STUDIA UNIVERSITATIS BABES-BOLYAI

PHYSICA

1984

CLUJ-NAPOCA

REDACTOR SEF: Prof. I. VLAD

REDACTORI ȘEFI ADJUNCȚI: prof. I. HAIDUC, prof. I. KOVACS, , prof. I. A. RUS

COMITETUL DE REDACȚIE FIZICĂ: prof. Z. GÁBOS, prof. V. MERCEA, membru corespondent al Academiei (redactor responsabil), prof. AL. NICULA. prof. I. POP, prof. E. TĂTARU, lect. O. COZAR (secretar de redacție)

STUDIA UNIVERSITATIS BABEŞ-BOLYAI

PH/YSICA

Redacția 3400 CLUJ-NAPOCA str M Kogălniceanu, 1 🕤 Telefon 16101

$\mathbf{S}\,\mathbf{U}\,\mathbf{M}\,\mathbf{A}\,\mathbf{R}\,-\,\mathbf{C}\,\mathbf{O}\,\mathbf{N}\,\mathbf{T}\,\mathbf{E}\,\mathbf{N}\,\mathbf{T}\,\mathbf{S}\,-\,\mathbf{S}\,\mathbf{O}\,\mathbf{M}\,\mathbf{M}\,\mathbf{A}\,\mathbf{I}\,\mathbf{R}\,\mathbf{E}$

E	CULEA, AL NICULA, M CULEA, Electrical properties of $V_2O_5 - As_2O_3$ glasses \bullet Propuetăți electrice ale stielelor $V_2O_5 - As_2O_3$	3
Ę	TRIF, E BARTOK, Metallic complexes of humic acid studied by EPR • Complexis	9 9
R	I CÂMPEANU, On the accuracy of the Hartree-Fock-Slater approximations • Asupra	11
v	MILITARU, AL, NICULA, Base transformations through the technique of the structural	11
D	DĂDÂRLAT, R M CÂNDEA, M BÂRLEA, M CHIRTOC, The behavior of the carrier concentration and the quasi-Fermi levels for Pb _{1-x} Sn _x Te single and double heterostruc- ture diode lasers ③ Comportarea numărului de purtători și a quasi-nivelelor Fermi	10
I.	pentru o simplă și o dublă heterostructură pe bază de $Pb_{1-x}Sn_xTe$ POP, R POP, M COLDEA, The crystalline structure of the intermetallic compounds	21
	$CeCu_{5-x}Ni_x \odot Structura cristalină a compușilor intermetalici CeCu_{5-x}Ni_x$	27
L.	COCIU, E HĂLMĂGEAN, R FODOR, AL NICULA, Hall effect measurements on neu- tron irradiated p-type silicon o Măsurători de efect Hall în Si- tip p iradiat cu neutroni	31
с	COSMA, I MASTAN, V ZNAMIROVSCHI, O COZAR, Cercetări sistematice asupra radio- activității gazelor naturale emanate din sursele geotermale din Valea Ĉernei și Valea Mehadica 😋 Systematical radioactivity investigations of natural gases emanatted from Cerna Valley and Mehadica Valley geothermal springs	35
I	BARBUR, L. BABOS, Măsurători de constantă dielectrică în cristale de N ₂ H ₆ SO ₄ O Dielec- tric measurements on N ₂ H ₆ SO ₄ crystals	43
Z.	GÁBOS, J SZÉN, Miscarea unui corp sferic în rotație în cîmpul gravitațional 👁 Le mou- vement d'un corps sphérique en rotation sous l'influence d'un champ gravitationnel	46
Z	GÁBOS, A PÁSZKÁN, Variația polarizării unui fasicul de electroni împrăștiat într-un cîmp gravitațional 🔿 La variation de la polarisation d'un faisceau d'électrons diffusé par le champ gravitationnel	52
L.	ONIȚIU, S TINCU, Proprietățile acustice ale unor soluții apoase de hidroxizi • Les proprietés acoustiques de quelques solutions aqueuses des hydroxides .	55
I	MILEA, Spectrele de absorbție, fluorescență și fosforescență ale α și β -metilnaftalinelor la 77 K II \odot The absorbțion fluorescence end phosphorescence, spectra of the α end β -methylanp htalenes at 77 K II	58

-

-

	2	
	 S. CUNA, C CUNA, Transferul de sarcină indus prin ciocnire la ionii de tipul [C₆H₅X]²⁺ ● Collision-induced charge transfer of the [C₆H₅X]²⁺ ions C. ȘTEȚIU, The potential depth of primary alcohols and their mixtures ● Bariera de potențial în alcooli primari și amestecuri de alcooli 	64 69
	M. VASIU, Instabilitatea Rayleigh-Taylor a unui fluid visco-elastic cu conductivitate electrică finită Ecuația de dispersie • L'instabilité magnétohydrodynamique de type Rayleigh-Taylor d'un fluide visqueux-élastique avec une conductivité élec- trique finie. L'équation de dispersion	74
•	Note — Notes	
	S SELINGER, Thermal properties of some cholesterol derivatives Proprietățile termice ale unor esteri colesterici	77
	Recenzii - Books - Livres parus	
	A N Matveev, Moleculiarnaia fizica (Fizica moleculară) (GH CRISTEA, I BARBUR)	80

.

-

.

-

ELECTRICAL PROPERTIES OF V₂O₅ - As₂O₃ GLASSES

E. CULEA, AL. NICULA, M. CULEA

1. Introduction. The semiconducting properties of vanadate glasses have been extensively studied since the pioneering work of Denton et al [1]. A comprehensive teoretical model has been published by Mott [2, 3]. According to this model the electrical properties of such glasses arise from a hopping process of unpaired electrons between $V^{4+}-O-V^{5+}$ pairs [4-12] It was established that the electrical properties of vanadate glasses depend both on the V_2O_5 content (respectively the V^{4+}/V^{5+} ratio) and on the nature of glass former.

In order to obtain more information on the electrical properties of vanadate glasses and on the influence of the glass former on these properties we have studied x_0^{\prime} V₂O₅-(100-x)% As₂O₃ glass system with 40 < x < 91 (in molar %) We note that only a few data on vanadate-arsenate glases have been published till now [9, 10 and 12].

2. Experimental. Glass samples were prepared from reagent grade chemicals $(V_2O_5 \text{ and } As_2O_3)$. The mixtures of each composition were melted in quartz ampoules at 800 °C for 90 min and the melts were quenched by plunging the ampoules in water.

Table 1 gives the composition of the samples obtained by chemical analysis.

		Table 1
Sample	Analysed composition (mol %)	Density (g/cm³)
1 2 2* 3 4 5 6	90.2% $V_2O_5 - 9.8\% As_2O_3$ 80.8% $V_2O_5 - 19.2\% As_2O_3$ 71.1% $V_2O_5 - 28.9\% As_2O_3$ 61.2% $V_2O_5 - 38.6\% As_2O_3$ 52.3% $V_2O_5 - 47.7\% As_2O_3$ 41.7% $V_2O_5 - 58.3\% As_2O_3$	- 3 35 - 3 40 - 3.60 -

Electron microscopy and X-ray measurements reveal that an incipient phase separation occurs in some of our samples [13]. No crystallinity was revealed.

In order to obtain informations about the influence of crystallisation on the electrical properties of vanadate-arsenate glasses, partially crystallized samples were obtained too (samples 1* and 2*), by heat-treatment (1h at 400 °C).

Electrical conductivity was measured between 300 and 500°K by using the two electrodes method. Sample 1, 2 and 3 were measured between 78 and 500°K too using a cryogenic unit. The sample chamber consisted of a doubly

Fig. 1. Log σ vs $\frac{10^3}{T}$ in the temperature range 300-500° K.

Fig 2 Log σ vs $\frac{10^3}{T}$ in the temperature range 78-500 °K.

shielded stainless-steel enclosure into which coaxial lines were introduced The measurements were performed with a TR 2201 type megaohmeter. The samples were polished in parallelipipedic forms of 2-3 mm thicknes and 25-30 mm² contact area With painted colloidal platinum electrodes good ohmic contacts were founded.

EPR measurements were carried out in X band on powder samples with a standard JEOL equipment

3 Results and discussion. Fig 1 and fig 2 show the log σ as function of $10^3/T$ for the glasses of V₂O₅-As₂O₃ system where we note the conductivity with σ and the temperature with T

In the case of the sample 2 the measurements were performed at both increasing (o) and decreasing (\bigcirc) temperatures The results were reproducible. No polarisation of the samples was revealed during the measurements

In the studied glass formation range of the V_2O_5 -As₂O₃ system the conductivity increase when the content of V_2O_5 (and consequently the content of V^{4+} ions) increases (fig 3) The effect of the increasing As₂O₃ becomes evident in this way. A similar behaviour has been reported for other vanadate glasses [4-12]

It was established that the conductivity of vanadate glasses with different glass network formers (but with the same V^{4+}/V^{5+} ratio) decreases in the order $V_2O_5 - \text{TeO}_2 \rightarrow V_2O_5 - \text{GeO}_2$ [10] and $V_2O_5 - P_2O_5$ [4] by 2,5-3 orders of magnitude. The conductivity of our glasses is slightly lower than that of $V_2O_5 - P_2O_5$ glasses [4] (fig 3)

By EPR measurements it was not possible to evidentiate vanadium ions in lower valence state than V^{4+} .

The conduction mechanism was considered to be the small polaron hopping between $V^{4+}-O-V^{5+}$ pairs as proposed by Mott [2, 3] According to this model the conductivity is given by

$$\sigma = \frac{v_{ph} \quad e^2 \cdot C(1-C)}{kTR} \quad \exp\left(-2\alpha R\right) \quad \exp\left(-\frac{W}{kT}\right) \tag{1}$$

where v_{ph} = phonon frequency, e = electronic charge, α = the rate of the wave function decay, $C = V^{4+}/V^{5+}$ ratio, R = the average hopping distance, k = = the Boltzmann constant, T = temperature. The activation energy is given by

$$W = W_H + \frac{1}{2} W_D \tag{2}$$

where W_H = the hopping energy and W_D = the disorder energy arising from the energy difference of neighbours between two hopping sites [2, 3]

The activation energy decreases with the temperature Evidence of two different activation energies is observed (fig 2) Above a critical temperature the small polaron theory indicates that the hopping thermally activated is the predominant mechanism. In the present work for vanadate-arsenate glasses the critical temperature was estimated at $\theta/2 = 250 - 290$ °K, in good agreement with [9] Below this critical temperature the polaron band conduction

Fig 3 The log σ as function of V_2O_5 content a) V_2O_5 —As₂O₃ (\odot amorphous samples and \bigstar partially crystallized samples, present work), V_2O_5 —P₂O₅ (\bigcirc amorphous samples [4])

Fig 4 The activation energy ΔE vs V_2O_5 content

a) $V_2O_5 - As_2O_3$ (**a** amorphous samples and ***** partially crystallized samples, present work), $V_2O_5 - P_2O_5$ (O amorphous samples [4])

Table 2

mechanism prevails A typical value of W_D is about 0,1 eV for $V_2O_5 - P_2O_5$ glasses and usually less than 0,1 eV for other glasses [6]

The activation energies of vanadate glasses increase in the order $V_2O_5 - TeO_2 \rightarrow V_2O_5 - GeO_2 \rightarrow V_2O_5 - P_2O_5$ [4, 7 and 10] The activation energies of our vanadate-arsenate glasses are higher than those of $V_2O_5 - P_2O_5$ glasses (fig 4)

Tabel 2 sumarizes the average gistance between vanadium ions R (calculated from the experimentally determined density), the polaron radius γ_p and the experimental and theoretical hopping activation energy W_H for $V_2O_5 - As_2O_3$ glasses

The hopping activation energy W_H can be calculated from [3] with the equation

$$W_H = e^2 / 4\varepsilon_p \left(\frac{1}{\gamma_p} - \frac{1}{R}\right) \tag{3}$$

Sample	R	Υ	W _{teor}	W _{exp}
	(A)	(A)	(eV)	(eV)
22	3,84	1,55	0,38	0,41
3	4,00	1,61	0,41	0,46
5	4,37	1 76	0,48	0,52

6

7

where $\varepsilon_p = \frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_s}$ and ε_s and ε_{∞} are the static and high frequency dielectric constants of the glass, respectively γ_{b} is the polaron radius

$$\gamma_{P} = \frac{1}{2} \left(\frac{\pi}{6}\right)^{1/3} R \tag{4}$$

Theoretical W_H was calculated using measured values for ε_{∞} and considering $\varepsilon_p \simeq \varepsilon_{\infty}$ [13] These values are in agreement with the experimentally determined values (see Table 2)

The conductivity and activation energy of the partially crystallized samples $(1^* \text{ and } 2^*)$ were lower than those of the amorphous samples (1 and 2)and approch to the values evidentiated in crystalline systems (fig 3 and fig 4).

4 Conclusion. The glasses of x_{0}^{\prime} V₂O₅-(100-x)₀ As₂O₃ system with 40 < x < 91 manifest semiconducting properties Their conductivity and acti-vation energy increases, respectively decreases, with the V₂O₅ content Two activation energies were evidentiated in the studied temperature range A certain discrepancy between theoretical and experimental hopping activation energies can be explained by the fact that Mott's theory was developed under the assumption of a continuous random network in the glass structure while some of our samples evidentiate an incipient phase separation

(Received February 2, 1983)

REFERENCES

- E P Denton, H Rawson, J E Stanworth, Nature, 173, 1030 (1954)
 N F Mott, J Non-Cryst Solids, 1, 1 (1968)
 I G Austin, N F Mott, Adv Phys, 18, 41 (1969)

١

- 4 G S Linsley, A F, Owen, F M Hayatee, J Non-Cryst Solids, 4, 208 (1970) 5 F R. Landsberger, P J Bray, J Chem Phys, 53, 2757 (1970) 6 M Sayer, A Mansingh, J M Reyes, G Rosenblat, J Appl Phys, 42, 2875 (1971)
- 7 B W Flynn, A E Owen, J M Robertson, 7th Int Conf on Amorphous and Loquid Semiconductors, ed W E Spear, CICL, Edinburgh, 1977, 678
- 8 L Murawski, C H Chung, J D Mackenzie, J Non-Cryst Solids, 32, 91 (1979).
- 9 J R Jurado, J M Navarro, J Non-Cryst Solids, 32, 5
 9 J R Jurado, J M Navarro, J Non-Cryst Solids, 38-39, 365 (1980)
 10 C H Chung, J D Mackenzie, J Non-Cryst Solids, 42, (1-3), 317 (1980)
 11 C H Chung, D Lezal, J D Mackenzie, J Mater Sci 16 (2), 422 (1981)
 12 L Stănescu et al, Conf on Amorphous Semiconductors, București, 1982
 13 E Culea, Al Nicula, I Biriş, to be published

PROPRIETĂȚI ELECTRICE ALE STICLELOR V205-As303 (Rezumat)

Lucrarea prezintă proprietățile semiconductoare ale sticlelor din sistemul $x\% V_2O_5 - (100 - 100)$ -x)% As₂O₃ unde 40 < x < 91 A fost měsurată conductibilitatea electrică în funcție de tempera-tură pe domeniul 78-500°K Sticlele studiate conțin ioni de vanadiu în 2 stări de valență V⁴⁺ și V ⁺ Transportul de curent se realizează prin saltul electronilor de la V⁴⁺ la V⁴⁺ Conductibilitatea și energia de activare a probelor se modifică o dată cu modificarea conținutului de V₂O₆ (respectiv a raportului $C = V^{4+}/V^{5+}$ Pe domeniul de temperatură investigat au fost puse în evidență două energu de activare Existența unei anumite diferențe între valorile calculate și cele experimentale ale energulor de activare este considerată ca fund o urmare a unui proces incipient de separare în microfaze care apare la unele probe

METALLIC COMPLEXES OF HUMIC ACID STUDIED BY EPR

ELEONORA TRIF, ECATERINA BARTOK

1 Introduction. The formation of the metallic cations-humic acid complexes has a great importance on the soil formation and on the plant nutrition. It is known that the structure and properties of the humic acid and of its metallic complexes are not yet understood. The EPR spectroscopy is one of the modern method for the investigation of the propreties of these materials.

The first EPR study of soils [1] has evidenced the presence of a semiquinone stable free radical Later, Schnitzer and Skinner [2] have proposed the type of reation between humic acid fraction of soil and certain metallic ions as being analogous with the reaction of salicilic acid with metallic ions. Steelink and Tollin [3] have suggested that the humic acid would be itself one type of free radical, or a mixture of several types of free radicals

2 **Results and discussions.** The samples were prepared by shaking and then filtering a mixture of Fluka type humic acid (A H) with salts solutions containing a certain concentration of $CuSO_4$, respectively $ZnSO_4$.

By spectrophotometric method was measured the quantity of metallic ions remaining in solution after filtration, and, hence it was possible to calculate the quantity of metal ions (Me_R) which forms complexes with humic acid

Fig 1 The EPR signals of the pure humic acid and, respectively, of the samples containing Cu^{2+} ions

3 The dependence of F1g the $\log \frac{1}{T}$ parameter, respectively of the pH versus $Cu_R\%$

The EPR spectra were recorded at liquid nitrogen temperature, at X band, using a JES-3B spectrometer.

The pure humic acid presents an EPR signal (Fig 1. a) which, according to Riffaldi and Schnitzer [4] corresponds to free radicals, having $\Delta H = 7$ gauss and $g = 2.003 \pm 0.0001$.

The samples containing Cu²⁺ ions (Fig. 1.b, c, d) present an EPR signal typical for free radicals, as well as one typical for powdered samples containing Cu²⁺ 10ns in an axial environment.

By subsequent addition of Cu^{2+} ions to humic acid it may be seen that the intensity of free radical signal decreases gradualy We have evidenced [5] that for high concentration of Cu^{2+} ions in solution (Cu_A), not all the quantity of Cu^{2+} ions reacts with humic acid as in Fig 2 one may be seen.

Fig 3 a shows de dependence of the $\ln \frac{i}{I}$ parameter versus Cu_R , where $\frac{r}{r}$ is the ratio between the free radical signal intensity and the perpendicular band signal intensity of Cu²⁺ ions.

By EPR and pH measurements (Fig 3) we have established that for concentrations of Cu_R^{2+} ions lower than 2% the chelatic complexes formation predominates, the EPR parameters being $g_{\parallel} = 2.30 g_{\perp} = 2.06$, $A_{\parallel} = 175$ gauss and $A_{\perp} \approx 30$ gauss. The fenollic free radicals are anihilated according to reaction of salicule acid with metal ions proposed by Schnitzer [6] for fulvic acid

That is the explanation for the pH — loosing and for the diminution of the free radicals concentration. At higher concentrations ($Cu_R > 2\%$), the salts formation is evidenced According to Khan [7], in this reaction the rest of carboxilic groups or the others types of free radicals which differ from fenollic ones will be active.

For concentrations greater than 50% Cu_A/AH, a mixture of CuSO₄ and AH—Me complexes formation is probable.

The properties of Zn-AH complexes differ from that of Cu-AH complexes. The Zn^{2+} ions being diamagnetic, the Zn-AH complexes present only the EPR signal corresponding to free radicals. We have established that from

0.14% to 4.6% concentration of Zn_R the g factor of signals diminishes. We assume that until 4.6% concentration of Zn_R the fenollic groups are anihilated by chelatation. By subsequent addition of the Zn^{2+} ions one observed that the quantity of Zn_R increases until 56%. The rising of pH value point out the increasing of the basic character of the complexes, the g value of EPR signal remaining constant. All these facts prove the formation of the carboxilic salts in the range of 4.6-5.6% concentration of Zn_R .

At higher concentration of Zn_A , remain yet free radicals unanihilated. That proves the formation of salts, but in the same time proves the regeneration of semiquinone type free radicals.

3 Conclusions. The purpose of our investigation was to evidence the Cu²⁺ and Zn^{2+} humic acid complexes formation by means of EPR spectroscopy, pH measurements and by spectrophotometry.

We consider that the cations were retained by chelatation until 2% con-centration of Cu_R^{2+} ions and until 46% of Z_R^{2+} ions At higher concentrations of Me_R the salts have been formed

(Received May 9, 1983)

- ~ .

REFERENCES

1 R W Rex, Nature 188, 1186 (1960)

2 M Schnitzer, S I. Skinner, Soil Sci Proc, **99** (4), 278 (1963) 3 C Steelink, G Tollin, Soil Biochemistry, **147** (1967) 4 R Riffaldi, M Schnitzer, Soil Sci Proc, **36** (2), 301 (1972)

5 K Bartok, E Trif, XIII-th Sump Nat of Bioph, Cluj-Napoca, 70, 1978 6 M Schnitzer, Soil Sci Proc, 33 (1), 75 (1969) 7 S N Khan, Soil Sci Proc, 33 (6), 851 (1969)

COMPLECȘI METALICI AI ACIDULUI HUMIC STUDIAȚI PRIN RPE

(Rezumat)

Scopul studiului nostru a fost de a pune în evidență formarea compleciilor acidului humic cu 10n11 metalici Cu²⁺ și Zu²⁺ prin metoda RPE, măsurători de pH și spectrofotometrie

Considerăm că ionu metalici au fost reținuți de către acidul humic prin reacții de chelatare pînă la concentrații de 2% pentru Cu $_{2}^{+}$ și pînă la 4,6% pentru Zu $_{R}^{+}$ Pentru concentrații mai mari de Me_R s-a constatat formarea sărurilor metalice

ON THE ACCURACY OF THE HARTREE-FOCK-SLATER APPROXIMATIONS

R. I. CÂMPEANU

1 Introduction. The Hartree-Fock selfconsistent field method (HF) is one of the most useful approximations in the description of the atomic structure and was proven to give accurate binding energies for a large variety of configurations, even if one employs the simplified "frozen core" (FC) version [1] Although a large number of calculations provided many atomic data of interest for fields like astrophysics or Tokamak plasma research, there are still more data required, particularly for heavy well-striped atomic ions. For such cases the HF scheme becomes quite complicated and on the other hand even the HF results can be inaccurate if effects like the orbital polarization, configuration mixing and the relativistic effects are not taken into account. For Mo; W and the other heavy elements of practical interest, all with a large number of ions, it was recommended [2], at least in the first stage, the use of the Hartree-Fock-Slater approximation (HFS)

The complexity of the HF equations arises from the exact treatment of the nonlocal exchange potential Slater [3] found a local approximation of this potential, which was successfully employed in many atomic, molecular and solid state energy band calculations The initial atomic nonrelativistic computer program [4] was refined by several authors (eg.[5]), but remained essentially the same In this work we modified this program to allow the multiplication of the local exchange potential with a parameter chosen to yield the experimental ground state total energy; we denoted this modified version of the HFS program by MHFS A second modified HFS program was obtained by using different parameters for each orbital and by including the core polarization under the influence of the valence electrons, this approximation is denoted as HFSPO Both new approximations take about the same computing time as the initial HFS computer program The purpose of this paper is to test the three HFS approximations against the experiment and the HF method for B I and consequently to show which of the HFS approximations is to be used in the future calculations on more complex atoms and ions.

2 The HFS theory. The radial Hartree-Fock-Slater equations for a free atom or ion can be written in the following form

$$\frac{d^{2}R_{nl}(r)}{dr^{2}} = \left[2V(r) - 2E_{nl} + \frac{l(l+1)}{r^{3}}\right]R_{nl}(r)$$
(1)

where $R_{nl}(r)$ is the radial part of the orbital wave function with the normalization condition

$$\int_{0}^{\infty} [R_{nl}(r)]^{2} dr = 1$$
 (2)

V(r) is the sum of the nuclear potential, the central electronic repulsive potential and the exchange potential If Z and N are the atomic number and the number of electrons respectively, V(r) can be written as

$$V(r) = V_1(r) \text{ if } V_1(r) < -\frac{Z-N+1}{r}$$

$$V(r) = -\frac{Z-N+1}{r} \text{ otherwise}$$
(3)

where
$$V_1(r) = \frac{1}{r} \left\{ -Z + \int_0^r \rho(u) du \right\} + \int_r^\infty \rho(u) du / u - \left[\frac{81 \rho(i)}{32 \tau^2} \right]^{\frac{1}{3}}$$
 (4)

with $\rho(r) = \sum_{n,l} q_{nl} [R_{nl}(r)]^2$, q_{nl} being the occupation number for the orbital nl.

