie polanzation sums for the vector, tensor and Ranta-
pul pal

Schwinger fields and because they have a long enough expressions we prefer not to give then 

here

In order to evaluate the polanzation sums we take into account that the polarization vectors, 

tensors and spin-vectors, respectively, satisfy the relations [5, 10]

E eMW(£)e“ №> “ rfMv> P>v = 1 t° 4 (48)

E U P - E  -  - i ( V vp + "IrA ) " 4  W ,

Y, «?№%?№ - 'iaPa+,m2im
,  1 t , , 2
0 - _y Y + ____(Y /■> -  Y P ) + _____ !> Piiv j ipiv i',v I1' i‘ 1/ii2' ‘' v ( S O )

IV
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where d^ is given by. d^- b^+

After a laborious calculus, for the differential cross-section of the massive vector, tensor and 

Ranta-Schwinger particles one obtains the following expressions, respectively

2 / \
da - k 2M dQ 1 +v2

l16*j sm4£ ( 2 v 2 J
2 2 0 -  _ s m _  
3 2

2 2e__ -  sin _
V2 2

(51)

da 1
\2

k 2M

\ 16* ,
dQ 1+v2

s m _ Tv2
±  sm2̂ . +  ̂ sm4̂ . [9(31
V2 2 45(1 -V2)4 2

-  108v2 + 146v4 -  92v6 + 23v8) + 48v2(7  -  18v2+ 19V4-  8v6) sin2̂ . (52)

-  24v4(5 -  6v2 -  l l v 4)sin4. 192vs( 1 + V2 ) sin4. !  + 128v8 sm8

( \2 1 \
da ~ k 2M (Æ̂  У 1 +v2

11&IJ s,n4l i 2v2
2

______!_____ [v2(15 -4 1 v 2 +5v4 + 21v6) sm2ü. +
36v4( l - v 2)2 2

(53)

+ 4v4( 3 -  6v2 -  5v4 ) sin4̂  + 8v4 ( 3 +v2 )sinä ,

where we denoted by v  the J£L ratio
Po

We shall notice that in the small angle approximation the polarization sums become

E  Q L - W
pol

l
1+V2

\2

2v2

E  Ql 5 P<
2v2

(54)

(55)
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Y  Q l
pol

«Po (1 + v2)2 
1-v2

(56)

Taking into account the previous relations, the differential cross-sections in the small angle 

approximation become

do
/ >2 / \
k7M dQ 1 +V2
116« ; 40Sin4— 2v2

do (57)

l e , they are the differential cross-sections of Rutherford type As we can see from (51), (52) 

and (53) the expression for d o ^  is contained by these relations as a first term Since tins 

term (i e d a ^  ) is quite the differential cross-section for the massive scalar particles (for 

instance the scalar mesons) we can interpret the second term in the (51), (52) and (53) 

relations as being the spin contribution of the vector, tensor and Ranta-Schwinger particles, 

respectively

A particular interest is presented by the back-scattering limit case In this special limit case 

we have worked out respectively 58

do’
2 2

k7M 1 + V2 _ 2 2 - V2

l163lJ 2v2 3 v2
dQ'

do..
V

k7M
16 JT

dQ'
180v4(l -v2)

* (4 5  - 8 1 0 v 2 t-5 0 6 7 v 1 9 2 2 8 v 6 + 5 4 7 5 v e -  5 2 2 v '°  + ? 2 9 v '2)

do'„ ,
Vk ‘M 9 - 6v2 + 5v4 „___  _________dQ

I 6л J 36v'(l-v2)
where do' « dot and dQ' ~ 2л</в

In the nltrarel"Пvistic case (v -* l) we get from (58)

lh"” - 1 tr.MŸ u n ó  
dQ' 3

(58)

( 5 9 )

( 6 0 )

dili
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i e , in the back-scattenng and ultrarelativistic case, the differential cross-section da for the
r/Q'

vector field only (!) is constant (and non-zero), which means that in this case the helicity of 

the particles is not conserved, in agreement with [11].

Finally it’s worthwhile to pomt out that in the small angle approximation, the differential 

cross-sections for scattering in Schwarzschild field of massive scalar, vector, spinor, Rarita- 

Schwinger and tensor particles, have the same form and in ultrarelativistic case they coincide 

with those corresponding to the neutrinos, photons, gravitons and gravitinos, j .e . 'th e ' 

gravitational particle scattering in this limit case is spin-independent [12, 13], in agreement 

with many authors’ results, obtained by other means [14]
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ABSTRACT. - New fourth order analytical torsion /.-tensors are reported, which complete 
previously published tlurd order expressions The formulas up to the third order are used in 
molecular normal mode analysis calculations for the nonlinear transformation of the force 
constants from internal coordinates to normal coordinates Sample calculations are presented

1. Introduction. A lthough , due  to  the  advances in  com pu te i tech n iq u es , m o s t o f  th e  

co m p u ta tio n a l e ffo rt o f  m o lecu la r no rm al m o d e  ana ly s is ap p lica tio n s  has b een  tia n sfe rre d  to  

num erica l m ethods, fo r la rge  p ro b lem s it m ay  b e  still p re fe rab le  to  u se  an a ly tica l fo rm u las 

fo r th e  / , -ten so rs  in v o lv ed  in  th e  tran sfo rm atio n  o f  th e  fo rce  co n stan ts  from  in te rn a l- to  norm al 

co o rd in a tes , in s tead  o f  nu m erica lly  de riv in g  th e  in ternal co o rd in a tes  w ith  re sp ec t to  th e  norm al 

co o rd in a tes , acco rd in g  to  th e  d efin ition  o f  the L -tenso rs

/.-tensors formulas for all elementary internal valence coordinates are available The 

torsional coordinates, however, require an especially delicate mathematical treatment, and give 

rise to the most complicated expressions. Formulas foi planar equilibrium configurations [1], 

and more recently, general foimulas [2] have been reported Alternative torsion /.-tensor 

formulas have been presented in [3] (hereafter referred to as Paper I), which, in contrast to 

the analytical results of [2], are more compact, implying scalar operations with tugonometnc 

functions instead of cumbersome vector operations

"Babcş-Bolvni" University, facility o f  Phvna, 3400 Cluj-Napoia, Romania
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It is the purpose of this paper to present new fourth order torsion I-tensors, which 

complete the set reported in Paper I Due to the complexity of the calculations, extensive use 

was made of the symbolic computation package Mathematica The expressions up to the third 

order are equivalent to those of Paper I Results for methanol and hydrazine, obtained by the 

numencal implementation of these expressions, aie presented and compaied with similar 

results from the literature

2. Equations. The Taylor expansion of the potential energy with iespect in ternis ol 

curvilinear internal displacement coordinates may be written as [1]

_Ly)F. R Jt+ ~  E  F,О ^  ' J < i.'tj A ijk i j  к 2 4 ,
E i ‘uUR.R.R,R,+
л .  I

( 1)

where the force constants FtJ, FiJk and F:jk, are the 2nd, 3rd and 4th derivatives of the pokuii.il 

energy to the coordinates R„ referred to the equilibrium configuration of the molecule In 

order to perform a normal mode analysis, the vibrational-rotational Hamiltonian is, howei, 

conveniently expressed in terms of the normal coordinates Qr

V m^ Y . \ Q ? + Í Y ,V “Q.Q,Q,2 r 6 r , f -E E  ¥ mQ'Q,Q,V. I I

where \=  4ji2c2ov

The internal coordinates R, can be expiessed in tenus o l  noi mal c o o i d u u k s  < • 

nonlineai transformation
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R, - E v a +EV'aa+ E v"aaa+ (3)

where the elements of the A-tensor, L[, L", Z,"1, , have to be interpreted as first-, second-, and 

third order derivatives of the internal coordinate R, with respect to normal coordinates

The formulas for the transformation of the force constants from internal-, to normal 

coordinates (including only L-tensors up to the third order) may be readily obtained by 

substituting (3) in (1), and comparing the result with (2)

K  = E  V V Vи

4>raft‘

E v*vvv+ E v(v'V+w +v'v)
Ш  IJ

= E V fL j ’LX
i . J . k . l

+ E v w + i," W  + V“VVlj,k

+ E v ( v v  + v v  +w
tj

+ L " ! ;  + l t l ;  +

As stated above, it is only the case of torsional coordinates we are dealing with in 

what follows The torsion coordinate involves four atoms If the atoms or, b, c, and aie 

linked by the bond vectors r, = ab, r  ̂= Ac and rk = cd, the torsion coordinate т is defined 

as the dihedral angle between the planes abc and bed The torsion 11displacement" coordinate 

Rljk, which is actually used as a normal coordinate, may then be defined as the difference
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between the torsion coordinate and the corresponding equilibrium value x.

R,,. = X -  % = drccosijk 4

(e^eß-O'jXeJ
sinQ,j ь*пф_,*

• г , * * (*»)

where e„ ef  ek are the unit vectors of the three bonds

The torsion L-tensor may be set up, as already pointed out, from the denvatives of the 

torsion displacement coordinate with respect to the normal coordinates The idations for the 

first four orders are

a;*'
OR,■ Ijk

OQ,
/ r‘■> Lv>

02R.,jk d2R
0Qr0Q,

0* o%
OQ'OQJQ, l‘4k ijk

0Qr0Q,0Q,0Qu
(5)

In order to avoid the complications implied by repeatedly denying the mixed veUoi 

product from the expression of the torsion displacement given by (4), we transform Rljk 

making use of the well-known Lagrange identity

( a * b ) , ( c * d )  = (a - t) (b -d )  -  (b-a){a-d)

Relating the obtained scalar products of the unit vectors to the angles defined by them 

ei ' ej “ “COS<|V ej-ek = -eos.fr,*, e - e t - соаф,*, 

the torsion displacement coordinate becomes

RlJk = arccos
cosifr^ -  соэф ^

(ft)мпф0
As one may notice, the angle between the non-adjacent bonds l and к appears in the a lu n , 

relation, as well

In performing the operations required to derive the expressions of the toision /,
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tensors, it is useful to keep in mind the definition of the first order angle bending /.-tensor

(7)
which, coming from the derivatives of the angles фv <\>jk and ф,ь respectively, will enter in 

the expression of all torsion I-tensor

In order to simplify the expressions of the torsion /.-tensors, we define the following 

auxiliary tensors

” /’у/siпфу, (8)
/у* ° Sú соьФу + S/fiOStyjk . (9)

Щ’к - s j s j + s/ks;k, (10)
~ S j j cos<j>(̂ + SjkSJkSjkcostyjk (П)

Tjk, u ”k and VJÏ are obviously symmetric with respect to the index pairs "//" and "jk"

The formulas foi the torsion /.-tensors yielded by Mathematica (according to the

definitions (5)) are obtained employing a rather elaborate set of expression manipulation rules, 

which allow for massive simplification of the relations, use being made of the expressions of 

the already determined lower order tensors Here are the resulting formulas for the first order 

/.-tensor

the second order tensor

Tjk cotT, + c.vcTa LjcoltyJk + Ljkсо1ф ■
Lik siiuj) lk 

мпфувшф̂
(12)

к /jk “ ~L,jkltjk ~ cott'l^LykLyk + UIJkI

kjkS,j + LijSjk + . klkсояф - Tjk ишф lk )
БШфу этф^ БШфуБШф̂  ' '

(П)
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the third order tensor

Ltjk ” ЬцкЬцкЬцк + LIJkUIJk + L,jkUIJt - L,jJIJk

- cotY,[^ ;i,;//;;* + KJki:;k + ц кц;к + ц кц;к - к'г]

Н «су.
£ r

2 coti{>0L jkStJS,j + 2 с о ( ф ‘Syi + _ _ — . 

