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SIMULTANEOUS DETERMINATION OF U AND Th FROM ROCKS 
BY GAMMA SPECTROMETRY

C. COAMA*, L. HAMSAT*, P. XAVODBKX**

fUctivadi 10.10.1992

ABSTRACT. Using ths high resolution gamma spectrometry method 
(GeLi) was determined the U and Th content in two rocks melange 
with a great concentration of these elements. As standards were 
used two reference materials from IAIA, Viens. Uranium was 
determined by using eleven characteristic gamma ray energies and 
for thorium ten characteristic energies are used. The obtained 
concentrations arei 1.272% for uranium and 0.70% for thorium with 
relative error of 3.2% and 3.9% respectively.

Introduction. Nuclear energy development conducted to the 
development and improvement methods of prospecting and 
exploitation of U and Th ores. The measurement possibility of 
gamma energy emited by these elements or their radioactive 
descendente offers the possibility of elaboration of a rapide 
method, and sufficient acouarate, for the determination of U and 
Th from ores and rocks. Development of this method makes possible 
the isotopic analyses of uranium, which is necessary in process 
of isotopic enrichment, in determination of burning ratio and in 
process of reprocessing of nuclear fuel [1-4}.

The procedure and results of obtaining of a U and Th 
standard, which can be used in simultaneous determination of 
these elements in rocks and ores presented.

Sxperlaental Method. For measurement of U and Th by gamma 
spectrometry was used gamma spectrometry of high resolution based
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on the detection with semiconductor detectors (GeLi), which has 
the advantage of elimination of unliked multiple interferences 
during determinations.

Measurements were done at I.F.A. Bucharest in Laboratory 8 
IFIN, with a help of Canberra gamma spectroscopy chain with 
vertical 75 cm3 Ge(Li) detector. It was done measurements on 
three samples included in Table 1.
Table 1. The basic characteristics of analysed samples.

Sample
Characteristic

(a)
Uranium 

standard(US)
(b)

Thorium 
standard(The)

(c)
Uranium-Thorium 
standard(UThS)

Chemical formule Th(N0,hMH,0 ore
Mass (g) 100+0.04 100+0.04 171,67+0.05

Provenance IAEA Vienna IAEA Vienna pechblend+thoriura ore
Concentration

(mg/g)
1.009 1.945 unknown

Uranium and thorium concentration from UThS sample will be 
determined by comparation with the standars (a) and (b) . Gamma 
spectra were succesively registered in the analyser memory with, 
the following periods: Uranium standard - 3,250s, Thorium 
standard - 3,000s, UThS sample - 1,500s.

Raaults and Diacuasions. Gamma spectra, resulted from the 
measurements, were processed principally by determination of the 
net area under the photo-peaks, together with energetical 
calibration and detection efficiency.

For those two standards, the net areas of the photo-peaks 
were extracted directly from multichannel analyser, which das

4



SIMULTANEOUS DETERMINATION OF U AND Th

Fig. 1
implemented a microprocessor for determination of these areas.

The sample spectrum being a combihation of those two spectra 
of standards, has a high complexity. Fig. 1 - 3  present some 
sequences from this spectre on the limited energy interval. For 
this геавоп the spectrum was processed with the help of a SAMPO - 
80 programme package introduced in a CORAL Computer of ITIM 

Cluj-Napoca [4]. Sample spectrum was transfered into computer, 
too, from magnetic tape.

The SAMPO - 80 Programme Package executes the following 
operations: energy calibration of the spectre, calibration in 
eficiency of the spectre, calibration of the peak shape, 
calibration of the net area,of the peaks, identification of gamma 
radionuclid emiters, calculation of the net activity for every

5
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photo-peak, calculation of errors.
The heads of series of the three natural radioactive 

families 238U, 232Th, 235U, emit alpha radiation and give birth at 
the products which at their turn are desintegrated by emission 
of alpha, betta and gamma radiations, untill are obtained finally 
stable isotopes. Actinium family (234U-238U) contributes to the 
total uranium activity with 1/138 parts.

Uranium family after half-life period, is devided in five 
groups :

a. 238U - 234U. Half-life period of 234Pa of 24.1 days is much 
longer than of the other descendente. Radioactive equili- 
brum, even if it would be disturbed by some geochemical 
processes,is rehabilited in 5-6 months. Gamma radioactivity

6



303
8 

377
3 

450
8 

524
1
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of this group is of ,2-8%.
b. Thorium (230Th) has a half-life period, of 8.3 . 104 years 

and attains the equilibrium with previous group after
'  ̂ Г ’
approximately (5-8). . 10s years.

c. Radium (226Ra) has a half-life period of 1620 years, emits 
alpha radiations and attains the equilibrum to 230Th after

‘ 1.5 . 104 years. 1

Fig. 3
d. Radon group (222Rn) includes isotopes from 222Rn to 214Po 

Equilibrium between 226Ra and the head of this group 222Rn 
is established in 38 days and between' the members of the 
group in some hours. This group includes radioisotoprs: 
222Rn, 218Po, 214Pb, 214Bi and , 214Po situated in the main 

1 sequence. Contribution to the gamma radioactivity of this
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group is given by 214Pb (14%) and 214Bi (83.6%). At the
total radioactivity of uranium series this group 
contributes with 45% of alpha radioactivity, with 42% of 
betta radioactivity ant with 90-97% of gamma radioactivity. 
This group is the most important one from our point of 
view.

e. 210Pb, the head of the fifth group, has a half-life period 
of 22.3 years, entering in equilibrum with the previous 
series after approximately 200 years and has 206Pb as final 
product. The 210Pb stays at the base of datind method of 
sediments of recent date.
The main equilibrium which may occur, in this series, is 

reffering to different geochemical migration of 238u, 234U, 226Ra 
and 222Rn [5,6].

Thorium family descendants have the half-life period 
relatively small and radioactive equilibrum in this series is 
practically permanent. From the point of view of gamma radiation 
energyes emited by the members of this series is remarked that 
of the 212Pb, 212Bi and 208T1 radiosotopès.

In all quantitative measurements of U and Th must be had 
into consideration the question of radioactive equilibrum or 
nonnequilibrium in considered series. A special attention must 
be given, from this point of view, to radon and thoron [7, 8]. 
In the case, we are not sure on the equilibrum of 238U - 226Ra in 
the sample, it is possible to determine the 238u content from the 
energy E = 1.015 MeV emited by 234Th désintégration. This

8
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transition has a low probability (0.59%) and may be used in the 
case in which we have high resolution detectors, only. Method of 
trace detection [9, 10) is very indicated in radium 
determinations.

Because neither 238U nor 232Th do not emite gamma lines utile 
to active determination of these it is used the activity 
measurement of their désintégration products. When the 
equilibrium is brocken this matter is not possible. This 
situation appears when U and Th are exposed under chemical 
treatments conected to their' purification. The equilibrium is 
established after six months in the 238U - 234Pa sequence and it 
takes more than 60 years in the 232Th - 224Ra sequence. Therefore, 
when are not considered the state of these equilibriums, the 
résulté of the measurements may be mistaken. In our case neither 
standarde nor sample were undertaken under chemical treatments 
and if someone may suppose that in then, there is a radioactive 
equilibrium. This fact is cheched by the results of our 
measurements. We must be sure in this case og the radon (222Rn) 
and thoron (220Rn) equilibrium.

Table 2 and 3 contain the experimental data quotationed from 
the computer memory for our UThS, in which from the total 45 
peaks we retained 11 for uranium and 10 for thorium calculations.

The average of rations of Ry and R ^  were calculated with 
the formulae of weighted arithmetical average with the relative 
errors of individual ratio and the relative errors average with 
the formulae of armonical average. The relations of areas must

9
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be corrected for the different acquisition times and specifically 
R0 is multiplyed by 2.16 and Rj,h is multiplyed by 2.00.
Table 2. Experimental data for the uranium determination.

Radioisotope E(keV) a8(imp) to A8t(Imp) to W Ast> Д
(%)

235ц 144 9.396 4 810 6 11.6 7.7
2*Pa 1.001 3.500 3.6 295 ii 11.86 11.6
2Kpb 351.9 362.304 0.1 35.085 l.i 10.32 1.1242 94.030 0.4 9.105 3.5 10.32 3.52
2UBi 609 243.600 0.2 23.056 1.3 10.56 1.31666 6.576 2.3 584 10 11.26 10.26767.7 19.470 1.0 1.942 7.4 9.96 7.461.120 47.670 0.5 4.131 3.7 11.53 3.731.237 17.037 1.0 1.388 8.5 12.28 8.551.728 7.255 1.6 626 7.1 11.58 7.271.764 36.210 0.6 3.098 3.7 11.68 3.74

R u = 10.0126 A = 3.1,7%

Table 3. Experimental data for thorium determination.

Radio
isotope

В
(keV) (imp) to (imp) ‘to

Rrh< V A Bt> A
(%>

228Ac 209.5 9.530’ 4.25 3.194 6.8 2.98 8.0269.8 15.120 2.03 3.927 7.0 3.85 7.3338.2 19.860 1.47 6.088 3.6 3.26
795.1 2.839 4.19 926 11 3.06 11.8911.1 18.185 1.08 5.475 2.6 3.32 2.8

212Bi 238 4 100.260 0.48 33:267 1.1 3.01 1.2727.7 5.545 2.76 1.804 5.2' 3.07 5.9
208T1 510.6 10.626 1.83 2.808 7.0 3.78 7.2583 27.815 0.87 8.479 2.6 3.28 2.74860 , 3.220 4.34 954 9.5 3.37 10.4

Rj.fr ° 3.093 and A «■ 3.89%

For the mass of U and Th from the UThS is obtained: 
M0 = Ru . 2.16MUS = (2.188 + 0.069)g,
**№ “ ,RTh • 2 -00MThe = (1*293 + 0.046)g 
and for the concentration the values:1 0
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CU = (Мц/Mg) . 100 = 1.271%,
CTh = (Mrh/Mg) . 100 = 0.70%, 
where: Ms = 171.67g is the UThS mass.
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BELTRAMI PARAMETRIZATION AND GAUGING OF 
VIRASORO AND W-INFINITY ALGEBRAS

Liviu TATAR*, Radu TATAR**

Received: 15.09.1992

ABSTRACT. The gauging of Vlraaoro and w-inflnity algebrae are 
discussed from the point of view of BRST symmetry. Both algebras 
are realised as "Russian formulas” for the curvatures built from 
the generators of the Lie algebrae and the corresponding gauge 
fields. The generalized curvatures are to determine the gauge 
invariant Lagrangiane as well as the anomaly structures of the 
conformal two dimensional theory and the w-gravity.

l. introduction. The two dimensional conformal field theory 
has the Virasoro as the underlying symmetry. The classical string 
action is a typical example of a theory invariant under the 
Virasoro algebra. Its invariance and its conformal properties are 
most clearly exhibited in terms of Beltrami differential /1-4/. 
In this parametrization the BRST agebra factorizes in two 
independent and separate structures, which implies that the ghost 
Lagrangian is a sum of a holomorphic and an antiholomorphic terms 
and the action for the string can be expressed ony in terms of 
Weyl invariant quantities.

However, any attempt to treat the spin two gauge field, i.e.c
the Beltrami differential, on the same footing as the higher spin 
fields, which occur in the w-gravity, does not have any future, 
since there are no higher-spin zweibein fields and any higher- 
spin Beltrami differential, with a similar geometric interpre
tation as the spin-2 zweibein field.

Department of Theoretical Phyaicg, University of Cluj-Napooa, 8tr. 
M.KogSlniceanu 1, 3400 Cluj-Napooa, Romania

Department of Phyaica, University of Craiova, 8tr. Al.I.Cuza 13, 1100 
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On the other hand, in two dimension there is an alternative 
formulation /5, 6/ to describe the coupling of gravity to matter 
which includes the auxiliary fields J and J . This alternative 

formulation has two advantages: on the one hand, it can be quite 
naturally connected with the gauging of the Virasoro algebra and, 
on the other hand, it does allow a natural extension for the 
higher spin gauge fileds. Which can be treated on the same 
footing as the spin 2 gauge field.

In this paper we shall adopt a very nice point of view, 
advocated in some recent papers by Baulieu, Bellon and Grimm /7- 
11/. We shall consider the Lie algebras as the starting point in 
our investigations, rather than considering them as special 
invariance properties of a given Lagrangian. For a given Lie 
algebra we associate a gauge field and a ghost to each generator 
of it and we build the corresponding BRST symmetry from a 
geometrical constrain on the curvature called the "Russian 
formula". This can be done very efficient if we use a Poisson 
bracket algebra realisation of the Lie algebra, which is'possible 
not only for the Virasoro algebra but also for the w-infinity 
algebra. For using the Poisson bracket, in addition to the space 
dependence is convenient to introduce one (t) or two (t, u) 
additional variables. It seems that a modification of the Moyal 
bracket /12/ could be used instead of the Poisson bracket to 
obtain a realization of W-infinity algebra /13/.

• The generalized one-form connection, constructed in the 
standard way /11/, will contain the Beltrami differential and the

L. TATAR, R. TATAR
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corresponding ghost for the Virasoro algebra and the high spin 
'gauge fields and their ghosts for w-infinity algebra. This 
connection is fundamental object of our and it can be used to 
build up the gauge inveraint action, the possible anomalies and 
the Wess-Zumino action. For accomplishing these tasks it is 
necessary to introduce the matter fields. Furthermore, the 
gauging of left-moving and right-moving of w-infinity algebra, 
cannot be achieved by simply adding gauge field times current 
terms. The action in this case could be most conveniently written 

by introducing, once again, the auxiliary fields J and J , which 
must be eliminated at the end of the calculation.

2. THE BELTRAMI DIFFERENTIAL AND THE VIRASORO ALGEBRA
2.1. The gauge fields. The Virasoro algebra, without the

central charge, contains an infinite number of generators 
Lq , L-l, ... which satisfy the following commutation relations:

[L n /  - L i J  =  ( “  -  n ) L m+n'* - 1  £  n ' m <  00 • ( 1 )
This Lie algebra can be realised very simple as a Poisson- 

bracket algebra of functions on a one-dimensional phase space, 
with the Poisson bracket defined as:

{f,g}t “ fdtg - (5tf)g, (2)
for two functions f (t) and g(t) . Taking a basic set of functions

lm = tm+1 (3)
we obtain the Virasoro agebra

= (® ~ n)-̂ m+n (̂ )
The BRST symmetry is realised, in the ghost sector, by

15
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associating a ghost cn, n£ -1 to each generator Ln. In the 
general matrix representation (1) the ghost fields are gathered 
together in a Lie-valued ghost:

C = £  L " C n (5)
Л--1

which is not very convenient for the following since (5) contains 
the unknown generators Ln. However if use the basic (3) then the 
ghost c(t) has a simpler form:

oa
a t )  = y , c nt D i l ■ <6)

Л"-1
For a gênerai Lie algebra, the BRST transformation of the ghosts 
ca associated to it are given by:

where the coefficients f^ are defined by
l T a, Tb] » f ^ T c

with Ta the generatoes of the Lie algebra. This BRST 
transformation can be rewritten in a simpler forms if one 
introduced the ghost c = Taca

s c  = [c, c] . (7)

For the Virasoro algebra (4) the BRST symmetry takes the 
following compact form

s c  + {c, c} c = 0 . (8)

This BRST equation can be extended to include the gauge 
fields associated to generators Ln, for the Virasoro algebra we 
have found convenient to associate a one-form An. Furthermore, 
following Stora, we add the ghoet number to the form degree and

16
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assume all commutators to be graded by this total degree. 
Therefore, we can combine the ordinary one-forms with ghost 
number zero and the zero-form with ghost number one i.e. Än = An 
+ Cn. For the Yang-Mills fields associated with a given algebra 
with the ghost satisfying Eq. (7) we can write "the Russian 
formula":

F =■ 3Ä + —  [Ă, Ä ] ■* F = dA + ~  [A, A]
2 2

where 3 = d + s and Ä = A + c with A ° AaTa is the Lie-values 
conection form. For the Virasoro algebra we clain that a similar 
formula takes place i.e.