The form (3) of the potential is due to the failure of the free electron exchange approximation to properly treat the selfconsistent potential at large values of r, the use of the form (3) instead of (4) has however a small effect on the orbital energies. The last term in (4) is the local exchange potential, which is the major source of error in the HFS approach. In the modified versions proposed in this paper this term was multiplied by parameters chosen by trial and error to give total (MHFS) or orbital (HFSPO) ground state energies in agreement with the experimental findings

3 Some numerical considerations. The radial Schrodinger equations (1) were integrated by Noumerov method. To have a finer mesh of points near the nucleus the integration range was divided in unequal intervals, with the mesh being doubled every 10 points [4] A better choice, also compatible with the Noumerov method, is the use of the logarithmic mesh, which reduces the number of integration points from 440 to 250 [5]

The inward Noumerov integration was carried out from a value of r given by the condition $[V(r) - E_{nl}]r^2 \ge 300$, to the classical turning point The outward integration was started near the nucleus (considered as a point charge) using initial values calculated by power series

$$R_{nl}(r) = r^{l+1} \sum_{i} c_{i} r^{i}$$
(5)

Given the final value of the potential $V_f^m(r)$ for the *m*-th iteration, the initial value for the next iteration can be calculated in two different ways, both designed [4] to improve convergence of the iterative process

- the arithmetic scheme $V_i^{m+1} = \frac{1}{2} V_i^m + V_f^m$ (6).

- the scheme of Pratt
$$V_{j}^{m+1} = dV_{j}^{m} + (1-d)V_{f}^{m}$$
 (7)

where we have omitted the r dependence of V and d and where \cdot

$$d(r) = d_1(r) \quad \text{if} \quad 0 \le d_1(r) \le 0.5$$

$$d(r) = 0.5 \quad \text{if} \quad d_1(r) < 0.5$$

(8)

$$d(r) = 0$$
 if $d_1(r) < 0$
 $V^{m}(r) = V^{m-1}(r)$

with
$$d_1(r) = \frac{V_f^{m-1}(r) - V_f^{m-1}(r)}{V_i^{m-1}(r) + V_f^{m}(r) - V_i^{m}(r) - V_f^{m-1}(r)}$$
 (9)

4 Results and discussion. Our test case is neutral boron (B I) for which both experimental and HF results are available. We used the experimental ground state total energy, -24.659 a u, to fit the MHFS total ground state energy and we obtained the value of the parameter a = 1 196. Table 1 shows that also the MHFS orbital energies are in a better agreement with the HF energies than the results given by the unmodified HFS calculation (i.e. for a = 1) The agreement between the HF theory and the experiment is good only for the valence orbital 2p, the theoretical errors in the description of the core orbitals being due mainly to the omission of the configurations interaction

Although the MHFS choice of a for excited configurations should be in principle different from the value for the ground state configuration, table 1 shows that the use of a = 1 196 for excited states yields total energies in very good agreement with the experiment As far as the excited states orbital energies are concerned the agreement MHFS-HF is better than HFS-HF for the core orbitals and worse for the valence orbital.

The use of different a_{nl} in the consideration of the local exchange potential for each orbital does not yield the HF or the experimental energies because of the strong coupling between the 2s and 2p states. This fit can be however made if one considers apart from a_{nl} the inclusion of a polarization poten-

Table 1

Orb.	Approx	1s ² 2s ² 2p	1s ² 2s ² 3p	1s ² 2s ² 4p	
15	HFS MHFS HFSPO HF Experiment	- 7 · 1866 - 7 · 5477 - 7 · 0587 - 7 · 6953 - 7 · 0588	7 · 5002 7 · 9137 7 · 3923 8 · 0388	7 • 5719 7 • 9899 7 • 4737 8 • 1097	
2s	HFS HMHFS HFSPO HF Experiment	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} - & 0 \cdot 6623 \\ - & 0 \cdot 7471 \\ - & 0 \cdot 4876 \\ - & 0 \cdot 7359 \\ - & - \end{array}$	$\begin{array}{c} - & 0 \cdot 7303 \\ - & 0 \cdot 8186 \\ - & 0 \cdot 5145 \\ - & 0 \cdot 8009 \\ - & - \end{array}$	
val.	HF HFS HFSPO MHFS FC Experiment	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
tot.	HF HFS MHFS FC Experiment	$\begin{array}{r} -24 \cdot 529 \\ -24 \cdot 052 \\ -24 \cdot 659 \\ -24 \cdot 513 \\ -24 \cdot 659 \end{array}$	$\begin{array}{r} -24 \cdot 316 \\ -23 \cdot 846 \\ -24 \cdot 428 \\ -24 \cdot 315 \\ -24 \cdot 437 \end{array}$	$\begin{array}{r} -24 \cdot 277 \\ -23 \cdot 801 \\ -24 \cdot 383 \\ -24 \cdot 277 \\ -24 \cdot 396 \end{array}$	

Orbital and total energies in B I (in a. u.)

The	\mathbf{HF}	and	FC	result	s are	take	n from	n ref.	[1],	the	experu	nental	1s	and	2 s
et	iergie	es fro	m	ef. [6	and	the	other	experi	ment	al e	nergies	from	ref	[7]	

Table 2

Val orb	Approx	$\langle r \rangle$	$\langle r^2 \rangle$	$\langle r^{-1} \rangle$	$\langle r^{-3} \rangle$
	HFS	2 2563	6 7062	0 6188	0 9296
2p	MHFS	2 0203	5 2974	0 6758	1 1336
-	HF	2 2048	6 1461	-	0 7756
	FC	2 3199	6 8363		0 6947
	HFS	7 6457	67 0507	0 1692	0 0853
3p	MHFS	7.3298	61 8269	0 1763	0 0941
-	HF	8 7509	87 6537		0 0700
	FC	8 7632	87 9039		0 0700
	HFS	15 6624	278 9291	0 0900	0 0385
	MHFS	14 9302 -	253 5388	0 0947	0 0454
4p	HF	17 9392	364 2220	_	0 0251
-	FC	17 9452	364 4640	_	0 0251

The values of $\langle r^{i} \rangle$ for the valence orbital in B I. The HF and FC results are taken from [1]

tial in the valence electron radial equation .

$$V_{pol} = -\frac{\alpha}{2r^4} \left[1 - \exp(-x^p) \right]$$
 (10)

where x = r/s, s and p being arbitrary parameters and α the atomic polarizability. For B I ground state $\alpha = 12.55$ a u. and the parameters are chosen as $a_{1s} = 0.945$, $a_{2s} = 0.29$, $a_{2p} = 1.6$, s = 2.67 and p = 6 to yield the experimental orbital energies. Table 1 shows that the HFSPO approximation, which reproduces perfectly the ground state energy spectrum, gives a poor description of the excited configurations, the orbital energies for these configurations being in worse agreement with experiment of HF than the other HFS methods. The conclusion is that MHFS provides the best energies for the atomic excited configurations.

In table 2 we compare the values of the integrals $\langle r^{*} \rangle$ calculated with the MHFS valence orbital radial wave functions with the HF and HFS theoretical values It is interesting to note that the MHFS-HF agreement is worse than for HFS-HF, this meaning that although the MHFS modifications in HFS improve the energy predictions, this change deteriorates rather than improves the accuracy of $R_{nl}(r)$.

Also shown in tables 1 and 2 are the results given by HF frozen core. approximation (FC), which are in very good agreement with the HF results This method seems to be the best choice for the calculation of the excited configurations, although for very heavy atoms or ions even FC becomes too time-consuming

5. Conclusions. This analysis for a rather simple atomic system can be used to draw some general conclusions to be used when one wishes to calculate complex cases. From the two modified versions of the HFS program only MHFS proved to be useful as it predicted improved total and orbital energies not only for the atomic ground state but also for the excited configurations. However, the MHFS computer program does not give improved

descriptions of the electron distributions and implicitly the values of the integrals $\langle r^{k} \rangle$, important in the calculation of various effects and transitions in the atomic energy structure, are worse than the corresponding HFS values.

Thus, in choosing between HFS and MHFS one has to bear in mind the purpose of the calculation. Both HFS approximations take very little computing time and yield apart from energies and radial wave functions, the central atomic potential which can be easily employed in various applications.

(Received October 26, 1983)

REFERENCES

- M Cohen, R P McEachran, Adv At Mol Phys, 16, 1 (1980)
 A Lorenz, J Phillips, J J Schmidt, J R Lemley, Survey of Atomic and Molecular Data Needs for Fusion, IAEA, Jan 1976, p 14
 J C Slater, Phys. Rev. 35, 210 (1930)
 F Herman, S. Skillman, Atomic Structure Calculations, Prentice Hall (N J), 1963.

- 5. J P Desclaux, Comp Phys Commun, 1, 216 (1969). 6 W Lotz, J Opt Soc Am, 60, 206 (1970)

7. G A Odintzova, A R Striganov, J. Phys. Chem Ref Data, 8, 63 (1979).

٩,

ASUPRA PRECIZIEI APROXIMATILLOR HARTREE-FOCK-SLATER

(Rezumat)

Se analizează precizia a trei variante ale aproximației HFS, luîndu-se ca și criteriu apropierea de rezultatele experimentale și HF Concluzia studiului efectuat pe B I este că aproximația MHFS este superioară metodei HFS nemodificate în prezicerea energiilor orbitale și totale atît pentru starea fundamentală cît și pentru stările excitate, în timp ce pentru calculul funcțiilor radiale electronice este preferabilă metoda HFS

BASE TRANSFORMATIONS THROUGH THE TECHNIQUE OF THE STRUCTURAL NUMBERS

V. MILITARU and AL. NICULA

1 Introduction. One of the problems which frequently appears in the applications of the topological methods in physics and technology is that of identifying a special tree of the graph, usually called the normal tree. For instance, in the analysis of a network through the method of cut-sets, the normal tree is that which contains the greatest number of transimpedances and the smallest number of transadmittances As these numbers are not known apriori, the methods of identification appeal to the ensemble of all the trees of the graph. That is why the main effort in this field has been directed to the elaboration of the faster possible methods of generating all the trees of the graph which describes the problem

Following the identification of the normal tree there appear a series of problems typical of all the applications, such as

- the identification, without the direct appeal to the graph, of the set of the fundamental cut-sets with respect to the normal tree.

- the determination of the elements of the f-cut-set matrix with respect to the new tree.

-- the determination of the trees and the sign factors for the graph resulting through short-circuiting some twigs of the normal tree, by short-circuiting we mean bringing to coincidence of the nodes adjacent to the branch which must be eliminated in this way

All these problems, as we are going to demonstrate further can be solved easily and operatively by means of the algebra of structuraln umbers, through completing the procedures in [2] and [5] These items of information turn into full account the ensemble of all the trees initially generated only for the identification of the normal tree

2 The Trees of the Graph with Short-circuited Twigs. Let us take a connected graph G with n + 1 nodes and b brances, and let us watch its structural modifications caused by the short-circuiting of a twig of the reference tree

The procedures developed in [2] and [5] are based on the oriented one-row structural numbers:

$$P_{i} = (t_{i}, l_{i1}, l_{i2}, \ldots) \quad i = 1, 2, \ldots, n \tag{1}$$

in wich t_i is a twig of the reference tree and l_{ij} are the links making up the f-cut-set of the twig t_i . The orientation of the structural number, that renders the orientation of the graph, is based on the convention of multiplying the index of each branch by +1 if in the cut-set this has the same orientation as the twig t_i or, otherwise, by -1.

Two of the properties [4] of the branches of a cut-set will be further useful.

- Any cut-set, fundamental with respect to a tree of a connected graph, is made up of a twig of the tree and those links whose fundamental loops contain the respective twig

- The same link belongs to the f-cut-set of all the twigs which form the path through the tree of the f-loop of the respective link, and only to it.

It follows these properties that the sign of a branch $l \in P_k$, any k, will be positive if l and t_k have contrary directions in the fundamental loop of lor negative, otherwise

Let us eliminate twig t_k The path through the tree of the basic loop of link l is interrupted, but it is restored if we overlap the nodes which were interconnected by t_k (the adjacent nodes of t_k) Except t_k , the rest of the branches remain further in the new basic loop of l and have the same arrangement and mutual orientation Based on these properties we infer that all fcut-sets, and hence the structural numbers (1), remain unchanged except the cut-set described by P_k , which disappears from the graph The new graph G', formed through short-circuiting twig t_k will therefore be described by the set of structural numbers (1), except i = k

Then the set of all the trees of the new graph G' is given, based on the demonstration in [4], by the columns of the structural number

$$N' = (P_1 \cdot P_2 \cdot \ldots \cdot P_n)' \tag{2}$$

in which the prime index of the paranthesis indicates the absence in the multiplication of the structural number P_k . The product of the structural numbers being commutative, the structural number N is

$$N = N' \cdot P_k \tag{3}$$

and will give the set of all the trees of the initial graph G in its columns. As t_k belongs to P_k exclusively, we notice in (3) that the only trees of the original graph G, containing twig t_k are the trees obtained adding this twig to the columns of N' And the other way, knowing all the trees of G, selecting the subset of the trees with t_k and eliminating this twig we obtain the set of all the trees of G'. This operation [7] is called the derivative of the structural number N with respect to t_k .

$$N' = \frac{\partial N}{\partial t_k} \tag{4}$$

and the property just demonstrated above, confers an important utility to this operation included in the algebra of structural numbers

If we mark with S_f the f-cut-set matrix of G with respect to the chosen reference tree, be it a_0 , the aforesaid facts make us conclude that the similar S'_f matrix of G' is obtained though the elimination from S_f of the row corresponding to cut-set P_k of t_k Short-circuiting t_k , this and all the branches which interconnect the same two nodes (branches in parallel with t_k) disappear from the graph In S_f the corresponding columns have only one nonzero element, on the row of t_k and hence in S'_f in their place there appear columns of zero which are eliminated by themselves.

2 — Physica — 1984

The necesity of identifying the normal tree of the problem and especially the necessity of knowing the sign factor for pairs of trees make the generating of the set of all the trees of G compulsory. Then, if we want to generate the set of all the trees of G', it is much more advantageous to appeal to the derivative (4) that implies simple operations of selection, instead of repeating for G' as well the procedure of multiplication implicated in (2).

Starting from the same necessity of knowing the sign factor for the pairs of trees of G', let us identify now a method of generating the sign, simultaneously with the operation of derivation.

The matrix method of identifying the trees [6, 8] appeals to the majors of the f-cut-set matrix which is unimodular The only nonzero majors, of the value ± 1 , have columns which correspond to the branches of each of the trees of the graph. Let us select, according to the significance of (4), a tree a_k of G, containing twig t_k which is to be short-circuited We shall mark A_k the square matrix made up of the columns of S_f corresponding to the twigs of the tree a_k , arranged in increasing order The determinant of A_k is exactly the major of S_f corresponding to a_k . Let m be the order number of the twig t_k in the tree a_k , and, therefore, the column index of the same twig in A_k . The only nonzero element of this column, of the value +1, is to be found on the line k, corresponding in S_f to P_k f-cut-set. Let also a'_k be the tree of G', obtained by eliminating through short-circuit of t_k , the tree which is the derivative of a_k Selecting as reference tree of the graph G' the derivative a'_{o} , with respect to t_{k} , of a_{0} , the matrix A'_{k} , extract of \tilde{S}'_{f} , corresponds to a'_{k} and is obtained of A_k by the elimination of the line k and of column m Developing then the major determinant $|A_k|$ with respect to the column m with only one nonzero element, we obtain:

$$|A'_{k}| = (-1)^{k+m} |A_{k}|$$
(5)

As it is proposed in [5], the determinants of the aforesaid formula give us just the sign factors attributed to each of the trees in the basis of f-cut-sets of the reference tree, with the agreement of setting the twigs in an increasing order. Using for sign factors the symbol S we can then write:

$$S_{k}^{\prime} = (-1)^{k+m} S_{k} \tag{6}$$

3. The Trees of the Graph with Deleted Branches. The deletion in the graph G of a branch leaves the adjacent nodes unconnected, generating a new graph G". In applications it is only the links of the reference tree (usually the normal tree) that are to be deleted. The effect of the deletion from the graph is the elimination of 'the respective link, be it l, from all structural numbers P, defined by (1). As the result of generating the trees of G" by the product of structural numbers modified in this way, no tree containing l is to be formed. Then, instead of doing the multiplication, we shall only select of the trees of G those which do not contain l. This is equivalent to the elimination from N of all the columns containing l, which exactly represents obtaining the inverse derivative of this structural number [3, 7]

$$N'' = \frac{\delta N}{\delta l} \tag{7}$$

So we discover the significance of the operation of forming the inverse derivative included in the algebra of structural numbers. We also conclude that the effect of eliminating l is also deleting the column of this branch in S_f .

4. Generating the Base of the Normal Tree. Following the identification of the normal tree, through selection from the set of all the trees, there appears the necessity of identifying the new basic cut-sets and their matrix, which we shall further mark by S_f In order to carry out this change of the basis of f-cut-sets we shall make use of the following property [4]:

- The only branches of a graph which can replace a twig of a tree so that it may result in the trees of the same graph are the elements of the fundamental cut-set of the respective twig

Suppose we are looking for the f-cut-set of the twig with the index r. From the set of all the trees we must select all those containing the set of n-1 twigs of the normal tree different from r. The n^{th} twig of each represents a link of f-cut-set of r. Be it l one of these branches and s = l/|l| the sign factor, unknown yet, which gives the orientation of l in the f-cut-set of r according to the definition in section 2. We notice that s will be, at the same time, the element of matrix S_f on the line of r and the column of l. Let us replace in the diagonal major of the normal tree the column of r with the column in S_f of l. We shall obtain the intermediary major.

$$|A_{1}'| = r \begin{vmatrix} 1 & r & & \\ & 1 & 0 & \\ & S & \\ & 0 & 1 & \\ & & 1 & 1 \end{vmatrix}$$
(8)

in which the discontinuous vertical line suggests the presence on the column of l of other nonzero elements as well besides s. Developing by this column, all the minors, except that of s, will have only zeros on the line of r. So that:

$$|A_1'| = s \tag{9}$$

In order to obtain from $|A'_1|$ the major $|A_1|$, extracted from S_f , corresponding to the tree a_1 , obtained from the normal tree by having substituted r with l, we must do a number of p permutations so that we may bring the index l to its place in the increasing order of the twigs of a_1 Then.

$$S_{s_1} = |A_1| = (-1)^p \cdot s$$

hence :

$$s = S_{a_1} \cdot (-1)^p \tag{10}$$

the formula completing the process of identifying the oriented f-cut-set of r and hence finding the line r of S_f . The application of the procedure is based on knowing all the trees as well as their signs ([5]

In applications there sometimes appears the necessity of determining only a column of S_f without determining the whole matrix. Suppose we are looking for the column of the branch l Having as the starting point the same observations as above we must select all those trees of the graph containing, besides branch l, n-1 twigs of the normal tree. The missing nth twig has been replaced by l and so l belongs to the f-cut-set of the missing twig, be it rIt is (10) that gives the looked for element of line r and column l of S_{f} .

(Received November 11, 1983)

REFERENCES

- 1 R E Kalman, N DeClaris, Aspects of Network and System Theory, Holt, Rinehart and Winston, N Y 1971
- 2 V Militaru, Rev Roum Phys, 26, 1, 3 (1981)
- 3 B R M Gandhi and colab, Int J Electronics, 32 (6), 601 (1972)
- 4 V Militaru, Studia Univ B B, Physica, 29 (1983)
- 5 V Militaru, to be published, Rev Roum Phys
- 6 M Preda, P Cristea, I Dorobanțu, Analiza topologică a circuitelor electrice, ET, București, 1979
- 7 S Bellert, J Franklin Inst, 274 (6), 425 (1962) 8 W H Kim, H E Meadows, Modern Network Analysis, Wiley, NY, 1971

SCHIMBĂRI ALE BAZEI PRIN TEHNICA NUMERELOR STRUCTURALE

(Rezumat)

Lucrarea extinde domeniul de aplicabilitate al numerelor structurale orientate, perfectionate de autori în lucrări anterioare, la determinarea prin procedee simplificate a arborilor și factorilor de semn ce rezultă prin scurtcircuitarea sau prin eliminarea prin gol a unor laturi ale unui graf liniar orientat Se mai prezintă procedeul de identificare a elementelor matricu secțiunilor fundamentale față de arborele normal al problemei fizice modelate prin graf

THE BEHAVIOR OF THE CARRIER CONCENTRATION AND THE QUASI-FERMI LEVELS FOR Pb_{1-x}Sn_xTe SINGLE AND DOUBLE HETEROSTRUCTURE DIODE LASERS

D. DĂDÂRLAT*, RODICA M. CÂNDEA, M. BÂRLEA, M. CHIRTOC

1 Introduction. The recent interest in the tunable long-wavelength diode lasers stimulated an increased experimental and theoretical work especially on the ternary lead-salt materials PbSnTe, PbSnSe, PbSSe, these mixed semiconducting crystals having a narrow and controlled energy gap. The experimental and technologycal efforts were focused on making diode lasers with large tunability, good efficiency, high resolution, low threshold current density, operating at high temperature A number of papers have presented theoretical calculations on the band structure [1-3], gain characteristic [4], absorption constant [5], and on the carrier concentration for intrinsic [6] or extrinsic [4, 7] material.

Recently A n d e r s o n [4] derived a gain-frequency-current relationship for PbSnTe DH laser considering an ideal DH diode laser Based on Anderson's model we extend the calculations of the carrier concentration and on the quasi-Fermi levels for a single heterostructure and a non-ideal double heterostructure In this paper the term ,,non-ideal" for a DH is used when it is allowed for a part of the injected carriers to exit from the active region. The study of the influence of this number of carriers (electrons in our case) on the quasi-Fermi levels and on the carrier concentration is the purpose of the paper.

2. Theoretical model and results. We start with the following relations for the hole, p(x), and electron, n(x), concentrations, for the quasi-Fermi levels, $Q_n(x)$, $Q_p(x)$, and for the hole $J_p(x)$ and electron $J_n(x)$ current, across the active region [4].

$$n(x) = N_{c} \exp\left(\frac{Q_{n}(x)}{hT}\right)$$
(1)

$$p(x) = \frac{4Nv}{3\sqrt{\pi}} \left(\frac{Q_{p}(x)}{hT}\right)^{\frac{3}{2}}$$

$$Jn(x) = \mu_{n}n(x) \frac{\partial Q_{n}(x)}{\partial x}$$
(2)

$$Jp(x) = -\mu_{p}p(x) \frac{\partial Q_{p}(x)}{\partial x}$$

where μ_n and μ_p are the electron and the hole mobility and N_c , N_v are the conduction and the valence band effective density of states

^{*} Institute of Isotopic and Molecular Technology R-3400 Cluj-Napoca 5, PO Box 700, Cluj-Napoca

F1g 1. The single and the double heterostructures considered.

The meaning of x can be inferred from Fig. 1. As one can see from (1) our model considers the hole concentration degenerated and the electron concentration non-degenerated across the active region. Keeping also Anderson's simplifying assumption that the recombination rate is determined by a constant minority carrier lifetime, τ_n , we can write:

$$\frac{\partial J_n(x)}{\partial x} = -\frac{\partial J_p(x)}{\partial x} = \frac{qn(x)}{\tau_n}$$
(3)

For an ideal DH diode laser no electron injected a cross the p-n heterojunction at x = d can exit at x = 0 due to a large electron potential barrier at the x = 0 p-p junction. For a SH diode laser or for a non-ideal DH this fact is not valid anymore, a number of electrons injected across the active region being able to exit at x = 0.

In the following we denote the electron current density leaving at x = 0 by J(0).