совф,* (irt ïyi + L tk1 IJk j + sinÿ lk ( L tkL ik - V iJk 1 iJk -  U,Jk j

(14)

and finally, the fourth order Z-tensor

KT  - + В Д  ► W )  + Lm[LULiï + W í )

+ẑ LjiLÆ+(/,yv,,;z; - kt)'K + /ä + к;тк ♦ kkk
. \ r r 7 * l * T u r rt ţ tu _ ţ rt r su j ru j st г г i J/u+ COiye \LijyLiJi.LijkLíĵ  - LfjţLyb - LtjkLtjk -

— T a 7 r , u — I *  T rau — 1 u T rt i  — \ l * T , u + 1*1  3 U + ! U T at \ fr r^ i j k ^ t j k  ^ I j k ^ i j k  ^ i j k ^ i j k  [ ^ I j k ^ l J k  L i jk L i(Jk ^ t j k ^ U k f  L Uk

-2(l + 2со82фJ S ' S ’ SÿSÿ -2(l+2c o s \ Jk) s ;ks ;kSjks ;k

4. Ţ 3 J  1 r i ™  +  T я 7 u T J rt +  /  '  1 °  f / " l  _  Г J  l / r ' °  -  T '  V r ,u  — 1 u — T u v r it+ L U kL iJ k U iJk L ,i j k L>i j k U ijk  Ь ЦкЬ Ц к и у к  \  b t j k V  i jk  b iJ k V [Jk L jijk  L tJ k V Ijk

+ csct,{-2(l + 2cos2ф(y)слсфtJL jkS j S , j S “ - 2(1 + 2cos2 )esciţJkL , jSJkSj[SJk

K
втфумпф^

/  Ţ  ^  Ţ  ^ T U r  U r p  S r p  I j  I  t r i Í  r p  U r  J  r p  t  r ji U tk { ̂ Ik̂ ik̂ tk “ ijlk 1 Ukl Ijk ” Llk1 Ijk1 tjk ~ Lik 1 (Jk * <Uk

-  l , : k ;  -  K ku ;; - z T O + *щ а - к к к а - к к кт;1к -  к к к *

+ W ' Æ  ♦ K K K  + 7 M  + т’ки;;к + u,;“)]} (15)

As it is apparent from Eqs (12-15), ail torsion Z-tensor elements depend on the angle 

bending tensor elements LJ, and on the torsion /,-tensor elements of lower order It should
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also be emphasized the explicit dependence of the torsion L-tensors on the equilibrium value 

of the torsion displacement coordinate xB only through the factors cot xe and cos \

Another point worth discussing is the appearance of the "angle bending" L-tensor 

elements, L,rk, corresponding to the angle <j>,t defined by the non-adjacent bond vectors The 

significance of the mentioned elements may be regarded as purely mathematical, and for their 

computation the formulas for usual angle bending may be employed [1]

3. Sample calculations. We present in what follows fundamental frequency results for 

two sample cases involving toisional coordinates methanol and hydrazine In both cases there 

have been used only L-tensors up to the third order

The harmonic frequencies and normal coordinates have been calculated by the Wilson 

F-G method The anharmonicity correction is accomplished by employing the approach of 

Hoy, Mills and Strey [1] (briefly discussed in section 2) embedded in an original FORTRAN 

77 computer code for general normal mode analysis, run both under the UNIX and DOS 

operating systems

The geometry and internal coordinates used to describe methanol are those of [4] The 

force constants are taken from the same reference, where all cubic force constants of the type 

Fljb with /, j  and к all different, and all quartic force constants other than the diagonal 

stretching ones are neglected It should be noted that the calculations reported in [4] are 

performed strictly numerically, no use being made of analytical L-tensor formulas

Table 7 shows the computed fundamental frequencies of [4], the ones con.puled bv 

means of our L-tensor formulas, along with the observed frequencies reported in [5] One may
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notice the fair agreement between our frequency values and those of [4] Both sets of 

computed frequencies exhibit the same overestimating tendency as compared to the 

experimental values, however, the overall better agreement of our results (with a smaller 

maximum relative error of 6 7%) is obvious Exceptions are хг (C-H bond stretching) and t9 

(C-O-H angle bending), for which the errors aie small anyway For the thiee toision modes 

of methanol (t10, th and t 12) our relative errors are significantly smaller

Tabic I. Fundamental vibraüon frequencies of metlianol v“4'  are the experimental values of |5), v ’ <uc 
the calculated values o f [4] and v" are the frequencies computed in this work (m cm'1, the conesponding relative 
errors being expressed in %)

v obj v ’ (v’-vobs)/v’ Vй (v"-vuto)/v"

A ’

V, 3682 3730 1 3 3728 1 2

2999 3009 03 3011 0 4

2844 2919 2 6 2865 0 7

1478 1611 83 1583 6 6

V, 1455 1571 7 4 1559 6 7

1334 1391 4 1 1364 2 2

^7 1075 1113 3 5 1080 0 5

v 8 1034 1046 1 1 1 39 0 5

A”

V» 2970 2988 06 3006 1 2

V,0 1465 1583 75 1517 4 7

1145 1234 7 2 1190 1 8

Vll 271 262 3 4 2i>3 t 0

50



FOURTH ORDER TORSION L-TENSOR FORMULAS

All relevant data for the hydrazine molecule (geometry, internal coordinates and force 

constants) are taken from [2]. Table II shows besides the calculated frequencies of [2] and 

of the present work, experimental data of [6] One should again notice the fair agreement 

between the two sets of computed frequencies The discrepancies between our frequencies and 

those of [2] (with maxima for the t7 N-N stretcing mode and x,2 antisymmetric NH2 wagging 

mode) are probably due less accurate force constants listed in [2] and used in our calculations, 

than the ones actually used to produce the frequencies of [2]

Table П. Fundamental vibration fiequenoies o f hydrazine, v01" are expenmental data, v ’ are computed values 
o f [2], and v" are tlie frequencies computed in this woik (in cm'1, the corresponding relaüve errors being 
expressed in %)

V<*> v ’ (v’- v ^ / v ’ V* (v’-v ^ /v "

A

v i 3390“ 3413 07 3397 0 2

v 2 3300 3297

v3 1628b 1659 19 1671 2 6

v4 1324° 1344 15 1361 2 7

V5 1098b 1121 20 1119 1 9

V6 780b 840 7 1 843 75

V7 377d 398 53 350 -7 7

В

v8 3398a 3402 0 1 3440 ,1 2

V, 3297' 3287 -0 3 3331 10

V,0 1587b 1645 3.5 1655 4 1

v u 1283° 1320 28 1318 26

VI2 937f 1045 10 3 1058 114

“ (61. b [7J. “ [8], « [101, r I U I

I
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4. Conclusions. New torsion £-tensor formulas up to the fourth order are presented, 

which, in contrast to some previous analytical results, are more compact, implying scalar 

operations with trigonometric functions instead of cumbersome vector operations The 

numerical results which have been subject to comparison, although affected by the employed 

set of force constants and the adopted numerical strategy, compare favourably with one 

another and with experimental data from the literature
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EXCITATION OF A LOWER HYBRID WAVES IN A WARM PLASMA 
BY A WARM RELATIVISTIC ELECTRON BEAM
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ABSTRACT. - The linear theory of excitation of electrostatic lower hybrid waves into a warm 
magnetized plasma by a warm relativistic electron beam is presented It is found that 
electrostatic lower hybrid waves can be excited by Cherenkov resonance The frequencies and 
growth rates for excited v/aves are calculated

1. Introduction. Absorbtion of a lower hybnd waves seems to be a very efficient 

method for heating ions in a plasma [1,2] In recent years, considerable attention has been 

focused on theoretical and experimental studies of lower hybnd waves for plasma'heating and 

current generation in tokamaks These waves have been succesfully employed to heat 

electrons and to dnve plasma current in a number of tokamaks [3-8]

On the other hand, has been demonstrated that lower hybrid waves generated by 

auroral electrons can produce transversally accelerated ions in íonosferic plasmas [9, 10]

In the space physics context a great attention has been accorded to the lowei hybnd 

dnft instability generated by density and magnetic field inhomogenities [11, 12] The lower 

hybnd wave can be also excited by an electromagnetic pump wave [13] and by electron 

beams The lineai theory of the lower hybrid waves excited by a nonielati vistic election beam 

streaming through a cold plasma along the magnetic field has been discussed in detail by 

Papadopoulos and Palmadesso [14] The relativistic election beam temperature effects on this

Uinveisity o f Cluj-Napotn, Faculty o f Physics. 3-100 Cluy\'ajK>ca, Romania
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instability has been studied in [15] In the present paper we demonstrate that such waves can 

be generated by a warm relativistic electron beam into a warm magnetized plasma

In our model a warm relativistic electron beam with density nob and a velocity 

streams through a plasma with warm electrons and cold ions along a magnetic field Bo The 

unperturbed plasma density is considered to be nop »  nab Because we are interested with 

lower hybrid waves excitation we will study the almost perpendicular propagation of plasma 

waves to the magnetic field

2. Dispersion equation. The general dispersion equation for longitudinal waves can 

be written as [19]

sin20 + e33cos20 + 2 e |3cos0sin0 = 0 (1)

where ey (i,j = 1,3) are the dielectric tensor components of the system and 0 repiesents the 

angle between the wave vectoi It and the direction of the external magnetic field Bo (One 

assumes that the wave vector К lies in the xOz-plane and Oz-axis is oriented parallel to the 

external magnetic field)

The dielectric tensor can be expressed by means of the conductivity tensor ct in the 

following way [19]

(2)

We will use the expressions calculated in [17] for the conductivity tensor components 

of the warm relativistic electron beam and the expressions calculated in [16] for the 

conductivity tensor components of the warm plasma with temperature amzotiopy Considering 

cold plasma ions and using relation (2) we can write the dielectric tensor components under

54



EXCITATION OF LOWER HYBRID WAVES

the form

e » 1
ш1 - 1-E» Л < \ ) -2 ( 0  +

_  , A (X. ) t V « ! " * PZ —/ л n

41 fee E» Л ( \ )  Гх,
к. r„

_!i - 1
T,. у̂ п.)