3Ä + —  [Ă,Ă] t = 3Ă + ĂdcÂ » о (9)

with
m

Ă = J2 (An + Cn) tntl (10)
Л--1

and 3 = d + 8 with d the usual differentia.
Since the Virasoro algebra is deeply related to the two 

dimensional conformal symmetry, it is natural to try to connect 
the one-form An with the complex structure of a Riemanniann 
surface. Conformal classes of metrics on a Riemann surface can 
be parametrized by Beltrami coefficients p(z,z) which are smooth 
complex valued function of the complex coordinates (z, z) of the 
surface, with specific transformation properties. The complex 
coordinate (Z, Z) corresponding to the complex structure
parametrized by the Beltrami differential are given by the 
relations

17
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d Z = A[dz + |idz] and c.c. (11)
Here A. and p are smooth complex-values functions of (z, z) 

which satisfy:
(d ~ pd) z = 0 and c.c. (12)

(d -  рд) А = (Эц)А and c.c. (13)
The infinitesimal diffeormorphism generated by the vector/

field l ‘d = Ç(z,z)-5 + Ç(z,z)ô can be obtained with the Lie 

derivative L ^ d = içad + diç̂  acting on Z

3Z = L . J . Z = i t a ' d Z = [X(dz+pdz)] (Ç-ô) =' 5 _ (14)
= A (5 + ° A-c ,

with c = Ç . By evaluation the variation of dZ in two ways 5(d 

Z) = d(5 Z) we can get the induced variation of p :

0|i = [Э-цЭ+(Эц)]с . (IS)
If we identify c in (14) with the ghost vector field of two 

dimensional diffeomorphism, we can identify Eqs. (14) and (15) 
with the definition of the BRST differential s

s Z  = Ac; sji = [Э — ЦЭ + (Эц) ] c . (16)
The nilpotency of s requires

s c  = c d c (17)
Now the equation (9) for ghost number zero and one and for 

t = 0 gives:
dA"1 + A-1A0 = 0

sA-1 + dc-1 + A-1C° + c-1A°. (18)
Comparing Eqs. (18) and (17) we can easily see that a possible 
solutions of these equations:

A -1 = dz + jidz; c'1 = c;
18
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A 0 = (d\i) d z ; c° = 3c . (19) 
The rest of the one-forms An and the ghosts cn can be found out 
by imposing the validity of Eq.(9) for all values of t /11/. On 
the other hand, we can sove Eq. (9) by making a gauge choice

Ä  = d z + d z Ä j  ( z ,  z ,  t) + d ( z ;  z ,  t) . 
With this choice Eq. (9) yields

d y = _э_д_ . _JL Q = _JL g 
3z  * a t z ' d z  a t

equations which have the obvious solution
Ä  = d z  + dzA-g ( z  + t ,  ~z) + c ( z  + t , l z )

=• e tdz [ d z + <Jz\i + c] .

( 2 0 )

( 21 )

2.2. virasoro Invariant Lagrangian. From the field Ä one 
could construct an invariant if one looks for a two-form ä , 

which is <3-closed and it is defined up to (3-exact terms. The 

ghost zero part of й  is a possible BRST-invariant Lagrangian. 

The only possible candidate built only from A is Ä % , which

nevertheless is hot (3-closed since Ä satisfies Eq. (9) . Here % is

the complex conjugate of Ä. Therefore, in order to build up an 
invariant Lagrangian we must couple Ä to a new field, the matter 
filds.

The matter fields are zero-forms, which cannot contain 
ghosts. For our purpose the starting point is the equation (11). 
In two-dimension, there is a possibility to describe the coupling 
of gravity to matter fielld, which includes two auxiliary fields

19
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J and J /5/. The matter field in this aproach is described by a 
scalar field, which we will take to be a scalar field, which we 
will take to be a single real scalar <p.

We will suppose that the real field q> and (J, J) are 

conected by the equation

dtp = JA'1 -*• JA'1 (22)
i.e. the field tp, J and p are related by:

J = dtp - p J_ _ (22')
J = ôtp - [X J,

The auxiliary field J could be considered as the first term 
in a set of zero forms J*n) with n > -1, which we assemble into:

J =  Сл+1\7(л) (23)л--1
and the equation (22) can be extended for the tilde fields as:

<3ф = J Ä  . (24)
Applying d to this equation and using 3 a ° 0 we get

( 3 J) A + J(<3Ä) +C.C. = 0. (25)
The action of the BRST symmetry on ф and J can be read off 

from Eqs. (24) and (25). The equation (24) can be fulfilled
whether one imposes the condition for vanishing of the curvature 
of J:

3 J +  {A, J} c = 0. (26)
With the gauge choice (21) eq. (26) yields

J = J(z + t, Z ) (27a)
and1

20
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For t = 0 sq. (27b) coincides with eq. (13) i.e. we can 

identify J with к and <p with Z  + Z .

With J and Ä , it is quite easy to construct a BRST invariant 

action as the real two-form

2 = ( JA )  (7 Я) ■ (28)
One can indeed verify that

aa = o,
which proves that the ghost zero part of 2 is a BRST-invariant 

two-form. Now whether we take into consideration eq. (22) the 
classical Lagrangian, obtained from (28) for t - 0 has the usual
form:

2oe ° -f Ц -  (Зф -М^ф) О ф  - цЭ<р) (29)

In fact, in the gauge we have considered, t occurs only 
through z + t and after integration, the action does not depend 
on it. Therefore, the Virasoro gauge theory reduces; rather 
naturally, to the two dimensional conformal field theory.

2.3. virasoro oovariant anomalies. The Wass-Zumino motion, 
in this formulation of the Virasoro gauge field theory the 
general forms of the consistent and covariant anomalies can be 
determined rather straightforwardly. Besides, the Wess-Zumino 
action has a simple form and is calculated very easily. As it is 
well known, in the BRST formalism, an anomaly for the Virasoro 
algebra is a two form with ghost number one. A convariant anomaly 
is an anomaly which has a covariant form and therefore it is well 
defined on the whole Riemann surface.
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Thus, in order to find an anomaly, one must look for a 
general (i.e. including the ghosts) three form Ä 3 satisfying

cJS3 =0. A solution of this equation was proposed by Baulieu, 

Bellon and Grimm /11/ and it has the form

& 3 = Ä  Ä  Ä . (30)

where a dot means the derivative with respect to t. In the gauge 
(21) Ä3 has its ghost one part given by

A ( c ,  ц) = - d c & p d z A d z  (31)
for t = 0, which is the difisomorphism anomaly obtained in a 
factorized form /2,3/.

The form of A is not well defined on the whole Riemann 
surface since it does not have an covariant form under a 
conformal charge of coordinate z -+ z'(z).

To obtain the covariant form of the anomaly, we might follow 
the algebraic approach proposed by Abud, Gieres and Noirot 
/14,15/. However, we have found rather difficult the implemen
tation of these ideas for the Virasoro algebra. So, at this point 
we will just follow the general prescription for the covarian- 
tisation on a generic Riemann surface. In fact, the anomaly (31) 
is equivalent to

A = сЭ3 ц d z  A d z  (31')
and it involves the third order differential operator d3. This 
expression is not well defined on a generic Riemann surface since 
the integrand does not transform with the Jacobian upon passage 
from one coordinate chart to another. In fact the modified
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expression
Ă  = c[d3 + (Rd + dR) ] ц (32)

with R, a projective connection, given by

R = æ i n X - - ( d l n k ) 2, (33)
2

transforms with the Jacobian and represents the covariant 
anomaly. We believe that this form of the anomaly can be obtained 
by using the general algebraic methods for the covariant anomaly.

Since the Virasoro algebra is closed connected to the 
general coordinate transformations, which define a non-comutative 
group, the construction of the associated Wass-Zumino action 
represents a serious problem. However, for the factorized 
anomaly, the problem is simpler. This factorized anomaly could 
be obtained from Ä 3 by using the standard procedure /17/. In fact

we have to "kill" the anomaly A by enlarging the space of fields. 
We shall lift the whole construction from the Rieman surface M 
to Mx[0,1] by considering a family of Beltrami differentials ßu 
such that ßQ = 0 and ß 1 = ß and a family of the "Goldstone field" 
which taked its values in the group of diffeomorphisms and <p0 = 
identity and <p3 = <p. The field Ä and the differential are 
replaced in this case by

' Ă = Ă  + a d u ;  d tot = 3 +  d u .

The function a is determined form Eq. (9) written in terms 
of the new fields and differentials. The Wess-Zumino action for 
the Virasoro algebra (30) is the ghost zero part of the three-

form Â3(À<,)) with Ä 4* the field obtained from Ă  by the action of
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the diffeomorphism cp. If we integrate out the auxiliary variable 
u, one finds the following form of the Wess-Zumino action:

if ф is restricted by the condition fi9 = 0.
It is worth pointing out that the form (34) of the WZ can 

be written with the one-form Ä and со called "half Liouville 
filed" L /13/. The field L is a matter field, which has the first 
term in the t expansion just ln X , with X define in (13) and 
which fulfils the equation

With this definition we can find out, by a simple 
inspection, that the two-form

satisfies the equation <3sf = Ä 3 i.e. its zero ghost part is the

WZ action for the Virasoro algebra. In fact, it is easy to see 
that the ghost number zero of ÿ coincides with (34).

3. W-INFINITY ALGEBRA
3.1. The fields. The W1+m algebra is an extension of the 

Virasoro algebra on the one hand, and a limiting case of the W- 
infinity algebra, on the other hand /18/. It can be written in 
the following simple form:

Я. = d z A d z (pî cPln X* - [id2 ln X)

which takes the form given by Polyakov /18/

S£ = d z A d z  ud2 ln X 
2

(34)

d L  + A  deL  -  dc A = 0 .

ä = - L Ä Ä (35)

J ] = [ (i+l)m - ( j +1) n ] L (36)
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This algebra admits an algebraic interpretation, as the 
algebra of smooth symplectic, area-preserving, diffeomorphisms 
of a cylinder. This can be easily seen considering a set 
functions /19/:

u j  = + i e ^ y 1ştnxyl*!

on a cylinder s1 x R, with 0 й x <, 2ir, -<» < у < -к». These 
functions form a complete set if -oo < m < +«° and 1 £ -1. The 
symplectic structure is generated by the Poisson bracket

f f  3g d f  . d g
i s

(37)

and the area preserving transformation are generated by £x^ *■ 
{Л,х^> (/I = 1, 2) where A is an arbitrary function. One can see

that the basis {u^} satisfies the w1+00 algebra:

i u J i . u j ! } = [ (i+l)m- ( j + l ) n  ) Untn. (38)
The ghost sector of the BRST symmetry for this algebra can

be constructed in a similar manner with the Virasoro case. Here 
we shall use the basis

1J = tn+1u i+1

instead of и * and we define the ghost

C -  £  tnn u 1*1 c "  i

with c„ the ghost associated to the generater L „  .

The Virasoro case (8) can be extended for the w-infinity 
algebra in a straightforward way. The BRST symmetry of the ghosts 
has now the form

a c  *  \  tc,c}t>u = 0. (39)
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This equation can be extended to include the gauge fields 

associated to the generators L„ . We can assemble all these fields

into a power series

До - i

where A„ is a one form attached to the generator which

contains the gauge fields. Moreover, for the complete one-form

Ä  = Ä 0 + C
it has been proposed /11/ the equation

' <ЗЛ+ -|U,Ä}tiU = 0. (40)

where <3 = d  + s . This equation contains eq. (39) for the ghost 

number two.
As in the Virasoro case, we can chose a special gauge and 

identify the physical gauge fields. If one identifies A0'x as the

Beltrami differential, then the equation (40), which is 
equivalent to the BRST symmetry for w-infinity algebra, has the 
solution /11/:

A = u d z + ̂  uJn (Aj (z+t) d z + с г ( z + t )  ) (41)
where Аг is the complex gauge field, coupled to the spin-(l+2) 
conserved current in the w-gravity, and c is the corresponding 
ghost. The BRST transformations for these fields can be obtained 
from eq. (40) and are given by

l - i
sAj
SCj

[ ( j + D A j d c ^ j  
( j + 1) C j  d c 1_ j .

(-Z-J+1) C j . j d A j ]
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3.2. Action for W-gravity. There are a relative small number 
of realisations for w-infinity algebra by gauging it, in 
comparison to the more known classes realisations of Virasoro 
algebra, despite the kindship between the two. Gauging this 
algebra we obtain W-gravity. As 'in the Virasoro case, a BRST - 
invariant action cannot be constructed only with the field Ä. 
However, the auxiliary fields J  and J and the scalar field <p are 
introduced here in a different manner. For w-gravity, we replace 
eq. (22) by ■

<3<p = Ä ( J )  + t ( J )  (43)
where от

Ä ( J )  = Ä ( u - j , t ,  z ,  z)  ^ J d z  + ^ 2  ( d z A 1 + Cj)  J 1*1 .

From this equation we can obtain the BRST transformations 
of ip arid J and J , the relations between these fields since this 
equation is equivalent to the following ones:

о»
scp (J'j+1cj + J <J*1,CJ) (44)

J  = Э<р - £  Ä 1 J 1*1
L --1

J  = Эф - £  Alt7J+1 (45)

The BRST transformations of the auxiliary fields J and J  and 
the compatibility of eqs. (45) can be obtained from eg. (43) by 

using the nilpotence of 3 i .e . 3 2 = 0. In this way we obtain

d J  .= d Ä ( J ) and c . c .

i. e.
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S J  -  d { Ci  J 1*1)

1—1
and

d J  = У2 [ (1+1) A j J 1 + Ш 2 ) J 1*1} .

It is worth while to point out that eqs. (45) could be 
considered the equation of motion for the auxiliary fields J

which describes the coupling of the gauge fields AL to the spin- 
(1+2) conserved current (Эф)1+2.

The Lagrangian (46) can be extended to describe WN gravity 
/22/. If one replaces in Sf the scalar field <p and the auxiliary 
fields J and J with a set of scalar fields that take their values 
in the Lie algebra of SU(N), then, although the entire w-algebra 
is realised as a symmetry, it is really only the gauge fields Ах, 
1 <, N-l that play an essential role. The rest of the gauge fields 
can be set to zero by means of additional symmetries of the 
Lagrangian, that are of the Stueckelberg type. Therefore, in this 
case the remaining fields give rise to a non-trivial gauging of 
the WN algebra.

