STUDIA universitatis babeș-bolyai

PHYSICA

1982

CLUJ-NAPOCA

REDACTOR SEF: Prof. I. VLAD

REDACTORI ȘEFI ADJUNCȚI: prof. I. HAIDUC, prof. I. KOVÁCS, prof. I. A. RUS

COMITETUL DE REDACȚIE FIZICĂ: prof. Z. GÁBOS, prof. V. MERCEA, membra eorespondent al Academiei (redactor responsabil), prof. AL. NICULA, prof. I. POP, prof. E. TĂTARU, asist. O. COZAR (secretar de redacție)

STUDIA universitatis babeș-bolyai

PHYSICA

Redacția 3400 CLUJ-NAPOCA, str M. Kogălniceanu, 1 • Telefon 16100

SUMAR - CONTENTS - SOMMAIRE

I	MILEA, Spectrele de absorbție, fluorescență și fosforescență ale α și β -metilnaftalinelor la 77 K (I) \bullet The absorbtion fluorescence and fosforescence spectra of the α and β -methylnaphtalenes at 77 K (I)	3
N	DULĂMIŢĂ, V CRIȘAN, A POP, I POP, G MORARU, Studiul proprietăților fizico- chimice ale aluminelor promotate cu dioxizi metalici (V) • A study of physico-chemical properties of alumina activated with metallic dioxides (V) .	10
s	COLDEA, Numerical calculation of gases interdiffusion in liquid metals (II) • Calcule numerice ale interdifuziei gazelor în metale lichide (II)	15
G	BUZAS, Metodă numerică pentru modelarea pe calculator a structurilor semiconductoare • A numerical method for computer modelling of semiconductor structures	20
s.	SELINGER, AL NICULA, R SCHWARTZ, V SIMON, Some observation in the transi- tion region between the cholesteric phase and liquid isotropic • Cîteva observații asupra tranziției de fază între faza colesterică și cea de lichid izotrop	25
0	COZAR, I BRATU, R SEMENIUC, I ARDELEAN, M. PERICI, Studiul structural al unor compleçsi p-clorbenzoați de cupru(II) prin absorbția în I.R. și analiza termodi- ferențială • Structural studies of some Cu(II) p-clorbenzoates by I.R and thermodiffe- rential methods	29
Т	BENCZI, R. I. CÂMPEANU, Mesons in a quark nonrelativistic model • Mezoni într-un model de quarkuri nerelativist	36
0.	. COZAR, I ARDELEAN, Studiul RES al formării perechilor mixte de ioni Cu ²⁺ $-$ V ⁴⁺ și Cu ²⁺ $-$ Mn ²⁺ în matricea 2B ₂ O ₃ · K ₂ O • ESR study of the Cu ²⁺ $-$ V ⁴⁺ and Cu ²⁺ $-$ Mn ²⁺ mixed exchange pairs formation in the 2B ₂ O ₃ · K ₂ O matrix .	41
v	ZNAMIROVSCHI, M SĂLĂGEAN, M. CONSTANTINESCU, C. NICOLAU, A. MOȚIU, Determinarea conținutului de uraniu în davidit prin metodele activării cu neutroni și neutroni întirziați • The uranium content determination în davidite by neutron activation and delayed neutrons methods	47

S SIMON, AL NICULA, EPR on soda-borate glasses with NiO • RES pe sticle boro-sodice cu NiO	50
 S SIMON, V SIMON, AL, NICULA, Dielectric properties of glasses with high titanium oxide content Proprietăți dielectrice ale unor sticle cu conținut ridicat de oxid de titan 	55
S SIMON, AL NICULA, Magnetic resonance on borate glasses with Gd_2O_3 and Eu_2O_3 • Rezonanța magnetică pe sticle borice cu Gd_2O_3 și Eu_2O_3 .	59
I. POP, V IONCU, Controleur de niveau pour les liquides cryogéniques • Controlor de nivel pentru lichide criogenice	66
Z GÁBOS, Construirea cîmpurilor Joos-Weinberg din cîmpuri Dirac • La construction des champs Joos-Weinberg à l'aide des champs Dirac	70
M CRISTEA, Propagation of 10n-acoustic waves in an argon-helium plasma with warm 10ns (II) Nonlinear propagation • Propagarea undelor 10no-acustice într-o plasmă Ar-He cu ioni calzi (II)	74

.

.

.

SPECTRELE DE ABSORBȚIE, FLUORESCENȚĂ ȘI FOSFORESCENȚĂ ALE α ȘI β -METILNAFTALINELOR LA 77 K (I)

IRIMIE MILEA

Introducere. Studiul spectroscopic al metilnaftalinelor prezintă o deosebită importanță din cauza utilizării lor în multiple domenii ale științei și tehnicii [1], [2].