Based on the above mentioned assumptions the solutions of (1)-(3) for a non-ideal DH are:

$$n(x) = \frac{\tau_n J(d)}{qL_n \sin h \frac{d}{L}} \left[\cosh \frac{x}{L_n} - \frac{J(0)}{J(s)} \cosh \frac{d-x}{L_n} \right]$$

$$Q_n(x) = KT \ln \left\{ \frac{\tau_n J(d)}{qL_n \sin h \frac{d}{L_n}} \left[\cosh \frac{x}{L_n} - \frac{J(0)}{J(d)} \cosh \frac{d-x}{L_n} \right] \right\}$$

$$J_n(x) = \frac{J(d)}{\sin h \frac{d}{L_n}} \left[\sinh \frac{x}{L_n} + \frac{J(0)}{J(d)} \sin h \frac{d-x}{L_n} \right]$$
(4)

and

$$p(x) = p_{p0} \left\{ 1 - \frac{5L_n J(d)}{2\mu_p \, k \, T \, p_{p0}} \left(\frac{4Nv}{3\sqrt{\pi} \, p_{p0}} \right)^2 \left[\frac{x}{L_n} - \frac{\cos h \frac{x}{L_n} - 1 + \frac{J(0)}{J(d)} \left(\cos h \frac{d}{L_n} - \cos h \frac{d-x}{L_n} \right)}{\sin \frac{d}{L_n}} \right] \right\}^3 \right]$$

$$Q_p(x) = Q_{p0} \left\{ 1 - \frac{5L_n J(d)}{2\mu_p k \, T \, p_{p0}} \left(\frac{4Nv}{3\sqrt{\pi} \, p_{p0}} \right)^2 \left[\frac{x}{L_n} - \frac{\cos h \frac{x}{L_n} - 1 + \frac{J(0)}{J(d)} \left(\cos h \frac{d}{L_n} - \cos h \frac{d-x}{L_n} \right)}{\sin \frac{d}{L_n}} \right] \right\}^2 \right\}$$

$$(5)$$

$$J_p(x) = J(d) \left\{ 1 - \frac{\sin h \frac{x}{L_n} + \frac{J(0)}{J(d)} \sin h \frac{d-x}{L_n}}{\sin \frac{d}{L_n}} \right]$$

where .

$$L_{n} = \left(\frac{kT\mu_{n}\tau_{n}}{2}\right)^{\frac{1}{2}}$$

$$J_{n}(x)/_{x=d} = J(d) , \ p(x)/_{x=0} = p_{p0} ; \ Q_{p}(x)/_{x=0} = Q_{p0}$$
(6)

and usually, for a DH, $d < L_n$.

Substituting d by L_n in (4) and (5), the results remain valid also for SH. The quantity J(0)/J(d) is considered as a parameter which ranges from 0 to 1

Some experimental estimations are plotted in Fig. 2,3 for the minority carriers and in Fig 4,5 for the majority carriers, for different values of J(0)/J(d) parameter The device characteristics (Sn concentration 0.21, T = 20 K; $p_{p0} = 2 \times 10^{17}$ cm⁻³, $d = 10 \mu$ m for DH lasers and $d = L_n$ for SH lasers, $J(d) = 10^2$ Acm⁻²; $N_c = 7.7 \times 10^{15}$ cm⁻³; $N_v = 8 \times 10^{15}$ cm⁻³) are the same for all the curves, the experimental data used being taken from [1, 2, 4].

3 Conclusions. As one can see from Fig 2 and 3, the increase of the number of injected electrons which exit the active region strongly modifies the profile of the quasi-Fermi level for electrons across the band gap and decreases, up to one order of magnitude, the number of minority carriers.

The relative variations of the quasi-Fermi level for holes and the hole concentration arc also diminished by an increase in the number of the injected electrons which exit the active region (Fig. 4,5) In the approximation $Q_p \ll E_g$ the relative variations of $Q_p(x)$ and p(x) are of order $10^{-6} - 10^{-7}$. A similar conclusion can be obtained in the other limit, $E_g \ll Q_p$, a situation only theoretically possible [7], when taking for the hole concentration

$$p(x) = \frac{4Nv}{3\sqrt{\pi}} \left(\frac{1}{kTE_g}\right)^{\frac{3}{3}} \cdot Q_p^3 \tag{7}$$

Solving (1)-(3) we get:

$$p(x) = P_{p0}A^{\frac{3}{4}}; \ Q_p(x) = Q_{p0}A^{\frac{1}{4}}.$$
 (8)

$$A = 1 - \frac{4J(d) L_n}{\mu_p p_{p_0}(k T E g)^{\frac{1}{2}}} \left(\frac{4Nv}{3\sqrt{\pi} p_{p_0}}\right)^{\frac{1}{3}} \left[\frac{x}{L_n} - \frac{\cos h \frac{x}{L_n} - 1 + \frac{J(0)}{J(d)} \left(\cos h \frac{d}{L_n} - \cosh \frac{d-x}{L_n}\right)}{\sin h \frac{d}{L_n}}\right]$$

On the other hand, taking into account the fact that the gain varies across the active region only as a function of $Q_p(x)$ [4] and, as showed above, $Q_p(x)$ is almost constant, we can conclude that the gain can be also considered constant across the whole active region for all the configurations (SH, ideal or non-ideal DH, diode lasers) and in any approximation $(E_p \ll Q_g), E_p \gg Q_g$.

(Received December 15, 1983)

Fig. 2. The behaviour of the minority carrier concentration in the active region

4

1

Fig 3 The modification of the profile of the quasi-Fermi level for electrons in the active region

24

Fig 4 The relative variation of the majority carrier concentration across the active region

Fig 5 The relative variation of the quasi-Fermi level for holes in the active region

REFERENCES

- 1. M S Adler, C R Hewes, S D Senturia, Phys Rev, **B7**, 5186 (1973) 2 C R Hewes, M. S Adler, S D. Senturia, Phys Rev, **B7**, 5195 (1973)
- 3. J O Dimmock, The Physics of Semimetals and Narrow Gap Semiconductors, Ed D L Carter and R T Bate, Oxford, Pergamon, 1971 4. W W Anderson, IEEEJ Quantum Electron QE-13, 532 (1977) 5 W W Anderson, Indrared Phys, 20, 363 (1980)

26

6 A Kaszuba, A, Rogalski, Acta Phys Polon, A59, 397 (1981) 7. D. Dădârlat, Rodica M Cândea, M Bârlea, Phys Stat Sol (a) 76, K61 (1983).

COMPORTAREA NUMĂRULUI DE PURTĂTORI ȘI A QUASI-NIVELELOR FERMI PENTRU O SIMPLĂ ȘI O DUBLĂ HETEROSTRUCTURĂ PE BAZĂ DE Pb_{1-x}Sn_xTe.

(Rezumat)

Se calculează comportarea numărului de purtători majoritari și minoritari precum și a quasinivelelor Fermi pentru o sumplă respectiv o dublă heterostructură neideală a unei diode laser pe bază de PbSnTe Se analizează influența numărului de electroni injectați ce părăsesc regiunea activă asupra concentrației de purtători și asupra quasi-nivelelor Fermi În aproximația folosită se găsește o variație relativă a quasi-nivelului Fermi pentru purtătorii majoritari din regiunea activă de ordinul a 10-6-10-7, fapt ce permite considerarea coeficientului de cîștig ca și constant în întreaga regiune activă.

1

STUDIA UNIV BABES-BOLYAI, PHYSICA, XXIX, 1984

THE CRYSTALLINE STRUCTURE OF THE INTERMETALLIC COMPOUNDS CeCu_{5-x}Ni_x

I. POP, RODICA POP and M. COLDEA

1. Introduction. The phase diagram of the Ce—Cu system indicates the existence of different type of intermetallic compounds such as CeCu [1], CeCu₂ [1], CeCu₄ [2]; CeCu₅ [3,4] and CeCu₆ [5]. Dwight [3] reported the preparation of the intermetallic compound CeCu₅ of hexagonal structure type with the lattice parameters a = 5.146 Å and c = 4.108 Å, while B u s c h o w [6] showed that at this concentration of the components there is no single phase In a previous paper we have confirmed Dwight's results, the lattice parameters having very close values, i.e. a = 5.138 Å and c = 4.109 Å.

The hexagonal structure of $CaCu_5$ (D2) type and the hexagonal structure lattice parameters a = 4.875 Å, c = 4.010 Å and c/a = 0.283, reported by P e a r s o n [7] for CeN_{1_5} intermetallic compound, suggested us to see if these isostructural intermetallic compounds , i.e. $CeCu_5$ and CeN_{1_5} , are not forming mutual solid solutions of the $CeCu_x$ Ni_{5-x} type

2. Experimental. The investigated intermetallic compound $CeCu_5$; $CeNi_5$ and their mutual solid solutions were prepared by arc melting stoichiometric amounts of the elements in a high purity argon atmosphere. The purity of the starting materials was Ce 99 9%; Cu 99.999%; Ni 99 9%.

The X-ray diffraction patterns were obtained from finely powdered samples, using an X-ray TUR-M-62 equipment, by Debye – Scherrer method. Cu K_a radiation was used in combination with an X-ray monochromator.

3. Results and discussion. The intermetallic compounds $CeCu_{5-x}Ni_x$ are all single phase; the interference lines for each compound were indexed in accordance with the hexagonal $CeCu_5$ structure type. There were no lines which could be attributed to pure elements or to other phases.

The experimental results for the compounds CeNi_5 ; CeCuNi_4 , and CeCu_2Ni_3 are listed in Tables 1 – 3, which include the observed and calculated $1/d^2$

Table 1

20	1/d²(obs)	hki	1/d²(calc)	20	1/d²(obs)	hkl	1/d²(calc)
$\begin{array}{r} 35.3\\ 43.05\\ 50\ 0\\ 52.11\\ 57.4\\ 58.6\\ 70.2\\ 73.6\\ 76.16\end{array}$		101 110 220 201 102 112 211 202	$\begin{array}{c} 0.1182\\ 0.1683\\ 0.2244\\ 0.2484\\ 0.2865\\ 0.3045\\ 0.4167\\ 0.4548\\ 0.4728\\ \end{array}$	89 0 94.86 98.7 100.2 104 5 115 19 11.80 121.33 126.20	0.6140 0.6781 0.7195 0.7549 0.7814 0.8911 0.9183 0.9501 0.9940	103 220 113 302 203 400 222 213 004	0.6150 0.6732 0.7272 0.7533 0.7833 0.8976 0.9216 0.9516 0.9936
70.2 73.6 76.16 84.5	$\begin{array}{c} 0.2333\\ 0.4132\\ 0.4485\\ 0.4788\\ 0.5650\end{array}$	112 211 202 301	0.4167 0.4548 0.4728 0.5670	113 19 11.80 121.33 126.20 134.6	0.9183 0.9501 0.9940 1.0725	222 213 004 303	0.9976 0.9216 0.9516 0.9936 1.0638

Calculated and observed 1/d² values for the compound CeNi₅

Table 2

Calculated and observed 1/d² values for the compound CeCuNi₄

20	1/d ² (obs)	hkl	1/d²(calc)	20	l/d²(obs)	hkl	l/d ^a (calc)
34,84	0.1121	101	0 1167	93 0	0,6576	220	0.6576
45 33	0 1644	110	0 1644	99 0	0.7227	113	0 7215
49.5	0.2190	200	0 2192	99 7	0 7302	302	0 7408
51.96	0.2399	002	0 2476	104.0	0.7761	203	0.7763
57.56	0 2898	201	0 2811	117.3	0 9115	222	0 9052
70.0	0.4112	112	0 4120	120 17	0 9392	401	0 9387
73 0	0 4422	211	0 4455	125 8	0 9904	004	0 9904
75 1	0 4642	202	0 4668	133 4	1 0545	104	1 0452
83 4	0.5531	003	0 5571	144 7	1 1351	402	1 1244
88 7	0.6108	103	0 6119	148 82	1 1592	114	1 1548

Table 3

Calculated and observed I/d² values for the compound CeCu₂Ni₃

20	1/d²(obs)	hkl	l/d²(calc)	20	l/d ^z (obs)	hkl	1/d²(calc)
35 5	0 1161	101	0 1148	76 0	0 4737	300	0 4797
41 91	0 1599	110	0 1599	95.96	0 6900	310	0 6929
49 4	0 2182	200	0 2132	99 5	0 7281	302	0 7258
50 4	0 2266	111	0 2214	101 9	0,7537	311	0 7544
52 9	0 2479	002	0 2461	111 23	0 8514	400	0 8528
55 4	0 2699	201	0 2747	114 3	0 8821	222	0 8857
577	0 2910	102	0 2995	117 2	0.9106	401	0 9143
68 3	0 3938	112	0.4060	119.84	0 9361	312	0 9390
71 0	0 4214	211	0 4346	127.00	1 0012	320	1 0127
73 9	0 4516.	202	0 4593	138 7	1 0946	402	1 0989

values The very good agreement of these values confirms the existence of a hexagonal single-phase structure for these intermetallic compounds.

Similar results were obtained for all investigated compounds. The lattice parameters of the whole series of compounds are given in Table 4,

Table 4

Compound	м	Lattice		
		a(Å)	c(Å)	c/a
$\begin{array}{c} CeCu_{5} \\ CeCu_{3}Ni_{2} \\ CeCu_{2} \\ SNi_{2} \\ CeCu_{2} \\ SNi_{3} \\ CeCu_{1} \\ SNi_{3} \\ SNi_{4} \\ CeCu_{0} \\ SNi_{4} \\ SNi_{4} \\ CrNi_{4} \\ \end{array}$	$\begin{array}{c} 457\ 82\\ 448\ 14\\ 445\ 72\\ 443\ 30\\ 440\ 88\\ 438.46\\ 436\ 04\\ 433\ 62\\ \end{array}$	5 146 5 051 5 020 4 995 4 961 4 929 4 909 4 909 4 874	$\begin{array}{r} 4 \ 108 \\ 4 \ 051 \\ 4.042 \\ 4.035 \\ 4 \ 024 \\ 4 \ 018 \\ 4.014 \\ 4 \ 011 \end{array}$	$\begin{array}{c} 0.798 \\ 0.802 \\ 0.805 \\ 0.807 \\ 0.811 \\ 0.815 \\ 0.817 \\ 0.822 \end{array}$

Lattice constants for some $CeCu_{5-x}Ni_x$ compounds with the $CeCu_5$ structure

r

٠

The continuous solubility of the compounds CeCu₅ and CeNi₅ can also be revealed from the concentration dependence of the lattice parameters given in the figure 1.

The lattice parameter a decreases linearly as the number of Ni atoms per unit formula increases, while the parameter c decreases no-linearly.

The ratio c/a (see fig 2) increases with nickel atoms increase.

4 Conclusions. The obtained experimental results show the existence of the continuous series of the solid solutions between intermetallic compounds CeCu₅ and CeNi₅ with the general formula CeCu_{5-x}Ni_x. All series of the intermetallic compounds is isotypic and crystallize in a hexagonal structure of the CeCu₅ type.

The NMR and magnetic susceptibility results of CeCu_{5-x}Ni_x intermetallic compounds were published before [8].

× --

REFERENCES

- 1 A C Larson and D T Cromer, Acta Cryst, 14, 545 (1961 b), 14, 73 (1961 a)
- 2 T B Rhinehammer, D E Etter, J E. Selle and P A. Tucker, Trans. Met Soc. AIME, 230, 1139 (1964)
- 3 A E Dwight, Trans Am Soc Met, 53, 479 (1961) 4 I Pop, Elena Rus, M Coldea and Olivia Pop, J Phys Chem Solids, 40, 683-685 (1979)
- 5 D T Cromer, A C Larson and R B Roof, Acta Cryst, 13, 913 (1960) 6. D W Buschow, A S Van der Goot, J Less Common Metals, 19, 433 (1969)
- 7 W B Pearson, A Handbook of lattice spacings and structures of metals and alloys, vol 2, p. 193, Pergamon Press, 1967
- 8 I Pop, Rodica Pòp and M. Coldea, J. Phys Chem Solids, 43, 3, 199-203 (1982)

STRUCTURA CRISTALINĂ A COMPUȘILOR INTERMETALICI CeCu_{s-x}Ni_x

(Rezumat)

Structura cristalină a sistemului intermetalic $CeCu_{5-x}Ni_x(x=2, 2,5, 3, 3,5, 34, 4,5, 5)$ a fost studiată prin difracție de raze x Compușii intermetalici CeCu_{5-x}Ni_x au o structură hexagonală ca și compusul CeCu, Pentru toți compușu investigați au fost determinați parametru celulei elementare

HALL EFFECT MEASUREMENTS ON NEUTRON IRRADIATED p-TYPE SILICON

LAVINIA COCIU, EUGENIA HĂLMĂGEAN*, R. FODOR, AL. NICULA

Introduction. The problems of the semiconductor phyics connected with the radiation-induced defect centers are quite various and are primarily determined by the great sensitiveness of the crystal properties at the imperfections' presence. A considerable amount of data concerning the nature of defects in neutron irradiated silicon has been obtained using the electronic resonance methods [1]. It is difficult to elucidate the physical nature of a defect center by means of the Hall effect. The Hall Effect measurements on irradiated semiconductors are used [2] to find both the free carriers concentrations and their change rate with the modification of the total flux (fluence) of the incident particles The Hall effect measurements on the neutron-doped silicon samples [3] have provided a method for measuring the thermal neutron fluence in the vertical channel of a VVR — type reactor. The present experimental work completes our EPR studies [4] on the neutron irradiated silicon; its aim is to find the free hole concentration and Fermi level in fast neutronirradiated samples of p — type silicon.

Experimental. The samples used were the floating zone silicon doped with boron. We used standard equipment to measure Hall effect, at the room temperature, on the specimens with thickness below 1 mm. The samples were irradiated with fast neutrons at $\Phi_1 = 2.8 \times 10^{13}$ cm⁻² and $\Phi_2 = 4 \times 10^{13}$ cm⁻². The measurements were made on the un-irradiated, irradiated, and irradiated and then heated for an hour at 200 °C samples. For all the samples, as it is seen from figure 1 (a and b) for the fourth set, we found the Hall voltage linear in both magnetic field — B and sample — current I.

Theory. We used the theory of the Hall effect in semiconductors [5]. The density of the free holes p is deduced from the Hall coefficient by the equation

$$p = \frac{r}{R_{H} \cdot e},\tag{1}$$

where R_H is the Hall coefficient and e – electron change. The Hall factor r is a numerical factor which for holes, has the value [6]:

$$r = 0.84 \left(\frac{T}{300}\right)^{-0.21} \tag{2}$$

where T is the temperature of the sample.

The Fermi level E_F is determined by the equation:

$$E_F - E_v = kT \ln \frac{N_v}{p}, \qquad (3)$$

• * I P R S - Băneasa, București

Fig 1 The dependence of Hall voltage on magnetic field (a) and sample current (b)

with E_v the top of valence band, k – Boltzmann constant and N_v – the density of equivalent states.

$$N_{v} = 2 \left(\frac{m_{p}^{*} T_{k}}{2\pi \lambda^{3}} \right)^{3/2}, \ m_{p}^{*} = 0.59 \ m_{0}, \tag{4}$$

where m_0 is the free electron mass

Results and discussion. The obtained results are presented in the Table 1. for four sets of samples

- 51

The observed decrease of the carrier density after neutron irradiation is due to defect centers which act as a hole traps. The thermal treatment of the irradiated samples at 200 °C for 1 hour leads to the partial annealing of the defects and increases the hole number

For every set of samples, the Fermi level changes according to p-carrier variation

The samples in the 4 and 7 sets have about the same initial concentrations of holes and have been irradiated at different neutron fluence. The calculated rate of the variation of the free carriers concentration is $\Delta p/\Delta \Phi =$ = -57.5 cm⁻¹. The efficiency of the thermal treatment is more poor for the samples irradiated at higher neutron flux.

(Received January 10, 1984)

, 1

د' ,

1.7

.

The Hall coefficient, carrier density and Fermi level of silicon samples

	un-irradiated				irradiated			ırradıated and heated 1 h at 200°C		
Samples , set	<i>R_H</i> (cm³/C)	⊅ (cm ⁻³)	$E_F - E_v$ (eV)	Φ <u>neutrons</u> cm ²	R_H (cm ³ /C)	∲ (cm ⁻³)	$E_F - E_v$ (eV)	R _H (cm³/C)	'⊅ (cm ^{−3})	$E_F - E_v$ (eV)
2 4	1091 5 1424 0	$4 83 \times 10^{15}$ $3 70 \times 10^{15}$	0 195 0 202	2.8×10^{13}	1556 2 1864 9	$3 39 \times 10^{15}$ $2 83 \times 10^{15}$	0 204 0.208	1260 0 1632 0	$\begin{array}{c} 4 \ 19 \ \times \ 10^{16} \\ 3 \ 23 \ \times \ 10^{15} \end{array}$	0,198 0 205
6 7	1670 5 1437.2	$3 16 \times 10^{15}$ $3 67 \times 10^{15}$	0 206 0 202	4×10^{13}	2654 2 2468 0	$1 99 \times 10^{15}$ $2 14 \cdot 10^{15}$	0 217 0 215	2051 2 1851 3	2.57×10^{15} 2 85 × 10 ¹⁵	0.211 0.208
REFERENCES

- 1. K. L. Brower, in Nuclear and Electron Resonance Spectroscopies Applied to Matherials Science, Kaufmann, Shenoy eds., Elsevier North Holland, inc., 1981, p 71
- 2. V. L. Vinetzki, G. A. Holodar, Radratzionagia fizika poluprovodnikov, Izd "Naukova Dumka", Kiev, 1979, p. 294
- 3. V. A Harcenko, S. P. Solov'ev, PB Novgorodtzev, Atomnaja energija, 28, 3, 253 (1970).
- 4 Al. Nicula et al, to be published 5. Al Nicula, Fizica semiconductorilor și aplicații, Ed. did și ped, București, 1975
- 6. H. Djerassi, J. Merlo-Flores, J Messier, J Appl Phys, 37 (13), 4510 (1966).

MĂSURĂTORI DE EFECT HALL ÎN SI- TIP p IRADIAT CU NEUTRONI (Rezumat)

În lucrare se determină, prin măsurători de efect Hall, concentrația purtătorilor de curent și poziția nivelului Fermi în probe de Si - tip p iradiate cu neutroni rapizi Se calculează și viteza. de variație a concentrației de goluri cu fluxul de neutroni.

CERCETĂRI SISTEMATICE ASUPRA RADIOACTIVITĂȚII GAZELOR NATURALE EMANATE DIN SURSELE GEOTERMALE DIN VALEA CERNEI ȘI VALEA MEHADICA

C. COSMA, I. MASTAN, V. ZNAMIROVSCHI, O. COZAR

l Introducere. Măsurătorile asupra radioactivității gazelor naturale provenite din surse de ape minerale și geotermale [1-3] au fost inițiate în paralel cu măsurătorile asupra compoziției chimice a acestora [8-10], în scopul evidențierii unor surse potențiale de heliu pe teritoriul României [4-7]. Astfel de studii combinate și completate cu măsurători asupra compoziției izotopice sînt de o deosebită importanță în cercetările de geofizică și geochimie [1-39], dînd și informații asupra unor minerale utile din scoarța Pămîntului.

Primele măsurători asupra radioactivității gazelor naturale au fost efectuate în 1980 pe probe recoltate din surse geotermale de pe Valea Cernei. Din cauza datelor interesante obținute, atît asupra radioactivității [1, 2] cît și a conținutului de heliu [4, 5], determinările au fost repetate și completate în decursul următorilor doi ani, incluzînd și Valea Mehadica și zona Mehadia [10].

În decursul timpului Valea Cernei a făcut obiectul a numeroase studu, atît de geologie cît și de geofizică [22-34]. Aceste studii au stabilit că Valea Cernei curge în lungul unui graben de fundament relativ îngust. În zona stațiunii balneare fundamentul este constituit din șisturi cristaline cuprinzînd în ele masive granitice, peste care se situează depozite sedimentare impermeabile (stratele de Nadanova) [34] Datorită puternici tectonizări din zonă atît cuvertura sedimentară cît și fundamentul sînt puternic afectate de numeroase falii longitudinale și transversale. După ultimele date, zăcămîntul geotermal de la Herculane se formează și se regenerează permanent cu participarea a trei componente [34]: apele de infiltrație din lungul Văii Cernei, apele de tip zăcămînt și apele fierbinți cu sau fără vapori din zonele profunde. Odată cu apele geotermale, prin cele 24 de surse existente în momentul de față în stațiune și în împrejurimi (16 izvoare naturale și 8 foraje) sînt aduse la suprafață și însemnate cantități de gaze naturale.

Pentru a avea o imagine mai clară asupra radioactivității diferiților factori de mediu din Valea Cernei și în special în scopul lămuririi mecanismului aeroionizării negative puternice din zona stațiunii, în decursul a trei ani consecutivi au fost efectuate în paralel și măsurători asupra activității apelor geotermale, a apei din Cerna [35] a solului, sedimentelor și rocilor granitice [36].