The 'BRST invariance of SÏ given by (4 6) can be checked by 
using the BRST transformations of the fields Ад^ф and J. 
Nevertheless, it is desirable to obtain an action which is d- 
closed and with the ghost zero part just Я . For this we will

0
and J  , given by the action

eg = -_i (ő(p) (3<p) - J - J  + (Эф) J  + (Эф) J -  2
(46)
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introduce a new one-form.

B ( J ) = d d z  + £  (A2d z  + Cj) J 1*1 (47)
which seems to be the '•integral" of Â(J) . The action which is d- 
closed and has the ghost zero part just L has the form

a = -|A(J)Jţ(J) - I X ( J ) B I J )  +J(J)S(J)] (48)

Indeed, on the one hand, the ghost zero part of ă is
1 z'

J J 1 - S V “ V

If we take into account the relations (45) , this Lagrangian 
boils down to (46). On the other hand L is d-closed, fact which 
can be verified by a direct computation and the use of the form
of dJ.

3.3. W-anomaly. As for the Virasoro algebra, we shall find,
by inspection, a cf-closed form, which depends on A^ and Cj_. It is 

easy to verify, that the looking for three-form can be chosen in
this case as /11/:

i 3 = Ä3& (49)
The closeness Ä 3 can be verified by using eq. (40). In the

gauge (41) the ghost part of Ä 3 for t = u =» 0 takes, the simple

form

Д 2 a (A .13C_1 -  C .j  őA.j) cfzA d z ,  (50)

which is invariant under holomorphic coordinate transformations.
However this part of the anomaly is just the first term in a much
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more complicated expression obtained by Hull /20/ and K. Li and 
Pope /21/.

A possible solution of this problem seems to ,be connected 
to the definition of trace for the auxiliary variables t and u. 
In order to get rid of these variables we must add a "trace" in 
front of the anomaly, which means either putting t = u = 0 after 
doing all differentiations with respect to them, or integration 
in a special way over t and u. If one wants to follow, as close 
as possible, the Yang-Mills case, we shall try to write the 
anomaly in a w-infinity basis. Since in the YM case anomaly 
Д(с,А) is written as: ■

A ( c , A ) = T l  ( c  G (A) ) “ C a Gb T r  ( T a T b) 
it seems natural to try to write our anomaly in the same form. 
With a suitable definition of the trace, we can suppose that

rr(ui u j )  ± 6 ^ 6 ^  (51)
Therefore the anomaly À 2 takes the form

Д 2 = £  а 1 (А1д21*1 c 1 -  C j d 21*1 A x) d z A d z '  
with aL certain coefficients. This form of the anomaly has the 
same form as the one given by C. Hull /20/. However the form and 
the interpretation of these anomaly structures deserve further 
study.
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IN SYSTEMS WITH RESOLVED HETERONUCLEAR INTERACTIONS
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ABSTRACT. - Thermodynamic aspecte under fast magic angle sample 
spinning for ferocene are studied. An extension of the static 
cross-polarization model is presented which applies to the 
''sidebands" of the Hartmann-Hahn condition. . The S-spin 
magnetization in a CP experiment' as function of the S-spin 
irradiation o1s is calculated (CP-MAS spectrum).

1. Introduction. High-speed spinning at the magic angle can 
significantly modify the rate of polarization transfer from 
abundant to rare spins in an cross-polarization NMR experiment 
on solid, if the spinning speed is greater than or comparable to 
the static dipole-dipole interaction among abundant spins in the 
rotating frame in a spin-lock(SL) experiment [1]. We consider in 
the following the "fast spinning" limit where the MAS (magic- 
angle spinning) freguency v>c / 2 n exceeds the proton-proton 
interaction (er »  bkj) . The basic phenomena were demonstrated by 
Waugh et al. [l], the Hartmann-Hahn condition [2] is split into 
sidebands appearing at the Hartmann-Hahn match plus or minus 
integer multiples of the MAS frequency oIr “■ uls ± nwr [3] with 
“n  “ ~YiBn  and “la “ -Ysb ib- For sufficiently fast spinning the 
sidebands for n =* ±1 and ±2 dominate the spectrum. At the 
sideband position, the secular dipolar terms exist in the 
interaction Hamiltonian causing polarization transfer.

In the following ' we refer to the observed §=spin 
magnetization in a GP-^experimént as function of strength of the
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S-spin irradiation uls as the "CP spectrum". We consider an 
organic solid by ferocene [(C5H 5 )2 Fe] single crystal with short 
covalent bonds between 13C and 3H nuclei.

In the case of an S spin with a strong coupling to a spin 
I-L both spins being coupled more modestly to the remaining spins 
Ik (k > 1), the system is treated satisfactorily [4] as the 
tightly coupled spin pair immersed in a bath consisting by the 
remaining protons. We describe the dynamics of CP-MAS process in 
two stages. First we treat the spin pair alone, then we allow the 
spin pair to come into thermodynamic contact with remaining spins 
and.discuss the quasi-equilibrium which is reached.

2. The isolated spin pair Hamiltonian. The Hamiltonian of 
the spin pair I-^S in the usual doubly rotating tilted frame, for 
strong resonant rf field ápplied along the X axis of the rotating 
frame, is given by [4]:

Hpall = <alz Ji* + ü)1 3 S2+ £,(<:) 2 I l y S y (1)
where bx(t) is dipolar coupling constant and its time dependence 
is caused by the sample rotation.

For a static sample it is time independent and given by
b z = Ô-L (3 cos2 0X - 1)

with the anisotropy of the dipolar coupling
Ô, = - 2  b l l h

4 X r ?
Here rx is the l^-s internuclear distance and 0a the angle 
between the internuclear vector and the static magnetic field B0.

Magic angle spinning leaves invariant the spin part of the
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Hamiltonian but renders the dipolar coupling constants time 
dependent. If 0r and <pr denote the polar angles that relate the 
internuclear vector to the MAS rotation axis and or/27т to the MAS 
frequency, the dipolar coupling constant is given by:

Ь г (t) =-|ô1[ (l/^)exp(iwrt) C2 1 (6 r,(pr) - (l/V5)exp(-iwrt) , <pr)
+ (l/v/6 ) exp (2 io>rt) C2 2 (0r,<pr) + (l/УЗ) exp (-2 ia)rt) C2 _2 (0r, <pr) ] 

where ckg are the modified spherical harmonics 
C^(0r,<pr) = ̂ 4Tt/(2Jc+l) Yk(](Qr , <pr) , k , g =  1,2 

To be able to apply thermodynamics properly to the MAS case, 
we have to approximate the time - dependent Hamiltonian of Eq. 
(1) by a time independent Hamiltonian H° because the rules of 
thermodynamics apply only to conservative systems. One way to 
achieve this is to calculate the average Hamiltonian in an 
appropriate interaction frame and to neglect the nonsecular or 
time dependent parts of the interaction Hamiltonian [3]. If we 
describe the CP-MAS experiment in the doubly tilted rotating 
frame, the reservoir terms remain time independent under MAS but 
the perturbation V, containing the heteronuclear dipole coupling, 
become time dependent. The perturbation Hamiltonian V(t) has 
frequency components at wr and 2<ог. For n = -2, -1, 1, 2 (the 
sidebands of the CP spectrum) the transition frequencies of a 
heteronuclear process is matched by a frequency component of 
V (t ) . We transform therefore to a rotating coordinate system 
where the resonant part of V(t) becomes time independent. A such 
transformation can be made using a transformation operator

U = exp (in wrtSz) (2)
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After a such transformation the perturbation can be decomposed 
into a time dependent and a time independent contribution V(t) 
■= V 0 + V 1 (t). The time dependent part of the perturbation 
contains frequencies at integer of the new reservoir Hamiltonian.
The full Hamiltonian can be written as: 

я£1г- “ и 1 * *  (<*iB- ™ z) S z + sin 2 8 J -±exp(i<pz) (S+Xi-
(3a)- S + I * )  + 1  exp (-i<pr) (5-Ji-5‘Ji") 

for n = ± 1  and
“ ь>1 ТХ,+ (a)ls-nwr)5B + — ^ s i n ^ - i  ехр(2 ^фг)

2 y 2  L *
+ -iexp(-2i<|>r) (S-Ji’ij (3b)

for n = ±2 case. In the following we can take for çr a particular 
value <pr = 0 and will be obtained for full Hamiltonian

“ Мц*,+ («1 в-лмг) 5ï + - A :sin2 0r(2Jiy9 ) (4a)
for n = ± 1  case, and

Ä.+ — B i l l ' d *  (2 I . . . S . . ) (4b)
for n *= ±2 case. It may be separated in two commuting parts [4]

H p a ir  ”  И ц 1 , + (G>lfl ~ n < tix ) S g + --- в1па0х (2 J j j ,S L )
4

Яр^г * h £  + d £ (5)
with

iÿ = o)EXE, Я/ = v > î l t .

(|>Е = [<ö ie + «ij) 2 + (аг) а]1/г, (0 Д - [(Öle-ttxr)a+(a1)a],/a
JE - i f c o B e P  + XEsinó1.
тдie = i t  cos ел + х£ sin0 \
Tf . Х,д о А U i . - 8 a) .

XÍ- -§ Ui S* + Xi£П  - Jx ■3 1  (JiS’ + Ji'S*) ,
Û 1 . = 1

where
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a
a, = — —  sin2 0 r , n  = ± 1

1 4/2 ■

a, = — sin2 0 r , n  = ±2  
' 1

and
tg0E = а г / (<о1Г + G>la)

tg0 A = а 1/ (о)1Г - ö ls) = - Ь к/Лш
The eigenvalues of H^aiI are ±-|-a)e and ±1 /2 0 ) 9  and the spin 

pairs may be treated as two independent two-level systems 

involving the inner and outer pair of energy levels and 
representing the zero and double quantum frame, respectively.

3. Modified thermodynamic theory for resolved heteronuolear 
coupling. We assume in the following that the initial spin 
density operator a(o) is prepared as

0 (0 ) 1  - tl«0J лр
k T ± h

-kx / T z { 1} (6)

by a initial (тг/2)y pulse on the I spin applied to a system in 
thermal equilibrium at the high lattice temperature TL, in the 
static field B0. Defining

“or = k T LTr {1} .
the initial density operator in the tilted rotating frame is

N♦ 1

o T( ° ) = a0J-j£ I ke (7)
Because the spin pair treated in the last section interact 

with the surrounding protons and will tend to reach thermal 
equilibrium through spin diffusion, the quasi-equilibrium density
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operator crT(rge) can be represented [4] as the projection of the
operator crT(o) to a three-dimensional space defined by three
orthogonal quasi-invariants { Qlf'Q2, Q3 }:

3

oT(V) = aoi^ a l & l , (8 )
We suppose that the set of operators may be chose such that 
Q jl are orthogonal

< OjOj > “ 0 . i * j

(9)

( 10 )

< A| В > = Tr{A+B}. they are ,
tf+ 1

0 i = 1

N+2
(W.+WUu) ( 2  I g +

£  I" ) '
f

0г B 1
N + 2

(o>e - 2  Uii) N l f -
\

<?3 = -0)“ 1 в“ , (1 1 ) 
because the homonuclear I-I spin dipolar interactions are 
neglected as following by magic angle sample spinning.

Assuming now a strong rf field
Гmaking the approximation G>a e ö lB + a>iz

evaluated from the condition 
< от(0 ) I Qi >Г4 П = _ ___  1 A

+ " i l l » and

as
< 0 i \ 0 i >

N +  1

the coefficients are

(12)

û la + (ЛГ+ 1 ) (0 и

1

À 0)

a 3 = --^-cos0 A.
oî

The quasi-equilibrium density operator become
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0 Г < 0  = “c
N+ 1+SIjcz+J* COS 0л (13)

From this expression the quasi-equilibrium value of <SX> is
<S„> = <£„>T = C- — - • ai + a 2 (14)* г 8jrrL (о1в-лмг-«1Г)а 

and we observe that the Hartmann-Hahn condition for a static
sample, ula = elj: splits for MAS into a series of new matching
conditions olB + n<i>r = (î j where n = ± 1 , ±2 .

4. Conclusions. Intensity of the carbon signal in an organic 
solid by ferocene after a CP magic angle sample spinning 
experiment has been calculated by a modified CP model. The 
maximum of cross-polarization will be obtain for a modified 
Hartmann-Hahn condition й 1в = , obtaining a split of CP-

spectrum. The "sidebands" are located at the Hartmann-Hahn 
condition plus or minus multiples of the MAS frequency.
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THE THERMAL INSTABILITY OF A MAGNETOFLUID 
IN A VERTICAL CHANNEL IN THE PRESENCE OF A RADIATION EFFECT

Л1. MARCU

Received. 3.07.1992

ABSTRACT. - This paper studies the effect of radiation on the 
free convection flow of an electrical conducting viscous fluid 
throungh an open-ended vertical channel and permeated by a 
constant magnetic field in transverse direction. The temperature 
of walls has supposed to vary linearly with the distance. In the 
first paper we obtaine the expression of amplitude disturbance of 
velocity.

Introduction. The problem of heat transfer in electrically 
fluids permeated by electromagnetic fields have been studied by 
many authors [1], [2], [3]. Such studies are of a great 
importance in the design of magnetohydrodynamic generators, shoks 
tubes, pumps, etc. The comprerhensive review of which has been 
given by Romig [4].

The purpose of this paper is to studies the instabilities 
of an electrically fluid confined in an open-ended vertical 
channel in the presence of an magnetic field perpendicular to the 
direction of flow, taking in account the radiaton effect.

Basic equations and the problem. We consider a layer of an 
electrically viscous fluid within a vertical open-ended channel 
is heated from below and in the presence of a radiation effect. 
An horizontal uniform magnetic field B 0 is applied normally to

one side of channel wal],s. In this model we are not concerned
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with the forced convection [3], but the free convection occurs 
when the negative temperature gradient in vertical direction is 
sufficiently great.

We take the origin at the centre of the channel, the z-axis 
along the vertical direction of walls. The uniform magnetic fieldB0

acts in the direction of x-axis.
The relevant magnetohydrodynamic equations for mass, 

momentum, magnetic field, energy and stare are respectively:p j H  + = -V p +  - L  (V x s )  x B + p g + ^ A V (1)
V x  (tfxi?) + V A В

d t , ' (2)
lT  + ? V T  = о Д Г -  1 V ’Çf. 
dt pCp

(3)
p = Ро(1 - р д г ) (4)

in which V is the velocity, p the mass density, p the pressure, 
g(0 ,0 ,-g) the gravitational acceleration, the magnetic 

permeability, В the magnetic field intensity, the viscosity, 
T temperature, vra the magnetic viscosity, a the thermal diffu- 
sivity, p the coefficient of thermal expansion and q R the 
radiative heat flux and Cp the specific heat at the constant 
pressure.

We assume that the surface temperature of the walls vary 
along the vertical direction, the induced magnetic field and 
velocity have only a component in vertical direction and all 
physical variables expect temperature and pressure are function
42
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Of X .

In the primary static state the temperature has the form
[5]:

T  = T0 + ^ ( x )  + N Z (5)
where N is the vertical gradient (a constant) . The subscript zero 
denotes a reference point which will be specified later.