Špectrele moleculelor în stare de vapori nu au reușit să rezolve întru totul problema nivelelor de energie ale acestora deoarece apar nesiguranțe în atribuirea bandei 0-0 și a unor fundamentale, unele grupuri de bande nu se structurează, în spectru apărînd doar o înfășurătoare a lor și de asemenea nu este posibilă tranziția de pe starea de tiplet din cauza tranzițiilor neradiative. Înglobarea moleculelor într-o matrice înghețată cu care să aibă interacțiuni slabe face ca din spectrul lor electrono vibrațional să lipsească benzile calde, să se micșoreze posibilitatea formării de complecși, să se elimine unele neajunsuri legate de tehnica experimentală în vapori, iar apariția spectrului de emisie este facilitată datorită micșorării probabilității tranzițiilor neradiative

Substanțele studiate în prezenta lucrare au fost preparate de firma Schering-Kahlbaum A G Berlin, purificarea făcîndu-se prin distilare fracționată în vid pentru α -metilnaftalină, iar pentru β -metilnaftalină prin recristalizări succesive din pentan și hexan urmate de cîteva treceri printr-o zonă de purificare în vid. Controlul purității s-a făcut prin măsurarea cu o precizie de o zecime de grad a punctelor de fierbere și topire aducîndu-se corecțiile de presiune necesare Alegerea solvenților folosiți ca matrice a fost făcută prin metode arătate anterior [3], [4] S-a găsit că cel mai potrivit solvent pentru α -metilnaftalină este pentanul, iar pentru β -metilnaftalină hexanul Purificarea acestor solvenți s-a făcut prin metodele clasice [5]

In funcție de scopul urmărit am folosit trei instalații experimentale care au avut ca element de bază un criostat de cuarț în care proba era 'răcită prin imersie în azotul lichid. Pentru absorbție și fluorescență s-a folosit un spectrograf Hilger E_{s1} , 1/3,5 cu dispersia de ~60 Å/mm în domeniul din jurul valorii de 3100Å și 25 Å/mm în jurul valoru de 2600 Å, iar pentru fosforescență un spectrograf Zeiss cu trei prisme în montaj Fosterling și luminozitate 1/2,3 avînd dispersia de 90 Å/mm în jurul valorii de 5000 Å Iluminarea s-a realizat pentru absorbție cu o lampă de hidrogen de 400 W, cu spectru continuu între 2200 și 3600 Å, pentru fluorescență cu o lampă de mercur P R K-7 de 1000 W de joasă presiune din emisia căreia s-a selectat cu un filtru de clorbrom un domeniu de aproximativ 250 Å în jurul liniei de rezonanță intense de la 2537 Å, iar pentru fosforescență o lampă de mercur H.B.O. 200 de înaltă presiune și 200 W, excitarea făcîndu-se monocromatic pentru radiația de 3021 Å a mercurului prin intermediul unui monocromator cu oglinzi Zeiss. Spectrele au fost fotografiate pe plăci ORWO-Blau Extrahart pentru absorbție și fluorescență și ORWO-Gelb Rapid și Rot Rapid pentru fosforescență Înregistrarea spectrelor s-a făcut de pe plăcile obținute cu un fotometru rapid Zeiss cuplat

cu un înregistrator Zeiss G_1B_1 Poziția bandelor s-a măsurat cu un comparator. Abbe cu o precizie de 0,3 Å

Schemele instalațiilor experimentale folosite pentru absorbție, fluorescență și fosforescență sînt date in figura 1.

 α -Metilnaîtalina. Spectrul de absorbție obținut este format în prima regiune de absorbție din linu înguste, iar în a doua din bande relativ largi Înregistrarea spectrului obținut se vede în figura 2, iar interpretarea sa este dată în tabelele 1 și 2 împreună cu rezultatele obținute și de alți autori

În tabele semnificația notațiulor este următoarea 1 — intens, d — difuz, î — îngust, f — foarte, s — slab, m — mediu, r — relativ, l — larg. Interpretarea s-a făcut ținîndu-se seama de frecvențele corespunzătoare care apar în studiul moleculei de naftalină, [6], [7], iar pentru modul probabil de vibrație s-au folosit notațiule curente din spectrele Raman și I.R. [8]. Semnificația este următoarea $\beta(C-H)$ — vibrație în plan a legăturii C-H, α — (CCC) — vibrație de deformare în plan a unghiurilor între atomii de carbon, $\emptyset(CC)$ — vibrație de torsiune a moleculei în afara planului, $\nu(CC)$ — vibrație de întindere în plan a legăturilor C-C, $\gamma(C-H)$ — vibrație de legănare în afara planului a legăturii C-H.

În primul sistem de absorbție se observă apariția unei bande difuze, care pare a fi începutul unui sistem difuz, plasată la 147 cm⁻¹ spre roșu față de banda 0-0 Această bandă difuză are o rezonanță în fluorescență și se datorește probabil unor agregate moleculare [9], [10], [11] În al doilea sistem banda 0-0 s-a luat în concordanță cu spectrul de absorbție în a doua regiune a naftalinei [12]. Față de spectrele efectuate în vapori [13], la temperatura

F1g. 1.