În această lucrare vom prezenta succint principalele noastre rezultate asupra radioactivității gazelor obținute în perioada 1980-1981 [1, 2] și le vom completa cu rezultatele noilor măsurători efectuate în iunie 1982 cu instalația de măsurare prezentă la fața locului. În acest fel am avut posibilitatea de a face măsurători mai complete și am putut verifica unele din presupunerile noastre anterioare. Vom face de asemenea referiri comparative între radioactivitatea acestor gaze și conținutul lor în heliu, citînd în acest sens lucrările [4-7]. 2. Metoda experimentală. Metodica și aparatura de recoltare și măsurare a activității probelor gazoase precum și modul de determinare a constituenților radioactivi al acestor gaze sînt descrise în lucrările noastre anterioare [1-3, 8]. De aceea în această lucrare ne vom referi numai la unele aspecte noi, apărute și rezolvate datorită prezenței, *in situ*, a aparaturii de măsurare. Principalele probleme rezolvate cu această ocazie au fost următoarele:

a) Ridicarea curbelor de dezintegrare și calculul timpului de înjumătățire pentru majoritatea surselor cercetate;

b) Obținerea unor spectre gama pentru probele gazoase la puțin timp după ce ele au fost recoltate, urmărindu-se astfel și eventuala prezență a altor constituenți radioactivi cu viață mai scurtă alături de 222 Rn, în special a thoronului — 220 Rn;

c) Calculul eficacitățu de spălare a probelor, care atestă capacitatea și eficiența dispozitivelor noastre de recoltare a unor probe de gaze naturale neimpurificate cu aerul atmosferic [1];

d) Calculul unui coeficient de încredere, k, utilizat apoi în punerea în evidență a radonului în probe cu activitate slabă [3, 37].

Vom prezenta de asemenea un spectru gama obținut cu un detector GeLi pentru una din probele de gaz, spectru care a fost ridicat în laborator, după un interval de timp relativ mare scurs din momentul recoltării. Picurile din spectrul energetic atestă și în acest caz că componenta radioactivă majoră a gazelor este ²²²Rn în echilibru de regim cu urmașii săi beta-gama radioactivi ²¹⁴Pb (RaB) și ²¹⁴Bi (RaC).

Viteza de numărare în regim integral pentru cuante gama cu energii mai mari de 50 keV s-a măsurat în fiecare caz după un interval de timp de 4-5ore de la recoltare, timp necesar și suficient ca RaB și RaC să intre în echilibru cu radonul. Cunoscîud viteza de numărare N (imp/100 s), valoarea activității de radon se calculează cu relația:

$$\Lambda_0 = \frac{2}{37} \frac{\overline{N}}{100} \frac{1}{\varepsilon} \frac{4\pi}{\Omega} \frac{f_a}{n} \tag{1}$$

unde constantele care intervin au valori bine determinate [1, 2].

3 Rezultate experimentale. 3 1. Ridicarea curbelor de dezintegrare. Ridicarea curbelor de dezintegrare s-a făcut prin măsurarea vitezei de numărare în regim integral (E > 50 keV) de mai multe ori, din timp în timp, continuînd măsurătorile și după sosirea la Cluj-Napoca pentru a obține cît mai multe puncte experimentale. Figura 1 reprezintă logaritmul vitezei de numărare în funcție de timp pentru 6 din probele analizate Din panta dreptelor s-au calculat timpii de înjumătățire ($T_{1/2} = \ln 2/tg \alpha$) în toate cazurile valorile primite sînt apropiate de valoarea de 3,82 zile care este valoarea exactă a timpului de înjumătățire pentru ²²²Rn în acest fel am verificat faptul că radioactivitatea tuturor gazelor din Valea Cernei se datorește ²²²Rn, presupunere folosită în lucrările [1, 2], precum și justificarea folosirii relației (1) pentru calculul activității acestor gaze.

32. Obținerea spectrelor gama. Ridicarea spectrelor gama s-a făcut folosind unul din cele patru canale ale analizorului NP 424 cuplat cu sonda cu scintilator NaI (T1) pentru o tensiune de lucru pe fotomultiplicator de 1150 V și o lărgime

Fıg. 1 Variația în timp a activității probelor de gaz ● — proba 404GR — Șapte Calde Dreapta, izvor nr 3, ○ — proba 412GR — forajul Scorilo, ▲ — proba 406GR — forajul Traian, △ proba 409GR — forajul Abator, ◇ — proba 403GR — izvorul Venera, × — proba 410GR forajul din Valea Mehadica

a canalului de 10 diviziuni, adică de 0,1 V În acest fel spectrul a fost obținut pe 100 de canale. Etalonarea s-a făcut folosind surse etalon de 241Am. 137Cs. ⁶°Co. Figura 2 reproduce spectrul gama pentru o probă recoltată de la sursa Sapte Calde Dreapta. Pe acest spectru se pot usor identifica picurile ²¹⁴Pb-lui de 242 keV (7,6%), 295 keV (19%) și 352 keV (36%) precum și respectiv cele ale 214 Bi de 609 keV (47%), 769 keV (5%), 1120 keV (20%), 1238 keV (6,8%), 1378 keV (5%), 1764 keV (16%), 1848 keV (2%), 2120 keV (1,2%) și 2204 keV (5%) [40]. Aceste energii demonstrează clar că radioactivitatea respectivelor gaze se datorește radonului-222 în echilibru de regim cu cei doi urmași gama radioactivi amintiți mai sus În acest spectru nu se evidențiază energiile 220 Rn și urmașılor săi care ar fi trebuit să apară la 238 keV (47%), 727 keV (7%) si 583 keV (86%) Depozitul activ al thoronului (220 Rn) are un timp mediu de viață de ~10 ore și, în cazul existenței acestuia în proba analizată, aceste picuri ar fi trebuit să apară, deoarece spectrul a fost ridicat la numai cîteva ore de la recoltare. Urmărirea acestor picuri a fost unul din motivele pentru care instalația a fost transportată în Valea Cernei Lipsa din spectru a picurilor menționate mai sus duce la concluzia că thoronul nu ajunge să rămînă în aceste gaze din cauza timpului de înjumătățire scurt (54 s) și a drumului lung urmat de

F1g 2 Spectrul gama al probei de la Șapte Calde Dreapta obținut cu un detector cu scintilație NaI(Tl)

aceste gaze în ascensiunea lor spre suprafață. Este însă de așteptat ca depozitul activ al thoronului, respectiv descendenții săi gama radioactivi ²¹²Pb, ²¹²Bi și ²⁰⁸Tl să se regăsească împreună cu radonul și descendenții săi dizolvați în apa acestor surse geotermale.

Deoarece probele recoltate de la Șapte Calde Dreapta au avut o activitate foarte mare, 200 nCi/INTP activitate de radon, după sosirea în laboratoarele facultății au fost ridicate spectrele gama ale acestora cu un analizor de tipul EMG cu 512 canale și folosind un detector GeLi cu o rezoluție de numai cîțiva keV Figura 3 reproduce un astfel de spectru pe care se pot identifica aici foarte bine picurile ²¹⁴Pb și ²¹⁴B1, care apar și pe spectrul din figura 2.

3 3 Determinarea eficienței de spălare Pentru a vedea în ce măsură probele de gaze recoltate în vederea măsurării activității conțin gaze neimpurificate cu aer atmosferic, probe recoltate prin procedeul de spălare [8], s-au înseriat două vase pentru recoltat probe gazoase la o sursă cu un debit mic de gaz, respectiv la Șapte Calde Dreapta, izvor nr. 3. Viteza de numărare pentru prima probă a fost de 89 037 imp/100 s iar pentru cea de-a doua de 87.713 imp/100 s. Raportul celor două viteze de numărare conduce la o eficiență a procesului de spălare de 98,5%

3 4. Determinarea coeficientului de încredere k În unele din lucrările noastre [3, 37], în cazul unor activități mici am folosit pentru identificarea radonului din gaze așa numitul coeficient de încredere k Acest coeficient reprezintă rapor-

tul dintre viteza de numărare în regim integral pentru energii mai mari de 200 keV și viteza de numărare în regim integral pentru energii mai mari ca 50 keV. Deoarece probele din Valea Cernei au o activitate foarte mare și deoarece ²²²Rn a fost aici identificat prin două metode, timpul de înjumătățire și spectrul gama, ca fiind unicul component radioactiv a acestor gaze, acest raport a fost determinat experimental pe gazele de aici. Măsurători repetate asupra mai multor probe de gaze au dat toate aceeași valoare, $\overline{k} = 0,66$.

3 5. Rezultatele măsurătorilor asupra activității gazelor. Tabelul 1 include rezultatele măsurătorii activității asupra a 10 probe de gaze recoltate din surse de ape geotermale din Valea Cernei și Valea Mehadica Primele două coloane din tabelul 1 reprezintă activitățile măsurate în 1980 [1, 2] și respectiv 1981 [36], iar ultima coloană cuprinde rezultatele măsurătorilor din iunie 1982 cu aparatura de măsură prezentă în teren. De menționat că în 1980 sursa din Valea Mehadica nu intra încă în sfera de interes, iar în 1982 din cauza lucrărilor de amenajare nu am avut acces la sursele Decebal și Fabrica de var și deci din această cauză în tabel lipsesc valorile respective.

4. Discutarea rezultatelor. După cum se observă la o analiză sumară a tabelului 1, spre deosebire de activitățile gazelor din alte zone [7, 37] studiate de noi, precum și în comparație cu rezultatele asupra radioactivității gazelor obținute de alți cercetători [31], pentru gazele din Valea Cernei am obținut o activitate foarte mare, peste 200 nCi/INTP la sursa Șapte Calde Dreapta, o activitate mare 10-30 nCi/INTP pentru sursele provenind din forajele Scorilo,

39

		Activitate	a de radon (1	nC1/INTP)
Nr	Locul recoltărm	iunie-sept	1un1e	iunie

Activitatea gazelor naturale provente^tdin surse de ape geotermale din Valca Cernei și Valea Mehadica

crt	Locul recoltării	iunie-sept 1980	iunie 1981	1unie 1982
1 2 3 4 5 6 7 8 9 10	Sapte Calde Dreapta, 12v. 3 Sapte Calde Dreapta, 12v. 1 Scorilo (foraj) Traian (foraj) Abator (foraj) Venera (12vor natural) Neptun (foraj) Fabrica de var (foraj) Decebal (foraj) Valea Mehadica (foraj)	$\begin{array}{c} 215,46\\ 113,54\\ 31,95\\ 30,16\\ 12,37\\ 1,23\\ 1,75\\ 24,56\\ -\\ -\\ -\\ \end{array}$	$162,3 \\ 151,28 \\ 31,48 \\ 19,15 \\ 1,15 \\ 1,15 \\ 1,1 \\ 0,76 \\ 13,51 \\ 0,44 \\ 1,62$	211,55 25,68 9,39 1,74 1,37 1,26
		· · · · · · · · · · · · · · · · · · ·		1

Traian, Abator și Fabrica de var și o activitate însemnată 1-2 nCi/lNTP pentru sursele Venera, Neptun, Decebal și Valea Mehadica

Această radioactivitate mare și foarte mare a gazelor din Valea Cernei, combinată cu radioactivitatea celorlalți factori de mediu [36], explică existența unei aeroionizări negative puternice în zona stațiunii Herculane [1] Tot din tabelul l se observă că valorile măsurate în decursul celor trei ani, 1980-1982, sînt reproductibile, obținîndu-se doar în cursul anului 1981 valori, în general, cu ceva mai scăzute decît în 1980 și 1982 Trebuie remarcat că în 1981 și alte caracteristici ale probelor de gaze cum ar fi compoziția chimică și conținutul în heliu au suferit unele modificări O situație de excepție în acest sens se observă numai la sursa de la Abator unde activitatea în 1981 a fost cu un ordin de mărıme mai mıcă față de anu 1980 și 1982 De altfel la această sursă a fost observat în 1981 și cel mai mare salt în concentrația heliului, aceasta dublîndu-se față de 1980 [6], precum și o inversare a raportului metan-azot [10]. De mentionat că vana acestui foraj a fost mult timp închisă (cîteva luni) înaınte de a recolta probele Dacă vasul pentru probă nu a fost defect, adică să prezinte fisuri în cele două țevi de plumb folosite pentru umplerea și închiderea vasului, atunci trebuie să luăm în considerare posibilitatea unei separări gravitaționale a radonului, posibil și a heliului, pe coloana forajului sau chiar în zăcămîntul geotermal

Faptul că măsurătorile din 1982 efectuate asupra gazelor în momentul imediat recoltării au dat, cu excepția discutată, aceleași valori ca măsurătorile anterioare efectuate după un interval mare de timp în laboratoarele noastre atestă etanșeitatea vaselor de colectare și măsurare a probelor confecționate de către noi [1]

Făcînd un studiu comparativ a datelor din tabelul 1 legate de radioactivitate și a datelor legate de conținutul heliului din aceste gaze [5-7], care are aici concentrații ridicate (printre cele mai mari de pe teritoriul României), se poate trage concluzia că între radioactivitate și concentrația heliului există o strînsă legătură, deși nu există o proporționalitate directă Concentrațiile mari

de heliu sînt însotite de o radioactivitate sporită și invers. Acest lucru este sustinut si de rezultatele măsurătorilor noastre asupra compoziției și radioactivității gazelor din Carpații Orientali, a celor din zonele Brebeni, Valea Anieșului (Rodna) și Praid, în special [37]. Paralelismul heliu-radioactivitate, cel heliu-azot-radioactivitate, în general, este discutat și pus în legătură cu existența unor fracturi profunde de mare amploare în zonele respective [38]

(Intrat în redactie la 14 martie 1984)

BIBLIOGRAFIE

- 1 C Cosma, I Mastan, V Znamırovschi, N. Golopenta, St Cerc Fiz. 33. 4, 351 (1981).
- 2 0 Cosma, I Mastan, V. Znamirovschi, N. Golopenta, St Cerc Fiz. 33. 7, 633 (1981)
- 3 C Cosma, I Mastan, V. Znamirovschi, St. Cerc Fiz, 34, 10, 921 (1982)
- 4 I Mastan, V Znamirovschi, I. Pop. Raport 01/03 01, 1980 la Contractul de cercetare stiintifică 9/1979.
- 5 I Mastan, V. Znamirovschi, C. Cosma, I Pop. Raport 042/18 12 1980 la Contractul de cercetare stuntifică 5/1980.
- 6. I Mastan, C. Cosma, V Znamirovschi, O. Cozar, Raport 047/15 12 1982 la Contractul de cercetare stunțifică nr 90/1982.
- 7 I Mastan, C Cosma, V. Znamirovschi, O Cozar, Raport la Contractul de cercetare științifică nr 90/1983
- 8 I. Mastan, V Znamirovschi, C. Cosma, I Pop, St Cerc Fiz, 33, 6, 539 (1981). 9 I Mastan, V Znamirovschi, C Cosma, St. Cerc. Fiz., 34, 4, 347 (1982)

- 10 I Mastan, C Cosma, V Znamirovschi, St Cerc Fiz, 34, 6, 579 (1982) 11 E S Matveeva, I. N Tolstîkhin, V. P. Yakutseni, Geokhimiya, 3, 307 (1978).
- 12 G. I Voitov, Dokl Akad. Nauk, SSSR (Geochem), 236, 4, 975 (1977)
- 13 B A Mamyrin, I N Tolstkhin, Geokhimiya, 3, 384 (1979)
- 14 H Craig, Y E Lupton, Gephys Res Lett, 5, 11, 897 (1978)
- 17 H Crarg, T B H up to h, Gephys Res Eds. 1, 5, 1670, 1670, 1570, 15
 15 E K Gerling, T V Koltzova, A. N Kamarov, Radiokhimia, 21, 5, 578 (1979).
 16 J W Marine, Water Resour Res, 15, 5, 1130 (1979).
 17 D W Schwartzman, Adv Earth Planet. Sci, 3, 185 (1978).
 18 O K Manuel, Geochim, Cosmochim. Acta, 42, 183 (1978).

- 19 M E Hinkle, Geol Surv. Open-File Report (US) 80-613 (1980)
- 20 G M Reimer, R S Rice, Report 1977, USGS-OFR-77-669
- 21. E H Denton, Report 1977, USGS-OFR-77-606.
- 22 I Popescu-Voitești, An Min, 4, 115 (1921)
- 23 G Atanasiu, Anuarul Inst Geol Rom, VII, 1 (1927)

- 23 G Atanasiu, Anuani Inst Geol Rom, VII (1927)
 24 G Atanasiu, Anuani Inst Geol Rom., VIII (1929).
 25 G Atanasiu, Bull Soc. Roum Phys, XLII, 87 (1941)
 26 A Sanielevici, J Auslaender, Bull sect Acad Rom, XXX, 1 (1947)
 27 A Szabo, St Cerc şt, Fil Cluj a Acad R PR, 5, 46 (1954)
 28. I Povară, N Schmidt, V Glavan, Terra, XXII, 38 (1970)
 29 A Pricăjan, Apele minerale și termale din România, Ed. tehnică, Bucureşti, 1972
 20 D. M. Oscara, Brill Humphen, Ed. Scart Concerce Procession, 1972
- 30. T. N Trapcea, Băile Herculane, Ed Sport-Turism, București, 1976
- 31 A. Szabo, Ape și gaze radioactive în R.S.R., Ed. Dacia, Cluj-Napoca, 1978
- 32. I Cristescu, Tezaurul Cerner, Ed. Sport-Turism, București, 1978
- 33. M N. Filipescu, I. Humă, Geochimia gazelor naturale, Ed Acad RSR, București, 1979
- 34, A Pricajan, St. Altinel, Bogătia hidrominerală balneară din România, Ed stiințifică și enciclopedică, București, 1981.
- 35 C Cosma, I. Mastan, V. Znamitovschi, Studia Univ. Babeş-Bolyai, Phys., 26, 1 42 (1981)

- 36. C Cosma, I Mastan, V. Znamirovschi, în lucrările Simpozionului național Structural Methods and Models in Physics and Related Fields, 25-26 sept 1981, Cluj-Napoca.
- 37. C Cosma, I Mastan, V. Znamirovschi, O Cozar, in press, St. Cerc Fiz, (1984)
- 38. I. Mastan, C Cosma, V Znamirovschi, O Cozar, în lucrările celui de-al II-lea Simpozion Național Methods, Models and Techniques in Physics and Related Fields, Cluj-Napoca, oct. 1983
- 39. K. Rankama, Progress in Isotope Geology, John Wiley and sons, New York, 1963
- 40. N G. Gusev, P. P. Dmitriev, Kvantovoe izlucenie radioactivnîh nuclidov, Atomizdat, Moscova, 1977

SYSTEMATICAL RADIOACTIVITY INVESTIGATIONS OF NATURAL GASES EMANATTED FROM CERNA VALLEY AND MEHADICA VALLEY GEOTHERMAL SPRINGS (Summary)

The radioactivity of geothermal gaseous samples from Cerna Valley and Mehadica Valley springs was measured by the gamma — spectrometry method. The presence of the radon was identified by the half-time determination and by gamma-emittes energies of its descendents ²¹⁴Pb and ²¹⁴Bi. A great radioactivity of these natural gases was obtained Thus is disscused in connection with the helium appearance. The great radioactivity of the natural gases is accompanied by a great helium content too.

42

MĂSURĂTORI DE CONSTANTĂ DIELECTRICĂ ÎN CRISTALE DE $N_{2}H_{6}SO_{4}$

I. BARBUR, L. BABOS

Introducere. Sulfatul de hidrazoniu $(N_2H_6SO_4)$ face parte dintr-o clasă de cristale cu legături de hidrogen ce au proprietăți electrice deosebite S-a arătat [1] că mulți compuși cu hidrazină, printre care și sulfatul de hidrazoniu, prezintă histereză feroelectrică la o anumită temperatură. În scopul elucidării mecanismului de apariție și de modificare a proprietăților feroelectrice au fost efectuate studii de rezonanță electronică de spin (RES) asupra defectelor de iradiere produse în astfel de substanțe [2, 3].

Concomitent cu fenomenul de histereză în sulfatul de litiu și hidrazină compus izomorf cu sulfatul de hidrazoniu — a fost pusă în evidență o neobișnuit de mare conductibilitate protonică de-a lungul axei "feroelectrice" [1, 4], ceea ce a pus sub semnul întrebării natura feroelectricității într-un astfel de compus [5] S c h m i d t și col [6], în urma unui studiu al proprietăților electrice în sulfatul de litiu și hidrazină ($LiN_2H_5SO_4$), au arătat că acest compus nu este feroelectric. Autorii explică apariția fenomenului de histereză ca urmare a saturației conducției în curent alternativ. Măsurători recente de conductibilitate și termocurent stimulat a ionului VO²⁺, introdus în $LiN_2H_5SO_4$, [7] au permis determinarea energiei de activare, iar dependența

acesteia de temperatură se explică pe baza modelului de "conductor unidimensional" atribuit unui astfel de compus.

În lucrarea de față ne-am propus un studiu asupra comportării constantei dielectrice în funcție de temperatură în sulfatul de hidrazoniu $N_2H_6SO_4$, substanță izomorfă cu sulfatul de litiu și hidrazină amintit mai sus.

Rezultate experimentale. Discuții. Sulfatul de hidrazoniu (N₂H₆SO₄) prezintă două forme cristalografice [8] În lucrarea de față s-au folosit cristale de formă ortorombică, obținute prin evaporare lentă, la temperatura camerei, din soluția saturată corespunzătoare Celula unitară a sulfatului de hidrazoniu conține patru unități de formulă și are parametrii a₀ = 8,251 Å, b₀ = 9,159 Å, c₀ = 5,532 Å [8]. Studiul constantei dielectrice s-a realizat cu ajutorul celulei reprezentată în fig. 1 [9].

Măsurătorile de constantă dielectrică relativă ε , au fost efectuate în curent alternativ, la frecvența de 1 kHz și tensiune efectivă de 50 V, cu ajutorul unei punți digitale automate, de tipul E—315 A, de fabricație poloneză. Variația temperaturii probei de la temperatura azotului lichid la temperatura camerei s-a realizat prin scufundarea lentă a celulei de măsură într-un vas Dewar umplut cu azot lichid Pentru evitarea influenței umidității asupra constantei die-

Fıg 1 Schiţa celulei pentru măsurarea constantei dielectrice

Fig 2 Dependența constantei dielectrice cu temperatura pentru compusul N2H6SO4

lectrice, în timpul măsurătorilor celula a fost vidată. Temperatura a fost măsurată cu ajutorul unui termocuplu cupru-constantan. Precizia măsurătorilor a fost de $\pm 1\%$ pentru capacitate și sub 1 K pentru temperatură

Dependența constantei dielectrice de temperatură, în intervalul de la temperatura azotului lichid la temperatura camerei, este redată în fig 2

Se observă o creștere a constantei dielectrice cu temperatura, fără existența vreunui maxim, ceea ce denotă că sulfatul de hidrazoniu nu prezintă tranziție de fază feroelectrică la temperatura presupusă de -50 °C O astfel de comportare a constantei dielectrice cu temperatura poate fi pusă pe seama unei conductibilități protonice unidimensionale pronunțate a acestui compus la fel ca și în cazul compusului $L_1N_2H_5SO_4$ În domeniul de radiofrecvență, constanta dielectrică este afectată atît de mecanismele de conducție cît și de alte mecanisme care se relaxează la frecvențe înalte.

Este de așteptat ca și în sulfatul de hidrazoniu fenomenul de histereză să rezulte dintr-o saturație a conductibilității în curent alternativ. Ca și în cazul $L_1N_2H_5SO_4$ [6] este posibil ca defectele și impuritățile introduse în sulfatul de hidrazoniu să influențeze proprietățile dielectrice ale acestui compus.

Măsurători complete de constantă dielectrică în sulfatul de hidrazoniu incluzînd și domeniul de microunde, precum și un studiu privind influența defectelor asupra proprietăților dielectrice, sînt în curs de realizare, cu scopul de a elucida mecanismele care stau la baza conductibilității și a proprietăților dielectrice deosebite în acest compus

44

BIBLIOGRAFIE

R. Pepinsky, K. Vedam, Y. Okaya, S. Hoshino, Phys. Rev., 111, 1467 (1958).
 R. Blinc, M Schara, S. Poberaj, J. Phys. Chem. Solids, 24, 559 (1963).
 I. Barbur, Phys. Stat. Sol, 34, 711 (1969).
 J. Vanderkoy, J. D. Cuthbert, H. E. Petch, Can. J. Phys, 42, 187 (1964).
 N N11zeki, H. Koizumi, J. Phys. Soc Japan, 19, 132 (1964)
 V. H Schmidt, J E Drumheller, Phys Rev. B, 4, 4582 (1971)
 A. D. Reddy, S. M. D. Rao, G S. Sastry, Phys. Stat. Sol. (a), 70, 269 (1982).
 I. Nitta, K. Sakurai, Y. Tomite, Acta Cryst., 4, 289 (1951)
 J. Frand Declaration solds amagination of the state of the s

.