1 T _ ^ /g 2e
ÛT 0Г

w j ïY 0 n

where the following notations have been used.

no)

+ n

/ \
Л<*»>л

К

p = 1 Z(sní) - ^ Í Y ( Sní)
1oKvn

Q„°n T - 2^  + ' i - h  ' n«.»)
шу T±.

+ _ I î ^ i T ( S„t )
(0 /,. с* I b

and

A ß )  -  e * l ß )

Iß ) are the Bessel functions of the first kind of imaginary argument with
. о 2 —2kx Vxe К “ _____

for the plasma and
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\

К " к,
—2 2 „2 VXiYo (10)

for the beam.

The quantity u»  ̂ represents the electron plasma frequency and шр1 the ion plasma 

frequency, while and ши are the electron and ion cyclotron frequencies, respectively The 

perpendicular and parallel mean square velocity for beam electrons have been defined by the 

following relations [18]

Ti* ° m.1°b , (11)

Tib °m.y T b ' (12)

where T±b and Tib are the perpendicular and parallel beam temperature, respectively 

Yo = (l - v02/c 2)1,i is the usual relativistic factor and rj » nok lnop< 1

In the expressions (3)-(7) we used the plasma dispers in functions [18]

ZCO - (2л)-‘/2 J dt (13)

and

y(s„) (14)

with

for the plasma and

(15)

щ - R v - no) /y„О Св 'О

кЛь
(16)

for the beam

The perpendicular and parallel mean square velocity for the plasma electrons have 

been defined by the relations [16]

71, (17)
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where and Tu are the perpendicular and parallel electron plasma temperature, 

respectively

Since we will be interested with almost perpendicular wave propagation with respect 

to plasma return current direction, in expressions (3)-(5) we neglected plasma return current 

effects

Substituting the expressions (30-(5) m (10 and taking into account that [18]

Y(.0 » 1 + s„Z(0

the electrostatic dispersion relation becomes

(18)

D im  = 1 -
Cû COS20 co„,sin20

ш2-ш;
_  + ___ í l _ [ l  + V A  (\ ) Z ( S  )■j .  -, — 1  I n v e '  4 ne '

*  V |. I

X

/
Sne

+
\

m o , T ,/ + 1 (19)

X

/
n  0 )

S , + 4
4 ]

3. Excitation of lower hybrid waves. For electrostatic waves with u>c, «  ш «  mcg 

and cos© s mjmt some simplification of equation (19) is possible because лпв» 1 Using the 

asymptotic values of Z(sn() [18]
1 1 П V2 (20)-  - _ L  -  - L  -  +» 7t

I е ~ TS  o -

and neglecting the higher order terms, the dispersion equation (19) reduces to

<4„ w2, ............. . to2, ^  . .. пш„
D ( m  » 1 -  - 4  -  - 4  /IA  ) cos20 -  An( \  ).

CD2 Ü)2 ' '  £ 2У| , ' ‘Г ' ” '  < 0-M O et T x 4

+ / Л .1. -3 £»v */N 2 k2k.v] yl k2v l
1+ЕЛ(У/.)* (21)
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x 2( \ J
/ n Cl)
X  +  L* 4TTTf
 ̂ 1  |o  *o 4 \

-  0

Now, taking into account that for lowei hybrid waves we can use for An(Xr) the 

expression [19]

A (X )л' e' 2^\n\t
(22)

and we finally have the dispersion relation in the form

D(k,o>)

_ 'П ü

- Ща.- “ íicos20 + “£i+i К '03 SV*
N 2 кгку\

Yî *2vL
i +£A A )Z (*„t )

(23)

Ar V liYo 2_l4

With the purpose to investigate this dispersion equation, we will follow the usually 

applied procedure in plasma physics [19] According to this, when Im ш «  Re ш, the excited 

wave frequencies can be calculated from the equation

Re D(R, со) = 0

and the corresponding growth rates from the relation

lmffl = - ___________ I___
dReZRÂ̂ oô /SWj

where ш4 = Rew(^)
"V

Writing the Z(snb) function under the form [18]

Z(s„b) = -exp M H t

(24)

(25)

(26)

and taking into account that in Re£>(A» the contribution o f the beam terms are o f order rj, 

we obtain for the excited wave frequencies the expression
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o)J -  _ L _  (<£ + nţ, cos2e) (27)
where

+ jn “V*
Yo fc2v |4

1 +E A ( M

with
■ Re Z(snb ) S_i +

/7 Шei 1 |i>
(28)

2 0 )2,+  to2,cosJ0
СОдр e  ■ .  1 л

1 + “p, /“ c.
(29)

The growth rate for the instability can be found from (24) using for £>(£со) the 

expression (23)

Taking into account that Im Z(snb) with n * 0 are small compared with Im Zfs^), we 

obtain for Im cn the following expression

Imco _ ]/л
W  к2 1 +aJ к V ?

jT io. -  К?
2 * / . -ГЗ .3

<pt-XVJ
” 2ï77JT

t j JViiY.

(30)

The fastest growing instability of the lower hybrid wave is then obtained when

(31)

with the beam electron speed just a little faster than the phase velocity of the wave in the 

beam direction This is necessary to assure Im ш > 0

The first factor in the bracket caractenzes the damping of excited waves due to plasma 

electrons
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4. Conclusions. The above results show that a warm relativistic electron beam can 

excite lower hybrid waves in warm magnetized plasma These waves can be excited by 

Cherenkov resonance when R‘vo We calculated the frequencies and growth rate for 

excited waves The obtained growth rate expression contains also the damping effects due to 

the plasma electrons [first term in the bracket of expresion (30)] on the excited waves When 

the Chereakov resonance condition is satisfied the damping term becomes small compared 

with the term which is responsible for the qrowth of the wave amplitudes [the second .term 

in the bracket of expression (30)] Thus it results an instability for the lower hybrid waves.

Another important conclusion can be also drawn for beam electron temperature effect 

The expression which was derived for the growth rate shows that parallel beam temperature 

has an stabilizing effect on the instability.
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ABSTRACT. - The charge o f a dust in a plasma is not a fixed one, depending on the 
characteristics of the plasma, on other phenomena as secondary and field emission, 
photoemission, etc By supposing the grams being at rest in a Maxwellian plasma, an analysis 
for the properties of gram charges in a dusty plasma is made The corresponding effects are 
shortly discussed In the second part of the paper other effects o f the electrostatics of dusty 
plasmas will be analysed

1. Introduction. A dusty plasma can be defined as a plasma with a phase of solid 

objects (grains or dusty particles), that usually exist in laboratory plasmas, planetary and 

cosmic plasmas For the understanding of the ionosphere properties and of the consequences 

for earth atmospheric pollution, a modem knowledge of the dusty plasmas charactensties is 

needed Generally, the method of study such plasmas characteristics is based on the theory 

of the composite plasma dynamics (kinetic model or fluid model) Experimentally, the 

Ionospheric Radar Scatter Technique is used, based on the analysis of the statistical properties 

of radar returns from ionosphere Measurements of physical properties of dusty plasma in 

ionosphere or planetary nng (magnetosphere) are also made by satellites The conclusion of 

the experiments is that the present of dust may change the structure and properties of the 

plasma The p-esent paper deals with the study of fundamental properties of a dusty plasma 

with impurities, that are electrically charged A short analysis of the grain charging and of the

"Babc^-Bolvat" Universitv, Faculty o f  Phvstts, 3-100 Cluj-Napoca, Romania
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corresponding effects in a dusty plasma is given, based on the fundamental equations of such 

a plasma and on some quantitative considerations

2. The basic equations. Firstly we shall present the equations that describe the 

charging of dust grains m a plasma, process driven by plasma currents, photoelectron and 

secondary emission currents [l]-[7] The basic equations for all thesse currents m the case of 

a number of grams in a plasma comparatively with those of a single grain in plasma or in 

vacuum will be presented

By considering that a grain is at rest in a Maxwellian plasma with electron and ion 

temperatures Te and T, (T„ ~ T,) and by neglecting the other charging effects, the potential of 

the grain ф is obtained to be negative ( if Flow, «  Flowe ) The currents to the surface of the 

gram are [l]-[3], [7].