τ	ahol	1
	141364	

		Tetopoto				-	Modul	A 1	țı aut	0'T 1
Nr banda	v cm ⁻¹	tea și aspectul bandelor	$v_{00} - v$ cm ⁻¹	Interpretare	vcale → v cm→1	Si- metria C _s	probabil de vibra- ție al moleculei	[17] vapori	[13] vapori	[17] în C _e H ₁₄ la 20 K
	31 385	1 d	147							
0	31 532	11	0	¥			_	31 687	32 114	31 376
1	31 806	1 î	274	V11	_	a''	$\gamma(CX)$	_	_	
$\overline{2}$	31 926	11	394	V.4	_	a'	α (CCC)	_	-	
3	32 002	fsî	470	Vo	'	a' I	B(CX)	445	450	433
4	32 184	mrî	652	V ₄₀	·	a'	α(CCĆ)	_	685	660
5	32 325	mrî	793	Van	_ ·	a''	Ø(CC)	_	-	769
6	32 408	mrî	876	V.17		a'	v(CC)	986	l _	847
7	32 607	mrî	1 075	$v_{19}(v_{20})$		a'	v(CC)	1 1 1 4	1 064	967
8	32 795	1	1 263	V33	—	a'	v(CC)	—	<u>́</u>	_
9	32 881	} 1 larg	1 349	V ₃₂	- 1	a'	v(CC)	- 1	1 300] _
10	32 978] · ·	1 4 4 6	ν ₅	-	a'	v(CC)	1 4 4 1	i —	1 4 3 4
11	33 138	fsî	1 606	V ₃₁	-	a'	v(CC)	_	_	
12	33 249	fsrî	1 717-	$v_5 + v_{11}$	+ 3	_	<u> </u>	—	, <i>.</i>	-
13	33 460	srî	1 928	$v_5 + v_9$	-12	-		—		
14	33 795	h	$2\ 263$	$v_5 + v_{39}$	-24	-	—	—	-	-
15	34 038	∫ 1 larg	2506	$v_5 + v_{48} + v_{34}$	-14	-	—			-
16	34 307	, m d	2775	$v_5 + v_{48} + v_{34}$	ł					
]				+ א_11	- 9	-		—		-
17	34 501	sî	2969	$v_{32} + v_{31}$	-14	-		-	-	- 1
18	34 590	fsî	3 058	$v_{5} + v_{31}$	- 6	-	-	- 1	-	
19	34 668	s î	3 136	$12 \times v_5 + v_{11}$	+29	- 1		۱ <u>-</u>		_

Tabel 2

~

Nr banda	v cm ⁻¹	Intensı- tatea şı aspectul bandelor	ν ₀₀ -ν cm ⁻¹	Interpretare	ν _{calc} — — ν cm ⁻¹	Si- metria C _s	Modul probabil de vi- brație al moleculei	Alțı autori [13] vapori
0	34 842	s î	0	V ₀ II ³	1		-	35 078
1	35 009	sî.	167	V ₂₅ '		a''	Ø(CC)	148
2	35 295	1 d	453	V ₃₄		a''	Ø(CC)	461
3	35 772	m d	930	V7 '	— ,	a'	α(CCC)	947
4	35 893	s d	1 051	V19	_	a'	v(CC)	1 143
5	36 320	m d	1 478	ν ₅	-	a'	β(CH)	1 335
6	36 506	m d	1 664	V ₃₁	_	a'	v(CC)	1 566
7	36 673	1 f d	1 831	$2 \times v_7$	+29		· -	—
8	36 962	d	2 120	$v_5 + v_{25} + v_{34}$	-22	-	—	—
9	37 518	d	2 676	$v_5 + v_{25} + v_{19}$	+20	-		
10	37 778	d	2 936	$2 \times v_5$	+20		—	—
11	38 171	d	3 329	$2 imes v_{31}$	_ 1	-	_	
12	38 316	d	3 475	$2 \times v_{31} + v_{25}$	+-20	-	_	
13	38 748	d	3 906	$2 \times v_5 + v_7$	-20	-		·
14	38 929	fd	4 087	$2 \times v_5 + v_7 + v_{25}$	34	-	!	
15	39 266	d	4 4 2 4	$3 \times v_5$	+10	-	-	—
16	39 436	d	4 594	$3 \times v_5 + v_{25}$	+ 7	-		
17	39 813	d	4 971	$3 \times v_{31}$	+21	-		l —
18	39 900	d	5 058	$3 \times v_5 + v_{25} + v_{34}$	4	-		
19	40 319	fd	5 477	$3 \times v_{31} + v_{34}$		-		- 1

azotului lichid s-au obținut mai multe bande și deci interpretarea spectrului este mai completă Pe lîngă aceasta, comparația cu spectrele electrono-vibraționale ale derivaților monohalogenați ai naftalinei și analiza globală a acestor spectre permite o atribuire mai sigură a modurilor de vibrație [14]. Astfel banda de la 1064 cm⁻¹ dată de deformarea legăturii C—H în planul moleculei [13] este probabil o vibrație a legăturii C—C. În a doua regiune de absorbție