9. L. Eyraud, Dielectriques solides anisotropes et feroelectricité, Gautier-Villars, Paris, 1967.

DIELECTRIC MEASUREMENTS ON N2H_SO4 CRYSTALS

(Summary)

From dielectric measurements versus temperature on $N_{2}H_{6}SO_{4}$ crystals, it is concluded that hydrazonium sulphate is not ferroelectric. It is possible that unusual dielectric properties result from the nearly one-dimensional protonic conduction in N2H, SO4

MIȘCAREA UNUI CORP SFERIC ÎN ROTAȚIE ÎN CÎMPUL GRAVITAȚIONAL

Z. GÁBOS și J. SZÉN

În lucrare se studiază interacțiunea gravitațională a corpului sferic rigid (1), avînd masa de repaos M_0 și raza A, cu un corp sferic rigid (2) avînd masa de repaos m_0 și raza a, în condițiile în care $m_0/M_0 \leq 1$, $a/(R-A) \leq 1$ (R este distanța dintre centrele celor două sfere). Ambele corpuri efectuează o mișcare de rotație, cu vitezele unghiulare $\vec{\Omega}$ resp. $\vec{\omega}$. Această problemă studiată de L. I. S c h i f f [2] a fost reluată în ultimii ani, în speranța de a obține noi dovezi experimentale în favoarea teoriei relativității generale [10].

Schiff a stabilit o formulă pentru variația lui ω , aplicînd metoda lui A. Papapetrou [3] (utilizînd la maxim proprietățile de invarianță) Noi vom aborda problema pe o altă cale. Folosînd lagrangeanul dat de I. G. Fichtenholț [1] pentru un sistem de puncte materiale, luăm în considerare faptul că punctele sferelor efectuează o mișcare cu constringeri. Această cale prezintă avantaje în cazurile cînd dimensiunile corpurilor nu pot fi neglijate.

1° Într-o aproximație de ordinul doi lagrangeanul sistemului de puncte materiale are expresia [8]

$$L = \frac{1}{2} \sum_{a} m_{0a} \vec{v}_{a}^{2} + \frac{1}{8c^{2}} \sum_{a} m_{0a} v_{a}^{4} + \frac{k}{2} \sum_{a,b}' \frac{m_{0a} m_{0b}}{r_{ab}} - \frac{k^{2}}{6c^{2}} \sum_{a,b,c}' m_{0a} m_{0b} m_{0c} \left(\frac{1}{r_{ab} r_{ac}} + \frac{1}{r_{ba} r_{bc}} + \frac{1}{r_{ca} r_{cb}} \right) +$$

$$+ \frac{k}{4c^{2}} \sum_{a,b}' \frac{m_{0a} m_{0b}}{r_{ab}} \left[\vec{3} \vec{v}_{a}^{2} + \vec{3} \vec{v}_{b}^{2} - 7(\vec{v}_{a}, \vec{v}_{b}) - (\vec{v}_{a}, \vec{n}_{ab}) (\vec{v}_{b}, \vec{n}_{ab}) \right],$$
(1)

unde k este constanta gravitațională, m_{0a} resp. \vec{v}_a este masa de repaos, resp. viteza punctului material a, r_{ab} este distanța punctelor a, b, iar \vec{n}_{ab} este versorul îndreptat de la punctul a spre punctul b. Prin virgula pusă pe lîngă semnele de sumă am scos în evidență faptul că în sumele pentru a și b nu se iau în considerare termenii pentru care a = b, iar în suma pentru a, b și c nu se iau în considerare termenii care conțin distanțe cu indici care se repetă (de exemplu în termenul care conține pe $r_{ab}r_{ac}$ nu se iau în considerare termenu pentru care a = b și a = c).

Trecînd la cazul a două corpuri sferice vom admite pentru masă o distribuție continuă și vom studia cazul particular cînd în corpul (1) distribuția masei prezintă o simetrie sferică, pe cînd distribuția în sfera (2) este omogenă.

Deoarece $M_0 \ge m_0$ corpul (1) poate fi considerat drept un corp central în repaos. Vom alege originea sistemului de referință chiar în centrul acestei sfere.

Notînd cu \vec{R} vectorul de poziție a centrului sferei (2) și cu \vec{x}_1 resp. \vec{x}_2 vectorii de poziție față de centrul sferei (1) resp. (2) avem

$$|\vec{R} + \vec{x}_2 - \vec{x}_1| \tag{2}$$

pentru distanța a două puncte aparținînd de corpuri diferite,

$$\mu_1 = \mu(r_1), \ r_1 = |\vec{x}_1|, \ \mu_2 = \mu_0$$
 (3)

pentru funcțiile de densitate și

$$\vec{v}_1 = (\vec{\Omega} \times \vec{x}_1), \quad \vec{v}_2 = \vec{v} + (\vec{\omega} \times \vec{x}_2)$$
 (4)

pentru vitezele punctelor din sferele (1), (2), \vec{v} reprezentînd viteza de translație a sferei (2).

În condițiile arătate mai sus în locul sumei (1) vom avea o integrală extinsă pe domeniile ocupate de cele două sfere Cu ocazia efectuării integralelor, am avut în vedere următoarele:

a) rotația sferei centrale are loc cu $\overline{\Omega}$ constant, prin urmare energia cinetică constantă a corpului (1) nu se ia în considerare,

b) deoarece sferele sînt rigide nu se iau în considerare termenii cu caracter de energie potențială, care rezultă din interacțiunea punctelor făcînd parte din aceeași sferă;

c) avînd $a/(R - A) \leq 1$, dacă a fost necesar am recurs la aproximația

$$|\vec{R} + \vec{x}_{2} - \vec{x}_{1}|^{-n} =$$

$$= |\vec{R} - \vec{x}_{1}|^{-n} \left[1 - n \frac{(\vec{R} - \vec{x}_{1}, \vec{x}_{2})}{|\vec{R} - \vec{x}_{1}|^{2}} - \frac{n}{2} \frac{\vec{x}_{2}^{2}}{|\vec{R} - \vec{x}_{1}|^{2}} + \frac{n(n+2)}{2} \frac{(\vec{R} - \vec{x}_{1}, \vec{x}_{2})^{2}}{|\vec{R} - \vec{x}_{1}|^{4}} + \cdots \right]$$
(5)

În urma efectuării calculelor se ajunge la lagrangeanul

$$L = L_{\mathfrak{s}} + L_{\mathfrak{p}} + L_{\mathfrak{r}\mathfrak{s}} + L_{\mathfrak{r}\mathfrak{r}} + L_{\mathfrak{a}} \tag{6}$$

unde

.

$$L_{e} = \frac{m_{0}}{2} \vec{v^{2}} + \frac{m_{0}}{5} a^{2} \vec{\omega^{2}} + \frac{m_{0}}{8c^{2}} \vec{v^{4}} + \frac{m_{0}}{5c^{2}} a^{2} \vec{\omega^{2}} \vec{v^{2}} - \frac{m_{0}}{10c^{2}} a^{2} (\vec{\omega}, \vec{v})^{2} + \frac{m_{0}}{35c^{2}} a^{4} \vec{\omega^{4}}, \quad (7)$$

$$L_{p} = k \frac{m_{0}M_{0}}{R} - \frac{h^{2}}{2c^{2}} \frac{m_{0}M_{0}^{2}}{R^{2}} - \frac{\pi h^{2}m_{0}^{2}}{c^{2}R} \int_{0}^{A} r_{2}\mu(r_{2}) \ln \frac{R + r_{2}}{R - r_{2}} dr_{2} + + \alpha \frac{hm_{0}M_{0}}{c^{2}R} A^{2}\vec{\Omega}^{2} + \frac{3hm_{0}M_{0}}{2c^{2}R} \vec{v}^{2} + \frac{3hm_{0}M_{0}}{5c^{2}R} a^{2}\vec{\omega}^{2} + + \alpha' \frac{hm_{0}M_{0}A^{4}}{10c^{2}R^{2}} [\vec{\Omega}^{2} - 3(\vec{\Omega}, \vec{n})^{2}] + \frac{3hm_{0}M_{0}a^{4}}{70c^{2}R^{3}} [\vec{\omega}^{2} - 3(\vec{\omega}, \vec{n})^{2}], \vec{n} = \frac{\vec{R}}{R}, \quad (8)$$

Z GÁBOS, J SZÉN

$$L_{rt} = -\frac{3km_0M_0a^2}{5c^2R^3}(\vec{v},\vec{\omega},\vec{R}) - \frac{4km_0M_0}{3c^2R^3}\alpha A^2(\vec{v},\vec{\Omega},\vec{R}), \qquad (9)$$

$$L_{rr} = \frac{4km_0M_0}{15c^2R^3} \alpha A^2 a^2 [\vec{\Omega}, \vec{\omega}) - 3(\vec{\Omega}, \vec{n})(\vec{\omega}, \vec{n})], \qquad (10)$$

$$L_{a} = -\frac{2km_{0}^{2}\vec{v^{2}}}{5ac^{2}} + \frac{16km_{0}^{2}\vec{a\omega^{2}}}{35c^{2}}$$
(11)

reprezintă pe rînd termenul de energie cinetică, de energie potențială "modificată", de rotație-translație, de rotație-rotație și de autoacțiune [7]. Mărimile α și α' sînt definite prin

-

$$\alpha = \frac{I_4}{A^2 I_2}, \ \alpha' = \frac{I_6}{A^4 I_2}, \ I_n = \int_0^A \mu(r_2) r_2^n dr_2$$
(12)

Dacă este valabilă formula lui Roche

$$\mu = \beta_1 \left(1 - \beta_2 \frac{r_2^2}{A^2} \right), \tag{13}$$

pentru a și a' avem

$$\alpha = \frac{3}{7} \frac{7 - 5\beta_2}{5 - 3\beta_2}, \ \alpha' = \frac{5}{21} \frac{9 - 7\beta_2}{5 - 3\beta_2}$$
(14)

2° Utilizînd lagrangeanul (6) prin ecuațule

$$\frac{\partial L}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial x_i} \right) = 0 \tag{15}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \omega_i} \right) = \varepsilon_{ijk} \, \omega_j \, \frac{\partial L}{\partial \omega_k} \tag{16}$$

se ajunge la ecuațiile de mișcare Dacă în termenu corectivi se fac înlocuirile

$$\dot{\omega}_{i} = 0, \ \ddot{x}_{i} = -c^{2} \frac{\Lambda}{R^{3}} x_{i}, \ \Lambda = \frac{kM_{0}}{c^{2}},$$
 (17)

dın (15) și (16) rezultă

.

$$\vec{\vec{R}} = A_1 \vec{R} + A_2 \vec{v} + A_3 \vec{\omega} + A_4 \vec{\Omega} + A_5 (\vec{\Omega} \times \vec{R}) + A_6 (\vec{\Omega} \times \vec{v}) + A_7 (\vec{\omega} \times \vec{R}) + A_8 (\vec{\omega} \times \vec{v}),$$

$$\vec{\omega} = B_1 \vec{R} + B_2 \vec{v} + B_3 \vec{\omega} + B_4 \vec{\Omega} + B_5 (\vec{\omega} \times \vec{R}) + B_6 (\vec{\omega} \times \vec{v}) + B_7 (\vec{R} \times \vec{v}) + B_8 (\vec{\omega} \times \vec{\Omega}),$$
(18)

.

unde

$$\begin{split} A_{1} &= -c^{2} \frac{\Lambda}{R^{3}} \left[1 - \frac{4\Lambda}{R} + \frac{v^{2}}{c^{2}} + \frac{a^{2}\omega^{2}}{5c^{2}} + \frac{3}{5} \frac{A^{2}\Omega^{2}}{c^{2}} + \frac{9}{70} \frac{A^{4}\Omega^{2}}{c^{2}R^{2}} - \frac{9}{14} \frac{A^{4}}{c^{4}R^{4}} (\vec{\Omega}, \vec{R})^{2} + \right. \\ &+ \frac{9}{70} \frac{a^{4}\omega^{2}}{c^{2}R^{2}} - \frac{9}{14} \frac{a^{4}}{c^{2}R^{4}} (\vec{\omega}, \vec{R})^{2} - \frac{12}{5} \frac{A^{2}}{c^{2}R^{2}} (\vec{\Omega}, \vec{R}, \vec{v}) - \frac{9}{5} \frac{c^{2}R^{2}}{a^{2}} (\vec{\omega}, \vec{R}, \vec{v}) + \\ &+ \frac{12}{25} \frac{a^{2}A^{2}}{c^{2}R^{2}} (\vec{\Omega}, \vec{\omega}) - \frac{12}{5} \frac{a^{2}A^{4}}{c^{2}R^{4}} (\vec{\Omega}, \vec{R}) (\vec{\omega}, \vec{R}) + \frac{\pi k^{3}m_{0}^{2}}{c^{2}R^{3}} \int_{0}^{d} r_{2}\mu(r_{2}) \ln \frac{R + r_{2}}{R - r_{2}} dr_{2} + \\ &+ \frac{2\pi k^{2}m_{0}^{2}}{c^{2}R^{2}} \int_{0}^{d} \frac{r_{2}\mu(r_{2})}{R^{2} - r_{2}^{2}} dr_{2} - \frac{4k^{3}m_{0}^{2}M_{0}}{5ac^{2}R^{3}} , \\ A_{2} &= \frac{4\Lambda}{R^{3}} (\vec{v}, \vec{R}), A_{3} &= \frac{\Lambda}{R^{3}} \left[\left(-\frac{1}{5} - \frac{9a^{2}}{35R^{2}} \right) a^{2} (\vec{R}, \vec{\omega}) - \frac{12a^{2}A^{2}}{25R^{2}} (\vec{\Omega}, \vec{R}) \right], \\ A_{4} &= -\frac{3\Lambda A^{4}}{5R^{4}} \left[\frac{3}{7} A^{2} (\vec{\Omega}, \vec{R}) + \frac{4}{5} a^{2} (\vec{\omega}, \vec{R}) \right], A_{5} &= -\frac{12\Lambda A^{2}}{5R^{4}} (\vec{R}, \vec{v}), \\ A_{6} &= \frac{8\Lambda A^{2}}{5R^{3}}, A_{7} &= -\frac{9\Lambda a^{2}}{5R^{4}} (\vec{\Omega}, \vec{v}) - \frac{45\Lambda a^{2}}{5R^{4}} (\vec{R}, \vec{v}) (\vec{\omega}, \vec{R}) - \frac{5}{14R^{3}} (\vec{R}, \vec{v}) (\vec{u}, \vec{R}) - \frac{5}{14R^{3}} (\vec{R}, \vec{v}) (\vec{u}$$

$$-\frac{10\alpha\Lambda\Lambda^{2}}{R^{7}}(\vec{R},\vec{v})(\vec{R},\vec{\Omega}),$$

$$B_{2} = \frac{\Lambda}{R^{3}}(\vec{R},\vec{\omega}) + \frac{9\Lambda a^{2}}{14R^{5}}(\vec{\omega},\vec{R}) + \frac{2\alpha\Lambda\Lambda^{2}}{R^{5}}(\vec{\Omega},\vec{R}),$$

$$B_{3} = \frac{5\Lambda}{R^{3}}(\vec{v},\vec{R}) + \frac{9\Lambda a^{2}}{R^{5}}(\vec{v},\vec{R}), \quad B_{4} = \frac{2\alpha\Lambda\Lambda^{2}}{R^{5}}(\vec{v},\vec{R}),$$

$$B_{5} = -\frac{2\alpha\Lambda\Lambda^{2}}{R^{5}}(\vec{\omega},\vec{R}) - \frac{9\Lambda a^{2}}{14R^{5}}(\vec{\omega},\vec{R}), \quad B_{6} = -\frac{1}{2c^{2}}(\vec{v},\vec{\omega}),$$

$$B_{7} = -\frac{9\Lambda}{2R^{5}}(\vec{v},\vec{R}), \quad B_{8} = \frac{2\alpha\Lambda\Lambda^{2}}{3R^{3}}.$$

 3° În continuare ne vom ocupa de unele consecințe ale ecuației (19), care conține ca caz particular rezultatul obținut de S c h 1 f f [2]. (Menționăm însă că apare o discordanță în legătură cu expresia lui B_3 , dar acest termen în cazurile de importanță practică nu joacă un rol important)

Dintre numeroasele consecințe ce se desprind din ecuația (19) vom selecta doar două

4 — Physica — 1984

Prima se referă la variația valorii absolute a lui $\vec{\omega}$. Înmulțind ambele părță ale relatiei (19) cu $\vec{\omega}$ pentru $\omega = |\vec{\omega}|$ obtinem

$$\omega \frac{\mathrm{d}\omega}{\mathrm{d}t} = B_1(\vec{\omega}, \vec{R}) + B_2(\vec{\omega}, \vec{v}) + B_3\omega^2 + B_4(\vec{\omega}, \vec{\Omega}) + B_7(\vec{\omega}, \vec{R}, \vec{v}). \tag{20}$$

Din (20) reiese că ω variază în timp. Să aplicăm relația (20) la două cazuri particulare.

În cazul sistemului Soare-Pămînt, notînd unghiul format de vectorii ŵ si \vec{R} , resp. $\vec{\omega}$ și \vec{v} cu β_1 resp β_2 pentru valori bine determinate ale acestor mărimi găsim

$$\omega = \omega_0 (1 - \varepsilon t), \ \varepsilon = 2 \cdot 10^{-15} \cos \beta_1 \cos \beta_2 \ s^{-1} \tag{21}$$

Pentru perioada de rotație și variația acestei perioade avem

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\omega_0(1 - \varepsilon t)} \approx T_0(1 + \varepsilon t), \quad \Delta T = \varepsilon T_0 t.$$
(22)

Pentru un secol pentru perioada de rotație a pămîntului obținem variația de

$$\Delta T = 0,56 \cos \beta_1 \cos \beta_2 \tag{23}$$

secunde, valoare ce poate fi pusă în evidență prin măsurători.

În cazul unui satelit artificial al pămîntului care se mișcă în planul ecuatorial, la o înălțime h de la suprafața pămîntului, în condițiile în care $\overline{\omega}$ este perpendicular pe planul mișcării se obține

$$\Delta T = \varepsilon' T_0 t$$
, cu $\varepsilon' = \left(\frac{\lambda}{R+h}\right)^{3/2} \frac{c}{R+h}$ (24)

unde R este raza pămîntului, c este viteza luminii în vid și λ este raza gravifică a pămîntului. Pentru h = 200 km găsim $\varepsilon' = 8 \cdot 10^{-13} s^{-1}$, astfel pentru un secol pentru variația perioadei de rotație se obține $\Delta T = 2,5 \cdot 10^{-3} T_0$ secunde.

O a doua concluzie se referă la posibilitatea geometrizării în cazul corpurilor în rotație. Din (19) și expresiile coeficienților B_t rezultă că geometrizarea este posibilă în cazul cînd termenul de autoacțiune poate fi neglijat și dimensiunile corpului în rotație sînt mici $(a/R \ll 1)$.

(Inital în redacție la 11 noiembrie 1983)

BIBLIOGRAFIE

- I. G. Fichtenholt, JETF, 20, 233 (1950).
 I. Schiff, Phys Rev. Lett., 4, 215 (1960).
 A Papapetrou, Proc. Roy. Soc. A209, 248 (1951).
 A P. Riabuşko, JETF, 33, 1387 (1957).
 A P. Riabuşko, J. C. Lacher, J. T. C. M. (1957).
- 5. A P. Riabuşko, I. Z Fisher, JETF, 34, 1189 (1958).
- 6. N St Kalitzin, Il Nuovo Cimento, 9, 365 (1958)

50

- 7. Z. Gábos, Analele Univ. "Al. I. Cuza" Iaşı, 5, 101 (1959); 7, 407 (1961). 8. L. D. Landau, *Teoria cîmpulue*, Ed. tehnică, București, 1963, p. 363.

- 9. S. Weinberg, Gravitatia i kosmologia, Moscova, 1975, p. 251-257.
 10. J. T. Anderson, B. Cavrera, C W F. Everitt, B. C. Leslie, J. A. Lipa, în Proceedings of the second Marcel Grossmann Meeting on General Relativity, Part B, Amsterdam -New York-Oxford, 1982, p. 939.

LE MOUVEMENT D'UN CORPS SPHÉRIQUE EN ROTATION SOUS L'INFLUENCE D'UN CHAMP GRAVITATIONNEL

(Résumé)

On donne quelques résultats concernant l'intéraction gravitationnelle des corps sphériques rigides en rotation (ayant la masse M_0 resp m_0 , et le rayon A resp a), valables dans le cas $m_0/M_0 \ll$ $\ll 1$, $a/(R - A) \ll 1$ (R est la distance des centres des sphères)

; , ;"

VARIAȚIA POLARIZĂRII UNUI FASCICUL DE ELECTRONI ÎMPRĂȘTIAT ÎNTR-UN CÎMP GRAVITAȚIONAL

Z. GÁBOS șu A. PÁSZKÁN

Polarizarea particulelor împrăștiate într-un cîmp gravitațional suferă o modificare Acest efect a fost studiat în cazul fotonului [4] În lucrare se abordează — în prima aproximație — modificarea stării de polarizare a electronilor împrăștiați într-un cîmp gravific central.

1°. Admitem că interacția cîmpului gravitațional cu cîmpul Dirac poate fi descrisă cu ajutorul operatorului [2]

$$\widehat{\mathfrak{R}}_{int} = \imath \frac{c \, \imath}{4} \, h_{\mu\nu} \left(\widehat{\widehat{\Psi}} \, \gamma_{\mu} \frac{\partial \widehat{\Psi}}{\partial \imath_{\nu}} - \frac{\partial \widehat{\widehat{\Psi}}}{\partial x_{\nu}} \, \gamma_{\mu} \widehat{\Psi} \right), \tag{1}$$

unde [1], [3]

$$h_{ij} = 2 \frac{\gamma_0}{r} \delta_{ij}, \ h_{44} = -2 \frac{\gamma_0}{r}, \ h_{i4} = h_{4i} = 0$$
 (2)

cu

$$r_0 = K \frac{M_0}{c^3} \tag{3}$$

K este constanta gravitațională, cv
ıteza luminii în vid și $M_{\rm 0}$ masa de repaos a corpului central).