Then from (1) and (4), (5) we find suocesively:
p = p0[l - ß/x(x) - ßWz] (6 )

= -PoPtl-ßf^x) -ßWz] (7)
where N(<0 ) is the upward temperature gradient.

Supose that the initial state is slightly perturbed with the 

perturbed quantities denoted by V 1, 0, , ß . Eqs.(l)-(3) to the

linear approximation [3] become:(V x £ )  A ? - ß 0 £
Po PePo

-Ql = v x (? x ß 0) + vra£

-f̂  = а Д 0 - C0 - N v
О t

where C is obtained taking account [4]:
1  d g R _ 4 ( T - T Q)

pC_ d x P C D fKi
d e bX

d T
d k

C d k

(8)
(9)

(10)

(11)

(12)

1  d &R
pc_ d x

C Q (13)
where kA. is the absorbtion coefficient, ebA the Planck function 
and the subscript zero indicates that the quantities have been 
evaluated at the reference temperature T0. In the equ. (10) we 
have neglected viscous and ohmic dissipation, the fluid does not
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absorb its own emitted radiation, in the case of an optically
thin limit, that is, there is no self absorbtion, but the fluid
does absorb radiation emitted by the boundaries.

It is posible to assume that the velocity and induced
magnetic field are function of x and y and are given by:

( ? =  (0 ,0 , w ( x , y ,  t) ) =» V-? = 0

\£ = (0 ,0 , jbr(x,y , t) ) -V-B = 0 (14>
Eqs. (8 )-(10) however, reduce to:

-I7  = — —  + v A w + (is)d t  цвр0 dx

(16)

-I? “ а Д в -CÖ-Nw; V2 ■= Д = + -ü-
d t  d x 2 b y 2

(17)

We have neglected because we are not concerned by the
a z

forced convection. If we introduce the folowing nondimensional 
quantities

mi n  - --B0 а'•■} Vf*x’ ■ " j ; y  - j ’ f -  jf. к
в- . — !L

N 1  -  a  o v  р0ч
Substituting these and imediately dropping bars one obtains:

= ртм2 + д w* -  яе* ( i9)őt* dx* K 1

; Pz = B = M 2 = s 2 j 2 _ o_ p = ^  (18)a av u pnv m a

зь; őw* '
r őt* Эх* + pmAi>; (2 0 )

Px-|^- = Д0* - F0* + VT; p =C—  (2 1 )őt* a ' '
These wquations permit the separable solution:
W* = U ( x , y )  eu
0 * = в(х,у) eAt (2 2 )
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b '  = B ( x , y )  e Kt

in which A. is assumed complex. The separated equations (19) to
(2 1 ) then become:

X U  = PmM 2- ^ ~  + A U - R &  
m dx *

p A b - p .

P Z X Q  = А в - Г в  + U

(23)
(24)
(25)

Dunwoody [3] has shown that for Pm > 1 the principle of 
exchange of stabilities is valid, i.e. A. is real and the neutral 
instability is characterised by X = 0 .

In this case:
R 9  = P „ M 2 d B  

d x *  
= -Р.ДВ

+ A U

d U  
d x *

U = B Q  - Д ©
(26)
(27)
(28)

The elimination of 0 and В between eqs. (26) - (28) results:
V6 U- FV*U + R - M 2- æ

d x • 2 V2 U  + F M ‘■a d2U  
d x •a (29)

if we note D = d/dx and the disturbance has the form:
U ( x ' , y * ) = f ( x * )  cos(ay*) (30)

we obtain (see appendix):
[С6 -0 4 (За2 +Р^ЛГ2) + D 2 (За4 +а2 (2F+/Í2) + R  + F M 3) ] f -  
= La4 (1 + F )  - R a 2] f  (31)

We note
3 a 2 + F  + M 2 = C,
3 a4 + a2 ( 2 F  + M 2) + R  + F M 3 = C2 

a4 (l +F) -Fa 2 = C3 

and eq. (31) has the form: 
[D6 -C 1 D 4 +C2 D 2]f => C3f

(32)

( 3 3 )
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with the boundary condition
Э9 ,U = 0 ; В = 0 ; Эх* = 0 at X* = ±1

In virtute of (34) one has at the boundaries:
V 2 ( - ^ 1  = - p

[dx*J и U x * 2j
from (26) and

P d2В = _ d U
m Эх*2 Эх*

from (27) . Combining (35) and (36)
(V2 -Af2) = 0Эх*
The boundary condition of f(x) obtained from (34) and 

are thérefore:
/(X*) = 0/ (D 2 r t 2 _Af2) D f  = 0 at X* “ ±1

(34)

(35)

(36)

(37)
(37)

(38)
The roots of caract. equation are:I

1/2 ± I - - 2  - 34  ctg 2  ф

H u

__ 4
4  ctg 2 (p

(

ll 3 N ■f ctg 2 ф

+ r

-i

J Lsin 2 ф

Л .

(39)

sin 2 ÿ
where P  = c2

c. 
Q £

Ci3

l C2 _
3 ~ 27

3

- C,
■Ç + £  > 0; P > 0

Ф = arctg 
2  P 3

N t 9 2

tg у 27 g
Equation (33) has the solution

f i x * )  = A xe aiX + A3 e'aiX ►ev  (A3 cosa3x*+A 4 sina3x*) +
+ е~ДаХ (A5 cosa3x*+A 6 sina3x*)

where
(40)
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= -y - 2

-I N -|ctg2 <p

a, =„ '“'1 -j ctg2 <p
a3 = \fP/ sin2 <p

Taking account of (38) we found the boundary conditions for (40) : 
f ( x * )  =0; D f  = 0; (D 2 - a 2) f  = M2 at x *  = ±1 (41)

This is the first part of this paper. The calculus of disturbance 
amplitudes, the physical interpretation of symétrie and 
antisymetric motion, the value of critical Rayleigh number and 
graphically results will be the subject of the second part of 
this paper.

APPENDIX
Appling Laplace operator to equ. (26) we find: 
i?V2 6  = M 2 — —  (P V 2B) + V 4U

d x
by (27) result:

æu d (PmV 2B)
dx*2 dx*

Combining (42) and (43)
V 20 = A v 4 J7- — J P J L

R R dx*2
Appling Laplace operator to equ. (28) result:
V2C7 = FV2& -  v 4e

and combining with (44) we find:
V 2U  = —  V 4U -  У -  V 46

R R dx*2
with the same procedure applied on (44) and taking account of

(42)

(43)

(44)

(45)

(46)

(46) we have:
æuV 2 Í7 = — V 4U -  F M * d2^ - A v 6 [j+ — V 2

R R dx*2 R R dx*2
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V2 t/ + FM2-̂ -̂ - = 0
Эх*2

(47)

R E F E R E N C E S
1. C.S.Yih, Quart. Appl. Math. 17, 501(1959).
2. A.S.Gupta, Rev. Roum. Pures et Appl. XII, 5, 665(1967).
3. C.P.Yu, Phus. of Fluids 11, 4, 756(1968).
4. D.C.Sanyal, S.K.Samanta, Czech. J.Phys. B, 39, 384(1989).
5. D.C.Sanyal, B.Jash, Acta Phys. Slov. 40, 6, 329(1990).

48



STUDIA UNIV. BABEŞ—BOLYAI, PHYSICA, XXXVII, 2, 1992

MAGNETOGRAVITATIONAL STABILITY OF RESISTIVE ROTATING PLASMA 
THROUGH POROUS MEDIUM WITH,THERMAL CONDUCTION 

AND FINITE LARMOR RADIUS

M. VASIU*
Received: 10.10.1992

ABSTRACT. - The purpose of this paper is to give the diBpresion 
equation and the stability criterion for longitudinal propagation 
of the perturbations in the case of an infinitely extending 
homogenous viscous self-gravitating plasma through porous medium 
with finite electrical and thermal conductivities and finite 
Larmor corrections.

Introduction. In this present paper the magnetogravitational 

stability of resistive rotating viscous plasma through a porous 

medium with finite electrical and thermal conductivities andi
finite Larmor radius corrections is studied. The problem of 

magnetogravitational stability of a pure cosmic plasma flowing 

through a porous medium has been investigated in same studies 

[1], [2], [3], [4], [5].

Plasma is assumed as a compresible and viscous medium in a 

uniform rotational motion with angular velocity [ 1 (0 ,0 ,0 ) and the
I

same time is found under the influence of uniform vertical 

magnetic field Bo(0,0,Bo) and under the influence of a proper 

gravitational field.

"Babeş-Bolyai" University, Faculty of Physics, 3400 Cluj-Napoca,
Romania
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Linearised perturbation equations. It is admitted* that in
I . I, , , ' ' ’

I * ' , 4 1' ► (Jthe plasma appear small perturbations. We neglect the squares andI , i , ' V' ' 1 »
products of the perturbations. ; ' 1

The linearised perturbation equations of the plasma are

Д ^ + 2 П х ?  = - J l V(äjP) + VS<p + v Vtf + 
d t  PoV п  / п  . л  \ V ÿ  + ’ , 1

M q Po
V x S B x B q

Í ^ l = V x ( x / x 5 0)+v„,A(65) 1 
, - ^ ( < S p . - V 2 í  p ) » у в ф р - У ,26 p )  ‘ 
•Д'(S<p)>° —Апвб'р 1
У - S B  = О,  . '

(1)

( 2 ) 
(3) 

. (4)

(5)

( 6 )

where S P ,  6ф,, Др; S p ,  V ,  S B are the perturbations in pressure

tensor, gravitational potential’, density, pressure, velocity and’ ! - '*1
V ■ Г  C „  'magnetic field respectively; p 0 , k i ,  z ,  v m', Q , ' y  *  —E. are the ,

, L ‘ ’ C v,
density of plasma, kinematic viscosity, permeability of the

- , 1 1 > , 'i _ ' - ,porous medium, porosity, resistivity of plasma, thermal
ft - , I I 1 I

,,diffusivity, ■ ratio of the two specific ’ heats ( C p and c v) 

respectively; V, Д =* V2 are the iţabla and' ' Laplace
, ! , I

opéfatorsraspectively; G is universal gravitational constant.• ‘ I ( 1

“ We take the vertical magnetic field JSfg along g-axie. In ,

this ease the 'eempenents (k , l  s i, 2 , Э.) fer the perturbation ■
■'< ■ ' ’ I

pressure tensor S P , considering the finite,^ Larmor radius as
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given by Roberts and Taylor [1], are

(7)

where Po vo0 = k N T / 4 <1>̂ , v0 = r| <ù± / 4 , к , N , T , denote the

Boltzmann's constant, the number of ions, number density, ion 

temperature and ion gyration frequency respectively; v0 is the 

gyroviscosity, r L is the Larmor radius; tf(u,v,w) .

The perturbation 6 < p ( z , t ) for the longitudinal propagation 

(paralel to the magnetic field) have the forms

where <p* is the amplitude, к is the wave number and n (may be 

complex) is the frequency of the disturbance.

Using the relations

where S x , are the unit vectors, and we obtain from (l)-(5 ) 

the following algebraic equations:

S i p ( z , t )  = <p* exp ( I k z  + i n t  ) ( 8 )

2 Пх\? = - 2 nve?x + 2 fl и S y

J B* - 2 ’(fl = V0 & 2 )v* = ÍB* ? 0ы ' Unûn *
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s b %

5B.
í k B

Í k B ,

~n;

° u *
о *_ V

S B * = 0

S p *  «= 

1 к 6 ф

{ í n y  + n k ) V 2------ ,--------------- О p£n+7Í* 4 w Í G p 0 *
where ílk = у 0  к 2 .

With the help of the relations
as
■re i n  S =■ (i)Ç

we define the displacement vector S(S*, ţ y , £я) , where о 

Substituting ip, S B X , S B y , 6ф,  6 p from (12), (13),

(16), (17) respectively in equations (9)-(ll) we obtain:
г 2 тг2

“ + V ( * 2 + Xl) 2 (n ~' >ok 2 ) t y + ** = 0

2 2

“+v(*2 + 7̂ ;) + 2(n -yo^2)£x+ = 0
(® + nA) CJ2+cov| ^ 2 + j  + i  (j2u + j/2nk)iz = 0 ,

where Пm ° a > + v mk 2 , J 2 = k 2Vg - 4 n G p 0 , J /2 = k 2V g 2 - 4 7rGp0,

where vf = Y Po / Po / Vg2 ° -j I У = < V C v .

By the folowing substitutions:

( 11 )

(12)

(13)
(14)

(15)

(16)
(17)

(18) 

in. (14) ,
(19)

(2 0) 

(21)

(10)
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n = v|fc2 + - L j , 6\,= (0 + n, П = v|ifc2 + Jij, =■ ы+П (2 2 )

A = 2(n - v 0 k 2 ) , В = 1  (j 2 g) + J / 2 n k ) ' rAii'

7 - V
6)̂ = ûï2 + 6)ПЛ ,

equations (19)-(21) can be reduced to the form:,  ^ - l  2 ía « " « 'ШО

П /nav + k 2v l )5x-A n raÇy = 0
, , t

(23)

n m“v + k 2v l ] ky + А П га$х - 0

i -■ *
.. ; (24)

(Ufefiv + В)£г - 0 . (25)

Dispersion equation. Equation (23)-(25) have non trivial
, ■ - Г'  ̂ ^ 1

solutions if the determinant £> of the following matrix vanishes

nm4. + k 2v l

АПт

"АП и
nm 4  + *Vj|

0

0

üfcû, +BJ

4

/
0  ,

so that

nm< ^ + k 2v l  - А Пт 0
АПт Пт Ч + Л 2̂  0

0 0 + в
о

We obtain the dispersion equation 
propagation

(“ Л  + В) [ ( î l  m<*y  + k 2V * ) 2 + А 2 П 2т 
On equating the first factor of eg. (28)

for the longitudinal

a 0  . (28) 

to zero we get
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<ofcöv +B = 0 (29)

and on equating the second one of eq. (28) to zero we get:

( n m<*v.,+ k 2v l ) 2 + A 2Ci2m = 0 .  (30)

We limit the discussion at the dispersion relation (29) . Eq. (29) 

can be brought to the form:

or3 + (0? v(4 *2̂ )"n*
+ G> ntv| I k 2 + l* 1 + 1 J 2 + -  n k J /2 

e K

(31)

This is identical to Vyas', Chhajlani' [6 ] (of. eq. 25).

In the absence of the thermal diffusivity (в » о, Пк = 0) and the 

porosity of medium (e = 1, k± = °°) eq. (31) is reduced to
I

<j? + 6)v |^A:2J + J 2 =0. (32)

This is identical to Vasiu' [7] (cf. eq. 37) for (ß = 0, vc = 0). 

Equation (31) is reduced to the form

a0 o>3 + a1rf + a2 0)+ a3 = 0 (33)

where

a0 = 1 , ax « vţ-ifc2 + j L  j + Clk

a3 “ j ^ k J / 2 .