T	abel	Э
T	abel	Э

la		tea tul r				Ĥ 4	19] 1 <i>C</i> s	승 부 내 리	Alţı	autori
anc	v	pec	V00-V	Tuterpretore		I IS	3] [tri	cal a cal	5103	[17] în
ą	cm ⁻¹	n as as	cm ⁻¹	Interpretate	ຼິຼິ	E E	Ē	le pil	[13]	C ₆ H ₁₄
분		ba ba			C G	ZH∄.	6] Su	log a d d	vapori	18
	<u> </u>				-	~		A		20 K
n	21 259	1.4	0	N 6					32 114	21 276
1	31 385	1. u m î	147	Vot		150	a″/	M(CC)	154	51 570
2	31 322	mî	210	*13 N	_	185	a″	Ø(CC)	195	
3	31 231	mì	301	V26		281	a″/	v(CX)		281
4	31 037	1 î î Î	495	911 N.,		480	a′	B(CX)	417	479
5	30 980	s î	552	N ₂	_	565	a'		_	566
6	30 941	mî	591	79 V10		605	a''	Ø(CC)		_
7	30 861	md	671	-10 V.a	_	688	a'	$\alpha(CCC)$	_	704
8	30 719	md	813	- 48 Vin		810	a''	Ø(CC)		766
9	30 563	md	969	V17	_	963	a″	$\gamma(CH)$	_	971
10	30 451	md	1 081	Via		1 085	a'		-	1 0 2 3
11	30 359	m d	1 173	ν ₂₀		1 172	a'	B(CH)	_	1 164
12	30 248	m d	1 284	V ₃₃	-	1 266	a'	V(CC)	_	
13	30 157	1 d	1 375	$v_4(v_{32})$		1 374	a'	v(CC)	_	1 376
14	30 076	md	1 456	V ₅		1 466	a'	B(CH)	—	1 458
15	29 967	md	1 565	ν ₃	_	1 582	a'	v(CC)	-	
16	29 914	m d	1 618	v ₃₁		1 618	a'	v(CC)	—	_
17	29 798	s d	1 734	$v_{20} + v_{p}$	- 9		-	` <u> </u>		_
18	29 670	1 d	1 862	V34+V4	+8					_
19	29 582	m d	1 950	$v_{34} + v_4 + vr$	+ 5		- 1		—	
20	29 464	m d	2068	$v_{34} + v_3$	- 8			-	-	-
21	29 408	s d	2 124	$v_{34} + v_{31}$	-11		_	_	-	
22	29 291	m d	2 241	$v_{34} + v_{31} + v_{13}$	+ 9	-		_	—	
23	29 171	m d	2 361	$v_{34} + v_3 + v_{11}$	0		-	—		
24	29 070	m d	$2\ 462$	$v_{31} + v_4 + v_{33}$	-12	-	—		-	
25	28 990	m d	2 542	$v_{34} + v_4 + v_{48}$	- 1		-		-	
26	28 893	nı d	2639	$v_{34} + v_{31} + v_9$	+26	-		-	-	-
27	28 777	m d	2 755	$2 imes v_4$	- 5			_	-	i —
28	28 686	s d	2846	$v_4 + v_5$	-15		-		-	-
29	28 616	s d	2 916	$2 \times v_4 + v_{13}$	-19	2 912	a'	β(CH)	-	-
30	28 516	md	3 022	$2 \times v_i + v_{11}$	+29	-			-	-
31	28 421	sd	3 111	$2 \times v_1 + v_{13} + v_{25}$	- 4		_	-	-	
32	28 320	10	3 212	$2 \times v_4 + v_{34}$	+33	-	_	-	-	-
33	28 229	1 0	3 303	$2 \times v_4 + v_9$		-		_		-
04	28 094	ma	3 438	$2 \times v_4 + v_{10}$	-+- 3				-	-
33 26	2/91/	ma	3015	$2 \times v_4 + v_9 + v_{11}$	- 12	-		_	-	-
30	27 814	ma	0/10	$4 \times v_4 + v_{37}$		-	_	_	-	-
30	27 701	s u	2 0 2 1	$4 \times v_4 + v_{19}$	0			_	-	
30	27 601	su a d	3 000	$4 \times V_4 + V_{20}$	0				-	-
40	27 333		7 385		-713			_		-
41	27 085		1 447	$2 \times 4 + 31$ $2 \times 4 + 4 + 4$	-15					
42	26 903	s d	1 629	$3 \times 1.4 \times 197 \times 10$	0		_			
1.4	40 000	յթս	T 040	1 V A 14 T 144	3		_			

I MILEA

6

se interpretează banda de la 1566 cm⁻¹ ca 1335 + 222 cm⁻¹, pe cînd din spectrele la temperatură joasă a rezultat că această bandă este o fundamentală. De asemenea banda de la 947 cm⁻¹ considerată ca fiind datorată unei vibrații de deformare a legăturii C-H în planul moleculei [13] aparține probabil vibrației de deformare în plan a unghiurilor între atomii de carbon, iar banda de la 1335 cm⁻¹ aparține mai probabil vibrației în plan a legăturii C-H decît legăturii de valență [13]. Nesiguranța în rezultatele obținute în vapori în a doua regiune de absorbție apar și din cauza poziționării uneori incerte a bandelor difuze din această regiune

În pentan la 77 K înregistrarea spectrului de fluorescență are aspectul din figura 3

Interpretarea este dată în tabelul 3. Cu toate că spectrul la temperaturi joase s-a mai efectuat în pentan [15], interpretarea sa completă nu a fost făcută În tabelul 3 sînt date și rezultatele obținute de alți autori, în a căror lucrări unele bande sînt obținute din spectrul de absorbție ca bande calde [13]. Nu sînt legate de anumite moduri de vibrație Spectrul de fluorescență al substanței răcită brusc la 77 K este larg de tip excimeric și se datorește agregatelor moleculare formate. La răcire lentă seamănă cu spectrul stării cristaline