Pentru electron folosim operatorul

$$\widehat{\Psi}_{e} = \frac{1}{\sqrt{V}} \sum_{\overrightarrow{p},\lambda} \sqrt{\frac{m_{o}c^{2}}{E_{p}}} a_{\lambda}(p) u_{\lambda}(p) \exp\left(\frac{\imath}{\lambda} px\right), \qquad (4)$$

bispinorii stărilor de helicitate pozitivă, respectiv negativă, fiind dați de

$$u_{\lambda}(\vec{p}) = N\begin{pmatrix} \varphi_{\lambda} \\ B\varphi_{\lambda} \end{pmatrix}, \ \varphi_{1/2} = \begin{pmatrix} \cos\frac{\vartheta}{2} \\ \\ \sin\frac{\vartheta}{2} e^{i\varphi} \end{pmatrix}, \ \varphi_{-1/2} = \begin{pmatrix} -\sin\frac{\vartheta}{2} e^{-i\varphi} \\ \\ \\ \cos\frac{\vartheta}{2} \end{pmatrix}.$$
(5)

Unghurile ϑ și φ sînt definite prin \vec{p} ($p \sin \vartheta \cos \varphi$, $p \sin \vartheta \sin \varphi$, $p \cos \vartheta$), *B* este dat de

$$B = \frac{c \, |\vec{p}|}{E_{\vec{p}} + m_0 c^3},\tag{6}$$

iar factorul de normare

$$N = \sqrt{\frac{E_p + m_0 c^2}{2m_0 c^2}}$$
(7)

methods and the second second second strate the second

este stabilit pe baza convenției

$$u_{\lambda}^{+}(\vec{p})u_{\lambda}(\vec{p}) = \frac{E_{p}}{m_{0}c^{2}} \cdot$$
(8)

Pentru operatorul Ŝ în prima aproximație putem scrie

:

$$\hat{\mathbf{S}} = \hat{\mathbf{1}} - \frac{\tau}{\tau_{c}} \left\{ \hat{\mathcal{R}}_{ini} d^{4}x + \ldots = \hat{\mathbf{1}} + \frac{r_{o}}{2} \int \frac{1}{r} \times \left[\left(\hat{\overline{\Psi}}_{e} \gamma_{i} \frac{\partial \widehat{\Psi}_{e}}{\partial x_{i}} - \frac{\partial \widehat{\overline{\Psi}}_{e}}{\partial x_{i}} \gamma_{i} \widehat{\Psi}_{e} \right) - \left(\hat{\overline{\Psi}}_{e} \gamma_{4} \frac{\partial \widehat{\Psi}_{e}}{\partial x_{4}} - \frac{\partial \widehat{\overline{\Psi}}_{e}}{\partial x_{4}} \gamma_{4} \widehat{\Psi}_{e} \right) \right] d^{4}x + \ldots$$
(9)

Utilizînd expresule de mai sus pentru elementul de matrice ce leagă starea inițială (\vec{p}_0, λ_0) de cea finală (\vec{p}, λ) în aproximația folosită găsim

$$<\vec{p}, \lambda |\hat{S}|\vec{p}_{0}, \lambda_{0}> = \frac{4\pi^{2}r_{0}m_{0}c^{2}/^{2}}{V\sqrt{E_{p}E_{p_{0}}}|\vec{p}-\vec{p}_{0}|^{2}} (u_{\lambda}(\vec{p})M(\vec{p}, \vec{p}_{0})u_{\lambda_{0}}(\vec{p}_{0})) \delta(E_{p}-E_{p_{0}}),$$
(10)

unde

-,

 $M(\vec{p}, \vec{p}_{0}) = E_{p} + E_{p_{0}} + ic\gamma_{4}(\vec{\gamma}, \vec{p} + \vec{p}_{0}).$

Vom alege axa a 3-a în direcția lui \vec{p}_0 (în acest caz ϑ aparținînd lui \vec{p} este unghiul de împrăștiere). Prin metoda obișnuită se obține astfel expresia secțiunii eficace diferențiale

$$\lambda \to \lambda_0 \cdot d\sigma = \frac{r_0^2 m_0^2}{16p_0^2 \sin^4 \frac{\vartheta}{2}} |u_{\lambda}^+(\vec{p}) M(p_0, \vartheta, \varphi) u_{\lambda_0}(\vec{p}_0)|^2 d\Omega,$$
(11)

unde $|\vec{p}| = |\vec{p}_0|$,

$$\begin{split} M(p_0, \ \vartheta, \ \varphi) &= 2E_{p_0} + \imath c \gamma_4(\vec{\gamma}, \ \vec{P}), \\ \vec{P}(p_0 \sin \vartheta \cos \varphi, \ p_0 \sin \vartheta \sin \varphi, \ p_0 + p_0 \cos \vartheta). \end{split}$$

Pentru expresia

$$E_{\lambda \lambda_0} = \frac{1}{N'} \left(u_{\lambda}^+(\vec{p}) M(p_0, \vartheta, \varphi) u_{\lambda_0}(\vec{p}_0) \right)$$
(12)

în cele patru cazuri particulare la care ajungem, avînd în vedere că λ și λ_{α} pot lua valorile $\frac{1}{2}$, $-\frac{1}{2}$, obținem

$$E_{\frac{1}{2}\frac{1}{2}} = [2E_{p_0}(1+B_0^2) + 4cp_0B_0]\cos\frac{\vartheta}{2}, \qquad (13)$$

$$E_{\frac{1}{2}-\frac{1}{2}} = 2E_{p_0}(1-B_0^2)\sin\frac{\vartheta}{2}e^{-i\varphi}, \qquad (14)$$

$$E_{-\frac{1}{2}\ \frac{1}{2}} = -2E_{\dot{P}_0}(1-B_0^2)\sin\frac{\vartheta}{2}e^{i\varphi}, \qquad (15)$$

$$E_{-\frac{1}{2}-\frac{1}{2}} = \left[2E_{p_0}(1+B_0^2) + 4cp_0B_0\right]\cos\frac{\vartheta}{2}.$$
 (16)

2°. Avînd în vedere expresiile (13) - (16) se ajunge la următoarele concluzii: Dacă în starea initială avem un fascicul de electroni nepolarizat, după împrăștiere se ajunge la o stare nepolarizată.

În cazul cînd inițial electronii se găsesc în aceeași stare de helicitate, în urma imprăstierii starea de polarizare se modifică. De exemplu în cazul $\lambda_0 =$ = 1/2, pentru electronii imprăștiați avem polarizarea longitudinală:

$$P_{I} = \frac{\left(1 + \frac{v^{2}}{c^{2}}\right)^{2} - \left(2 + \frac{v^{2}}{c^{2}} + \frac{v^{4}}{c^{4}}\right)\sin^{2}\frac{\vartheta}{2}}{\left(1 + \frac{v^{2}}{c^{2}}\right)^{2} + \left(3\frac{v^{2}}{c^{2}} + \frac{v^{4}}{c^{4}}\right)\sin^{2}\frac{\vartheta}{2}}.$$
(17)

Cu scopul evaluării efectului să avem în vedere expresia clasică

$$\operatorname{tg}\frac{\vartheta}{2} = \frac{r_0}{R} \frac{c^2}{v_0^2} \tag{18}$$

unde R este parametrul de șoc, și v_0 viteza inițială. Se constată că efectul este detectabil și este cu atît mai mare cu cît viteza inițială este mai mică.

(Intrat în redacție la 11 noiembrie 1983)

BIBLIOGRAFIE

1. L. D. Landau, E. M. Lifsit, Teoria cîmpului, Ed tehnică, București, 1963, p. 360 2. N. V. Mitkevici, Fiziceskie polia v obscer teorir otnositelnosti, Moskva, 1969, p. 241-244. 3. M. G. Bowler, Gravitation and Relativity, Pergamon Press, 1976, p. 53. 4. Iu. S. Vladimirov, I. F Isharov, în volumul Problemi gravitații, Tbihsi, 1976, p. 81.

LA VARIATION DE LA POLARISATION D'UN FAISCEAU D'ÉLECTRONS DIFFUSÉ PAR LE CHAMP GRAVITATIONNEL

(Résumé)

On obtient une expression pour la polarisation longitudinale des électrons diffusés dans un champ gravitationnel, en admettant qu'a l'état initial on a un faisceau complètement polarisé.

PROPRIETĂȚILE ACUSTICE ALE UNOR S**OLUȚII APOASE DE** HIDROXIZI

LIA ONIȚIU și SUSANA TINCU

Adăugarea unui electrolit în apă are ca efect, pe lîngă desfacerea agregatelor moleculare preexistente, o creștere a regularității structurii apei, provocînd o împachetare mai strînsă și mai uniformă, cu un grad de coordinare mai ridicat. Astfel, efectul hidratării ionilor asupra compresibilității este același ca aplicarea unei presiuni exterioare sau ridicarea temperaturii apei pure

În această lucrare s-a urmărit determinarea unor mărimi moleculare caracteristice soluțiilor apoase de NaOH, KOH și NH_4OH pe cale acustică.

Viteza ultrasunetului. Variația vitezei ultrasunetului cu temperatura și concentrația este asemănătoare cazului altor electroliți studiați [1, 2, 3], adică este mai mare ca în apă, crește aproximativ linear cu concentrația și urmează curba de variație cu temperatura vitezei în apă, curbă ce poate fi descrisă de o ecuație de gradul 4: $v = \sum_{n=0}^{4} a_n t^n$ (fig 1)

Compresibilitatea adiabatică. Valorile compresibilității dau o primă informație în privința hidratării ionilor și electrostricțiunii solventului. În cazul hidroxizilor se aplică formula empirică $\beta_s = b_1 + b_2 C^{1/2} + b_3 C^{3/2}$ ($\beta_s =$ compresibilitatea adiabatică, C =concentrația molară, $b_{1,2,3} =$ constante).

În timp ce pentru hidroxizii de Na și K se evidențiază un efect puternic și comparabil (fig 2), în cazul NH₄OH scăderea compresibilității e mai puțin

Fig 1. Variația vitezei ultrasunetului cu temperatura pentru diferite concentrații ale soluțulor de NH_4OH .

accentuată, indicînd un grad mai mic de depolimerizare a apei, deci modificări structurale, mai, mici. Se postulează [4] următorul echilibru în soluție

 $NH_3 + H_2O \ge NH_4OH \ge NH_4^+ + OH^-$, ionii fiind hidratați. Variația compresibilității care apare cînd NH_3 e dizolvat în apă trebuie atribuită în primul rînd speciei $NH_3 + H_2O$, concentrația NH_4OH fiind în general mică (momentul de dipol al moleculelor NH_3 și H_2O fiind aproximativ 1,5 respectiv 1,8 unit. Debye).

Asociația relativă. Aplicînd procedeul utilizat și în alte lucrări [5, 6] și anume relația empirică a lui Rao, s-a urmărit modificarea asocierilor moleculare cu concentrația pentru agregate cu o durată de existență de aproximativ 10⁻⁶sec (acestea fiind evidențiabile prin mijloace ultrasonice) luînd ca referință starea de asociere a apei la temperatura de lucru. Astfel, de exemplu, la temperatura de 25°C, pentru concentrația de 4 moli/litru s-a obținut:

electrolit	asoc relativă	modific asoc.
NaOH	93,5%	6,5%
NHOH	92 % 87,5%	12,5%

Dacă se consideră electrolitul complet disociat, diferențele observate pentru diferitele soluții pot fi atribuite variației gradului de depolimerizare a agregatelor de apă la o anumită concentrație și diferențelor de mărime a cationilor care leagă moleculele de apă. Pentru NaOH și KOH asocierea relativă descrește aproape liniar cu concentrația. Raportul pantelor dreptelor respective este aproximativ egal cu raportul cîmpurilor de acțiune a ionilor, care variază ca patratul razei cationilor (Na +: K + fiind pentru $r^2 - 0.90$ 1,76, iar pentru pante -0,0178 · 0,025) Pentru NH₄OH descreșterea asocierii cu concentrația se poate interpreta prin dezagregarea asocierii moleculelor de apă, care trebuie să fie mai mare decît hidratarea moleculei NH₄OH Aceasta se presupune ca fiind mică, deoarece cîmpul exterior al ionului NH⁴₄ este cîmpul rezidual de dipol.

Hidratarea. În afara moleculelor solventului legate permanent de ion, care formează învelișul primar de hidratare, în jurul ionului există o zonă "intermediară", în care moleculele nu se găsesc suficient de aproape de ion pentru a fi permanent atașate acestuia, dar nici atît de departe pentru a mai aparține structurii inițiale a apei. Datorită acestui fapt, în funcție de modelul structural ales și de tehnicile de investigație utilizate, valorile numerelor de hidratare obținute de diferiți autori pentru aceeași substanță sînt întrucîtva diferite Utilizînd modelul lui Pasinski [5], s-au calculat numerele de hidratare pentru hidroxizii studiați, dın datele acustice. În tabelul de mai jos sînt prezentate comparativ și rezultatele obținute pentru clorurile care au același cation metalic [6] la temperatura de 25°C.

C mol/htru	NaOH	NaCl	КОН	KCI	NH4OH
0,2	8,3	5,12	8,5	5,20	14
4	6,9	3,2	5,9	3,3	4,6

La concentrații mari interacțiunile ion-dipol sînt limitate de interacțiunile ion-ion, care devin foarte puternice

Valoarea mare a numărului de hidratare (acustic) primit pentru NH4OH la concentrații mici poate fi privită ca distrugerea accentuată a rețelei cvasicristaline a apei la dizolvarea electrolitului.

(Intrat in redacție la 18 ianuarie 1982)

BIBLIOGRAFIE

D Auslander, L. Onițiu, Studia Univ Babeș-Bolyai, Physica, 15, (1), 81 (1970)
 D Auslander, L. Onițiu, Acta Phys Hung, 30 (3), 253 (1971)
 D Auslander, L. Onițiu, Acustica, 24 (4), 205 (1971)
 G Marks, JASA, 32 (1-3), 327 (1960)
 D Auslander, L. Onițiu, Studia Univ. Babeș-Bolyai, Physica, 18 (2), 63 (1973).
 L Onițiu, Studia Univ Babeș-Bolyai, Physica, 21, 5 (1976)

LES PROPRIÉTÉS ACOUSTIQUES DE QUELQUES SOLUTIONS AQUEUSES DES HYDROXIDES

(Résumé)

On a mesuré la vitesse de propagation de l'ultrason et calculé la compressibilité adiabatiques l'association relative et sa modification avec la croissance de la concentration d'électrolythe, dans les solutions acqueuses de NaOH, KOH et NH4OH. On a déterminé le nombre d'hydratation (acoustique) de la molécule des hydroxides étudiés

SPECTRELE DE ABSORBȚIE, FLUORESCENȚĂ ȘI FOSFORESCENȚĂ ALE α ȘI β -METILNAFTALINELOR LA 77 K. II

IRIMIE MILEA

 β -METILNAFTALINA Condițiile experimentale pentru obținerea spectrelor β -metilnaftalinei au fost arătate în [1] unde s-a studiat spectrul α -metilnaftalinei dîndu-se și semnificația notațiilor folosite.

În hexan la 77K spectrul din prima regiune de absorbție a β -metilnaftalinei prezintă la început un dublu sistem de benzi. Primul sistem începe cu banda 0-0 care are o corespondentă rezonantă în banda 0-0 a spectrului de fluorescență. Al doilea sistem, care începe la 226 cm⁻¹ spre roșu față de banda 0-0, este difuz și se datorează probabil agregatelor moleculare Prima bandă a acestui sistem pare a fi formată din cîteva linii înguste și are la rîndul ei o corespondentă în spectrul de fluorescență. Ea se modifică cu modul de înghețare și depinde de vecinătăți, fiind slabă sau inexistentă în ceilalți solvenți folosiți [1][2]

Aspectul spectrului este arătat în figura 1 1ar interpretarea sa este dată în tabelele 1 și 2.

Spectrul în a doua regiune de absorbție este difuz Banda 0-0 s-a luat prin comparație cu spectrul naftalinei

Spectrul de absorbție în vapori pune în evidență banda 0-0 din prima regiune de absorbție ca cea mai intensă bandă [3], [4], [5] În amîndouă sistemele de absorbție benzile obținute sînt largi. Banda de la 401 cm⁻¹ se

β-Metilnaftalina Absorbţie in hexan Concenţratia M⁻² Inahetat rapid

F1g 1.

0	Nr. banđa	852222222266676542222000000000000000000000000000000000	Nr banda
35567 35819 36062 36274 36571 36827 36827 37302 37456	сн <	$\begin{array}{r} 31165\\31431\\31431\\31483\\31858\\32403\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\322518\\325265\\325265\\325265\\355565\\35555555\\35555555\\3555555\\3555555\\3555555$	cm ⁻¹
<u>ссеререре</u> нарание нарани	Intensitatea și aspectul benzilor	fsdd	Intensitatea și aspectul benzilor
$\begin{array}{c} 0 \\ 252 \\ 338 \\ 495 \\ 1004 \\ 1260 \\ 1418 \\ 1735 \\ 1889 \end{array}$	ν ₀₀ ν cm-1	$\begin{array}{c} 266\\ 0\\ 52\\ 548\\ 756\\ 975\\ 9756\\ 97$	۷ ₀₀ – ۷ ۲۳–۱
VOII VII VI V26 (V28) V27 V27 V27 V27 V27 V27 V27 V27 V27 V27	Interpretatea	v_{01} v_{1} v_{1} v_{2} v_{10} v_{27} v_{27} v_{27} v_{27} v_{10} v_{1	Interpretare
	Veale CH1	$\begin{array}{c} \\ + \\ + \\ + \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	Усав — 1 СШ-1
221 1 1 1 1 1 1 1	 		Simetria C _s
¤,¤,¤,¤,¤,¤,¤, ¤,¤,¤,¤,¤,¤,¤,=,	Simetria C,		Modul probabil de vibrație al moleculei
	Modul probabil de vibrație al moleculei	31567 31567 1464 1464 1868	V [4]
35857 434 730 914 1190 1344 1782	[4] va	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pori
35213 	Alțı a pori	$\begin{array}{c} 31412\\ 425\\ 711\\ 956\\ 1135\\ 1413\\ -1135\\ -1413\\ -1135\\ -11$	[6] [7]
34210 	in C ₆ H ₁₄	$\begin{array}{c} 31445 \\ 428 \\ 428 \\ 994 \\ 1451 \\ 1636 \\ 1879 \\ 2446 \\ 2446 \\ 2446 \\ 2446 \\ 1879 \\ 2905 \\ $	ori [5 ⁱⁿ _c _e H ₁₄
34730 430 1020 1440 1440 1860	5] în alcool	31408 440 440 737 976 1437 1437 1437 1437 1618 1871 1618 1871 2355 	fn alcool etilic

SPECTRELE ELECTRONICE ALE \propto \$1 β METILNAPTALINELOR

÷,

Ϊ

ŧ.

Tabel 1

59

٢			$\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	Nr. banda	, 60
-	י ד O שיד		37964 37964 383220 383220 383220 383220 383220 383220 39816 39816 39816 39816 39816		
	ndhetat	31631(0-0) 51-50	ссерение вравательно в во стравательно в во стравательно вравательно вравательно в стравательно в стравательно в стравательно в стравательно страва страва стравато стравательно стравательно стравательно страватело страва стра	Intensitatea și aspectul benzilor	
F1g	ropid in	1383 11283 1	22243 2397 2653 28653 28653 3177 3300 3666 3857 4247 4247 4323 4758	V00 - V	r
ina n hexan la 77 k M ⁻²		<u>383+955</u> <u>383+955</u> <u>383+514</u> <u>1052</u>	$\begin{array}{c} \mathbf{v}_{17} + \mathbf{v}_{30} + \mathbf{\tilde{v}}_{9} \\ \mathbf{v}_{17} + \mathbf{v}_{7} \\ \mathbf{v}_{17} + \mathbf{v}_{7} + \mathbf{v}_{11} \\ 2 \times \mathbf{v}_{17} + \mathbf{v}_{30} \\ 2 \times \mathbf{v}_{17} + \mathbf{v}_{30} \\ 2 \times \mathbf{v}_{17} + \mathbf{v}_{30} \\ 2 \times \mathbf{v}_{17} + \mathbf{v}_{9} \\ 2 \times \mathbf{v}_{17} + \mathbf{v}_{9} \\ 2 \times \mathbf{v}_{17} + \mathbf{v}_{9} \\ 3 \times \mathbf{v}_{17} + \mathbf{v}_{9} \\ 3 \times \mathbf{v}_{17} + \mathbf{v}_{9} \end{array}$	Interpretarea	
		· · · ·	$\begin{array}{r} + + + + + + + + + + + + + + + + + + +$	VealeV	I MILEA
	Joseforet v1234(0-01T→	So	-1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	Simetria C _s	, ,
Fig	naftalina scentă in pe	1389+1 1089+1 1089+1 1089+1 1089+1 10		Modul probabil de vibrație a moleculei	, '
ω				[4] vap	'
	77 %		2457	Alțı [5]	`` Tabel
		t	2420 2890	autori -în C _e H ₁₄	2 (cont
	•		2460	5] fn alcool	inuare)

"

consideră că este caracteristică grupării CH₃. În general interpretările spectrelor în vapori corespund cu cele făcute în hexan la 77K. Excepție face banda de la 1135 cm⁻¹ care este dată ca 425 + 711 cm⁻¹ [6], cea de la 1140 cm⁻¹ dată ca 490 + 710 cm⁻¹ și cea de la 1630 cm⁻¹ dată ca 710 + 900 cm⁻¹ [7], pe cînd în prezenta lucrare am considerat aceste benzi ca fundamentale, prin comparație cu spectrul de fluorescentă și deci indirect cu spectrele Raman și I R

Spectrul de fluorescență a fost făcut de mai mulți autori [8] [5] [9]. Cel obținut în această lucrare în hexan la 77K se vede în figura 2, iar interpretarea sa este dată în tabelul 3. Fundamentalele s-au stabilit prin comparație cu spectrele Raman și I.R. [10] [11] [12].

Fosforescența este foarte slabă în hexan la 77K Spectrul în pentan este dat în figura 3 iar interpretarea în tabelul 4

Tabel	3
-------	---

	1	Ş.				22		lıd		Alțı a	utori	
	1	8				,∄ ∄ ⊂		er pa			Г	
da	ν	ate	V V		Veria - V	- 2 - 2			[0] în	<u>_</u>	<u>-</u>	ron
an	cm ⁻¹	sit loi	cm^{-1}	Interpretarea	cm -1		113		C H	în	în	ີ ເບິ່ງ ໂກ
q		ect				5 _	l it l	up I a	la	C_6H_{14}	$C_{10}H_8$	C.H.
부		sp sp	í í			343		L le ko	100 K		<u> </u>	-108
4		цач	<u> </u>				0	A '0 a		la 7	7 K	
			·									
0	31431	1d		V0+•			-		31370	31445	31060	31060
1	31353	md	78	vr		100			- 1	-	-	
z	31288	sa	143	ν ₁₉	-	133	'a''	$\Psi(CC)$	- 1	-		
3	31153	tsi	278	ν ₁₁ ,	—	239	a''	$\gamma(CX)$		-	-	291
4	31028	SĨ	403	ν ₂₈	— ·	405	a.''	$\Phi(CC)$				410
5	30917	1.1	514	ν ₉	-	518	a'	$\alpha(CCC)$	495	522,	517	219
6	30798	- m î	633	ν ₁₀	- 1	624	a''	$\Phi(CC)$				
7	30685	11	746	V ₂₇	-	738	a''	Y(CH)	715	771	768	772
8.	30476	mí	955	ν ₃₇	-	957	a''	$\gamma(CH)$	-,	952	948	954
19	30379	mĩ	1052	√7 ≁	-	1037	a	v(CC)	-	-	-	1022
10	30249	tsî	1182	V ₂₀	-	1173	a	$\beta(CH)$	-		- 1	
11	30148	Sĩ	1283	v ₃₃		1280	a	v(CC)		1000		1000
12	30048	11	1383	ν4	-	1383	a	v(CC)	1375	1380	1388	1390
13	29953	mï	1478	ν ₅	-	1468	a'	β(CH)	-	-	-	1.50(
14	29869	mï	1562	ν ₃		1577	a'	v(CC)	-	1004	-	1584
15	29784	sī	1647	$v_4 + v_{11}$	+14	1640	-		1780	1634	- 1	1637
16	29525	mï	1906	$v_4 + v_9$	-9	-	-	—	-	-	-	1900
17	29438	sî	1992	$\int v_4 + v_{10}$	-24	-	-		-	-	-	
-				$1 v_9 + v_5$	0	-	-	_	-	-	- 1	
18	29283	mî	2147	$v_4 + v_{27}$	-18	-		_	2135	-	- 1	2154
				$1v_9 + v_4 + v_{11}$	+28	ł					1	0010
19	29070	mî	2360	$v_4 + v_{37}$	-22		-	-	-	- 1	- 1	2340
			2000	$(v_9 + v_3 + v_{11})$	6	•	7	,		•		0.400
20	29000	mí	2430	$v_9 + v_{10} + v_{33}$	0	-	-			-	-	2428
21	28874	151	2556	$v_{9} + v_{4} + v_{10}$	-26	-	<u>→</u>	_			-	-
22	28760	ISI	2670	$v_9 + v_{10} + v_4 + v_{13}$	+3	-			-		[-	0774
23	28648	11.	2782	$2 \times v_4$	-16	- 1	-		} -		- 1	2114
24	28580	mi	2850	$2 \times v_4 + vr$	-6	0000			-	-	-	0057
25	28482		2948	$2 \times \nu_4 + \nu_{13}$	-39	2928	a	B(CH)	-	-	_	2957
20 07	28409	S 1	3021	$2 \times v_4 + v_{11}$	+23	3058	a	p(CH)	-		-	3019
41	28121	m 1	3309	$2 \times v_4 + v_9$	-29	-	, — ,	-	-	-	-	2007
20	28042	51	3388	$2 \times v_4 + v_{10}$	+1	, -	-	_	-		-	2525
20	27880	51	3044	$2 \times v_4 + v_{10} + v_{13}$	-2		-	-		-	_	3335
-00 -01	27701	51	3729	$2 \times v_4 + v_{37}$	- 88	-		-	-	-		-
51	27624	S1.	3806	$4 \times \nu_4 + \nu_7$	1 + 12	1 —	·	-	. –	1	I —	ı —

Tabel 4

Nr banda	v cm ⁻¹	Intensitatea și aspectul benzilor	ν ₀₀ — ν cm ⁻¹	Interpretare	v _{cale} — v cm ⁻¹	Δν cm ⁻¹ în IR și Raman [10] [11] [12]	Simetria C,	Modul probabil de vibrație al moleculei	Alți autori
0	21234	md	- 1	Var				_	
1	20915	bt	319	V11 (V28)		349	a''	Y(CX)	-
2	20494	md	740	V97	_	738	a''	Y(CH)	
3	20390	md	844	V19		848	a''	(HO)	
4	20164	m d	1070	V10	_	1070	a'	v(CC)	_
5	20059	md	1175	V20		1173	a'	β(CH)	_
6	19935	1 d	1299	V ₃₃		1280	a'	v(CC)	—
7	19845	md	1389	V ₃₂	-	1384	a'	β(CH)	-
8	19503	1 đ	1731	$v_{32} + v_{11}$	-25	1732		· · · _	-
9	19300	s đ	1934	$v_{27} + v_{20}$	-19			-	-
10	19086	sd	2148	$v_{27} + v_{32}$	-19			_	_
11	19788	sd	2446	V32+V19	+13		_		_
12	18537	s.d	2697	$v_{32} + v_{83}$	-8		-		—
13	18327	sd	2907	$v_{32} + v_{11} + v_{20}$	-14	2928	-	·	—

β-metilnaftalina s-a studiat de către numeroși autori înglobată în cristalul de naftalină. S-au obținut astfel spectre de absorbție, fluorescență și fosforescență. Din cauza interacțiunii cu rețeaua cristalină a naftalinei aceste spectre sînt însă mult modificate față de cele ale moleculei libere [13]. Se presupune că datorită acestor interacțiuni apar două feluri de centre de tranziție și anume unul propriu moleculei, celălalt datorat combinațiilor tranziției electronice cu vibrația rețelei [14]. Toate acestea fac ca în aceste condiții o interpretare eleccrono-vibrațională a spectrului să fie incertă. Faptul că interacțiunea, în cazul tînd se foloseste ca solvent hexanul, este mult mai redusă a făcut posibilă o interpretare vibrațională mai detaliată, în concordanță mai bună cu rezultatele obținute prin spectroscopia Raman și I.R., decît în cazul înglobării β-metilnaftalinei în cristalul de naftalină sau în alți solvenți.