According to Routh-Hurvitz'в criterion for the dynamical 

stability of the system all the roots of the eq. (3 3 ) have 

negative real parts (Re(u) < 0) , if and only if all the principal 

diagonal minors ( 1 = 1 ,  2, 3) of Hurwitz's determinant D are
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positive (Д} > 0). The determinant D is

D =
Si a3 0  a 0 a 2 0 0 a x a 3

and the principal diagonal minors Д_£ have the form 

Ai = aa = v | i * 2 + + > 0

^ 2
a l a 3 

1  an : a la 2-a3 и [V (-|^2+ -ĵ -) +Пk ]

tnAv ( ^ 2+1l ) +ij-2]--inA(j/)2>o

Д3 -
a i  a 3 0 1 a 2 00 a x a 3 a 3

a 1 a 3 1 a 2 a3 A2 b — fljj(^ • Д2 > 0

(34)

(35)

Thus magnetized self-gravitating plasma with finite and 

thermal conductivities in porous medium is stable if

J /2> 0 

or

k 2v's 2 - 4 7lGp0 > 0 , (36)

if

k ' j 2 = 4тгСр0 /у ' 2 ' (37)

medium is stable for к  > k j  , where к ^ is modified Jeans'wave 

number for thermally conducting medium.

For nonviscous (v =' 0) , thermally nonconducting (ПА = 0) 

selfgravitating porous medium, the dispersion equation (31)
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becomes

и? + — J 2 = О . (38)e
The condition of stability is

J 2 > 0 (39)

where J 2 = k 2v \  - 4 n G p 0 . If

k y = 4 n G p 0 / V g  , (40)

medium is stable for к  > k j ,  where k 3 is Jeans'wave number.
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AS A FREE ELECTRON LASER
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ABSTRACT. - In a plasma that has an anisotropic electron 
distribution function the process of stimulated "bremsetrahlung" 
(backscattering) could lead to the super-radiance phenomenon, 
which is connected with the interaction from a free electron 
laeer. In this paper we present an analysis of this induced 
emission of backscattering, which can be bigger than the 
absorbtion. The condition for amplification in such a process is 
determined and the gain factor ie calculated in the classical 
limit of the problem.

1. Introduction. In 1962 was firstly observed that in a 
plasma the stimulated bremsstrahlung emission [1 ] can be bigger 
than the absorbtion. In these paper we want to analyse this 
proces from the point of view of the possibility that the induced 
backscattering could be considered as a free electron laser, in 
which an amplification of this radiation takes place, the 
frequencies of such a device being tunable. Without giving a 
detailed mathematical description of the backscattering process 
we can see that the atenuation due to this induced radiation, 
which may be written under a known form [2 ], leads to the 
condition for an amplifications

( 1)

oror

(2)
where the amplification (gain) length is given by:
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S . COLDEA

^ ( - Ä ) " 1-1 8 * 10“ ' ^  <3>
where v0 is the electron thermal velocity, up is the plasma 
frequency, e is the radiation frequency, n-the electron density 
and T is the plasma temperature, ho being the photon energy. We 
will analyse separately these relations, our aim being here the 
calculation of the gain factor Л of the backscattering process 
and of the imposed conditions upon the electron distribution
function. The gain factor Л is defined in the backscattering

i

attenuation equation [1]:
(4)

t  d t  l « J v '
Л being a numerical quantity which depends on the electron

distribution nature; Л>0 for an isotropic distribution and Л<0
for a sufficiently anisotropic electron distribution. A parallel
process to the backscattering one is the Compton scattering in
the relativistic case or the Thomson scattering in the

, ‘ 1
nonrelativistic situation v « c. The’ Compton scattering is 
described by the following equation:

\ ( \ (5)1  . d e = / 8 Jt \ ( e 4 'i
e dt П ( Э ) U 2c 3)'

(6 )

and finally, for the backscattering attenuation we have:
1 . _de c_ 16 7t2 n 2 Ze 6 .д 
e dt л? 3 Veto2

where /i is the plasma collision frequency and e is the photon
energy. If we make a numerical analysis for the gain condition 
given by the equation (3), we see that for the following data: 
n = 1022, T = lOOeV, X = 0.1/x we will obtain a gain length L = 
l.lß cm and for n = 1018, T = lOeV, and A = 10 /1 , L = 3 . 7 m .  The 
conclusion is that for a valuable gain length L we need heigh
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densities n of the electrons.

2. The calculation of the gain factor. The problem of 
stimulated backscattering is essentially a quantic one, but we 
could work in the classical approximation,■ when ho *. kT for 
radiofrequency waves emission. A perturbation theory will be 
used. The absorbtion energy, which is of second order in 

radiation field E(w,k) and in the noise potential«}) = ^ 0 (£3 ,iT)

can be written as [2 ]:
= J 3 Ë = e - f d 3 v Ê 9 - ô f 3 at J

which can be detailed under the form:
(7)

de
d t

= l
m-

• f d 3v E - V• f d 3 K d Q .---------Í
J  J (w+£-?) (£i+w+(^+^- ?))

dV-
( e  + V- B) --A-— :— ^3? ( Q + K - V )  d V  ( u + k - V )

, 3 f
d V (8 )

В being the radiation selfmagnetic field. Because we select the 

nonrelativistic case v « c, we can neglect & a n d  В and for the
noise fluctuations we can use the screened static potential:

<Q • Q*> = ± n  -  Z e l (9)
n ( K 2 + K q ) 2

K0 being the Debye wavenumber. After some calculations, by using

in the equation (8 ) the dominant term in the integralJd3 К •d Q , 
we have:

d f  _ ( 1 6 n 2n 2- Z e 6 
d t m3v£<û2

E 2
8 n J l  • f71 J

d 3 V log 1  + K 2 • V 2 

(w2 + <ù2p)

( l ( e - e ( 9 : V ) 2 - ^  + ( e - e ( V - V ) (10)
If the distribution function f is sufficiently anisotropic,
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we can define the gain factor by comparing the equations (10) and
(6) :
A = -4p-logA-ve3 -f0 (0) 7t

3 log 1
( 2 k T ) 2 

h 2 ( u 2 + b>2p ) t
- V e - f Q(0) (11)

in the case of the attenuation of the radiation field. For an 
anisotropic distribution, with an axial simmetry arround an axis 
a ,  f  can be developed in the Legendre polynomials:

f  = Y , f n ‘ pn (3-9) (12)
and

d f  _  f  a# Zu
3pn(a*il)

3 9 9 9
(13)

The spherical harmonics theorem could be used with the

purpose to integrate jd3K’dQ and we should obtain the final form 
of A:

A = - ^ • ( v ’B3 -/o(0 ) + 2  -vi,3- [1-3 (S-£)2] -f— -f2 (v)) (14)j  j  J V

with 0^ (e-a) 2 á 1. To have an amplification the following
condition must be satisfied (A > 0):

> f 0 (0) . (15)
This classical approximation for the backscattering is 

applied for small values of the frequency o, but in this case 
that о is near the natural resonance frequencies (op, the 
gyrofrequency and the ion-acoustic frequency) . But an anisotropic 
plasma is unstable and the high amplitude oscillations 
(instabilities) could spread the radiation. The classical 
condition to have an induced backscattering with a gain factor 
givfen by the equation (1 0 ) can be used for various cases, like 
that of an electron beam having a gaussian distribution, which
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propagates through the static ions of the plasma, 
distribution function is in this case of the form:

f ( v )  = •exp
and л 2-?е

( v - v D) ‘

f0 (0 ) = -Л--ехр

v0

v l

ve

The

(16)

(17)

By evaluating the integral J f 2 (v) with the special

method of the "sadle Point", for big values of ( —  I, after a
[ ve)

straightforward calculations, we obtain the following gain 
condition:

—  ‘ y/n-Vo > exp b (18)
where vD < v0.

3. Conclusions. We have intended here to demonstrate the 
possibility of an amplification of stimulated) "bremsstrahlung" 
(backscattering) radiation by using the classical approximation. 
We could make further an analysis with the aim to see that the 
gain is small in this case, with the exception of dense plasmas. 
We see that the gain depends of the plasma collision frequency 
too, which gives the plasma relaxation rate to the equilibrium 
and to an anisotropic situation. The conclusion is that the gain 
could be obtained easier for low frequencies radiations, but in 
this case we must try that our analysis remove these effects. At 
higher, optical frequencies the radiation gain can take place 
before the excitation of plasma instabilities, all the resonance 
frequencies being much smaller than the radiation frequency o.
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In this case we are obliged to use the guantic theory (the
1 '

simplest case is the relativistic one, when v « c). Then it is 
necessary a more detailed quantic, (and classical) analysis of the 
relativistic case of the obtained radiation gain process in the 
optical region of the basckscattering in a plasma. Some 
experiments, that are possible only in the laboratories where 
very dense and hot plasmas can be produced, could be made with 
the aim to verify these phenomena which we have discussed here. 
We have demonstrated that, for the given exemple, it is possible 
that the amplification take place only in the classical limit. 
Also an analysis which would use the particle simulation 
technique should be necessary for the discussed phenomenon.
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RESTRUCTURATION KINETICS IN THORIA-URANIA 
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ABSTRACT. - The grain growth in the Thoria-Urania advanced 
nuclear fuel is considered in the frame of the atomic diffusion.
The semiempirical constants deduced are reported. It appears that 
within a 3 pm error the model reasonably fits the the 
experimental data.

Introduction. The Thoria-Urania mixed oxide, (U,Th)02, is 
considered as a potential fuel for the Pressurised Heavy Water 
Reactors working as Thermal Breeders. It is a high density 
ceramic wich must meet additional conditions relative to the 
common U02, complying with high burn-up and reprocessing 
requirements [1,2]. Moreover, in order to allow a complete post
irradiation evaluation, the restructuring kinetics of the fuel 
must be well characterized.

Our previous studies on the atomic hemogeneity in Thoria- 
Urania [3,4] suggested that the mass diffusion is the dominating 
mechanism in the formation of the solid solution. Therefore, a 
diffusion model is assumed now in a numerical analysis of the 
grain growth kinetics of Thoria-Urania. Fortunately, by contrast 
to (U,Pu)02,o [6 ] the high chemical stability of Thoria avoids an 
alteration of the metal/oxygen ratio.

Theory. If mass diffusion is assumed, the fraction of grains 
which will grow, dF, is <}iven by [7]:

*
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d F
d t

k 0 exp j O '
R T

which yields for isothermal annealing:

(1)

F  = F q exp -Я0 exp ^
RT j

( 2 )

where F0 is the initial fraction of unrecrystallized grains, Q 
is the 'activation energy and X0 is a constant. Eq. (1) may be 
integrated for temperature transients also [7], without 
additional physical constants to be considered. In order to find 
the X0 and Q constants, eq. (2) is transformed for grain sizes
as :

Dm- D

~ ~ d 7
-  A exp ■u ,x p ( ' f (3)

where Dœ is taken as an asymptotic limiting value of the grain 
size specific only for this type of fuel [5].

For an isothermal annealing one obtains:
D = Ц, {1 - A exp [C(t) * fc] } (4)

which may be conveniently used to fit the experimental data by 
the least squares procedure.

Experimental. The pellets used for the out of reactor 
modelling of the grain growth were prepared by a conventional 
powder mixing, pressing and sintering in an optimiz°ed procedure 
[5]. The density, homogeneity and pore size distribution were 
controlled to fit the in-reactor requirements.

The annealing was performed in dry hydrogen for times 
ranging up to 300 hours at 1873, 1973, 2073 and 1173°K. Five 
specimens were analysed for every annealing temperature.
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The grain size was measured by the linear intercept method 
by using Scanning Electron Microscopy micrographs.

Numerical procedure. Since the parameters of the sintered 
ceramics are usually affected by a large spread, when applying 
the least squares procedure precautions should be taken to avoid 
local minimums or saddle points. Therefore, three numerical 
procedures were considered in parallel in order to avoid 
erroneous fits: a Monte-Carlo search, the conjugate gradient 
algorithm and a quasi Newton algorithm. For the second and third 
procedures the IMSL ZCGR and ZXMIN [8 ] procedures were used on 
a 64 bit machine.

, (

Results and discussions. The comparison of the parameters 
obtained by the three methods were very close, eliminating the 
hypothesis of local minimums. Thus, we obtained the following 
temperature dependences of the parameters in model (4):

Dœ(T) = -30,685 + 0,03737 * T ± 3 (5)
where T is the absolute temperature and D is measured in miarons.

ln[C(lj] " 25,815- 6 7 2 4  (6 )

yielding for the activation energy, Q, a value of 461.5 KJ/mol.
The constant A is affected by a quite large error,

A = 0,4102 ± 0,08 (7)
but if a linear dependence on T is allowed,

'A = -0,918 + 6,67*10~4*T ± 0,02 (8 )
the error decreases at 5% which is inferior to ehe spread of the

65



D. CIURCHEA

, , I 1
results for the individual measurements at a given temperature. 

By using these fitted parameters, the error' made in the

measured data. ’ .

evaluation of the grain size in, given temperature and time
66



conditions remains below 3 microns ( f i g .  1) which appears very 
reasonable for the post-irradiation evaluation of the 
restructuring process in an assumed irradiation history.

Although the asymptotic grain size limit was observed in all 
the isothermal experiments, one must observe that Dœ and A did 
not appear to be constants versus temperature, a fact which 
induces a slight semiempirical character to the model (4) . This 
is mainly due to the small activation energy Q which allows the 
grains to grow even at temperatures smaller than the plateau 
value. This feature was not apriori considered in the model, i.e. 
the initial grain size is not explicitely included.

Although the fitted parameters, eq. (5)-(8 ) appear to be 
sufficient for practical purposes, the accuracy of the 
theoretical model (4) could be further improved by considering 
the pore coalescence. This subject will be approached in a 
further paper.

RESTRUCTURATION KINETICS IN THORIA-URANIA
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CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF TWO 
NITRONYL NITROXIDE BIRADICALS
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ABSTRACT. - The crystal structure and the magnetic properties of 
two nitronyl-nitroxide biradicals, NITPh(4-NIT)=1,4- 
bis(4',4',5',5'-tetramethyl-4,5-dihydro-lH-imidazol-2'-yl-1'- 
oxyl-3'-oxide) benzene (I) and NITPh(3-NIT)“1,3-bis(4',4’,5',5 '- 
tetramethy1-4,5-dihydro-lH-imidazol-2-yl-l'-oxyl-3'-oxide) 
benzene (II) are reported. The compounds crystallize in the 
monoclinic space groups: (I) P2./c with a=6.266(l)A, 
b=ll. 790 ( 3 ) A, c=13.781 ( 4 ) A, ß=»104.72 ( 2 ) ° and Z=2; (II) P2./n with 
a=7.318 ( 2 ) A, b“25.366 ( 3 ) A, c-11.669 ( 2-) A, ß=104.72(2)° and Z=4. 
The magnetic susceptibilities and the room temperature EPR 
spectra of the free biradicals indicate that the two spins in 
biradical (I) are antiferomagnetically coupled with J=-72.3 cm' , 
while they are essentially not coupled in biradical (II).