Înregistrarea spectrului de fosforescență în pentan la 77 K este arătată în figura 4 iar interpretarea în tabelul 4

Banda de la $2\overline{1}140$ cm⁻¹ s-a luat ca bandă 0-0 cu toate că este mai puțin intensă ca următoarea, în acest fel existînd, o bună concordanță cu

I	MILEA
---	-------

7	ab	el	4
1	aou	<i></i>	-4

Nr banda	v cm ⁻¹	Intensitatea și aspectul bandelor	ν ₀₀ —ν cm ^{—1}	Interpretare	$v_{calc} - v_{cm^{-1}}$	Δν cm ⁻¹ în I R şı Raman [6] [18] [19]	Sumetria C_{s}	Modul pro- babil de vıbrațıe al moleculei	Alțı autorı [16] în C ₆ H ₁₃ la 77 K
0	21 140	e F î	0						21.000
1	21 140	511	26	VOF	_				21 000
2	21 104	111	84			-			-
2	21 000		191	V 1.		185			
4	20 939	i u	565	V25		505	a 0'		517
- -	20 575	<u> </u>	505	V _D		565	a.		517
3	20 520	ST1	620	V10		624	a -/	0(CC)	
6	20'440	md	700	V48		701	a. _/	$\alpha(CCC)$	
7	20 099	sd	1 0 4 1	ν ₇	-	1 034	a	v(CC)	
8	19 919	md	1 221	V45		1 230	a'	β(CH)	
9	19 742	srî	1 398	ν ₃₂		1 398	a	β(CH)	1 369
10	19 699	lirî	1 4 4 1	V17		1 4 4 1	a'	v(CC)	-
11	19 660	mrî	1 480	Vs		1 465	a'	B(CH)	
12	19 568	mrî	1 572	Va		1 583	a'	v(CC)	1 575
13	19 503	mrî	1 637	Vat	<u>} </u>	1 <u> </u>	a'	v(CC)	- 1
14	19 333	md	1 807	V + V45	-21	_	_	` <i>_</i> ′	
15	19 219	s d	1 921	V10 + V15	0	_	_	-	1 884
16	19 039	m d	2 101	V40 + V32	- 3	_		_	2 086
17	18 848	md	2 291	$ v_{4}+v_{3} $	-19	_		- 1	l'
18	18 524	m d	2 615	V45 + V32	+ 4	_	_	_	2 615
19	18 327	Hg?	2 812	$2 \times v_{32} + vr$	+20	l	_		2 739

spectrele Raman și I.R În general, spectrul de fosforescență este slab cu linii relativ largi.

Rezultatele obținute de alți autori relatează un spectru din zece bande din care puține sînt considerate fundamentale și care nu au o corespondență suficient de exactă cu spectrele Raman și I.R Aceasta se datorește probabil atribuirii greșite a bandei de la 21104 cm⁻¹ ca bandă 0-0 [16]

(Intrat in redactie la 17 noiembrie 1980)

BIBLIOGRAFIE

- 1 L E Guskaya, V F Poduzhailo, L G Gvozdeva, Monokrist Stsintill Org Luminofory, 3. 157-61 (1968)
- 2 V B Biteman, L M Kutsyno, Stsintill Org Luminofory, 2, 130-3 (1973)
- 3 I Milea, Studia Univ Babes-Bolyai, Phys., 24 (2), 75 (1979)
- 4 I Milea, Studia Univ Babes-Bolyai, Phys., 26 (1), 77 (1981)
- 5 L. Gattermann, Die Praxis des Organischen Chemikers, Walter de Gruyter, Berlin und Leipzig, 1936
- 6 N Claverie, C Gairigou-Lagrange, J Chim Phys Chim et Biolog, 61 (6), 889 (1964)
- 7 H Luther, J Drewitz, Z Elektrochem, 66, 546 (1962)
- 8 Kirk H. Michaelian, Stanlei M. Ziegler, Appl. Spectr., 27 (1), 13 (1973)
- 9 M S Borodina, Excitoni v molecularnih cristalah, Izd Naucovo, Kiev, 1973
- 10 S. Leach, J de Phys, Colloque C₃ suplement an no 5-6, 28 si 134, 1967
- 11 J Ripoche, Theses a la Faculte de Sciences de L'Université de Rennes, 1966

- 12 H Sponer, C D Cooper, J Chem Phys, 23 (4), 646 (1955)
- 13 D Marjit, S B Banerjee, Indian J Pure Appl Phys, 11, 37-40 (1973)
- 14 I Milea, în curs de publicare, Studia Univ Babeș-Bolyai
- 15 T A Teplițkara, T A Alexseeva, M M Valdman, Atlas cvazilineiciatnîh spec-15 I A Tepfittkata, T A Alexseeva, M W valdman, Auas coasimetciants spectrom hoministenții, Izd Moskovskogo Universiteta, 1978
 16 V L Levşin, H I Mamedov, Izv. Akad Nauk, SSSR, 27 (5), 606-608 (1963).
 17. O P Haritonova, Opt i Spektr, 21 (2), 166 (1966)
 18 A. V Secikarev, N I Dvorovenko, Izv Vyssh Uchebv Zaved Fiz., 9, 111 (1966).
 19 Landolt-Bornstein, Zahlenwerte und functionen, Band I, 2 Teil, Springer-Verlag, Berlin,

ډ

- Gotingen-Hidelberg, 1959.