4  п а гпге

( 2 j t ß c iMe ) l/2

4  n a 1níZe 

( 2itß/nl)w

•exp(eß,<)

■(1-Р,2еф)

О)

(2)

where ß » llkT and a is the grain radius, me, m, being the electron and ion mass and Tc, T, 

the corresponding temperatures, ф is the grain surface potential

If ф > 0 then 1,~ exp (-eZß(<(> ) and / -  ( 1 - eß„<t> ) The equilibrium potential is found 

from the condition

/, + / ,-  о (3)

and it is independent of plasma density

Because the charging time is nonzero and it is propoitional to l in, a specific
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gyrophase drift motion of grain in plasma takes place

The secondaiy and photo-emissions determine a positive current to the gram Two 

cases could be discussed

(a) If ф < 0, all the released electrons by secondary emission escape and the 

corresponding electron current is of the form

1see 37Ó •nn
kT*

1/2

•FK
Era

» 2я;а 
 ̂ V

5 4 k T  
V

*0
*eтп (4)

where

( E M El r ,= • Pvp
r-t 2E -  и2 m + «

4 kT  
•) 16кгт1 J 4 kT\ * / J

(5)

and 5m is a material parameter of value 0 5 < 5m < 30 and Em is the value 

Ея(Ья ) е  (0 1 - 2 )  кеУ

(b) If ф > 0, several electrons are reabsorbed in the secondary emission process and 

then we have

/  = 3 76 nte c  m t

kT
2 urn

m
1 + _ !  

kT  
' /

•exp _1_ _ 1
Y Ys t

'F '  (x) (6)

where x
4 к T '

T ~ 104K.  B
\ l /2

e9
TT

and

a x 2 jdu • и 5- e

The photoelectrons flow is of the following form [9]

Ip = л п 2,К i f ф < 0

/  = я а 1 шК шсхр -  i f  ф > 0

(7)

(8)
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where T, is the temperature of photoelectrons (7^— leV)  and К » ív* is the flow of photons 

(r) being the photoefficiency of value G (0 1 - 1))

When a grain of a = 1ц m in a plasma of Tf *= i t  к is taken, and the plasma and 

secondary emission currents are considered, three steady states are possible (if lluUl = 0), the 

nudle one is unstable and the other two ones stable From some considerations that we don’t 

introduce here it could be seen that this behaviour leads to a coagulation of dust grains effect 

[6J, that will be discussed elsewheie

The case of a moving grain in plasma can be also assumed, the corresponding electron 

and ion currents being given by

/ = - $

7 \j7 л a 1cni
(&•»». )w

cxp(4VH (9)

and

TCti2nlZe \ * Т,ь, _ 2Ze<Sf a
+  • Г!ХП f- ^[ 2|i2 »1,112 W y J E T2T""J

(10)

2kTwhere Tlh = ___is the ion thermal velocity and ш is the grain velocity Because« < Tthe,
{ m ,

the grain may be considered at rest and Ie is the same as (1) From the equilibrium condition 

I„ + I, = 0 the potential ф = ф (ai) could be obtained

At this point a qualitative discussion must be made the capacitance of a grain in 

vacuum Cg- a ,  if the grain is introduced in a plasma, the potential around it is 

Ф - Q ■ exPl~*(r ~ n)l where к = _ L , r is the distance between grains [3] The effect of this
r  ( 1 + A-Я) KD

like a spherical capacitor gram sorrounded by positive sheats (outer conducting shells) is the 

following when r - \ n , the positive shell is pushed closer to giain surface and its capacitance 

incieases If grains are in a neutral plasma they become negatively charged and there are
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excess ions in plasma; the condition /  * /, at the grain surface is satisfied

3. The effects of grain charge in a dusty plasma. The relation for ion and electron 

densities n,(r) are given by the Boltzmann factor

«,(>0 “ C,-exp[-9(ß(<t>(F)J (11)

where C,( /  =  e, ,)  is taken from the condition jn t(F )d 3r  =  A , Nt being the total number of "1" 

species, ф - the potential around the grain and q, is the charge 

The Poisson equation that will be used in this case is

+4jtps(F) = - 4 л =
. /

= - 4itE  ^' jrfV' • exp [“Р^ДФ (r* ) — Ф )]

with pg(r) being the charge density on the grain After using the method of expansion of 

electric potential in р,д,(ф - Ф ) ( Ф  < 1), we obtain to the lower order the relation

where

and

У2ф - к 2ф + 4nqe(F) “ - 4л]Пл(• qt
i

-ф) - к 2 ф

к = 4л£й;?,2-р(
/

-  1 г , 3л = \,1>*-, т К г ‘"'(о

with V - the volume of integration, <j> being the aveiaged value of ф over V 

The fiml Poisson equation is gauge invanant

У 2(ф -  ф )  -  £ 2(ф -  ф )  + 4 л р Д / г ) = - 4 я ) Г  7Tql

(13)

(14)

(15)

(16)
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It can be observed that the currents on the grain are driven by the difference^ - <ţ> ), 

The solution of the last equation could be obtained under the following form if a neutral 

grams-plasma system (g(<0) - Qp(> 0), with N  grains of same radius a and charge Q, is 

considered

ф-Ф = Ф(*0+~ Х Х ’4Г' (17)
к2 I

where ф(г) is the solution of the boundary condition

V ^ ( F )  - k 2<ţ(r) + 4 * p ,(F )  -  0 (18)

that could be written as an integral equation using the Green’s theorem

Ф(г) — E [dr!4л j ) J
e x p (-* |f -r '|)  . Г,-? .у/ф(П 

| F -  F* | I F -  F' I

- Ф(7) ' î - '*  .Т7/ exp(-fr j r - F ' l  )
I r j - f

(19)

The center of l“'-grain is choosen as the origin of the system and only the iA temu^F) 

of the above sum £ ( is considered "The gram surface potential is Ф (a) and the cl ectnc field ~V<f<(/w ) 

is the same over the grain surface From Gauss’ theorem it can be obtained

(rr  F1)
(F' ) Q, (20)

By integrating the equation (19) the following result is obtained

6 / . . .  exp(ka) -  exp(-ka)ф(F) = __Lexp(-fcr)— LC__ Í____ Li-----Í  +
r lka

Ф e\p  (-kr) [ exp (-ka) (1 + ka) -  exp(fca)(l -  La)]
(21)

Furter the otlier giains ( j * i) are considered and the collective effects between grains 

may be taken into account and then the potential ${r) is given afiei integration of eq (19), 

for any distribution function
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E / ( ^ )  -
J

(22)

If f  = 1, this condition is of the form 4лЛ3/3 = N, that defines a distance R ~ L  In2
this case the potential is

Ф(г) -  J 2 .e x p [ - * ( r - a ) ] -  
r

1 + 2 n N k ^  e\p(-kR)  ( 1 +kR) (ex p( l k r )  -  1)
1 +ka -  2nNk~*exp(-kR)-  [(1 + Ага) -  (1 -  Ara) exp (2 ka)~\

(23)

and then

Ф('') - Ф = «(>(/•) - —  ---- _ (24)
/f2 1 _ W A  

3

For equilibrium the condition /_ + /, » 0 is imposed, and in above equation the currents 

aie given by the eq (1) - (2), with the if , /Г, ф ( а )  - »  <j> and if * nt, л - ff = - •-------—------

The ion charge is taken as unity and ßt= ß, Then the equilibrium grain chaige is deduced

from the equation

1 - е р [ ф ( я ) - ф ]

\ l / 2  _
m

m\ *}
—  • е х р [ е р ( ф  ( a )  -  ф ] (25)

A dimensionless parameter A(N) that contains the dependence of ф on grain and 

plasma parameters is introduced, defined by

4 л  IV.

A(N)

Q(N) 
( ф ( а )  - ф )

/  \  
j _  4 л а  3/V

(26)

with the aim to write the equilibrium charge equation (23) as follows

ы
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grains m plasma) and the charge of a single grain in the considered plasma are introduced, 

this ratio is

As an example the F-nng of the Saturn, that contains a dusty plasma, may be 

considered The specific paiameters are in this case a = lgm, R = 0,2 cm, T = 10 pmeV, 

n = 100 cm3 (0 + ions) and kD = 166 cm The result for the value of capacitance îatio is

From the presented analysis two conclusions could be deduced for the present state 

of the considered problem

a) The grain charge, under the given conditions, is not so large as we could expect if 

the plasma tempeiature T = 10 eV is taken Q(N) = 2 70243-1 O'4-Q(0)

b) The corresponding electromagnetic forces are smaller in the considered example, 

for the evaluated smaller grain charge

The same discussion could be made for dense dusty plasmas [9] and also for high

в(Ю .  Ф(а)~Ф .С(Ю ■ (28)
ß<°> 1Ф «0-Ф к. C(0)

c<*> -тпмяпЛ >(«>-_*] = 27 IO"4
c <°) [ф(а) - ф1 .о
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dust-grain density by using the same kind of analysis

The other effects on a charged grain in a dusty plasma, as drag on a moving grain, the 

motion of such a dust and coagulation of gram in plasma will be discussed in the second part 

of the paper
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ANALYSYS OF THE PHYSICAL CHARACTERISTICS 
OF A DUSTY PLASMA II. THE COLLECTIVE EFFECTS 

FOR THE DRAG ON A MOVING DUST GRAIN

Speranfu COI,DEA'

Received 5 091993

ABSTRACT. - The plasma collective effects are included to analyse the process of the plasma 
drag on a cliarged dust gram movmg through a plasma, due to Coulomb collisions The 
conclusion of the analytical discussion is that the forces among the ions modify the gram 
mfluence on the ions trajectories, which is the source of the collective effects and that the drag 
on a grain is independent of the presence or absence of plasma particles movmg faster than 
the dust

1. Introduction. The effects of a charged particle on the grains in a dusty plasma can 

be considered from two points of view

(a) the effects of electric and magnetic forces on the dynamics of the grams in the 

plasma, and

(b) the effects of the grain charge on the properties of a plasma waves propagation, 

instabilities and new modes

In the case (a) the electiomagnetic force should be added to the gravitational or 

radiation pressure forces and the orbits of the grains in plasma could be altered 

The equation of motion of a grain is of the form [l]-[2]

where P is fhe gravitational force and P is the radiation pressure Such a theory is called 

gravito-electrodynamics [l]-[2] The plasma physics is modified by the presence of some

( 1)
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charged dusty particles