Introduction. Several approaches are followed to synthesize 
magnetic molecular materials [1 ], which can be classed in 
inorganic [2], organic-inorganic [3], organic [4], and organic- 
organometallic [5], according to the chemical nature of the 
magnetic centers. So far Gatteschi et al. [6,7] have used 
nitronyl nitroxides 2-R-4 ' ,  4 ', 5 ', 5 ', -tetramethyl-4,5-dihydro-lH- 
imidazoline-1'-oxyl-3'-oxide, NITR, as paramagnetic ligands 
towards transition metal and lanthanide ions [6,7], and obtained 
a large number of different types of molecular based magnetic 
materials. ,

In order to obtain further information concerning to the 
molecular structure and magnetic properties of some molecular 
materials, we have investigated the NITPh(4-NIT) and NITPh(3-NIT)

"Babeş-Bolyai" University, faculty of Physics, 3400 Cluj-Napoca,
Romania

Technical University, 3400 Cluj-Napoca, Romania
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II

biradicals (Fig.l) by X-ray, EPR and magnetic susceptibility 
measurements.
Experimental. The studied 
nitronyl nitroxide bira
dicals were prepared by a 
previously reported method 
[8 ], with, minor modifi
cations .

X-ray data were 
collected on an Euraf-
Nonius CAD-4 four circle , uFig. 1.Sketchs -of NITPh(4-NIT) ' (I) and
.. __ . . .__ „ „ NITPh(3-NIT) (II) biradicals.diffractometer using Mo-Ka ' ' ' '

radiation. The crystal structures of (I) and (II) biradicals were 
solved by direct methods using the program SIR [9] and Fourier 
methods with the SHELX-76 package [10].

Magnetic susceptibiity of (I) was measured in a field of 
1.35T by using an Aztec DMS 5 Faraday balance magnetometer 
equipped with a Bruker B-E15 electromagnet and an Oxford 
Instruments CF1200S continuous ■ flow cryostat. Magnetic 
susceptibilities of biradical (II) was measured in the 
temperature range 2.4-300 К in a field of 2T by using a 
Metronique Ingeniere MS03 SQUID magnetometer. Diamagnetic 
corrections were estimated from Pascal's constants. Single 
crystal EPR spectra were obtained with a Varian E9 spectrometer 
at X band frequency. The low temperature spectra were recordered 
by Using an Oxford Instruments ESR9 liquid helium continuous flow 
cryostat. Single crystals were oriented with a CAD 4
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diffractometer.

Results and discussion. A) NITPh (4-NIT).
Crystal Structure. The asymmetric unit of biradical (I) 

contains half atoms from the atoms corresponding to the molecular 
formula C2 oH2 0 N4O 4 because a symmetry center is presented in the 
middle of the benzen ring. The whole molecule is shwon in Figure
2 .

The
01-N1-C1-N2-02 
atoms are co- 
p l a n a r  1 as 
expected due 
to orbital
conjugation,

while the five pig.2 . o r te p view of NITPh (4-n i t ). 
membered hete
rocyclic ring is not planar, the tetramethylethylene moiety being 
twisted out of the plane by 0.157(4) and 0.259(4) A .  The methyl 
groups are staggered one relative to the other in order to 
relieve steric repulsion. The plane of the benzen ring makes an 
angle of 28.0(3)° with the radical conjugation planes, and this 
value ring is similar to that reported for the nitronyl nitroxide 
radicals NITPh [11]. The shortest intermolecular distances the
NO groups are 4.670(5) . A ,  between the N 1  and 0 2  atoms of 
molecules reported by translation in the a direction.
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Fig.3 . Temperature dependence of x( = ) and xT (*) for NITPh(4-NIT). The 
solid line represents the calculated values with the best fit parameters.

Magnetic and ŒPR data. Figure 3 shows plots of x and xT vs 
T for the biradical (I). The high xT value («0.7 emu K mol- 1  at 
270 K) is lower than that expected for two S=% uncorreláted spins 
(XT=0.75 emu K mol-1) . x^ curve decreases steadily with decreases 
of the temperature. The susceptibility gets through a maximum at 
T«65 K. This behavior can be easily reproduced considering that 
the two S=% spins of the biradical are antiferomagnetically 
coupled. The J value (I l = J S 1x S 2) can be derived from the relation

J /kBTmax = 8/5. [12]. The value so obtained is J = -72.3 cm-1, in 
good agreement with the value derived from the fitting of the
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experimental j(T ув T data (J=72.0 cm"1) with g=2.01 and R=3.3 10" 
2 where

Fig.4. Angular dependence „of the observed g(s) and lina widths(°) values 
for NITPh(4-NIT) at tha room temperatura. Tha solid lines represent the beet 
fit calculated values. ,

}

Room temperature single crystal EPR spectra of NÏTPh(4-NIT), 
recorded by rotating the crystal around the three perpendicular 
X, .y and z axes, where x«a and у°*[011] , show a single exchange 
narrowed lorentzian line. The angular dependences of the g values 
and of the line width are given in Figure 4. The components of 
the g tensor were obtained with a standard fitting procedure 
[13]. The results (gj-2.003, g2f2.008, g3=2.010) are in good 
agreement with the data reported for nitroxide and nitronyl- 
nitroxide radicals [14-16].
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The observed values are crystal values, i.e. they corespond 
to the average response of the magnetically non-equivalent 
biradicals present in the monoclinic unit cell. It is well know 
that in nitroxides the lowest g value is observed perpendicular 
to the conjugation plane [17], therefore we considered these 
directions for the various magnetically nonequivalent NO groups 
present in the unit cell and averaged them. The result is that 
gx is expected to lie in the ac plane, along of the a direction 
which is in agreement with that found within experimental error.

The observed line widths are in the range of 5.4-7 . 8  G. 
Since the lines are exchange narrowed it is possible to relate 
the peak to peak liniè widths ДН to' the second moment M 2 and to 
the exchange interactions [18]. In principale there are three 
factors wich can influence the second moments the dipolar 
interaction, the unresolved hyperfine splitting and the g 
anisotropy. We estimated these three contributions to the second 
moment of the line. The dipolar contribution to M2, due the 
interaction between two spins of magnetically non-equivalent 
biradicals prevails the other broadening mechanisms. The observed 
ДН can be reproduced with the usual formula for exchange coupled 
sysyems, ÄH»M2 /J' [18], with the inter-radical exangë coupling 
constant, J', of about 0.4 cm-1. This small value found for the* 
inter-molecular coupling constant J', compared with the intra
molecular coupling constant J, confirms the goodness of the 
magnetic data fitting for NITPh(4-NIT)>

B) NITPh(3-NIT)
Crystal Structure. The structure of biradical (II) is

74



CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES

characterized by the C20B

membered hetero-cyclic

positions, as shwon in

sketches the part of
Figure 5, which

rings. Some atoms

disorder existing in

occupy two different

one of the five-

the molecule . where _s  U  V
disorder is, present. Fig. 5. o r t e p view of the part of NiTPh(3-NiT)

displaying disorder.
The atoms labeled with
В have final occupation factors of 0.45(1). However, the carbon 
atom C19 has an occupation factor 1 because it belongs in the 
same time to the equatorial methyl carbon atom of the C19-C16-C20 
group and to the equatorial methyl carbon atom of the C19-C16B- 
C20B group. The differences of bond lengths and angles are 
similar to those reported for other free nitronyl-nitroxide 
radicals [1 1 ].
Figure 6 shows the asymmetric unit, where only the В labeled 
atoms are shown. The fragment 01-N1-C7-N2-02 is nearly planar; 
the leastsquares plane defined by these atoms shows a maximum 
deviation of 0.038(4) A .  The fragments 03-N3-C14-N4-04 and 03-N3- 
C14-N4B-04B (Fig. 5) show larger deviations from planarity
(я 0.20(1)А).
The plane of the benzene ring makes angles of about 35° with the
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01-N1-C7-N2-02 plane, 
31° .with the 03-N3- 
C14-N4-04 plane and 

C13 36° with the 03-N3-
C14-N4B plane (fig. 
5). The shortest 
i n t e r m o l e c u l a r  

contacts between NO 
g r o u p s  i n v o l v e  
nitronyl nitroxides 
reported by inversion 

center. The distances Nl-01'and 01-N1' are 3.480(5) A, while NI
NI'' and 0 1 -0 1 ' are 3.892(5) and 3.518(5) A respectively; the 
distance 01-N2' and the symmetric one N2-01' are longer (4.087(5) 
A) . Contacts between NO groups of molecules related by a 
translation along of the a axis, are slightly longer (0 1 -0 2 " = 
4.331(5) A and N 1 -0 2 " = 4.589(5) A).

Magnetic and EPR data. Figure 7 shows the temperature 
dependence of xT for NITPh(3-NIT) which is approximately constant 
over 35 K, with a value of 0.72 emu KmOl-1. xT decreases below 
this temperature at 0.495 emu Kmol - 1  for T=2.4 К with a 
characteristic slope of an antiferromagnetic coupling.

Room temperature single crystal EPR specra of NITPh(3-NIT) 
were recorded by rotating the crystal around the b, c and a* = 
b X'c axes. Figure 8 shows the angular dependence of q and of the 
linewidth. The calculated g tensor components are: д^г.ООб,

L. DAVID et al.
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Tem pe r at u re  (K)
Fig . 7  . Temperature dependence of x K a ) for М Т Р Ь ( З - Ш Т ) .  The solid line represent the calculated 
values with the following parameters: J=0.0cm’\  J'“ 4  Ocm and g=1 98.

g2=2.009 and g3=2.010. By the same procedure outlined for 
biradical (I) we found that g3 is expected to be parallel to b 
axis.

The interpretation of the magnetic data requires the consi
deration of the coupling between the two spins as well as that 
between the two spins as well as that between the two NO groups 
related by the inversion center, represented by the coupling 
constants J and J', respectively. In fact it has been shown that 
the extend of the coupling between neighboring NO groups can be 
related to the geometric parameters a and d sketched in ,Fig. 9 
and P, the angle between the normal lines to the conju-gation 
planes and the plane containing the four atoms [6 ]. In biradical
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Fig.8 . Angular dependence of the observed g(°) and line widths (•) values for NITPh(3-NIT) at the 
room temperature. The solid lines represent the best fit,calculated velues.

(II) we found: d = 
3.48 A, a = 98.9° and 
ß = 67.0°. The N11

c o m p a r i s o n  wi t h  Fig.9. Geometrical relevant parameters for the magnetic
interaction between two NO grobps related by inversion center.

previously reported
cases [6 ] suggests an antiferomagnetic coupling constant j' of 
ábout -5 cm-1. Other intermolecular interactions, leading to an 
extendend magnetic structure, are expeoted to be of minor extent, 
and will be neglected in a first approach.

In .view of these consideration the> system can be considered 
as a system of four S=% spins described by the following spin 
Hamiltonian:

H =  J (  â 1 X  $ 5  X  §3 X §4 ) + j'§2 X  § 3
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where and ( S 3, S 4) are pairs of interacting spins within

each biradical. The fitting procedure does not give unique 
results because several sets of the three parameters g, J and J '  
reproduce equally well the experimental xT vs T data. Two limit 
cases have been considered, in which either J or J '  are set to 
zero. The two fits yielded respectively: i) J=0.0 cm-1; J'=-4.0 
cm-1, g=1.980 and R=1.8xl0" 2 or ii) J=-1.8 cm"1, J'=0.0 cm-1,
g=l.975 and R=2.5xl0”2.

Additional information on the values of the coupling 
constants can be derived from the analysis of the EPR line 
widths, which are in the range 4.2-5.2 G. The second moment M 2  

of the line must be due to the dipolar interaction, the other 
broadening mechanisms being at least 200 times smaller. The 
observed line widths can be reproduced by assuming the inter
radical J' coupling constant of about 3 cm"1. This agrees were 
closely with fit (i) of the magnetic data given above.

Conclusions. The analysis of the magnetic interactions 
confirms the fundamental importance of topology in determining 
the value of the exchange coupling constants J. In fact when the 
two nitronyl-nitroxide moieties are in the para position of the 
benzene ring, as in NITPH(4-NIT), the coupling constants are 
antiferromagnetic, J=-72.3 cm"1, while in the case of the meta 
geometry of NITPh(3-NIT) spins are essentially not interacting 
(J«0 cm"1) .

The Extended Hückel approximation was used in evaluating the
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interaction between the SOMO's of the two NITR moieties of the 
radicals. With an extention of the treatement used for the weakly 
coupled dinuclear metal complexes the observed coupling constant

I )
mat be associated with the splitting of the two interacting 
SOMO's [19]. Two copper(II) complexes of the above mentioned 
biradicals have been investigated, too [2 0 ].
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IR STUDIES OF SOME COPPER (II) COMPLEXES 
WITH ANTIINFLAMMATORY DRUGS
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ABSTRACT. - In order to obtain further information on the
structure of metal complexes with antiinflammatory drugs the 
following Cu(II) compounds: [Cu(II),(aspirinate)4](HpOU, (Cu(II)
(indomethacinjţ](HjO),, [Cu(II)(ibuprofe n )2](H20)2 an
(Cu(II) (piroxicam)2] (DMF)2 were prepared and investigated by IR 
spectroscopy. The assignment of the main absorption bands from 
the spectra of complexes was made. The shifts of some bands and 
the appearance of the other new bands in the complex spectra, 
were explained by the participation of some structural groups to 
the coordination.

1. Introduction» Inflamination is an important response to
G

tissue injury due to any cause. The importance of this 
multifaceted process is appreciated as the beginning of the 
tissue repair process, which is required to reestablish normal 
function [1 ].

Many antiinflammatory agents have been developed to inhibit 
some component of the inflammatory process without correcting the 
cause of the disease or promoting tissue repair. It has been 
demonstrated that copper complexes promote tissue repaiir 
processes [1]. The hypothesis that copper compounds might be 
active as antiinflammatory' agents is supported by the finding 
that copper complexes are effective against arthritic and other
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degenerative diseases of man. Moreover, iy is well known that non 
steroidal antiinflammatory agents posses analgesic activity [2 ]. 
It is also known that a number of copper (II) coordination 
complexes of non steroidal antiinflammatory drugs have been shown 
to be more effective antiinflammatory agents than their parent 
drugs [1-4]. Knowing these qualities, some IR and EPR studies 
were reported on these complexes in order to estimate the action 
of the presence of transition metal ions on the local structure 
[5-8].

For obtaining further information on the local structure of 
some metal complexes with antiinflammatory drugs the copper (III 
complexes with aspirinate, indomethacin, ibuprofen, and piroxicam 
ligands were prepared and investigated by IR spectroscopy.

2. Experimental. [Cu(II)2 {aspirinat©)4](H2 0)2. An amount of 
0.11 mois of acetylsalicylic acid was dissolved in 50 ml of 
ethanol and 0.2 mois of CuS04 were also dissolved in 100 ml of 
water. These two solutions were mixed and stirred for about 1 
hour and then an amount of 2 0 0  ml of water was added to the above 
solu-tion. The greenish precipitate obtained was dried in air at 
room temperature. The structure of this compound is shown in 
Fig.1.
jeu(II)2 (indomethaoin)4 ](H2 0)2 . Indomethacin (0.05 mois) was 
dissolved in 50 ml of ethanol. A CuS04 solution prepared by 
adding 0.01 mois of CuS04 to 2 5 ml of ethanol-water mixture 
(1:1), was added to the first solution. This admixture was
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refluxed for 0.5 hour and 
then mixed with 300 ml of 
wa t e r .  The g r e e n  
precipitate was filtered 
and washed with water.
Finally it was dried in 
air at room temperature.
[Cu(II)(Ibuprofen)2 ](H2 0)2.
This complex was prepared 
by the above exposed me
thod for indomethacin [Cu2(aepirinate)4] compound 

compound.
[Cu(IX)(piroxicam)2] (DM7)2.
prepared according to

The Cu(II) piroxicam compound was

OH 0l5
the following proce
dure: 0 . 1 1  mois of
piroxicam were dis
solved in 1 0 0  ml of 
d i m e t h y l f o r m a m i d e  
(DMF). A CuS04 solu
tion, prepared by ad
ding 0.05 mois of
CUS04 to 100 ml Of Pig. 2. The structure of piroxicam

ethanol-water mixture (1 :1 ), was added to the first solution. 
This mixture was refluxed under stirring for about 0.5 hour at 
60°C. The greenish solid compound was filtered, washed with
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methanol and then dried in air at room temperature. The piroxicam 
molecular structure is shown in Fig.2.