(Initiat in redacție la 13 octombrie 1981)

BIBLIOGRAFIE

- 1 I. Milea, Studia Univ. Babeş-Bolyai. Phys 27 (1), 3 (1982).
- 2. I. Milea, Teză de doctorat, Facultatea de fizică a Universității "Babeș-Bolyai" din Cluj-Napoca, 1980.
- 3 Shambhu N Singh, O P Sharma, R D Singh, Spectroscop Letters, 8 (1), 7-23 (1975)
- 4 D. Marjit, S. B. Banerjee, Indian J. Pure Appl. Phys. 11, 37-40 (1973).
- 5. O. P. Haritonova, Opt i Spectr. 21 (1), 51 (1966) 6 H Mc Connell, D S Mc Clure, J. Chem Phys. 21, 1296 (1953)
- 7. H. Mc Connell, D D Tunnichiff, J Chem. Phys. 23, 5, 927 (1955).
- 8 Dieter Gressbach, Z Naturforsch, 15a (4), 296 (1960)
- 9. A Propstl, H C Wolf, Z Naturforsch, 18a (7), 822 (1963).
- 10. Nicole Claverie, Chantal Garrigou-Lagrange, Ann Chim. (Paris), 16 (1-2), 5-25 (1963).
- 11 A V. Secikarev, N I Dvorovenko, Izv Vyssh Ucheby Zaved. Fiz., 9, 111 (1966).

- 12 Landolt-Börnstein, Zahlenwerte und functionen, Band I. 2 Teil. Springer-Verlag, Berlın, Götingen-Heidelberg, 1959.
- 13. Tetsuya Kawakubo, J of the Phys. Soc. Jap., 31, 1446 (1971). 14. M. T Spak, E. F. Şeka, Opt. i Spectr, 9, 57 (1960).

.

2

THE ABSORBTION FLUORESCENCE AND PHOSPHORESCENCE SPECTRA OF THE & AND **B-METHYLNAPHTALENES AT 77 K. II**

(Summary)

The absorbtion and luminiscence spectra of β -methylnaphtalene traped in a matrix of hexane at 77 K is observed in the near ultraviolet and visibil region. A vibrational analysis is proposed. A comparasion is given with the rezults obtained by other authors.

TRANSFERUL DE SARCINĂ INDUS PRIN CIOCNIRE LA IONII DE TIPUL $[C_{6}H_{5}X]^{2+}$

STELA CUNA, C. CUNA

În regiunile libere de cîmp ale unui spectrometru de masă cu dublă iocalizare, pot avea loc procese unimoleculare (metastabile) și/sau procese induse prin ciocnire Procesele induse prin ciocnire au loc atunci cînd în regiunile libere de cîmp ale spectrometrului se introduce un gaz de ciocnire la presiuni de $10^{-5} - 10^{-4}$ torr Între ionii formați în sursa de ioni a spectrometrului și moleculele neutre de gaz au loc ciocniri ce nu implică o împrăștiere apreciabilă a ionilor, dar în urma cărora ionii cîștigă energie internă suficientă pentru a suferi diferite tipuri de reacții Aceste reacțu furnizează informații prețioase despre proprietățile și structura ionilor organici complecși, despre mecanismul formării lor [1-3]

Un caz particular al proceselor induse prin ciocnire îl constituie transferul de sarcină, prin care ionii dublu încărcați m^{2+} devin simplu încărcați prin transferul unei sarcini moleculei de gaz neutru N[3-5] Mecanismul reacțiilor de transfer de sarcină nu este însă întru totul elucidat Experimental s-au constatat două lucruri.

1 Dacă presiunea gazului de ciocnire este scăzută ($<10^{-5}$ torr), interacțiunea ionului dublu încărcat cu molecula neutră de gaz este slabă, de distanță lungă (>30Å) Între molecula neutră și ionul dublu încărcat există forțe de tip van der Waals. Rezultatul interacțiunii este un pic îngust, destul de intens la energii mai mici decît 2E (E este tensiunea pe sectorul electric, la care este înregistrat fasciculul principal de ioni). Se presupune că energia de repulsie coulombiană între sarcini este forța potențială care face ca transferul de sarcini să aibă loc Dacă aceasta nu este suficientă, ca în cazul de față, diferența pînă la potențialul de ionizare al moleculei neutre este obținut pe seama energiei cinetice a ionului m⁺, de aceea picul rezultat este la energii cinetice mai mici decît 2E

2 Dacă presiunea gazului de ciocnire este mare, interacțiunea ionului dublu încărcat cu molecula neutră este mai tare, de distanță scurtă (<2Å) Rezultatul interacțiunii este un pic lat, slab ca intensitate și care apare la energii mai mari de 2E. Și în acest caz acționează repulsia coulombiană între sarcinile ionului dublu încărcat. Dacă sarcinile se separă, această energie se eliberează ca energie cinetică (cazul reacției unimoleculare) sau se eliberează prin transfer de sarcină Spre deosebire de reacțiile unimoleculare, unde efectul eliberării energiei potențiale sub formă de energie cinetică este lărgirea picului, la schimbul de sarcină nu există o simetrie de acest gen După transferarea electronului de la N la ionul dublu încărcat, repulsia ce apare între m⁺ și N⁺ duce la creșterea vitezei ionului și astfel se obține un pic în spectrul de energie cinetică, la o valoare mai mare decît 2E.

Institutul de tehnologie izotopică și moleculară Cluj-Napoca

Dacă m și/sau N sînt specii poliatomice cu număr mare de nivele energetice și foarte apropiate unele de altele, rezultatul transferului de sarcină este un pic intens localizat la 2E (sau foarte aproape). Este cazul moleculelor organice complexe

Au fost studiate reacțule de transfer de sarcină la ioni de tipul $[C_6H_5X]^{2+}$ unde X = H, CH_3 , C_2H_5 ; C_3H_7 ; Cl, Br, NO_2 ; NH_2 , OH; OCH_3 ; COH_3 ; COH; $COCH_3$ precum și la xileni C_6H_4 (CH_3)₂ și piridină (C_5H_5N) Aceste reacțu au fost puse în evidență cu spectrometrul de masă cu dublă focalizare SMDF-1 construit la ITIM ClujNapoca Descrierea spectrometrului, parametrii de lucru precum și tehnicile experimentale au fost descrise deja [6-9].

Metoda experimentală pentru punerea în evidență a reacțiilor de transfer de sarcină a constat în prepararea ionilor dublu încărcați în sursa de ioni în condiții standard (energia electronilor ionizanți 100 eV); asigurarea unei presiuni de 5×10^{-5} torr a gazului rezidual în tubul analizor și baleierea tensiunii sectorului electric în jurul valorii 2E Valorile nominale pentru tensiunea sectorului electric și tensiunea de accelerare au fost E = 300 V și V = 2 kV.

Pentru fiecare ion dublu încărcat studiat au fost puse în evidență, în jurul valorii 2E a tensiunii pe sectorul electric, trei picuri A, B, C, rezultatul unor reacțu de tipul

$$m^{2+} + N \rightarrow m^+ + N^+ \tag{1}$$

$$m^{2+} + N \rightarrow m^{+} + N^{+} \rightarrow (m-1)^{+} + N^{+} + H$$
 (2)

sau

$$m^{2+} + N \rightarrow (m-1)^{2+} + H + N \rightarrow (m-1)^{+} + N^{+}$$
 (3)

precum și

$$\mathbf{m}^{2+} + \mathbf{N} \rightarrow \mathbf{m}^{+} + \mathbf{N}^{+} \rightarrow (\mathbf{m} - 2)^{+} + \mathbf{N}^{+} + \mathbf{H}_{2}$$
(4)

sau

$$m^{2+} + N \rightarrow (m-2)^{2+} + H_2 + N \rightarrow (m-2)^{+} + N^{+}$$
 (5)

Picul A, localizat aproximativ la valoarea 2E a tensiunii pe sectorul electric, se datorește reacției (1) În spectrele de energie cinetică înregistrate, ionii compușilor studiați au dat astfel de picuri la 2E (picul A, fig. 1(a) și (b)).

Pe lîngă aceste picuri se observă de asemenea un al doilea și chiar al treilea pic grupate lîngă 2E, (picurile B și C din fig. 1 (a) și (b)), rezultat al reacțiilor (2), (3) și (4), (5).

Procesele (2) și (3) pot fi deosebite dacă fiecare pic din spectrul de energie cinetică este analizat după mase.

Pentru a putéà interpreta fiecare pic A, B și C dın grupul de picuri rezultate prin transfer, de sarcifii, s-au corelat spectrele de energie cinetică cu spectrele de masă 2E din literatură [10] Un spectru de masă 2E este spectrul rezultat din analiza după mase a picurilor A, B sau C. Un spectru 2E va reproduce distribuția ionilor dublu încărcați din regiunea sursei

Benzenul are în spectrul 2E ca pic de bază ionul molecular 78^{2+} ($C_6H_6^2^+$). O situație similară se întîlnește la fenol, unde ionul 94^{2+} ($C_6H_5OH^{2+}$), este de asemenea cel mai abundent în spectrul 2E. Pentru toluen și piridină nu ionul molecular este cel mai intens în spectrul 2E, ci ionu $C_7H_6^2^+$ și $C_7H_3N^{2+}$ (deci 90^{2+} și 76^{2+}).

.5 - Physica - 1984

١

și (b) piridină, obținute cu spectrometrul de masă SMDF-1

Din compararea celor două tipuri de spectre se pot trage și generaliza următoarele concluzii relativ la compușii aromați:

Picul cel mai abundent în spectrul 2E se datorează de obicei pierderii din ionul molecular a cîtorva atomi de hidrogen. Astfel ionul de bază la toluen este $C_7H_6^{2+}$, la xileni $C_8H_6^{2+}$. Ca și în spectrele de masă normale, în spectrele 2E apar anumiți ioni comuni mai multor compuși și care sînt abundenți. Astfel, din generalizarea datelor obținute la benzen și toluen rezultă că ionii $[C_nH_2]^{2+}(n > 2)$ sînt cei mai abundenți ioni dublu încărcați în grupul lor, pentru fragmente avînd de la 2 la 5 atomi de carbon. Dacă n crește, n = 6, 7, ei trec pe locul doi ca abundență și de la 8 atomi de carbon în sus (xileni, propilbenzeni etc) crește în importanță ionul $[C_nH_6]^{2+}$. Aceasta înseamnă că ionii $[C_nH_2]^{2+}$ sînt importanți în spectrele compușilor cu greutate moleculară mică.

Importanța ionilor $[C_nH_2]^{2+}$ și $[C_nH_6]^{2+}$ pentru o parte din compușii studiați, corelată cu separarea sarcinilor în ionii dublu încărcați [11; 12], sugerează ca structuri rezonabile pentru acești ioni structurile (a) și (b) din fig. 2

Analiza structurii ionılor dublu încărcați arată că geometria cea mai stabilă a lor este net diferită de structura stăru fundamentale a moleculei neu. tre precursoare. Acest lucru se poate datora proceselor de rearanjament extensive care au loc în acești ioni.

Din încercările de studiu a ionilor dublu încărcați prin tehnica MIKE (massanalysed ion kinetic energy spectrometry) la spectrometrul de masă comercial MAT-311, a rezultat că acești ioni se pot fragmenta, cu eliminarea unor fragmente neutre. Cîteva din fragmentările de acest gen ale ionilor dublu încărcați sînt prezentate în tabelul 1.

Tabel 1

Compusul	Poziția pıcului în	Tranzitio	1	Compusul			
compusii	spectrul MIKE		m ₁	\mathbf{m}_2	\mathbf{m}_3		
Nitrobenzen							
C ₆ H ₅ NO ₂	0 65E	$75^{2+} - 40^+ + 26$	C ₆ H ₃	C₄H	C_2H_2		
Fenol C.H.OH	0.70E	$94^{2+} - 66^{2+} + 28$	C.H.OH	C.H.	CO		
Anilină			Conson	C [116	00		
C ₆ H ₅ NH ₂	0 98E	$93^{2+} - 92^{2+} + 1$	C ₆ H ₇ N	C ₆ H ₆ N	H		
	097E	$92^{2+} - 91^{2+} + 1$	C ₆ H ₆ N	C ₆ H ₅ N	н		
	071E	$93^{2+} - 66^{2+} + 27$	C ₆ H ₇ N	C ₅ H ₆	HCN		
	0 70E	$92^{2+} - 65^{2+} + 27$	C ₆ H ₆ N	C ₅ H ₅	HCN		

Fragmentări ale ionilor [C₆H₅X]²⁺ în spectrometrul de masă MAT - 311

Acești ioni, prin transfer de sarcınă, dau ioni simplu încărcați

Pe de altă parte, ionii simplu încărcați rezultați din reacțiile de transfer de sarcină pot să se descompună, la rîndul lor, dînd naștere unor picuri metastabile corespunzătoare 5 CUNA,'C CUNA

Se poate presupune că, în nrma proceselor care au loc în prezența gazului de ciocnire și a ionilor dublu încărcați, rezultă ioni simplu încărcați din următoarele trei surse:

– schimb de sarcınă a ionılor dublu încărcatı formati în regiunea sursei: - fragmentarea 10nilor dublu încărcați cu pierderea unui fragment neutru și apoi schimb de sarcină, 11

- descompunerile metastabile ale ionitor simplu încărcați provenți din sursele de sus.

De asemenea, ca o concluzie importantă se poate spune că între spectrele compusilor organici ale ionilor simplu și dublu încărcați (spectre 2E) există diferențe mari, care pot fi utilizate pentru a obține informații suplimentare pentru diferențierea compușilor cu spectre de masă identice (izomeri).

(Intrat în redacție la 15 martie 1984)

15

BIBLIOGRAFIE

- 1 Stela Cuna, V Mercea, Sesunea anuală de comunicări "Progrese în fizică", 22-24 oct 1981, Timișoaia
- 2 Stela Cuna, C Cuna, V Mercea, Conferința Națională de Fizică, 21-23 oct 1982. București
- 3 Stela Cuna, C Cuna, Sesiunea anuală de comunicări "Progrese în Fizică", 29 sept -1 oct 1983, Craiova
- 4 J H Beynon, R G Cooks, J. Phys. E Sci Instr, 7, 10-18 (1974) 5 T Ast J H Beýnon, R G Cooks, Org Mass Spectrom, 6, 749-763 (1972) 6 Stela Çuna, C Cuna, Rev Roum Phys, 27, 10, 921-925 (1982)

- 7 C Cuna, D Ioanoviciu, Int J Mass Spectrom Ion Proc, 54, 333-336 (1983) (1
- 8 Stela, Cuna, D Ioanoviciu, C Cuna, Rev Roum Phys, în curs de apariție.
- 9. Stela Cuna, Ç Cuna, Sesunea de comunican stinifice și telnice, secțiunea, Fizică și energie nucleară", 16 noiembrie 1983, Cluj-Napoca
 10 R'G Cooks, T Ast, J H'Beynon, Int'J Mass Spectrom Ion Phys., 11, 490-494 (1973)
- 11 Stela Cuna, C Cuna, St Cerc Fiz., 34, 10, 982-985 (1982)
- 12 Stela Cuna, C Cuna, Sesiunea anuală de comunicări "Progrese în fizică", 29 sept the first and the second second second 1 oct , 1983, Craiova² , 4 ... -

COLLISION-INDUCED CHARGE TRANSFER OF THE [CeH2X]³⁺ IONS

.

(Summary)

Collision-induce charge transfer reactions can be observed when a collision gas at a pressure of the order 10⁻⁵ torr is introduced into the field-free region in a double-focusing mass spectrometer These reactions provide a source of information on ion structures

٩,

1, 1

THE POTENTIAL DEPTH OF PRIMARY ALCOHOLS

CARMEN STETIU

Introduction. It is well known that the sound' velocity in liquids depends on their structure. There are a lot of relations describing this dependence on either the molecular volume, or the molecular interactions [1].

In this paper, we made ultrasonic studies in some primary alcohols and their mixtures, in order to prove a relation between sound velocity and the potential depth.

Theory. Using a thermodynamic treatment, the following relationship between the sound velocity v and the potential depth Φ_0 has been found [2]

$$\Phi_{\mathbf{0}} = \frac{1}{\eta} \left\{ \frac{M}{\gamma} v^2 - \mathrm{TR} \right\}$$
(1)

where γ is the ratio of the specific heats, \mathbf{M} — the molecular weight, R the universal gas constant, T the temperature in K, and *i*, *j* are exponents of Lennard-Jones potential, written as function of volume, $\Phi(V) = \frac{A}{V_1} - \frac{B}{V_2}$.

As we had to prove this equation, it was necessary to know i, j exponents. For that we used the (12-6) potential in case of liquids assuming a spherical molecular simmetry, and a modified Lennard-Jones potential for associated liquids.

Then, for liquids with a spherical molecular simmetry, we have

$$\Phi(r) = 4\varepsilon_0 \left[\left(\frac{\sigma_0}{r} \right)^m - \left(\frac{\sigma_0}{r} \right)^n \right] (m = 12, \ n = 6)$$
(2)

where σ_0 is the collision diameter, and ε_0 the potential depth (at $r_0 = 2^{1/6} \sigma_0$). In this, case $\Phi_0 = \varepsilon_0$ and $\iota = \frac{m}{3}$, $j = \frac{n}{3}$.

For non-ideal liquids, the (12-6) potential can not be used. Increasing the repulsive exponent, it is possible to obtain [3] a modified Lennard-Jones potential, which describes better the molecular interaction, in these liquids Of course, here $\Phi_0 \neq \varepsilon_0 \ r_0 \neq 2^{1/6} \sigma_0$ and ι , \jmath as ε_0 can be taken from Table 1.

с <u>э</u> 1	1 1 1			, Ta	ble 1	,	
	· m ·	12 7 * *	' γ ₀ /σ ₀	Φ0/ε0			
	12- 14- 14- 16- 18- 20 22 24- 24- 26- 22	6 6 6 6 6 6 6 1 6 6 6 1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	1 122 1 112 1 103 1 096 1 090 	1 1:211- 1 388 1 540 2' 1 674 1 7874 1 890 1 982		· - · · ·	,
Having ε_0 , we tried to build up the (12 - 6) potential from Eq. (2), giving different values to σ_0/r . σ_0 was taken from V an D a e l's relationship [4], which expresses the dependence of the sound velocity on the molecular volume V_m . Van Dael's relationship may be rewritten as follows:

$$V_{m} = \frac{M}{N_{A}\rho} \left[1 - \frac{1 - \sqrt{3\left(3\frac{v^{2}M}{RT}\right) + 1}}{3\frac{v^{2}M}{RT}} \right]^{3}$$
(3)

where N_A is Avogadro's number, and ρ is the density.

So, if we know the sound velocity, the density and the ratio of the specific heats, we can find the potential depth as well as the colision diameter using Eqs. (1, 3). It is then possible to represent the function $\Phi(r)$ using Eq. (2).

Results and discusions. A. Pure liquids. Using Eq. (1) the potential depth was calculated for primary alcohols (methanol, ethanol, propanol, butanol, pentanol, heptanol, octanol, decanol and hexadecanol). Figure 1 shows the

Fig. 1. Influence of temperature increase on the potential depth of methanol (1), ethanol (2), propanol (3), butanol (4). pentanol (5), heptanol (7), octanol (8) and decanol (10).

· linear decrease of the potential depth with increasing temperature in all studied liquids.

Figure 2 is a plot of the potential of interaction versus the distance, for several alcohols, at 40°C.

Figure 3 shows the function $\Phi(r)$, at different temperatures, for propanol. For the other alcohols, the shape of $\Phi(r)$ is similar. In the case of methanol and ethanol, a (12-6) potential was used. For higher alcohols the repulsive exponent i had to be increased, because of the increase of the molecular chain length with several CH₂ groups.

B. Mixtures. A number of two component mix ures were investigated, using methanol (1) as solvent, the second component being: ethanol (2), propanol (3), butanol (4), pentanol (5), heptanol (7), octanol (8), decanol (10) and hexadecanol. The number in brackets indicates the number of Carbon atoms in the molecular chain. .

71

If A and B denote the two components of the mixture, three kinds of interactions can occur, having the following parameters $(\sigma_{AA}, \varepsilon_{AA})$, $(\sigma_{AB}, \varepsilon_{AB})$ and $(\sigma_{BB}, \varepsilon_{BB})$. An ideal mixture follows the Lorentz-Berthelot relationships:

$$\varepsilon_{AB} = (\varepsilon_{AA} \, \varepsilon_{BB})^{1/2}$$
 (4) $\sigma_{AB} = \frac{1}{2} (\sigma_{AA} + \sigma_{BB})$ (5)

Fig 4 Influence on the concentration of pentanol in methanol of the potential depth of the mixture

Fig 5 Variation of the potential of interaction versus the distance, for several concentrations of pentanol in methanol, at 20 °C

¹ The values of ε_{AB} and σ_{AB} were calculated using Eqs. (1, 3)for all the mixtures considered. The results for the ethanolmetanol (2-1) mixtures were in good agreement with Eqs (4, 5) proving that the (2-1)mixture behaved as an ideal one. For all other mixtures Eqs (4, 5) did not hold, i.e. they showed a non ideal behaviour. As it can be seen from Fig. 4. for mixture $(5-1) \epsilon_{AB}$ was greater than ε_{AA} or ε_{BB} i.e. the AB interactions were greater than the AA or BB ones. In Fig. 5 the $\Phi(r)$ function was plotted for the (5-1) mixture, for different concentrations, at 20°C.