THE ABSORBTION FLUORESCENCE AND FOSFORESCENCE SPECTRA OF THE & AND β-METHYLNAPHTALENES AT 77 K (I)

(Summary)

The absorbtion and luminiscence spectra of α -methylnaphtalene trapped in a matrix of pentane at 77 K is observed in the near ultraviolet and visibili region A vibrational analysis is proposed A comparasion is given with the results obtained by other authors

STUDIUL PROPRIETĂȚILOR FIZICO-CHIMICE ALE ALUMINELOR PROMOTATE CU DIOXIZI METALICI (V)

N. DULĂMIȚĂ, V. CRIȘAN, A. POP, I. POP și G. MORARU

1 Introducere. Studiul aluminelor promotate cu dioxizi metalici a pus în evidență dependența proprietăților catalitice [1, 2] de proprietățile texturalstructurale ale diferitelor forme de alumină din sistemele oxidice Al_2O_3 —CeO₂ [1,3—5] Sistemele oxidice Al_2O_3 —CeO₂ cu cantități variabile de CeO₂ s-au studiat prin spectroscopie de raze X și spectrometrie IR, obținîndu-se o dependență a lungimii de undă K_{β} a aluminiului de concentrația CeO₂ [6] precum și date asupra modificărilor cristaline cu temperatura de tratament termic [1]. Variația lungimii de undă K_{β} a aluminiului se explică prin variația parametrului de rețea a diferitelor forme cristaline de Al_2O_3 și α —CeO₂, care conduce la modificarea suprapunerii funcțiilor de undă din rețeaua Al_2O_3 , respectiv interfața Al_2O_3 —CeO₂ Prin studiul textural-structural s-a urmărit obținerea de informații asupra modificărilor de bază din sistemele Al_2O_3 —CeO₂ precum și asupra modului de distribuție a cristalitelor de CeO₂ în Al_2O_3

2. Partea experimentală. Probele s-au preparat din azotat de aluminiu și azotat de ceriu (IV) și amoniu în mediu bazic (tabelul 1). Pentru toate probele s-a calculat cantitatea de amoniac necesară pentru a coprecipita hidroxizii de alu-

Tabel 1

Tempera-

51

53

52

miniu și ceriu la pH constant Soluția de amoniac 25% s-a diluat cu apă la 10 1, s-a modificat mediul de reacție prin adăugare de 1% dietilenglicol și s-a încălzit la 50-52°C Precipitarea s-a efectuat cu soluția cationilor (volumul soluției un litru) în timp de 30 minute, sub agitare cu viteză constantă Precipitatele obținute s-au spălat cu o soluție apoasă de etanol 5% de 28-29 ore și s-a calcinat

Compoziția și condițiile precipitării amestecului de hidroxizi

Compoziția,

10

20

30

1

2

3

Amestecul	de	h1drox1z1	s-a	uscat	la	100 °C	tımp	de	28 - 29	ore și	s-a	calci
4 ore la 55	50°C	2										

Timp de

2

2

2

Datele texturale s-au determinat utilizind metodele

— adsorbția-desorbția azotatului la temperatura de fierbere a azotului lichid,

- penetrarea mercurului pînă la presiuni de 1500 at

Cumularea datelor obținute prin cele două metode s-a efectuat la raza porilor de 150 Å

Spectrele de absorbție în IR s-au înregistrat cu un spectrometru Zeiss UR 10, iolosindu-se tehnica pastilării în bromură de potasiu Probele de oxizi au fost tratate termic 2 ore la 400 °C și respectiv 4 ore la 550 °C Raportul probă-bromură

9,5

9,5

9,5

90

80

70

1.300. În prealabil pastilele s-au degazat la 10^{-3} torr, timp de o oră la temperatura camerei.

Spectrele de difracție s-au obținut cu generatorul de raze X, TUR-M62, folosind radiația emisă de un tub cu anod de cupru, indexarea liniilor de difracție făcîndu-se cu metoda analitică.

3. Rezultate și discuții. În tabelul 2 sînt prezentate datele texturale ale sistemelor oxidice cu 10-30% CeO₂, din analiza cărora rezultă că apar deose-

Tabel 2

, Nr probei	1	2	3.
Tipul izotermei	TT	 TT	π
Tipul buclei de histereză	B + A	B + A	B + A
Volumul microporilor (0-300Å)			
cm ³ /g	0,432	0,389	0,477
Raza medie a microporilor A	47,75	47,73	55,05
Volumul porilor $(150-7,5 \cdot 10^4)$			
cm ³ /g	0,028	0,037	0,038
Volumul cumulat al porilor, cm ³ /g	0,451	0,416	0,492
Suprafața specifică, m²/g	181,1	163,0	173,3
Domental &			
Domentut, A		7	
Distributia 5-25	3,99	9,51	1,15