IR absorption spectra in the range 400 to 3600 cm - 1  were 
recorded in KBr pellets form on Carl Zeiss Jena spectrophotometer 
(UR 20 model).

3. Results and discussion. [Cu(II)2 (aspirinate)4](H2 0)2.
Characteristic IR spectra are shown in Fig. 3. The bands observed

Fig.3. IR spectra of Cu(II)-Aspirinate 

at 1720 cm 1  and 1760 cm- 1  in the free ligand spectrum may be 
assigned to stretching vibrations of the carbonyl groups of 
aspirin. Both bands are strongly diminished in intensity in the 
copper(II) complex spectrum and the first band is shifted to 1590
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cm-1. This fact indicates the involving of the carbonyl group in 
the metal cation.

The antisymmetric carboxylate stretching vibration is also 
shifted from 1610 cm- 1  to 1550 cm- 1  in Cu(II)-complex which 
indicates the involving of this group in coordination, too.

The band observed at 435 cm- 1  which do not appears in the 
free ligand, may be attributed to the Cu-O stretching vibration. 
The IR spectrum of CU(II) aspirinate complex shows also an 
absorption band at 770 cm- 1  which is characteristic to vCu_0+ 
<S0_oo vibration. The band ftom 3420 cm- 1  is due to the O-H 
stretching vibration of the coordination water molecules. 
£Cu(IX)a(indOB*thmoin)4 ](Ha0)a. The bands observed at 1700 cm- 1

Fig. 4. IR spectra of Cu(II)-Indomethacln
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and 1725 cm - 1  in the free ligand (Fig. 4) are assigned to the 
carbonyl groups. These bands are found in the spectrum of the 
metal complex at 1590 cm - 1  and 1700 cm-1, respectively. The 
carboxylate stretching vibratibn is also shifted from 1600 cm - 1  

to 1550 cm-1.
We can advance the hypothesis that in the crystalline state 

this compound presents two kinds of dimeric speciess one due to 
the coordination of carboxyl group, following the 
Cu(II)2 (aspirinate) 4 structure in which the Cu-Cu distance is 
short («2 .7A)[8 ], and the other type, using the carbonyl group 
for coordination, in which the Cu-Cu distance is bigger than in 
the first case.

The two crystallization forms named ß-I and у - l  may be 
identified by studying the vas (COO-) frequencies. It is 
important to identify the y-I form which is more efficient 
antiinflammatory agent than ß-I form [9].

The IR spectrum of Cu(II)-indomethacin complex shows also 
an absorption band at 3450 cm" 1 due to the 0-H stretching 
vibration of the ligand water molecules.
[Cu(II)(ibuprofen)2 ](H2 0 ) 2 - The frequencies observed in the 
28004-3000 cm” 1  region, centred on 2875 cm-1, 2930 cm" 1  and 2965 
cm 1, are due to the methyl and to the methylene groups, in the 
free ligand (Fig.5).

These bands appear at the same frequencies in the Cu(II) 
complex. The band observed at 1730 cm" 1  is assigned to the vco 
vibration of the acid group. This band appears at 1590 cm - 1  in
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Fig.5. IR spectra of Cu(II)-Ibuprofen 
the spectrum of the Cu(II)-complex. The appreciable shift in 
energy suggests that the COO" group is very sensitive to 
complexation о

The combination bands, vm-o+^o-c*»o an^ v m-o+vc-c » appear at 
735 cm- 1  and 555 cm"1, respectively. Cu-ligand and the Cu-OH2  

vibrations appear at 430+470 cm“ 1 and 530 cm'1, respectively.
The 3450 cm- 1  absorbtion band is due to the О-H stretching 

vibration of the ligand water molecules.
ICUÍIX)(piroKioan)3 5 T h e  amide I band (C=0 stretching 
vibration) is moved from 1630 cm- 1  to about 1600 cm“ 1 by 
complexation with Cu(II), in agreement with the results of the 
X-ray structure analysis, which shows strong metal coordination 
to the amide oxygen atom [10]. The sharp and strong band at 3350
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cm- 1  due to the 0-H group of the free ligand is not detectable in 
the metal complex because of the deprotonation of the enolate 0-H 
group [10]. However the band at 1350 cm- 1  attribuable to the >S02  

asymmetric streching vibration indicates a shift of » 30 cm' 1  

upon complexation though the >S02 group does not interact with 
the metal ion.

О. COZAR et al.

Fig. 6. IR spectra of Cu(II)-Piroxicam 
X-ray diffraction studies of some piroxicam metal complexes 

have indicated that metal ion is six-coordinated through carbonyl 
oxygen atom i(015) of the amido group and pyridil nitrogen atom 
(N1') of the ligand molecules (Fig.2). The axial positions along 
the Oz axis are occupied by two DMF molecules bonded to the metal 
through their carbonyl oxygen atoms о [1 0 ].

Piroxicam adopts the N,о-coordination mode. Although an
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ambivalent liganting behaviour cannot be excluded, it should be 
noted that the observed N,0-chelation could be a reflection of 
the preference of transition - metal ions to form intramolecular 
mixedligand complexes by binding to ligands with heteroaromatic 
N residues and О donors [11].

Formation of the uncharged Cu-piroxicam species is of 
particular interest, since it has been shown that such neutral 
Cu-drug complexes are essential for effective distribution of the 
pharmacoactive agents and maintaining the copper balance in blood 
plasma [1 2 ].

' . )

4. Conclusion. The IR spectra of the antiinflammatory drugs 
and theirs Cu(II) complexes allowed us to establish two types of 
vibrations involved in complexation: i) vibrations whose 
frequencies are modified by participating at complexation and 
ii) new stretching vibrations such as vC u _ 0  and other combination 
bands.

The asymmetric and symmetric stretching vibrations of the 
COO- group appear in the 1550+1760 cm- 1  region. After 
complexation it was observed an appreciable shift in frequency, 
in agreement with the contribution to the coordination.

The values of the shifts for the COO” group in metal 
complexes are: 13 0 cm- 1  for Cu-aspirinate, 110 cm - 1  for Cu- 
indomethacin and 140 cm- 1  for Cu-ibuprofen.

Some vibrations sugh as the asymmetric and symmetric 
vibrations of the CH3 and CH2 groups, do not change the
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frequencies values after Cu(II) complexation. The bands assigned 
to these vibrations appear in the 2800-5-3000 cm- 1  region.

In the case of Cu(II)-indomrthacin compound appear two 
dimeric forms due to the different types of coordinations. This 
hypothesis is also supported by EPR measurements.
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ABSTRACT. - The calculation relationship of incompressible volume 
and free volume, corresponding to the elementary cell, resulted 
according to some models affected by approximations such as the 
acceptance of molecular arrangement in a cubic close packed 
quasicryBtalline structure respectively of the free volume 
spherical form. These relationships have been verified on binary 
liquid systems: benzene-carbon tetrachloride, 'benzene-ethilene 
dichloride, acetone-chloroform and acetone-carbon sulphide as 
well as on the corresponding pure components at various 
temperatures. For this purpose we used our own experimental data 
concerning ultrasonic velocity, density, coefficient of thermal 
expansion as well as those of the adiabatic coefficient extracted 
from the table of constants.

1. Introduction. The molecular configuration structures of 
the liquids are determined by the equilibrium of intermolecular 
interaction potentials. Consequently, interactions are reflected 
by some physical factors which are correlated with the 
intermolecular free-length. In this context we can mention: 
refraction indices, density, ultrasonic velocity, compressibility 
and others.

Free volume, respectively excess value become criteria in 
interpreting intermolecular interactions in binary liquid 
mixtures.

Theoretical aspects. Formulated by Collins and Brandt, the
state equation of free volume is given by:

(1 )

“Babeş-Bolyai" University, Faculty of Physics, 3400 Cluj-Napoca,
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where Pĵ is internal pressure, R - perfect gases constant, T - 
temperature, V - molar volume, V0 - incomporessible part of the 
molar volume.

Expressing the internal pressure by:
P  = P g 2 « r
i X

from relationship (1 ) it results that:
/ „  \i/3 / „  U / 3i l l  =  К  = 1 _ J _ 2 L
{ V )  I v )  M ac 2

(2 )

(3)
where M is molar mass, X ~ > a- coefficient of thermal

C v

expansion, c - ultrasound velocity, v and v0 represent the cell 
volume corresponding to a molecule, respectively its 
incompressible part.

The elementary cell free volume is expressed by:
. vf = k(l - d ) 3 (4)

where к is a form factor, 1  - distance between the centers of two 
molecules and d - the molecular diameter.

Relationship (4) by substitution 7 3and —  = i  
v

v f  = к  f v 1  -
1/3

(5)

When the arrangement is in a cubic close packed quasilattice 

system it results the relationship f = /5" and in case of a

spherical form of the free volume where the radius is 1 -d, from 
relationship: (4) it results that к = 4 n / 3 and consequently:

v, =
1  - (6 )
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3. Experimental. The calculations were extended to some 
binary liquid systems, including their respective components, 
thus, the incompressible volume as well as the free volume were 
determined in: benzene-carbon tetrachloride, benzene-dichloride 
ethilene, acetone-chloroform and acetone-carbon-sulphide at 
various concentrations and temperatures.

The thermal expansion coefficient, density and ultrasonic 
velocity within the mixtures obtained were measured by the method 
of optical diffraction in an ultrasonic system of 4 MHz.

In order to calculate the
M u 2c 2T  

Cp
was used, the values for Cp being 
constants.

4. Results. Data obtained are

extracted from the table of

shown in table I.

Table I.

Cone T Pi-1 0 - 5 V-10 - 3 v 0 vf
(K) (N/m2) (m3 /kmol) (A3) (A3)

X c c i ţ Benzene - carbon tetrachloride

1 2 3 4 5 6

293 3748 88,90 117,6 0,340
303 3657 89,97 117,69 0,396
313 3567 91,06 117,74 0,477

0 323 3476 92,27 117,91 0,530
333 3393 93,44 118,00 0,609
343 3304 94,72 118,13 0,702
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1 2 3 4 5 6293 3728 9 0 ,3 9 1 1 9 ,8 8 0 ,3 3 4303 3629 9 1 ,5 3 1 2 0 , 0 1 0 , 3 9 1313 3535 9 2 ,6 9 12 0 ,1 2 0 , 4 5 5

о to 323 3433 9 3 , 8 9 1 2 0 ,1 4 0 , 5 3 2333 3333 95 ,1 2 1 2 0 , 1 1 0 , 6 2 2343 3211 9 6 , 3 9 1 1 9 ,8 0 0 , 6 4 0293 3649 9 2 ,1 3 1 2 2 , 2 1 0 , 3 4 0303 3665 9 3 , 1 0 12 2 ,0 4 0 ,3 9 9313 3469 9 4 ,3 3 1 2 2 , 2 1 0 , 4 6 50 , 4 323 3373 ' 9 5 , 5 1 12 2 ,1 9 0 ,5 4 2333 3269 9 6 , 8 5 12 2 ,2 7 0 , 6 3 5343 3157 9 8 , 1 6 1 2 2 ,0 6 0 ,7 4 9293 3561 9 3 , 2 6 1 2 3 ,2 6 0 , 3 6 1303 3472 94 ,4 3 1 2 3 , 4 1 0 , 4 2 0313 3386 95 ,6 3 1 2 3 ,5 5 0 , 4 8 70 , 6 323 3296 9 6 , 8 6 12 3 ,6 2 0 , 5 6 5333 3195 9 8 , 1 8 1 2 3 , 6 1 0 , 6 6 1343 3094 9 9 , 5 4 12 3 ,5 3 0 , 7 4 4293 3492 9 4 ,8 9 1 2 5 , 3 5 0 , 3 6 9303 3396 9 6 , 0 8 1 2 5 , 4 1 0 , 4 3 3313 3315 9 7 , 2 9 1 2 5 , 5 6 0 , 5 0 1СОо 323 3219 9 8 , 5 5 1 2 5 , 5 5 0 , 5 8 6333 3121 9 9 , 8 8 12 5 ,5 2 0 , 6 2 5343 3021 101,23 12 5 ,3 7 0 , 8 0 3293 3506 9 6 , 5 6 1 2 8 , 2 0 0 , 3 5 3303 3356 9 7 ,7 8 1 2 7 , 8 1 0 , 4 3 4313 3263 9 9 , 0 9 12 7 ,9 7 0 , 5 0 61 , 0 323 3162 10 0 ,3 0 1 2 7 ,7 7 0 , 5 9 7333 3071 101 ,57 1 2 7 , 6 6 0 , 6 9 6343 2973 10 2 ,9 5 12 7 ,5 3 0 , 8 1 6
Хс2Я/,с1 а Benzene - dichloride ethilene293 3748 8 8 , 9 0 1 1 7 , 6 0 0 , 3 4 0303 3658 8 9 ,9 7 11 7 ,6 9 0 , 3 9 6313 3567 9 1 , 0 6 1 1 7 , 7 1 0 , 4 7 70 323 3476 9 2 ,2 7 1 1 7 , 9 1 0 , 5 3 0333 3393 9 3 ,4 4 1 1 8 ,0 0 0 , 6 0 9343 3304 94, 7 2 11 8 ,1 3 0 , 7 0 2
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1 2 3 4 5 6

293 3804 87,24 115,29 0,338
303 3721 88,27 115,41 0,396

0 , 2 313 3642 89,36 115,60 0,448
323 3538 90,49 115,57 0,524
333 3443 91,59 115,49 0,607
343 3344 92,85 115,52 0,705

293 3865 85,39 112,69 0,336
303 3785 86,41 1 1 2 , 8 6 0,387
313 3695 87,44 112,90 0,448

0,4 323 3610 88,53 113,02 0,515
333 3507 89,63 112,90 0,600
343 3388 90,78 112,62 0,709
293 3971 . 83,46 110,26 0,323
303 3878 84,46 110,35 0,358
313 3778 85,46 110,32 0,438

0 , 6 323 3705 86,50 110,50 0,499
333 3597 87,65 110,51 0,582
343 3499 88,52 110,05 0,677
293 ■ 4074 81,33 107,44 0,317
303 4011 82,26 107,67 0,359
313 3921 83,24 107,67 0,413COо 323 3828 84,27 107,85 0,477
333 3727 85,30 107,81 0,552
343 3613 86,44 107,73 0,646
293 4237 79,01 104,63 0,298
303 4179 79,93 104,94 0,336
313 4089 80,86 105,03 0,386оH 323 3997 81,85 105,15 0,444
333 3898 82,86 105,19 0,502
343 3802 83,88 105,90 0,574