Depending on the consideied particular phenomenon that is discussed two kinds of 

theories could be used

(I) the dust-grain can be taken as another plasma component (heavy ions) and then the 

known results of many-component plasma theory could be applied

(II) the grains could be considered as external fixed impurities, acting as local and 

strong perturbations for plasma particles

Grains moving through the plasma could be also considered

For a dusty plasma, without the case when the grain radius o(|i) =: 1 and when it 

contains very low frequency oscillation modes, the grain dynamics can be neglected with 

respect to the plasma ion electron dynamics. The following simple physical model for a dusty 

plasma can be taken into account a nonneutral plasma (nr * n.) in the presence of a 

distiibuhon of fixed charged centers that determines a stationary potential distribution of the 

system, being the solution of the Poisson equation

where / а0 ( r, ii ) a = i,eji are the distribution functions of the plasma components in the presence 

of grains and the charge density of the grain pe is given as

Pg{r) is a given function and does not change the plasma response in the presence of a wave 

or of any other perturbation

models are used, such as the spherical capacitor model, where the spherical symmetry

(2)

ps(f) - (3)

This is the simplest model for a dusty plasma, but other more complex physical
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assumption is made and for which the nearest neighbor approximation is not needed Other 

two models are those of impermeable grams and of permeable grains in a plasma, the last 

being artificial because it was considered that plasma permeates the grain and the system is 

overall neutral

The collective effects could be included or not in the theory of dusty plasmas In this 

second part of the paper [3] the collective effects in the plasma drag process on a charged 

grain are analysed We take into account only the effects of electnc forces due to ion 

Coulomb collisions on the grains in the plasma

2. Collective effects on a dust grain in the case of drag process. A chaiged grain 

interacts with the other charged dusty plasma particles The collective effects occur because 

there are forces among the plasma particles that are altered by the presence of a grain charge 

The inclusion of collective effects requires the use of the Vlasov - Maxwell equations 

Usually a linearization is needed, giving an inexact solution

A more complex collective effect, the drag on a grain in a dusty plasma, when the 

grains move through the plasma, is analysed in the paper, the collective effects between the 

plasma ions exist due to their interaction and are considered here The interaction of the 

grains among themselves is not considered The charging curents could be calculated, the 

factor by which the giam charge and the electromagnetic force on such a particle are altered 

by the presence of the other grains in a dusty plasma may be also evaluated The plasma is 

considered as a perturbed reservoir (with nr* nL, because some charges are given to the 

grains) The velocity distribution of such a plasma is a Maxwellian one and the plasma has

7 S
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an average potential <j>, the difference ф ( я ) - ф ,  where Ф(я) is the grain surface potential 

determines the ion and electron cunents to a grain [1]-|2], all the other charging processes 

are neglected here It is considered that ß( = ß, An analysis could be made by considering a 

gauge-invariant Poisson equation

У(ф(а) -ф) -  к2(ф(о) -ф) + 4 л - р г ( Г )  = - 4 л Y,"a' lL (4)

The solution of this equation can be given for the different eailier considered models 

The detailed theory of the motion of a charged giain in a plasma and of the collective effects 

on such a gram is not given here The analysis for the electrostatics of a dusty plasma, with 

the study only of the drag on a dust grain moving in the plasma is made

The diag force on a moving grain in a plasma is a phenomenon due to direct ions 

impact and to the grain-ion collisions and is defined as the product of the acceleration of 

grains (of velocity v0) and of the grain mass mg> eg  mg-u(v0) (we will adopt the 

Chandrasekhar approximation of finite mg) The direct ion impact diag is given by an 

equation of the form [4], if the collective effects are neglected

F .= - п ; л а гт •a2id / i
CO

• ( e \ p  -  to2 ) + [ i î
l a

1
2

where m,a2 = 2kTt

There are two cases that may be taken into consideration 

(i) if со  ̂ о. the gram is moving slowly and in this case

(5)

F. = -2^/7 (6)

and

(u) if ш a- a  the grain is moving faster and then

/'i:l = m i- a 2-m-  t o1 (7)
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The assumption that the dusty grains do not interact is made The collective effects among 

the ions could be or not considered, the force among the ions modifies the grain influence on 

the ion trajectory It is necessary to linearize the ion distribution by assuming that ö /s  /, e g 

the force is slightly changed in the presence of a gram charge, that means to not consider the 

smallness of scattering angles This is the same as expanding the product of grain and ion 

charges in Qe, this product being pioportional to the grain-ion coupling

The expressions for Fid m the case of no large scattering angles (for the limit of small 

product Qe) can be given under the following form

that is the expression given by eq (5) if f(v) is taken as a Maxwellian distribution and for the 

case of large scattering angles is given by the relation [5]

where the impact parameters are brniBi = and bmin = b

With the aim to include all effects discussed above, the equations given for the drag 

force in the considered approximations are coupled and it is possible to give a more realistic 

result The difference between the eqs (8) and (9) is a measure of the errors that appear due 

to linearization of the Vlasov-Maxwell equations, if the impact parameters satisfy the 

condition a s  b ş  >iD This correction-is used together with the drag force obtained with the 

inclusion of coHective effects in the set of Vlasov-Maxwell equations (for a s  b s  “ )

(8)

( 10)

7 5
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where К{КУш) is the plasma dispersion function [6] Only foi the condition b > XD (the 

scattering angles are small) a correction is not needed Then for a s  b s  X,, the collective 

effects are not so important and only the gram charge imposes the ion trajectory and not the 

other ions

A possibility to find the radial motion velocity of dust in a magnetosphenc (planetary) 

plasma (the migration motion), that is due to the drag effect, appears as the result of the 

earlier made analysis The rotating plasma gives then to a gram a large circular orbit added 

to its angular momentum motion Inside of syncrotronous radius a dust grain overtakes the 

plasma and falls towards any considered planet Usually the ions are not influenced by the 

other neighbours (ions) are describe hyperbolic orbits The forces among ions modify the 

gram influence on the ion trajectories, this fact being the source of the collective effects.

The conclusion of this short analysis is that we can choose some particular data for 

a given plasma, as the density гц of ions, the temperature Tb the Landau wavelength LD, the 

charge Q of the gram and the gram velocity cu, then the force Fid could be evaluated for a 

specific case, this fact giving the possibility to see the correct comportament of the dusty 

grains in a planetary plasma Some numerical evaluations of the drag force in a particular case 

will be done elsewhere
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VIBRATIONAL AND ROTATIONAL RELAXATION IN PYRROLE 
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ABSTRACT. - Rotational and vibrational relaxation of pure liquid pyrrole al temperatures 283,
293, 303, 313, 333 К  and in CS2 solution at 283 К have been studied by Raman bande shape 
analysis The activation energy for molecular reorientation of рутгок molecule was determined 
The experimental vibrational correlation functions were compared with the Kubo-Rothscluld 
and Oxtoby relations

1. Introduction. Different spectroscopic techniques (IR, depolarised Rayleigh, Raman, 

NMR) are used for the study of molecular dynamics in condensed phases f 1,2]

Rotational relaxation was studied first for the molecules in which vibrational relaxation 

appeared as an additional and often very weak phenomenon!

Therefore in order to test the different theories of vibrational relaxation, heavy 

molecules in which vibrational relaxation has an important contribution, should be preferred 

Recently Navarro and al [3] were obtained the IR relaxations from the molecules of 

biological interest

Among the different spectroscopic techniques, Raman Spectroscopy has the advantage 

to separate the contributions of rotational and vibrational relaxation, in the line hope

Fiom the experimental spectra Ivv and Г ,̂ (the indexes refer to the polarisations of 

incident and scattering light, respectively) we can obtain the isotropic line profil (I„„) which

"llabeş-lMvai" University, I'acultv o f  Phvslcs, 3400 Cluj-Napout, Romania
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offers information only on the vibiational lelaxation and amsoliopic one (I^,,,,) from wlmb 

we obtain information about rotational relaxation [4J

- W “» - 4 y™(ü)) 0 )

= (2) 

By eliminating the contribution of the slit width of the spectrometei and by assuming 

a loientzian shape line, we can obtain the real vibrational widths of the line (full widths at 

half maximum, fwhm)

Г no (3)
Г

Ulll JO
г + г. (4)

(Г2Л) being the line width of the rotational contribution

Vibrational (ty) and rotational (t2K) correlation times aie obtained by using

The vibrational ( G ^ ( / ) )  and rotational ( G i(i ( / ) )  correlation functions, offer anothei 

possibility to estimate the different relaxation mechanisms

Gv(t) = j'/jl(u>)er/i(ia>i)4<o (6)

G„(0 “ J/ail/„(<v)ex/>(/cut)dmlCjv(t) (7)
The main purpose of the present work is the Raman study of vibrational and rotational 

relaxations for ring breathing vibration (1144 cm'1, A,, p “ 0 05) of liquid pyrrole and carbon 

disulfide solutions and to compare the expenmental correlation function with theoretical 

Kubo-Rothschild and Oxtoby equation^

2. E x p e r im e n ta l .  R am an spectrum  was e x n ie d  wi t h 488 mil  line (0 3-0 4 w ) ol а Лг

7 8
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lasei type ILA 120-1 the radiation being passed beforehand through a Glann-Thomson prism 

The scattered light collected at 90° was analysed with a double monochromator GDM 1000 

and Ivl, and components were obtained by a 90° rotation of the polaroid situated in the 

gathering optics

One of the Raman spectra in liquid pyrrole is shown in figure 1

Figure 1. l vv and IVH Raman spectra for vnilg(A1) mode of liquid pyrrole at 283K, slit width of 0 6 cm'1 The 
intensity are expressed in arbitraiy units

The monochromator slit width was set at 0 6-0 8 cm'1 (fwhtn) foi both scattering 

components The ratio between the slit width and apparent band width of lvv component was 

0 1, so that the finite slit width effect on the determinated r (to and raniio values could be 

neglected In rder to avoid a weak asymmetry of the band, /,,, and spectra were 

measured at every 0,4 cm'1 on the high wave number side of the band A distance of 5 5 half-
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widths from the peak center was used in oidei to insuie a flat base line

Fourier tiansforms of 1IJ0 and Jamiio spectia weie deconvoluted with the triangle slit 

function (obtained with AC plasma laser lines) The experimental vibiational second momentA//' 

was obtained by using the formula [5]

where and S (w) are the normalised isotropic Raman spectra and experimental triangle 

slit function respectively

The pyrrole was purified by distilation and used immediately Solvent of "Merk" 

uvasol type was used without purification Only CS2 was utilised because in other solvents 