The validity of this non ideal behaviour was proved by finding the excess volume V^E and the difference between the measured and ideal adiabatic compressibilities $\Delta\beta = \beta_{meas} - \beta_{id}$. As it can be seen from Fig. 6, both V^E and $\Delta\beta$ are negative, proving that the mixtures studied were indeed non-ideal, and that the AB interactions were stronger than AA or BB.

The experimental data were explained theoretically by adopting the average potential theory [5] and the twoliquids model. Under these assumptions the intermolecular potential of a mixture takes the form:

$$\Phi(r) = \mu_A \Phi_A(r) + \mu_B \Phi_{AB}(r) \quad (6)$$

+72

In this equation the expression for $\Phi(r)$ is similar to Eq. (2), with

$$\langle \varepsilon \rangle = \frac{\left(\mu_{A} \varepsilon_{A} \sigma_{A}^{6} + \mu_{B} \varepsilon_{AB} \sigma_{AB}^{6} \right)^{2}}{\mu_{A} \varepsilon_{A} \sigma_{A}^{12} + \mu_{B} \varepsilon_{AB} \sigma_{AB}^{12}}$$
(7)
$$\langle \sigma \rangle = \left(\frac{\mu_{A} \varepsilon_{A} \sigma_{A}^{12} + \mu_{B} \varepsilon_{AB} \sigma_{AB}^{12}}{\mu_{A} \varepsilon_{A} \sigma_{A}^{6} + \mu_{B} \varepsilon_{AB} \sigma_{AB}^{6}} \right)^{1/6}$$
(8)

where $\langle \varepsilon \rangle$ and $\langle \sigma \rangle$ have for the mixtures the same significance as the Lenard-Jones parameters for pure liquids

The values of $\langle \varepsilon \rangle$ and $\langle \sigma \rangle$ calculated using Eqs (7, 8) were in good agreement with those obtained from Eqs (1, 3).

Fig 6 The plot of the excess volume and of the difference between the measured and ideal compressibilities versus the concentration of pentanol in methanol, at 20 °C

Conclusions. The results of the present work demonstrate that the general expression for the potential depth (1) has a rather wide range of applicability It allowes one to calculate the potential depth in pure liquids as well as in mixtures At the same time it can be used as a tool to prove the validity of a particular theoretical model for a liquid mixture.

(Received November 23, 1983)

REFERENCES

- 1 Mihailov, I G, Soloviev, V D, Sîrnikov, I P, Osnovî Molekuljarnoi Akustiki, Nauka, Moskva, 1964
- 2 Stetiu, C, Studia Univ Babeș-Bolyai, Physica, 21, 11 (1976)
- 3 Hamman, S D, Lambert, J A, Austr J Chem, 7, 219 (1954), 8, 21 (1955)
 4 Van Dael, W, Van Itterbeck, A, Physics of High Pressures and the Condensed Phase Ed A Van Itterbeck, North Holland Publ Co Amsterdam, 1965
 5 Mihailenko, S. A, Blagoi, I P, Fizika Jidkogo Sostojanija, 2, 3 (1974)

BARIERA DE POTENȚIAL ÎN ALCOOLI PRIMARI ȘI AMESTECURI DE ALCOOLI

(Rezumat)

Lucrarea își propune să obțină informații despre unele proprietăți structurale ale lichidelor asociate, pe baza cunoașterii unor proprietăți macroscopice Se evaluează potențialul de interacțiune intermolecular și volumul molecular, atît în lichide pure cît și în amestecurile acestora Rezultatele obținute pentru amestecuri sînt explicate teoretic folosind modelul bilichid și teoria potențialului mediu

1 1 1

INSTABILITATEA RAVLEIGH-TAVLOR A UNUI FLUID VÎSCO-ELASTIC CU CONDUCTIVITATE ELECTRICĂ FINITĂ. ECUAȚIA DE DISPERSIE

M. VASIU

1. Introducere. În lucrarea de față ne propunem să stabilim ecuația de dispersie în cazul instabilității magnetohidrodinamice de tip Rayleigh-Taylor pentru un fluid vîscos-elastic, ionizat, cu conductivitate electrică finită, în prezența unui cîmp magnetic uniform \vec{B} care are o singură componentă dirijată după axa verticală Oz Fluidul se găsește și sub acțiunea accelerației gravitaționale g(0, 0, -g) dirijată după axa Oz. Fluidul vîsco-elastic verifică relația de tip Oldroyd [1]

$$\left(1+\lambda \frac{\mathrm{d}}{\mathrm{d}t}\right)T_{ij}=2\widetilde{\mu}\left(1+\lambda_0\frac{\mathrm{d}}{\mathrm{d}t}\right)e_{ij}$$

unde T_{ij} este tensorul tensiumlor de forfecare, e_{ij} este tensorul vitezelor de deformare, λ este timpul de relaxare al tensiumilor, λ_0 este timpul de retardare al deformărilor, $\tilde{\mu}$ este coeficientul de viscozitate dinamică al fluidului. Densitatea ρ_0 a fluidului în starea de echilibru se consideră că variază cu coordonata z ($\rho_0 = f(z)$)

Lucrarea de față se bazează pe metoda utilizată de R Sharma, K. Sharma [2] pentru cazul unui fluid vîscos-elastic neionizat și pe lucrarea noastră [3] care studiază cazul unui fluid ionizat, în absența vîsco-elasticității, cu conductivitate electrică finită.

2. Sistemul de ecuații magnetohidrodinamice pentru micile perturbații. În fluidul considerat se consideră că apar mici perturbații care verifică următorul sistem de ecuații magnetohidrodinamice [2], [3]

$$\left(1 + \lambda \frac{\mathrm{d}}{\mathrm{d}t}\right) \rho_0 \frac{\partial \vec{u}}{\partial t} = \left(1 + \lambda \frac{\mathrm{d}}{\mathrm{d}t}\right) \left[-\nabla(\delta p) + \vec{g} \delta \rho + \frac{1}{\mu_0} \left(\operatorname{rot} \delta \vec{B} \times \vec{B}_0\right)\right] + \rho_0 \nu \left(1 + \lambda_0 \frac{\mathrm{d}}{\mathrm{d}t}\right) \Delta \vec{u},$$

$$(1)$$

$$\frac{\partial}{\partial t} \left(\delta \rho \right) = - (\vec{u} \cdot \nabla) \rho_0, \qquad (2)$$

$$\frac{\partial}{\partial t} \left(\delta \vec{B} \right) = \operatorname{rot}(\vec{u} \times \vec{B}_0) + \nu_m \Delta(\delta \vec{B}), \qquad (3)$$

$$\operatorname{div} \vec{u} = 0, \qquad (4)$$

$$\operatorname{div} \,\,\delta\vec{B} = 0,\tag{5}$$

unde $\vec{u}(u, v, w)$ este perturbația vectorului viteză, $\delta \vec{B}(\delta B_x, \delta B_y, \delta B_z)$ este perturbația vectorului cîmp magnetic, δp este perturbația presiunii, $\delta \rho$ este

perturbația densității, ν este coeficientul de viscozitate cinematică a fluidului, ν_m este coeficientul de viscozitate magnetică a fluidului, ∇ este operatorul nabla, Δ este operatorul lui Laplace.

Perturbațiile $\delta \varphi(x, y, z, t)$ se consideră de forma

$$\varphi\delta(x, y, z, t) = \varphi^*(z) \exp(ik_x x + ik_y y + \omega t)$$
(6)

unde $\varphi^*(z)$ este amplitudinea perturbației, k_τ , k_y sînt componentele vectorului număr de undă de-a lungul axei Ox, respectiv Oy, ω este pulsația perturbației.

Înlocuind (6) în sistemul de ecuații magnetohidrodinamice (1)—(5), efectuînd calculele, se obține următorul sistem de ecuații diferențiale

$$\rho_0 \omega u^* = -ik \, p^* + \frac{B_0}{\mu_0} \left(DB_x^* - ik_x B_z^* \right) + \rho_0 v \, \frac{1 + \lambda_0 \omega}{1 + \lambda \omega} \left(D^2 - k^2 \right) u^*, \tag{7}$$

$$\rho_0 \omega v^* = -i k_y \rho^* + \frac{B_0}{\mu_0} \left(D B_y^* - i k_y B_z^* \right) + \rho_0 v \frac{1 + \lambda_0 \omega}{1 + \lambda \omega} \left(D^2 - k^2 \right) v^*, \tag{8}$$

$$\rho_0 \omega w^* = -Dp^* - g\rho^* + \rho_0 \nu \frac{1 + \lambda_0 \omega}{1 + \lambda \omega} (D^2 - k^2) w^*, \qquad (9)$$

$$\omega \rho^* = -(D\rho_0) w^*, \tag{10}$$

$$\Omega_m \vec{B}^* = B_0 D \vec{u}^*, \tag{11}$$

$$ik_{x}u^{*} + \imath k_{y}v^{*} + Dw^{*} = 0, (12)$$

$$ik_x B_x^* + ik_y B_y^* + DB_z^* = 0,$$
 (13)

unde $D = \frac{d}{dz}$, $D^2 = \frac{d^2}{dz^2}$, $k^2 = k_x^2 + k_y^2$, $\Omega_m = \omega - v_m (D^2 - k^2)$, $B_z = B_0 = \text{const.}$

Ecuația de dispersie. Înmulțind ecuația (7) cu mărimea — ik_x , ecuația (8) cu mărimea — ik_y , ținînd seama de ecuațiile (10) și (11), adunînd membru cu membru egalitățile obținute, obținem

$$-k^{2}[\omega - \nu_{m}(D^{2} - k^{2})]p^{*} = \omega\rho_{0}[\omega - \nu_{m}(D^{2} - k^{2})]Dw^{*} - \rho_{0}\nu_{1}\frac{1 + \lambda_{0}\omega}{1 + \lambda\omega}[\omega - \nu_{m}(D^{2} - k^{2})](D^{2} - k^{2})Dw^{*} - \frac{B_{0}^{*}}{\mu_{0}}(D^{2} - k^{2})Dw^{*}.$$
(14)

Să aplicăm operatorul D în egalitatea (14). Rezultă

$$-k^{2}[\omega - \nu_{m}(D^{2} - k^{2})]Dp^{*} = D\{\omega\rho_{0}[\omega - \nu_{m}(D^{2} - k^{2})]Dw^{*}\} - D\{\rho_{0}\nu\frac{1 + \lambda_{0}\omega}{1 + \lambda\omega}[\omega - \nu_{m}(D^{2} - k^{2})](D^{2} - k^{2})Dw^{*}\} - \frac{B_{0}^{*}}{\mu_{0}}(D^{2} - k^{2})D^{2}w^{*}.$$
 (15)

Să înmulțim ecuația (9) cu operatorul $k^2[\omega - \nu_m(D^2 - k^2)]$. Obținem

$$-k^{2}[\omega - \nu_{m}(D^{2} - k^{2})]Dp^{*} = \omega k^{2}[\omega - \nu_{m}(D^{2} - k^{2})](\rho_{0}w^{*}) - \frac{g(D\rho_{0})k^{2}}{\omega} [\omega - \nu_{m}(D^{2} - k^{2})]w^{*} - \nu k^{2}\frac{1 + \lambda_{0}\omega}{1 + \lambda\omega} [\omega - \nu_{m}(D^{2} - k^{2})][\rho_{0}(D^{2} - k^{2})w^{*}].$$
(16)

M, VASIU 6 1 1 1

Să_eliminăm termenul $k^2[\omega_1 - \nu_m(D^2 - k^2)]Dp^*$ între egalitățile (15): și (16). Obținem ecuația

e 1

$$\omega(1 + \lambda\omega) \left[D(\rho_0 Dw^*) - k^2 \rho_0 w^* \right] - (1 + \lambda_0 \omega) D\left[\rho_0 (D^{2*} - k^2) \nu (Dw^*) \right] - \frac{B_{0,}^2}{\mu_0 \omega} (1 + \lambda\omega) (D^2 - k^2) D^2 w^* + \frac{g(D\rho_0)k^2}{\omega} (1 + \lambda\omega) w^* + \frac{\psi_0 h^2}{\omega} (1 + \lambda_0 \omega) (D^2 - k^2) w^* - \psi_m (1 + \lambda\omega) D\left[\rho_0 (D^2 - k^2) Dw^* \right] + \frac{\psi_0 w}{\omega} (1 + \lambda_0 \omega) (D^2 - k^2)^2 D(\rho_0 Dw^*) + \psi_m k^2 (1 + \lambda\omega) (D^2 - k^2) (\rho_0 w^*) - \frac{g(D(\rho_0) \psi_m k^2)}{\omega^2} (D^2 - k^2) w^* - \frac{k^2 \psi_m \psi}{\omega} (1 + \lambda_0 \omega) (D^2 - k^2) \left[\rho_0 (D^2 - k^2) w^* - \frac{k^2 \psi_m \psi}{\omega} (1 + \lambda_0 \omega) (D^2 - k^2) \left[\rho_0 (D^2 - k^2) w^* \right] = 0.$$

$$(17)$$

Aceasta este ecuația de dispersie căutată, care generalizează ecuațiile de dispersie obținute în lucrările [2] și [3].

În cazul în care se admite $\rho_0 = \text{const}$, ecuația (17) capătă forma

$$\omega(1 + \lambda\omega)\rho_{0}(D^{2} - k^{2})w^{*} - \nu\rho_{0}(1 + \lambda_{2}\omega)(D^{2} - k^{2})^{2}w^{*} - \frac{B_{0}^{2}}{\mu_{0}\omega}(1 + \lambda\omega)(D^{2} - k^{2})D^{2}w^{*} + \rho_{0}\nu_{m}(1 + \lambda\omega)(D^{2} - k^{2})^{2}w^{*} - \frac{\nu\nu_{m}\rho_{0}}{\omega}(1 + \lambda_{0}\omega)(D^{2} - k^{2})^{3}w^{*} = 0.$$
(18)

Cazuri particulare. 1. Cazul unui fluid vîsco-elastic, neionizat, astfel că un cîmp magnetic aplicat nu are nici un efect asupra fluidului (aceasta revine la a considera că $B_0 = 0$, $v_m = 0$). În acest caz ecuația (18) se reduce la ecuația obținută în lucrarea [2]; 2. Cazul unui fluid ionizat, în absența vîsco-elasticității, cu conductivitate electrică finită ($\lambda = 0$, $\lambda_0 = 0$, $\nu_m \neq 0$, $\nu = \tilde{\mu} = 0$). și cu o singură componentă a cîmpului magnetic aplicat ($B_x = 0$, $B_y = 0$, $B_z = B_0$). În acest caz ecuația de dispersie (18) se reduce la ecuația stabilită în lucrarea [3]. (Întrat în redacție la 17 martie 1984)

BIBLIOGRAFIE

- 1. J. Oldroyd, Proc Roy. Soc., A 245, 278 (1958)
- 2 R Sharma, K Sharma, Acta Phys. Acad. Scient Hungar, 45 (3), 153 (1978). 3 M Vasıu, Studia Univ. Babeş-Bolyai, Phys, 26 (2), 67 (1981)

L'INSTABILITÉ MAGNÉTOHYDRODYNAMIQUE DE TYPE RAYLEIGH-TAYLOR D'UN FLUIDE VISQUEUX-ÉLASTIQUE AVEC UNE CONDUCTIVITÉ ÉLECTRIQUE FINIE. L'ÉQUATION DE DISPESRSION

(Résumé)

ĩ -

Dans le présent, article, nous voulons déduire l'équation de dispersion pour le cas de l'instabilité magnétohydrodynamique de type Rayleigh-Taylor d'un fluide visqueux – élastique, ionisé, avec une conductivité électrique finie. Le fluide se trouve sous l'action d'un champ magnétique uniforme $B(0, 0, B_0)$ et sous l'action de l'accélération gravitationnelle g(0, 0, -g)

L'équation de dispersion obtenue généralise les équations de dispersion établies dans les travaux cités

N O T E

THERMAL PROPERTIES OF SOME CHOLESTEROL DERIVATIVES

S. SELINGER

1 Introduction. Thermal studies on liquid crystalline compounds provide information about characteristics of the mesophases Interest concerning thermal transitions, mesophase stability and other physical properties of cholesterol derivatives [1] The dielectric properties of these compounds have also been studied [2]

Scanning calorimetry has proven particularly well suited for monitoring thermal properties but hot-stage studies using a polarizing microscope would also be profitable

In this paper we present thermograms of the cholesteryl ethyl carbonat $C_{32}H_{54}O_4$, cholesteryl ethoxy—ethyl carbonat $C_{30}H_{50}O_3$, cholesteryl palmitat $C_{43}H_{76}O_3$ [3].

The colesterol derivatives were synthetized at the Chemicals and Pharmacentics Research Institute — ICCF., Filiala Cluj-Napoca

2 Experimental methods. Measurements were made with a PERKIN-ELMER DSC - 2 calorimeter, in a highly-purified mitrogen atmosphere The thermal calibration of the instrument was made with bidistilled water and with an indium standard The weight of the samples was altered in the range 5-9 mg, with \pm 10⁻³ mg accuracy. The heating and cooling rates were 10^o/min

Fig. 1. Thermogram of cholesteryl ethyl carbonat.

and the sensitivity of the instrument was 5-10 mcal/sec The temperatures of the phase transition could be reproduced with an accuracy of $\pm 0.4^{\circ}$ The calorimetric calibration was made with a known quantity of indium standard

3 Results and discussion. The thermograms of cholesterol derivatives are shown in figures. 1, 2 and 3 respectively

The lower parts of the diagrams show the phase transition upon heating, and the upper gions of the diagram the phase transition upon cooling First from these compounds show enantiotropic, other two compounds show monotropic liquid crystalline phases.

On the basis of the thermograms the following phase schemes are characteristic for the changes in the state of the materials. (Figure 4)

Letter "C" means the crystalline state of matter, symbol "Ch" represents the cholesteric mesophase, symbol "I" the isotropic liquid

Thermograms of the three compunds were constructed from several runs and different samples.

The peak areas are proportional to the heat capacities of the phase transitions.

Cholesteryl ethyl carbonate (Figure 4a) shows a simple enantiotropic cholesteric mesophase transition. The mesophase exist in a 22° temperature interval

Cholesteryl ethoxy-ethyl carbonate (Figure 4b.) have an monotropic cholesteric state. This mesomorphic state is stable in a 2.5° temperature range.

Cholesteryl palmitate (Figure 4c.) are an monotropic transition chain similar to the case of compound mentioned above. The cholesteric mesophase is stable in a 30° interval.

It is sometimes observed that phase transition temperatures of a liquid cristalline material are slightly different from laboratory to laboratory [4].

Generally this is supposed as beind due to the different purities of the materials used. Knowledge of polymorphism 1s of basic importance for thermo-

Fig. 2 Thermogram of cholesteryl ethoxy-ethyl carbonat

Fig. 4 Phase transition schemes of the compounds

THERMAL PROPERTIES

dinamic and microscopic studies of liquid crystalline compounds. Impurities shift (depress) the cholesteric - isotropic phase transition temperature. Due to small amounts of impurity no metastable solid modification a liquid cristal line phase is generated and that an enatiotropic pair becomes monotropic [5]

(Received March 29, 1982)

REFERENCES

- 1 G H Brown, Advances in Liquid Crystals, vol. II, Academic Press, New York, 1976
- 2. S Selinger, F Puskás, R. Schwartz, A. Juhász, Studia Univ Babes-Bolyai, Physica, 26 (2), 72 (1981).
- 3 D. Demus, H. Demus, H. Zaschke, Flussige Kristalle in Tabellen, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1974.
- 4 J. Szabon, L. Bata, K. Pintér, KFKI-74-82, Budapest, 1974.
 5 J. Szabon, L. Bata, K. Pintér, KFKI-78-22, Budapest, 1978.

PROPRIETĂȚILE TERMICE ALE UNOR ESTERI COLESTERICI

(Rezumat)

În lucrare sînt prezentate proprietățile termice ale tranzițiilor de fază în colesteril etil carbonat, colesteril etoxyetil carbonat și colesteril palmitat, metoda folosită fiind cea a calorimetrulni diferential

Locurile transformărilor de fază pe termograme sînt indicate prin "vîrfuri" pronunțate. Se observă că temperaturile transformărilor de fază prin încălzire diferă de cele prin răcire

Pe lîngă termograme sînt date și schemele tranzituilor de fază.

STUDIA UNIV BABEŞ-BOLYAI, PHYSICA, XXIX, 1984

... 11 RECENZII \$ 6.8

A N Matveev, Moleculiarnaia fizica (Fizica moleculară), Moskva, Vîsșaia Scola, 1981

Scrisă pe 397 pagini, cartea este structurată în șase capitole mari 1 Metoda statistică, 2 Metoda termodinamică, 3 Gazul electrónic și fononic, 4 Gazele cu interacțiuni intermoleculare și lichidele, 5 Corpurile solide, 6 Fenomene de transport Este înia din celé mai înoderne cărți de fizică moleculară apărute pe plan mondial Se distinge printr-o selectare și sistematizare riguroasă a materialului, prin nivel științific și metodic ridicat, prin tratare mâtematită riguroasă și în același timp accesibilă studenților din primu ani de studiu. Ținuta grafică, frumusețea și cursivitatea demonstrațiilor și limbajul științific ales conferă cărții calități deosebite

După modul în care abordează mișcarea moleculară cartea s-ar putea intitula "Metode de studiu a sistemelor de mai multe particule și aplicații" Fără a se neglija metoda termodinamică, autorul pune accentul pe metoda sta-tistică, aplicabilă atit sistemelor clasice de mai multe particule cît și sistemélor cuântice. Combinînd metcdele inductive cu cele deductive autorul trece pe neobservate la sistemele cuan-tice și stabilește legile de distribuție Fermi-Dirac! și Bose-Einstein, care apoi le aplică la studiul gazului fermionic electronic și a gazului bosonic fotonic Acest mod de abordare reflectă concepția autorului, conform căreia în ultima vreme în abordarea fizicii moleculare centrul de greutate s-a deplasat continuu spre studiul legităților statistice și metodelor termodinamice, exemplificate pe sisteme moleculare, electronice și fotonice Aceste tendințe își găsesc tot mai mult locul în programele cursurilor universitare.

Autorul acestei cărți consideră că studenți¹ care audiază un curs de fizică generală nu trebuie să rămînă cu impresia că pentru aprofundare se va reveni asupra temei la alte cursuri, de nivel superior Studentul trebuie să-și facă o imagine corectă și pe cît posibil completă despre fenomenele studiate la orice curs de fizică generală În acest scop în carte sint incluse și teme care ies din cadrul cursurilor tradiționale de fizică moleculară, care însă sînt absolut necesare pentru o înțelegere corectă a fenomenelor Acest mod de abordare are ca efect nu numai o întelegere mai profundă a mișcării în sistemele de mai multe particule ci descongestionează, în același timp, cursurile ulterioare, pentru a putea cuprinde nenumăratele probleme ale fizicii actuale care sînt abordate, de regulă, cu prea multă timiditate Asa se explică faptul că autorul face în mod constant referiri la sistemele cuantice de mai multe particule, introducind aproape toate noțiunile cu care operează mecanica cuantică

In ultimele două capitole sinț, studiate, proprietățile sistemelor lichide și solide ieale, între moleculele cărora se manifestă forțe de inferacțiune și transformările de stare ale substanței Ultimul capitol cuprinde teoria fenominelor de transport în fazele gazoasă, lichidă și solidă și elemente de termodinamica proceselor ireversibile

Cele 62 probleme rezolvate ca exemple și 85 probleme propuse pentru rezolvare la sfirșitul fiecărui capitol, cu răspunsuri, întregesc conținutul cărții

> GH CRISTEA I BARBUR

INTREPRINDEREA POLIGRAFICĂ CLUJ Municipiul Cluj-Napoca Cd nr 133/1984

În cel de al XXIX-lea an (1984) Studia Universitatis Babeș-Bolyai apare în specialitățile: matematică

fizică

chimie

geologie-geografie

biologie

filozofie

științe economice

științe juridice

istorie

filologie

На XXIX году издания (1984) Studia Uuniversitatis Babeş-Bolyai, выходит по следующим специальностям:

математнка

физика

КИМИЯ

геология-география

биология

философия

экономические науки

юридические науки

история

филология

Dans sa XXIX-e année (1984) Studia Universitatis Babeş-Bolyai paraît dans les spécialités : mathématiques physique chimie géologie-géographie biologie philosophie sciences économiques sciences juridiques histoire philologie