Date texturale referitoare la sistemele Al₂O₃-CeO₂

			<i>i</i>	
Distribuția	5 - 25	3,99	9,51	1,15
mărimii porilor	25-50	77,14	38,73	67,12
%	50-102	9,36	37,64	17,76
,.	$10^2 - 10^3$	8,34	10,26	11,24
	$10^{3}-10^{4}$	1,18	3,89	2,39
	104-7,5 104	0,00	0,00	0,34

biri semnificative în ce privește suprafața specifică și distribuția mărimii porilor. Poziția benzilor de absorbție în spectrul IR la 400 și 550 °C este indicată în tabelul 3 Regiunea din spectru cuprinsă între 500-900 cm⁻¹, are benzi largi

Tabel 3

, Nr probei	1	1	2	2	3	3
Temp de calcinare, °C	400	550	400	550	400	550
Poziția benzilor de absor- bție în spectrul IR	600 790 1 080 1 640 3 460	605 800 1 640 3 480	 920 1 080 1 640 3 470	560 780 1 640 3 460		560 780

Poziția benzilor de absorbție în spectrul IR la 400 și 550°C

corespunzătoare vibrației de deformare a legăturii Al-O și Ce-O, care se maschează reciproc.

Domeniul 900—1200 cm⁻¹ corespunde transformărilor de fază petrecute sub acțiunea tratamentului termic La 400 °C s-a terminat procesul de descompunere termică a trihidroxizilor punîndu-se în evidență doar boemit, caracterizat de numărul de undă de 1080 cm⁻¹ Maximul benzilor largi și intense de la 3460— 3480 cm⁻¹ înglobează efectul vibrațulor de valență al grupelor OH legate de ionii metalici și de moleculele de apă. Numărul de undă de la 1640 cm⁻¹ s-a atribuit vibrației de deformare a apei moleculare adsorbită fizic pe suprafața solidului, ca urmare a reținerii apei din atmosferă în timpul înregistrării spectrului La 400 °C încă mai continuă procesul de descompunere termică al modificărilor cristaline sărace în grupe OH

În schumb, la 550 °C se observă numai benzile caracteristice vibrațiilor de schelet și de valență ale grupelor OH, alături de vibrațiile de deformare ale apeifiziosorbite

Spectrele de difracție indică prezența a trei modificări structurale distincte $\eta - Al_2O_3$, $\gamma - Al_2O_3$ și $\alpha - CeO_2$ ale căror parametri reticulari variază cu concentrația în CeO₂ (tabelul 4). Lungimea de undă a tranziției K_{β} a aluminiului scade

Tabel 4 Parametri reticulari

Nr probei	$\frac{\eta - \mathrm{Al}_2\mathrm{O}_3}{a, \mathrm{\AA}}$	$\frac{\gamma - A}{a, \dot{A}}$	Al ₂ O ₃	$\frac{\alpha - \operatorname{CeO}_2}{a, \text{ Å}}$	<i>K</i> β, Å
1	8,13	3,30	3,62	4,20	7,981
2	7,79	3,14	3,26	5,49	7,980
3	2,27	2,27	3,33	5,36	7,948

de la 7,981 Å, pentru proba 1, la 7,948 Å pentru proba 3, urmînd variația volumului celulei elementare al γ -Al₂O₃ [6] Corelația dintre lungimea de undă a liniei spectrale K_{β} a Al cu volumul celulei elementare a γ -Al₂O₃ indică o independență a nivelelor atomice a Al între care are loc tranziția K_{β} de starea structurală a α -CeO₂, fund necesară calcularea curbelor

de distribuție a dimensiunilor cristalitelor de CeO_2 Pentru aceasta s-a folosit o probă standard de CeO_2 cu dimensiunea medie a cristalitelor de 100 Å și liniile (310) la proba 1, (111) la proba 2 și (420) la proba 3, din spectrele de difracție

Transformarea Fourier $F\iota(s)$ a profilului liniei corectate $\iota(s)$, se exprimă în funcție de transformatele Fourier $F\iota_1(s)$ și $F\iota_0(s)$ ale linulor obținute experimental pentru proba $\iota_1(s)$ și standard $\iota_0(s)$

$$F\iota(s) = \frac{F\iota_1(s)}{F\iota_0(s)} \tag{1}$$

în care $s = 2 \sin \theta / \lambda$, obținîndu-se profilul corectat al liniei i(s) din transformata Fourier inversă. Funcția de distribuție a dimensiunilor medii M, a cristalitelor G(M), se calculează folosind profilul corectat al liniei i(s)

$$\frac{G(M)}{M} = -\int_{-\infty}^{+\infty} s^2 \iota(s) \exp{(\iota s M)} ds$$
(2)

Integralele Fourier de tipul (2) se înlocuiese cu integrale pe intervale Δs finite, pentru care $\imath_1(s)$ respectiv $\imath_0(s)$ sînt determinate experimental Pentru a fi calculate precis, profilul corectat al liniei $\imath(s)$ s-a extrapolat analitic după formula:

$$\iota(s) = A \exp((-Bs)) \tag{3}$$

în care constantele A și B s-au calculat prin metoda celor mai mici pătrate.

Curba de distribuție a dimensiunii medii a cristalitelor de CeO_2 , (2), calculată cu tehnici numerice din profilul corectat al liniei i(s), extrapolat după formula (3), prezintă pe anumite intervale ΔM ale dimensiunii cristalitelor, valori $\frac{G(M)}{M}$ negative (fig. 1) Eliminarea acestor regiuni din curba de distribuție s-a făcut folosind metoda self-consistentă [7], în care porțiunea negativă din curba de distribuție $\frac{G(M)}{M} < 0$ se înlocuiește cu zero.