(like CC14, C2H5OH, CHSCN) the modification of the colour solution during the mllumination 

with the laser light was noticed

During the measurements the temperature was constant within ± 0 5 К

3. Results and disscution. The Raman band parameters obtained for vring mode of 

puie liquid pyrrole using the relations (1-5) and neglecting the influence of slit width, are 

summarized for different temperatures in table 1

In the limit of the experimental errois ± 0 5  cm'1 there is a coincidence of both 

scattering components

The t v values calculated from the slope of In Gv(t) are very close to values obtained 

from Tv without slit correction The computation of t 21( from the slope of In G,l((t) is \eiv 

difficult because G2K(t) oscillate after 1 5 ps

Fig 2 presents vibrational and rotational coirelation functions on loganthnm. stale at

( 8)
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303 К for pure liquid pyrrole

From Xjn values (see table 1) is evident that 

the reonentational contribution to the band shape 

increases with temperature, as expected On the 

other hand, in the limit of experimental errors the 

vibrational con elation times xv are temperature

independent Fig 2 Vibrational, reonentational correlation 
functions of Vj^gtA,) mode for pure liquid pyrrole 
for T = 283 К

Table 1 Raman line parameters for vnne mode pure liquid pyrrole at several temperatures (line width (fwhm) 
correlaUon time x

TIK Scattering component Г /cm'1 t/P S T2k/ps

u 57
283

âiDBO 70
18 8 1

I«, 56
293

74
19 5 9

ÎSO 57
303

îlUSO 77
1 8 5 3

56
313

ш̂ию 80
1 9 44

fbO 57
333

t̂uuao 84
1 8 3 9

Assuming an Arrhenius type relationship for temperature dependence of the rotational 

correlation time [6]

т2Л =  /1 e \p ( fc, /Л7 )  A =  const  ( ° )

The activation energy Ea foi the reorientation of pyirole molecule is estimated to be

81



T ILIESCU, A SIKE

9 5 KJ/mol (fig 3)

We will use the тж values in order to 

conclude about the relativ importance of 

different relaxation mechanism For all the 

temperatures studied the vibrational 

relaxation is the most important mechanism
Fig 3 The logarithm of the reonentational correlation 

m  fo rm in g  th e  b an d e  sh a p e  times (z21l) for v ^ (A ,)  mode vs l/T

In order to understand the evolution of relaxation times and the interactions between

pyrrole molecules and solvents, the experimental vibrational (Gv) and rotational (G2R)

correlation functions were determined for different concentrations of pyrrole in the carbon

disulfide solutions Fig 4 presents the rotational and vibrational correlations functions for

pyrrole in CS2 at concentrations (molar fractions m.f) 0 72, 0 46, 0 22
о

In solution at short times Gv decays fastei 

than G2R, and therefore the vibrational relaxation is _0J 

the main mechanism, responsable for the band
-M

shape broadening A parabolic character of the 

vibrational correlations functions (Fig 2 and 4) is
-Ox

noticed at short times and the function becomes w
Fig 4 Vibiatmnal and reoricntauonal correlation

almost linear in logarithmic scale at long time This functions of vniti mode of pyrrole CS2 soluuon 

character corresponds respectively to lorentzian function in the central section of the line and 

to a gaussian in the wings In this situation we can apply the lelalion (4) even the profile is 

not a pure lorentzian shape
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The application of the vibrational dephasmg theory developed by Kubo and Rothschild 

[7] suplies some additional informations concenvng the vibrational relaxation processes of thevring 

mode in pyrrole According to this theory the vibrational correlations functions is expressed 

by

Gt (t) = exp - <шэ( 0 ) > {x?. ( - / /x c ) -  1] + tc /} ] ( 10)

This vibrational correlation function is essentially determined by a measurement of 

vibrational second moment M f  (in cm'2), which gives the mean-sequare frequency 

displacement of the instantaneous vibrational frequency m0 + a>(t)

<ш2(0)> = ‘\n2c 1M2v [/m~2] (11)

and the modulation time tc, which characterizes the correlation decay of the stochastic 

perturbation of w(/)

< o > ( / ) o > ( 0 ) > / < a > 2( 0 ) >  “  exp(-t lxc) ( 1 2 )

Two typical situations are distinguished, dependmg on whether,

<ш2{0)>|,2тс<,1 or> 1 (13)

the processes which modulate ш(0 are either "fast" or "slow"

Equation (10) describes the vibrational dephasing process and the two limiting cases 

can be examinated For extremely low modulation (tc-» ) or for short times (‘< \ )  eq (10) 

leads to a gaussian vibrational function

Gy(t) » е у р [-< ш 2(0 ) > 1 г/2 ] (14)

The half width corresponding to a gaussian spectrum being

Г“ - (21n2 )'n < u)2(0) >'п/лс  (15)

For a very fast modulation (tc-»0) orfoi long times (/> tc ), eq ( 10) becomes a simple
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exponential relaxation function

Gy(i) = cx /i[-< ü)2(0 )> i;c /] (16)

The half width for a lorentzian spectrum being

r£- = <w2(0)>Tc/jt (17)

Another expression for relation (12) has been proposed by Oxtoby [8]

<iû(î)oi(0)> /< id2(0)> =4 ech2(tfic) (18)

which gives the correlation function

Gy(t)  = exp[-<œ2(0)>Tclntoi/i(l/tc)j (19)

Theoretical equationas (10) and (19) were applied to our experimental correlations 

functions The experimental second moments Ai/, obtained from isotropic Raman spectra 

(eq 8) were used to calculate <m2(0)> (eq 11)

The theoretical vibrational correlations functions were computed according to 

eq (10,19) by inserting experimental < w2(0) > and adjusting xc for the best agreement between 

the theoretical and experimental correlation functions

Table 2 present the application of Kubo-Rothschild’s and Oxtoby’s equations to vnng 

mode of pyrrole pure liquid at different temperatures and for solutions at 283K

Table 2 Application of Kubo-Rotschild’s and Oxtoby’s equations to vnllB mode pyrolle pure liquid and solutions

System T
(K)

Oxtoby

nn£ _ _—_ FJ - Г

Kubo-Rotscluld Tv 
(cm ')

e \p<w2(0)>
(ps2)

exp

*c
(PS)
Ox

<ai2(0)>1'2

%
Ox

r °  = Г" 
(cm ') 

Ox

r?
(cm 1)

Ox

Tc
ps

KR

<ш2(0)>1'2

4 :
KR

1 V

(cm 1)
KR

285 1 14 041 0 43 13 3 49 0 44 0 46 5 3 5 6
pure 293 0 97 0 48 0 47 12 3 4 9 0 52 0 51 5 3 5 9

pyrolle 3Ü3 0 65 071 0 57 10 0 48 0 80 0 64 5 5 57
313 0 90 0 70 0 66 11 8 6 6 0 84 0 79 8 02 5 6

8 4



VIBRATIONAL AND ROTATIONAL RELAXATION

Solution 
m f 
0 72 283 0 94 0 46 0 44 12 1 4 5 0 50 0 48 49 5 0
0 46 283 0 92 0 41 0 39 119 4 0 0 43 041 42 4 8
0 22 283 0 72 0 52 0 44 89 37 0 56 0 47 4 2 44

With experimental vibrational second moment <шг(0) >„,.Г° (eq 15) and rf; (eq 17) 

were calculated These values were compared with the experimental Г "" « F jo

Inspection of table 2 shows that г£ values are veiy close to r"p which implies an 

important contribution of lorentzian part in the band shape

The t c values for pure liquid pyrrole are 0 4-0 8 ps and increase as the temperature 

is raised Thus the correlation decay of stochastic perturbation is slow at high temperatures 

At high temperatures a polymerization of pyrrole molecules take probably place In general, 

for solution, t c values decrease with dilution due to the decrease of the velocity of fluctuation 

The vibrational second moment <ыа(0) > decrease with increasing dilution It is known 

that an increase in the <<o2(0)> appears in the systems where the oscillators interact strongly 

with the neighboring molecules This means that in our case the interaction between pyriole 

molecule and surrounding molecules is laiger in concentrated solution than in diluted one, as 

expected, CS2 molecule being nonpolar molecule

In condensed phase at low concentration the mam mechanism of vibiational relaxation 

is the phase relaxation (vibrational dephasing) [9] In addition to the above mentioned 

mechanism, in concentrated solution, two other mechanisms may contribute to the broadening 

of the isotropic Raman spectia resonance energy exchange [10] and concentration fluctuation

[П]

These theories predict a concentration dependence of the line widths of the l, ~

« 5
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type From table 2 we noticed a decrease of 

Г'у(ехр) values with dilution Fig 5 present, this 

linear dependence By extrapolating Cm -* 0 , the 

line width due to pure dephasing for CS2 solution 

to be 3 2 cm'1

From relation (13) and inspection of table 2 Fig 5 The expenmental isotropic Raman Jme
widths (fwlun) vs square root of mole fraction 

we observe that Kubo product <ш2(0)>ш %c is carbon disulfide solution.

approximately similar for both equation (10,19) and its value for different temperatures in

pure liquid pyrrole 0 43 - 0 7 indicate an intermediate modulation regime for vibrational

dephasing rnnB mode of pynrole The fact that the Kubo product values are ~ 0 4 in dilution

is an indication that there is a faster modulation regime than in pure liquid

In fig. 6 the expenmental vibrational correlation function is compared with the 

theoretical Kubo-Rothschild’s and Oxtoby’s correlation functions for pure liquid pyrrole and 

dilutied in CS2

Particulary for short times, the Oxtoby equation fits better than Kubo-Rothschild 

equation the expenmental data

4. Conclusions. The results obtained indicate that for the entire time scale studied, the 

vibiational relaxation is the most important mechanism for vnn„ vibrational mode of pure 

pyrrole and in CS2 solution From Arrhenius type dependence of тд  vs 1/T, an activation 

energy of 9 5KJ/mol for pyrrole molecule was detennined

8 ь
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Fig 6 Experimental vibrational correlation functions fitted with Kubo and Oxloby equations 
a-purre liquid
b-caibon disulfide solutions
To simplify the figure only one temperature for pure and CS2 solution are presented To simplify the figure only 
one temperature for pure and CS2 solution are presented