X c H c l j Acetone - chloroform
293 3413 73,31 89,56 0,663
303 3304 74,38 88,31 0,865
313 3211 75,49 89,19 0,915

0 323 3099 76,61 88,76 1,086

293 3434 74,84 92,21 0,625
303 3358 75,97 92,38 0,717

0,2 313 3274 77,10 92,41 0,827
323 3169 78,28 92,21 0,973
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1 2 3 4 5 6

293 3424 77,69 95,12 0,600
303 3342 77,75 95,11 0,694

0,4 313 3259 78,84 95,07 0,802
323 3176 79,93 94,93 0,928

293 3465 78,16 97,85 0,557
303 3409 79,21 98,08 0,629

0,6 313 3331 80,24 98,02 0,725
323 3247 81,39 98,03 0,837

293 3600 ' ' 79,48 101,09 0,480
303 3515 80,55 101,18 0,556

0,8 313 3420 81,58 1 0 1 , 0 2 0,648
323 3328 82,70 100,96 0,752

293 3656 80,47 103,14 0,447
303 3586 81,50 103,30 0,511

1,0 313 - 3501 82,60 103,40 0,589
323 3425 83,71 103,52 0,674

Xcs2 Acetone - carbon -- sulphide

293 3413 73,31 89,56 0,663
0 303 3304 74,38 88,31 0,855

313 3211 75,49 89,19 0,915

0 , 2

293
303
313

3380
3279
3194

71,44
72,41
73,51

86,26
85,91
85,84

0,718
0,847
0,980

> 293 3468 69,16 83,31 0,710
0,4 303 3330 70,09 82,65 0,864

313 3237 71,01 82,25 1 , 0 1 1

293 3527 66,78 79,94 0,7240,6 303 3410 67., 67 79,47 0,863
313 3287 68,44 78,62 1,037
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0,8
293303313 365535783442 63,436 4 , 2 06 5 ,0 0 7 5 . 5 1  7 5 , 2 67 4 . 5 1 0 , 7 2 10 , 8 3 01 , 0 0 3

1,0
293303313 382137493665 60 ,2 96 1 ,0 061,77 7 1 , 6 27 1 , 4 07 1 , 1 3 0 , 6 9 80 , 7 9 80 , 9 1 9

Free volume 
variation with 
the concentra
tion at a 
c o n s t a n t  

temperature is 
marked by the 
posibility of 
some interac
tions occuring 
between the 
systems compo
nents ; in' or
der to put them into evidence excess values have been calculated 
from:

Vf - vf(sist.) - [vf(1) • Xi + v f(2) • X 2I

and the results are shown in fig. 1  and 2 .

5. Disousions. The reasoning which led to the calculation 
of incompressible volume and of the free volume corresponding to 
the elementary cell is based on models affected by several
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approximations 
s u c h  a s : 
acceptance of 
m o l e c u l e  

arrangement in a 
cubic close- 
packed quasi- 
c r y s t a l l i n e  

s t r u c t u r e  

respectivelly of 
the free volume 
spherical form.

Figure 2 The results
influenced by there approximations range within the limits 
corresponding to the magnitude orden, offering a geometrical 
reprezentation of molecular structures dependent on the inter- 
molecular interaction potentials.

The independent temperature of incompressible volume as well
\as the increasing free volume according to the temperature, have 

to be mentioned.
Free volume variation, in close connection with concen

tration reflects the cooperative effects of intermolecular 
interactions as a consequence of interactions occuring between 
the system components emphasized by representing the additivity 
deviation.

100



CALCULATION ON ULTRASONIC DATA

R E F E R E N C E S

1. F.C.Collins, M.N.Navidi, J.Chem. Phys. 1954, 22, 1254.
2. F.C.Collins, W.W.Brandt, M.N.Navidi, J. Chem. Phys. 1956, 25, 581.
3. R.J.Buchler, R.M.Wentorf, Hirschfelder, C.F.Curtiss, J.Chem. Phys. 

1951, 19, 61.
4. O.Prakash, A.Srivastava, S.Darbari, Acustica, 1990, 72, 292.
5. D.Ausländer şi colab. Fizica stării lichide, Cluj-Napoca, 1987, 110.

101



t:

iä
ÍL

та



STUDIA UNIV. BABEŞ-BOLYAI, PHYSICA, XXXVII, 2, 1992

ESTIMATE OF INTERNAL PRESSURE CORRECTIONS OF LIQUIDS 
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ABSTRACT. - The correlation of various formulas of the internal 
pressure through their common parameter, the ultrasonic velocity, 
allowed the determination of correction factors regarding the 
rigorous expression of internal pressure in liquids. The 
relationships presented in this paper have been verified on the 
following organic liquids: benzene, carbon tetrachloride, ethane 
dichloride at temperatures ranging from 20°C to 70°C as well as 
on acetone, chlorophorme and carbon sulphide at temperatures from 
20°C to 50°C. For this purpose we used our own experimental data 
for the ultrasonic velocity, density and coefficient of thermal 
expansion and those of the adiabatic coefficient are calculated 
on values from the table of constants.

1. Introduction. The internal pressure is presented in 
various formulas due to the use of different models or to the 
introduction of approximate calculation which is seen in the 
corresponding values discrepancy.

The establishment of the correction coefficients concerning 
the rigorous expression of the internal pressure implies the 
correlation of various formulas through the mechanisms that 
accompany volume variations of the medium. The internal pressure 
is defined by the modification of the potential energy 
corresponding to these volume variations.

2. Theory. The internal pressure defined by:
P,i (1 )

№ ) ,
is expressed as a function of the state parameters by the
relation:

"Babeş-Bolyai" University, Faculty of Physics, 3400 Cluj-Napoca,
Romania
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^  ■ T ( f r ) v - p* <2>
where: P0 is the external pressure that may by neglected in the 
case of liquids, except those undergoing great pressures.

After some transformations we obtain the calculable formula:
Pj = —  a T p c s a 1 (3)X ' “ X Ps

where: a is the coefficient of thermal, expansion, p is the 
density, % = Cp/C0, cv is the ultrasound propagation velocity, 
and ps is the adiabatic compressibility.

The Van der Waals internal pressure derives from a reasoning 
characterized by some approximation on the basis of a molecular 
model. Thus, limiting the interactions to the attraction throungh 
dispersion forces we can calculate the potential energy 
corresponding to all the pairs in a N number of molecules:

(4)E n = -  — л N 2—  — 
p  3 3 уX О

tu О Awhere: — n N 2— - = a being considered a constant value it results2 ,

3

_a
V

respectively, from relation (1 ) :

i(v)
а

V 2

(5)

(6 )
In order to correlate Pi(W) with the ultrasound propagation 

velocity defined by: cj = (dP/dp) s we use:

c 2 = - y l l ( d P \

where neglecting the external pressure we obtain:
P  ¥£±dV = _?I - 
•4 %V2 v l  y 2

and for a narrow temperature range:
D = i 0 f - 2 = i
i(w) 2X P C s  2 X ßs

(7)

(8 )

( 9 )
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Thus, from (3) and (9) ,we obtain the following:
P i  °  2 a  T P Uw) ( 1 0 )

where 2aT represents the correction coefficient.
The Van der Waals internal pressure can be improved by the

following expression of the internal energy:

ар(л)

whence:
- _Ё_ 

V n

a n

(11)

( 12 )

n is a typical liquid constant depending on temperature.
From condition Р ц П) = Pj_ it results the relation between 

the two corrections:
n

V n~
= 2 a T (13)

3. Experimental. The above mentioned relations were tested 
with the following organic liquids: benzene, carbon 
tetrachloride, carbon sulphide, acetone, chloroform and 
dichlorethylene.

We measured at various temperatures the ,ultrasound 
propagation velocity, at 4 MHz frequency, using the optical 
diffraction method. We also determined the coefficient of thermal 
expansion and the density. The values of x = Cp/Cv were obtained 
from the relation:

Ma2 cirX = 1 +---- —
Cp

for Cp we used,constant tables.
(14)

4. Results. The data we obtained are shown in table I. For
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T 1 kl

Figure 1

a comparison reason we presented in the last but one column the 
internal pressure values taken from the constant tables.
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Figure 2

If we admit that the attraction intermolecular interactions 
in those liquids are exclusively caused by the dispersion forces, 
we have:

pi(att) = p i(W) then Рцгер) = p i(W) “ p i 
The temperature dependence of these internal pressure
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components is shown in figure 1  by means of the coefficients:V  -  1 d -P j (aC t) _ _  1 àPx (rep )I (ate) P ' ' <-raP> P  Л г
* i ( a t t )  01 (rep) OJ

at 1  atm. constant external pressure.
The variation as a function of temperature of the correction 

coefficients: 2aT and n is shown in figure 2.

5. Discussion. The internal pressure values resulting from 
the calculation of the (1 2 ) relation are in agreement with the 
literature data, which confirms the validity of Van der Waals 
internal pressure correlation with the actual internal pressure 
through 2aT. The two correction coefficients are typical liquid 
values and depend on temperature.

From (10), (12), (13) relations, taking into consideration 
the absence of the rejecting component of the internal pressure 
from Pj.(W)/ we have: respectively 2aT < 1 and n > 1. The rise of 
2aT, respectively the decrease of n as a function of temperature, 
according to the (13) relation, shows the interaction weakening 
when the intermolecular spaces grow, that of the rejecting one 
being more relevant; as a consequence, the a and— —  values

y n - l

grow, because n decreases. The above mentioned remarks are valid 
for all kinds of intermolecular interactions, which is very 
important, especially in the liquid mixtures study.

The rise in temperature leads to a typical liquid value:
1

in order to the limit condition: 2ctT =1, n = l.

For this temperature, from:
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Pj<raP> = 1 - 2 a T = 1- — —  it follows: 
P u *  tu) V""’ 1

pi(rep) = 0# respectively: PL = Pi(„r
Table 1

Liquid T
<K>

2oT
P,(H) 
(atm) 

from (9)

p |
(atm) 

from (3)

p i
(atm) 
li tera 
-ture

n
from(13)

293 0,71 5163 3700 3701 1,09
303 0,7$ 4797 3611 3611 1,08
313 0,79 4460 3521 3524 1,06

Benzene 323 0,03 4146 3431 3430 1,05
333 0,87 3863 3350 3350 1,04
343 0,91 3594 . 3262 3251 1,03

293 0,72 4743 3416 3416 1,09
303 0,76 4373 3313 3313 1,07

Carbon 313 0,79 4049 3222 3221 1,06
tetra- 323 0,83 3739 3122 3121 ' 1,05

’ chloride 333 0,84 3462 3032 3032 1,04
343 0,92 3198 2935 2936 1,02

Carbon 293 0,69 5404 3772 3772 1,11
sulphide 303 0,73 5031 3702 370Ô 1,09

313 0,77 4672 3618 3618 1,08

293 0,74 4865 3609 3608 1,08
Chloro- 303 0,78 4493 3539 3539 1,07
form 313 0,84 4133 3457 3458 1,05

323 0,88 3812 33B1 3380 1,03

293 0,84 4016 3369 3265 1,05
Acetone 303 0,88 3671 3261 3148 1,03

313 0,94 3372 3170 - 1,02
323 0,99 3079 3059 - 1,00

293 0,66 6305 4183 4182 1,12
303 0,70 5864 4126 4124 , 1,10

Dichlor- 313 0,74 5419 4037 4039 1,08
ethylene 323 0,79 5006 3945 3944 1,07

333 0,83 4619 3848 3850 1,05
343 0,88 4264 3753 3758 1,04

In the case of the liquids with spherical symmetry moleculas 
and non-polar character, PI(W) and Pi(w) - Pj. represents the 
internal pressures corresponding to the cohesive forces, 
respectively the repulsive ones.

In order to describe their variation as a function of 
intermolecular spaces, we followed the temperature dependence of 
those coefficients: Y(Stt) and V(re )• It results that the 
temperature does not influence the Y(att) coefficient, which
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indicates, the linear decrease of the attraction internal 
pressure with temperature. The exponentially decrease of the 
absolute value of the Y(rep) coefficient corresponds to the range 
action of the repulsive force.

In the above reasoning the external pressure was considered 
constant, i.e.latm.

The non-linearity of the variation in the intermolecular 
space as a function of temperature, issued from the rise in the 
coefficient of thermal expansion depending on temperature, is 
negligible comparately to the variation of the temperature 
coefficient of the internal .pressure.
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In  ce l de a l  X X X V l I - l e a  a n  (1992) S t u d ia  U n iv e r s it a t iş  B a b e ş -B o ly a i  a p are  în

i

u rm ă to a re le  serii:

m a te m a tică  (trim estrial)  
fiz ic ă  (sem estrial) 
ch im ie  (sem estrial)  
ge o lo gie  (sem estrial) 
g e o g ra fie  (sem estrial) ^  
b io lo g ie  (sem estrial) 
filo s o fie  (sem estrial) 
so cio lo g ie -p o lito lo g ie  (sem estrial)  
p sih o lo g ie -p e d a g o g ie  (sem estrial)  
ş tiin ţe  e co n o m ice  (sem estrial)  
ş tiin ţe  ju r id ic e  , (sem estrial)

. isto rie  (sem estrial) 
filo lo g ie  (trim estrial)  
teo logie  o rto d o x ă  (sem estrial)

In  th e  X X X V I I - t h  y ç a r  o f  its  'p u b lica tio n  (1992) S t u d ia  U n iv e r s it a t is  B a b e ş -  
B o ly a i  is .is s u e d  in  th e  fo llo w in g  series:

m a th e m a tic s  (q u arterly) '  . „• ,  • «
p h y s ics  (sem esterily)  
ch e m is try  (sem esterily) 
g e o lo g y  (sem esterily)  
g e o g ra p h y  (sem esterily)

. b io lo g y  (sem esterily)
p h ilo so p h y  (sem esterily)  
s o c io lo g y -p o lito lo g y  (sem esterily)  
p s y c h o lo g y -p e d a g o g y  (sem esterily)  
e co n o m ic scie n ces (sem esterily)  
ju r id ic a l scie n ce s (sem esterily) 
h isto ry  (sem esterily)  
p h ilo lo g y  (q u arterly) ‘ •
o rth o d o x  th e o lo g y  (sem esterily)

t <

D a n s  sa  X X X V I J - e  a n n é e  (1992) 
le s  séries s u iv a n te s : '

S t u d ia  U n iv e r s it a t is  B a b e ş -B o ly a i  p a r a ît  d a n s
. I

m a th é m a tiq u e s  (trim estriellem en t)  
p h y s iq u e  (sem estriellem ent)  
ch im ie  (sem estriellem ent)  
geo lo gie  (sem estrielem ent)  
g é o g ra p h ie  (sem estriellem ent)  
b io lo g ie  (se m e strielle m e n t)  
p h ilo so p h ie  (sem estriellem ent)  
so cio lo g ie -p o lito lo g ie  (sem estriellem ent)  
p sy h o lo g ie -p é d a g o g ie  (sem estriellem ent)  
scie n ces, é co n o m iq u e s (sem estriellem ent)  
scien ces ju rid iq u e s  (sem estriellem ent)  
h isto ire (sem estriellem ent)  
philologie) (triem estriellem ent)  
th éolpgie  o rth o d o x e  (sem estriellem ent)