A pure dephasing line width of 3 2 cm'1 was obtained front the linear dependence

r v(exp) vs C1/2

A better fit with the experimental date is obtained using the Oxtoby equaton instead 

of Kubo-Rothschid equation The Kubo product corresponds to an intermediate modulation 

regime In diluted solutions this regime is faster than in pure liquid pyrrole 

To simplify the figure only one temperatule for pure and CS2 solution are presented



1
2

3
4
5.
6
7
8
9

10
11

T ILIESCU, A SUCE

R E F E R E N C E S

W G Roüichild, "Dynamics of Molecular Liquids", John Wiley New York 1984
S.Bratos, R M Pick (Eds) "Vibrational Spcctrosopy of Molecular Liquids, Plenum Press, New York,
1980
R Navarro, IBratu, AHemanz, J Phys Chem 97 9081(1993)
F J Bartoll, T.ALitovitz, J Chem Phys 56 404(1972)
T Kato, T Takemaka, Chem Phys Lett 62(1978)
T Kato, T Takemaka J Chem Phys 84 3405(1986)
W G Rothschild, J Chem Phys 65 455(1976)
D W Oxtoby, J Chem Phys 74 1503(1981)
I Bralu, K KJosterman, T  Iliescu, S Astilean, J Molec Liquids 45 57(1990)
M Kakimoto, T.Fujiyama, Bull Chm Soc Japan. 47 1983(1974)
A F Bondarev, Opt i spectr 35 350(1977)



STUDIA UNIV BABEŞ-BOLYAI, PHYSICA, XXXVIII, 2, 1993

TOTAL CROSS SECTION DETERMINATION BY FAST NEUTRONS 
SPECTROMETRY ON AN ISOTOPICALLY ENRICHED 15N TARGET 

USING AN 241Am-9Be NEUTRON SOURCE
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Received 10 071993

ABSTRACT. - We have build a method, ior measunng the excitation function, based on the 
analysis of the transmitted spectrum of the fast neutrons generated by и ‘А т -9Вс isotopic 
source and using a spectrometer with recoil protons and pulse - shape discrimination We have 
demonstrated tliat, in case of 15N nucleus as target, acceptable values of the total cross sections 
can be obtained by means of this method

1 Introduction. In the field of nuclear reactions induced by fast neutrons, a lot of 

interest is concentrated on the problems which refer to the mechanism of the fast neutrons 

interaction with the nucleus, and on the information that can be inferred about the nuclear 

structure from these interactions

Analysing the experimental data from a statistic point of view, we may observ that the 

nucleus of the stable isotopes with little natural abundance are of a special interest These 

nucleus been less research subject, but, because of the more unstable nuclear structure, they 

have a spectacular behaviour during the nuclear processes

2. Experimental. The experimental methodology for measunng total cross sections 

is presented Lately, there have been used "white" neutron sources, based on cyclotrons, liniar 

accelerators or tandem generators, to measure excitation functions o,(E) We used for the fust 

time the 24lAm-*Be source spectrum It should be mentioned that these kind of measurements 

can be realised only with a fast neutrons spectrometer and the use of the А т -Be source needs 

a good n-у discrimination

The probability of interaction between the fast neutrons and the nucleus is

"Babeyllolvni" Umveistty, Л и г  ally ot l ’Inuit s, ? 100 I'luj-h'njmui, Иопшпш
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characterized by the cross section oT and is defined in the following way [1]
dNrt a __

т Ш
where dN is the number of interactions between the neutrons and the target nucleus, N is the 

neutrons number that fall on 1 cm2 of target area, n is the nucleus concentration per target 

volume unit of pure element and d is the target thichness In the case of a molecular target 

the relation ( 1) became much complex like in relation (16)

When using a thick target, the density of the flux changes with thickness "x" In order 

to find out the number of the neutrons penetrating the target, one should give the differential 

equation of the layer fullfilling the following requirement for a given thin layer havemg a 

thickness dx at a depth X in the sample the following equation is valid
d N  = -N (x)n a r  dx

The solution of the equation (2) has tins form
N(x) ~ N0 exp(-n a  T x)

where N0 is the initial neutron flux This means that, for finding out the cross section of the 

neutrons interaction with the nucleus is sufficient to measure in one experiment the decrease 

of the neutrons flux N(d)/N0, during the penetration of the target

ъ Л
ат- - Ш

T ud
This formula can be turned into another one containing more accesible experimental 

parameters In this way

“r/ V  = Sd  Л N ' ~ —N tcN
V

It results the next formula

A
о  ----------Ш

кг mN . с —* s
where N(d) is the number of the neutrons which aie left after the penetration of the target, 

A is the atomic mass of the target isotope, NA is the Avogadro’s numbei, c is the îsotopical 

concentration, m is the mass of the puie element and S is the tiansversal section of the target 

The relation N/N0=T is called transmission factor

4 0



TOTAL CROSS SECTION DETERMINATION

If we have the possibility to venfy the energy of the neutrons with a neutron 

spectrometer, then we can measure the total cross sections corresponding to already known 

values of the neutrons energy

Measurements are done through the transmission method, by mans of the so-called 

"good geometry arrangement" We place the sample in the way of a collimated bundle of 

morioenergetic neutrons We measure N0 and N in order to be able to calculate T [2]

If we want to extract an excitation function having the following form a^fCEJ, then 

we registei the spectrum of neutrons, measuring both with and without sample, on the whole 

energy field, and we calculate, by means of the formula (6), a T for every value of the energy 

of the spectrum

Our purpose was to determine the excitation function foi 15N For that purpose we 

used a sample of I5NH4I5N 03 (double marked), enriched by isotopes up to the concentration 

of 98,5% in UN

In order to measure the cross sections, we use an M1Am-9Be source of neutrons of lCi, 

generating 106n/s, enclosed in a collimator of borate parafine, a fast neutron spectiometer with 

stilbene crystals and a pulse-shape discrimination circuit (fig 1), studied in [3-8J

To extract the latelly scattered neutrons, we used a beam stopper The common 

methods is to put a long metal bar (of Fe, Cu, or Pb) in the place of the sample, through 

which the neutrons cannot enter Then, the transmission factor corrected by the background 

is.
N - Nh 

" No ^

where Nb is the laterally scattered neutrons intensity, which arrives in the dexector

We have performed preliminary studies on the 12C nucleu using the spectrum of the 

Am-Ве source, for mif roving the measurement method of the total cross section at fast 

neutrons and we obtained the excitation function of l2C nucleus This shows broader and 

thicker resonances The purpose of these measmementb was to see if we could collect nuclear 

data in a 10° n/s total pencil (the Am-Ве soutce gives 106 n/s in 4л) Another puipose was 

to estimate the neutrons spectrometer lesolution depending on resonances separalion

We collimated the neutrons source with a borated paraline collimator and we placed
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a neutron detector to 0,5 m distance of the collimator A grafit sample with m/s=3,78 g/cm2 

was placed in the middle, between the detector and the collimator We registered the incident 

neutron spectra N0(En) and the transmitted spectra N(Ej in 2 hours each other, to have a good 

statistic We made the calibration of the multichannel analyser’s channels m protons energies 

and operated the neutron spectrometer with stilbene in the same conditions, but with the gate 

m anticoincidance, this means opposite to the neutron signal of the pulse-shape discrimination 

circuit (fig 1). Using the method of calibration in electronic energies with

Fig I . Tlie scheme of neutron spectrometer with n-у discrimination I-Tlte P S D  input, II. Spectrometnc input, 
A,В ldeni’cal output, C -double discrumnation, D - simple discrimination
1 The Am-Ве source in borated parafine collimator, 2 Stilbene scintilation crystal 20\30 mm, 3 

Fotonuiltiplicator ф у 19,4 The PSD circuit, 5 The charge pieamphficr type 1141 FAN, 6 Power source with 
cadre for N1M modules type S3 614, 7 Miser reversor type NE 4618, 8 I.ineiu gate (1) type 1183 FAN, 9 
Energy analyser type NP 4664, 10 High voltage power supply type 1135, 11 Spectrometnc amplifier type NE 
4698,12 Linear gate (111 type 1183 FAN, 13 Multichannel anali ser lCA-70, II Pnntcr 15 Potenuometnc 
recorder
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Y sources, these have been turned in proton energies with a luminosity function having the 

next form L(Ep)=C1EpC2

Fig 2 The transmission neutrons of the 241Аш-9Ве source neutrons through carbon
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The data-were transferred in one compute! CORAL 4021 that was working in tandem 

with a multichannel analyser ICA-70 Using a program named SPEC-N, we obtained the 

incident neutron spectrum N0(En), and in a carbon sample transmitted neutrons spectrum N(En) 

(fig 2)

Using the relation (6), we calculated point by point, the values of the function a,(E) 

and in order to find the transmission factor T, we divided the two speclras Fig 3 shows the 

results, in comparation with the results obtained in [9] In conclusion, we have’

a After the calibration of the Am-Ве source spectrum with gamma sources, (without 

contrail by the monoenergetics neutrons), there are appearing deviation from the real energy 

of the neutrons until 0,5MeV This is illustrated by the position of the carbon’s resonances 

b The absolute values of the cross section are not in accordance with the data given 

in literature [9], these have the tendency to be systematically less in the two neutron peaks 

region and systematically greater where we have less neutrons

The "good geometry" condition requiie that the value of the transmission factor to be 

cc 0,5 for each energetics group So, in order to determine the excitation function, we can’t 

use the continuous spectrum the way it’s shaped in fig 3, so only by measunng the 

transmission factor in the eneigy region

Also, introducing a set of changed values set (I.i,Ei) in the SPEC-N progtam, we
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Fig 3. The continous line - the results indicated by [10] The broken line - the measurements effectued on the 
Am-Ве source.

adjusted the luminosity function L(Ep) depending on the shift established comparatively with 

the carbon’s resonances In ţhat way, we used the carbon resonances for the recalibration of 

the neutron spectrometer, we obtained for a stilbene crystal with 3 cm diametei and 2 cm 

thickness

Ц£р) = 0,184 Яр1Л>м

With this measurement technique, perfected on the PC nucleus, we obtained t h e  in .t
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correct values of the excitation function (using an Am-Ве source) (fig 4)

By using fig 4, we can study the resolution of our neution spectrometer with the

stilbene crystal By the way this spectrometer solves the carbon resonances at 2,08 MeV or

2,45 MeV, you can see that the equipment (built and perfected in our laboratory) has a 

resolution of 0,2 MeV, we can estimate the equipment measurement erroi,by using the results 

from the fig 4, too 10%

3 Total cross section determination of l5N In order to calculate the total cross 

section of l3N, we measured the initial neutromc spectrum of the 24lAm-'JBe source and the 

spectrum transmitted through the sample double marked with "N (ennched at 98,5% in |3N)

9 6
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In order to verify the contribution of the oxygen and hydrogen of the NH4N 03 sample, we 

also registered the spectrum transmitted through the natural sample, having the same mass and 

containing 14N, as well as the spectrum of the laterally scattered neutrons (fig 5)

It is true that the curves of fig 5 are close, but, as a result of our experience with the 

program SPEC-N, we found that the difference was stell therte, because the sample marked 

with 15N absorbs more intensive the neutrons than the natural sample

Knowing these curves, the excitation function of 14N, as well as the major isotopical 

concenti ation C15N, CUN and respectively, the minor isotopical concentration C15N, CI4N of the 

15N and ,4N from the sample, we are able to calculate the microscopic cross section of 15N 

for the maximal values of the spectrum in fig 5, where we had a better statistics

The macroscopic cross section of the chemical compound NH4NO3, can be defined m 

accord with [3], in the following way

S , ( £ „> “  « 1 5 *  ° l S f / £ n )  +  n u  ° u  ( £ „ )  +  « 0  ° o  C£ n> +  « М *  ° i w  № » )

where n, is the concentration of the l nucleus in 1 cm3, n,’ is the concentration of the minor 

isotope, and a,(En) is the cross section according to the value En of the neutrons 

From the relations (3) and (9), we can obtain the next relation

“ -d 111
w

We can extract the neutron background, which is exactely the spectrum measured with the

beam stopper, using the relation (7)

а д  - \  to
"0(g) - а д  
в д  - w

If we couple the relations (9) and (11), then we will obtain a 'elation for the microscopic
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We need to know the excitation functions of the oxygen, hydrogen and nitrogen - 14 (minor 

in this sample on this energetic domain) and the nucleus numbers in one volume unit nH, n0 

and n 14N

But the utilisation of relation (12) is not the most comfortable way to measure the 

cross section of the 15N with minimum error Thercfoie, we made a measurement in the same 

conditions on one natural sample NH4N 03, having the same mass and geometrical form (the 

natural isotopical concentration of 15N is 0,37%). We wrote for this sample a similar relation 

to (12) After that, we made the differences of the two relations

°15Л£л> “ «W ^)
1 ta w  - W  

d «Ш, л г а д  - а д

-  — i —  b JW L Jm .  а д  +
N »N(.EJ -  а д  Vni w п\ж

/ „ 1 4  15 \
J ”0 _ »0 I
'"l4W nlSN

r,U.V
I

"14
вщ Д ) - T ,  “M Än,<N

Because we worked with samples having the same mass, we can prove that

‘14N
а д  -  0 ,0 3  a j ß j  

(it will be neglected)

0y y  -  0 ,0 6  а д
’ n 14__ 15 .

" o

1c

nl5NJ
Relation (13) becomes

(l - ~ Í1 - +
V 4Ar/  4 U 1SJT

+ _ i _  1па д  - а д  _ _ j _  а д  - а д
d "uv ÎJV W  " d nm NwßJ - W

уч
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In that way, knowing the microscopic cross section of 1'IN, we can find the microscopic cross 

section of 15N If we consider that the thicknesses of the sample are the same, using formula 

(2) we can turn relation (15) into another one, more useful

(l - | ^ )  “, Л )  - (i - -
4 U 14W ' 4 Ь 15/Г

+___1___ ţ m  N0(£Д)-ВД)
« Г * “  N^ E" -  w

1 Am  ln m  -  

т Г *  Ciw

where Nb(E„) represented the spectium measured by means of tlie beam stopper, Nun(E„) is 

the spectrum transmitted through the natural sample, and A15N and AUN aie the respective 

isotopical masses

We have made the calculation with relation ( 16), using the spectras from fig 5 We 

found out that the only sure values aie those from the region of the two intense groups of the 

neutrons This value is fulfiels the "good geometry" condition for the tiansmission factor

The values obtained by, using formula (16) were placed over the excitation function 

given by [11, 12], our points being maiked by * Regarding the order of magnitude the results 

proved to be in accordance with the results given by [11, 12] (fig 6)
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SPECTROSCOPIC INVESTIGATION OF THE INFLUENCE 
OF MELTING TEMPERATURE ON THE REDOX EQUILIBRIUM 
OF URANIUM IONS IN 0 .9 5 ^ В 40 7-0 05А1,Оз-° 02UO3 GLASS
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ABSTRACT. - The influence of the melting temperature on the redox equilibrium of uraiuum 
ions m the 0 ЭЗИагВ̂ От-О 05A1203-0 02UO3 glass was studied using optical spectroscopy The 
obtained optical data prove tliat increasing melting temperature determine the reduction of the 
U6‘ ions to UJf ions in the studied glass

1. Introduction. Since glass is used to immobilization of nuclear waste [1,2] the study 

of glasses containing radionuclides becomes important Uranium is one of the important 

radionuclides that appears in nuclear wastes As was previously reported[3,4] uranium ions 

appear in oxide glasses in different valence state, such as U’6, U'5 and U41 The study of redox 

equilibrium between these valence states is of considerable interest

This paper presents the results of a spectroscopic investigation of the influence of the 

melting temperature on the redox equilibrium of uranium ions in the 0 93Na2B4O7-0 05Al2O3- 

0 O2UO3 glass

2. Experimental Method. Samples were prepared using reagent grade borax 

Na2B40 7 10H2O, AljO, ("Reactivul" Romania) and uranyl nitrate U 02(N03)26H20  

("Chemapol" Czechoslovakia) First a borax glass was obtained by melting borax at I000°C 

for 30 minute^ UO, was obtained by thermal decomposition of the uianyl nitiate I ban, 

adequate amounts of Na2B40 7(powdered glass), UO,and AI20 3 weie melted to obtain the

Tedinual Umveisity 0/  l'Iiij-R’apota, 3400 Ctuj-Kapoca, Romania
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0 93Na2B4O7-0 05A120 3-0 02UO3 glass The samples were prepared using five different melting 

temperatures, namely 800, 900, 1000, 1100 and 1200°C The melts were equilibrated at these 

temperatures for 2 hours Glass samples were obtained as slabs (20x8x3 mm) by pouring the 

melts in a stainless steel piece having an appropriate grove

Optical absorption spectra for the visible and UV region(10,000-30,000cm'1) were 

recorded using a Specord UV-VIS(Germany) spectrometer To obtain the optical spectra the 

glass slabs were polished on two opposite sides

3. Results aud Discussion. All the samples containing U 03 were yellow This suggests 

the presence of uranium ions mainly as U6", probably in U 022+ (uianyl) foim

The 0 02UO3 content of the studied samples permits to obtain optical absoipuon spectra 

with well resolved spectral features A representative absorption spectrum of the 

0 93Na2B4O7-0 05A120 3-0 02UO3 glass for the UV and visible region is presented in figuie 1 

(spectrum 1)

F ig  1 O p tica l sp e c tra  o f  0  9 3 № 2В .,0 ,-0  05А120 3-0  0 2 и 0 3 (cu rv e  D a n d o  >ЯЫ .1,В,О,-0 0 5 A l,O , ( c u n  c  2) g lasses
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SPECTROSCOPIC INVESTIGATION

Spectrum 2 in this figure corresponds to the basic 0 93Na2B4O7-0 05Al2O3 glass The 

comparison of the two spectra proves that the spectral features exhibit by spectrum 2 belong 

to the uranium ions The spectroscopic features evidentiated by this spectrum are charactenstic
' I

for oxide glasses containing uranium ions[3,4]

The most important features of the 0 93Na2B4O7-0 05A120 3-0 02UO3 glass appear at about 

16,000cm''( assigned to U4+ ions), 20,700cm'‘( assigned mainly to U6+ ions), 23,200cm'‘( 

assigned mainly to U4' ions), and from 24,100cm"'( assigned to U6t ions) The assignements 

were made according to some previously reported data concerning some borosilicate and 

borate glasses|3,4] We note that the positions of the absorption bands belonging to the U4+ 

and U6b ions observed for the 0 93Na2B4O7-0 05Al2O3-0 02UO3 glass are close to those 

reported for other borate and borosilicate glasses This suggests the fact that the coordination 

sites of uranium valence states seem to be independent of glass composition

The variation of the melting temperature generates some changes of the spectral features 

These changes are shown in figure 2

Fig 2 Changes produced in (he optical spectra of the 0 93Na2B,O7-0 05A120 3-0 02UO, glass by increasing the 
melting temperature ( 1 for 800”C, 2 for 900°C, 3 for 1000“C. 4 for 1100°C and 5 for I20(V’C)
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Thus increasing melting temperature generates the increase of the bands from 16,000 and 

23,200cm'1 and the decrease of the shoulder fiom 20,700cm'1 These changes indicate an 

increase of the amount of U'4 ions in the samples with increasing the melting tempeiature 

The increase of the melting temperature of the samples seem to determine the reduction of 

the uianium ions according to the equation

4U6'(melt) + 402(melt)= 4U14 4 202(gas) ( 1)

It is possible that this process implies not only IT6 and U*4 ions but also U3’ ions ai d follows 

a two step process, according to the equations

4U6,(melt) + 202"(melt)= 4U's(melt) t- Oz(gas) (2)

4LT5(melt) + 202(melt) -  4IJ,4(melt) ь 0 2(gas) (3)

Oui spectroscopic data did not permit to evidenţiate the piesence of U5' ions However we 

do not exclude the possibility of appeaience of U5' ions, but we estimate that the 54 valence 

state is probably less stable in the studied glass than 64- and 4+ ones

4. Conclusions. An optical spectroscopic investigation was made on the 

0 93Na2B4O7-0 05A120 3-0 02UO3 glass in order to study the influence of the melting 

temperature on the redox equilibrium of the uranium ions The obtained data indicate that the 

increasing melting temperatures determine the reduction of the U6' ions to U4' ions
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