După patru iterații succesive, curba de distribuție a cristalitelor nu mai prezintă nici o porțiune negativă (fig. 2), avînd maximul principal la 65 Å pentru toate concentrațiile de CeO_2 Maximele secundare din curbele de distribuție apar la aceleași valori M pentru toate probele, indicînd că distribuția de CeO_2 în Al_2O_3 se face în același mod indiferent de concentrația în CeO_2 , rezultînd că mărimea suprafeței de contact a grăunțelor de CeO_2 cu Al_2O_3 nu influențează spectrul de emisie al aluminului.

4. Concluzii. Sistemele oxidice Al_2O_3 —Ce O_2 cu conținut variabil de Ce O_2 se deosebesc semnificativ din punct de vedere textural prin mărimea suprafeței specifice și distribuția mărimu porilor.

F1g I Funcția de distribuție calculată cu integrala (2) 1 — proba 1, 2 — proba 2, 3 — proba 3

F1g 2 Curbele de distribuție a cristalelor calculate cu metoda selfconsistentă. 1 - proba 1, 2 - proba 2, 3 - proba 3.

Spectrele de absorbție în IR arată că, după calcinarea izotermă la 550 °C, timp de patru ore, apar numai vibratii de schelet și de valentă ale grupelor OH superficiale.

Maximele curbelor de distribuție pun în evidență faptul că distribuția CeO, în Al₂O₃ se face în același mod, indiferent de concentrația și mărimea suprafeței de contact a cristalitelor de CeO₂ cu Al₂O₃ în probleme studiate.

(Intrat in redacție la 17 februarie 1981)

BIBLIOGRAFIE

- 1 N Dulămiță, Teză de doctorat, Universitatea "Babeș-Bolyai", Cluj-Napoca, 1978
- 2 A Pop, N. Dulămiță, Studia Univ Babeş-Bolyai, Chem, 15 (2), 107 (1970)
- 3 I Pop, N Dulămiță, V Crișan, R Goos, Studia Univ Babes-Bolyai, Phys, 22 (2). 62(1977)
- 4. I Pop, V Crișan, N Dulămiță, Studia Univ Babeș-Bolyai, Phys, 23 (2), 26 (1978). 5 V Crișan, I Pop, G Moraru, N Dulămiță, Studia Univ Babeș-Bolyai, Phys, 26 (2), 62 (1981)
- 6. P. Päusescu, R. Mänäilä, M. Popescu, J. Appl. Cryst, 7, 281 (1974)

A STUDY OF PHYSICO-CHEMICAL PROPERTIES OF ALUMINA ACTIVATED WITH METALIC DIOXIDES (V)

(Summary)

Methods for establishing the textures of solid substances, IR, X Ray differaction have been used to determine the structures and textures of oxyde systems $Al_2O_3 - CeO_2$ which contain 10-30% CeO_2 The distribution of CeO_2 grains in Al_2O_3 has been established in a similar way, regardless of the CeO, concentration in these systems. The experimental results are correlated with the catalytic properties of Al₂O₃-CeO₂ systems

NUMERICAL CALCULATION OF GASES INTERDIFFUSION IN LIQUID METALS (II)

SPERANȚA COLDEA

Following the preceding work, the present paper was made in order to test a tentative of calculation of the interdiffusion of gases in liquid metals. In the last decade the oxygen, hydrogen and mtrogen diffusivities in several liquid metals have been measured by different experimental methods. The previous paper presented a theoretical method to study the interdiffusion coefficients of gases in liquid metals [1], with the purpose of predicting the values of these properties and to compare them with the experimental ones. The elements of the proposed interdiffusion calculation method and the stages of calculation are the following

1. Firstly, the numerical densities n_i , n and packing fractions η_i and η_j are calculated using their definitions

$$n_i = \rho_i N_A / M_i$$
 (*i* = 1, 2) (1)

1

$$n = n_1 + n_2 \tag{2}$$

and from the relations

$$\eta_i = n_i \sigma_i^{3/6} \tag{3}$$

and

$$n = n_1 + n_2 \tag{4}$$

2. One of the most important parameters of the theory is the hardsphere diameter σ_i (i = 1,2) of the components in the binary liquid system. The diameters of the liquid metal particles and of the gas rigid-spheres are calculated from the basic relations (9)-(10) of the paper [1], where we need the values of the melting point density, ρ_m , the atomic masses M_i , the melting temperature T_m , the temperature T of the system and the covalent diameter of the diffusing gas, σ_c .

3. The next stage is the calculation of the interdiffusion coefficient of diluted binary system (gas and liquid metal) from the basic expession (2) of the paper [1]

4. In the relation (1) of the paper [1] the correction term g_{12} (σ_{12}) is the pair correlation function at contact between two dissimilar spheres of the binary fluid. The better correlation function form, which satisfies the Mansoori-Carnahan-Starling state equation [2], is defined by the relations (6)—8) of the paper I. We can calculate the values of g_{12} (σ_{12}) and the Enskog interdiffusion coefficients D_{12} for different binary dense fluids.

5. Another important imput datum is the interpolated molecular dynamic correction C of the Enskog theory [3], for several combinations of mass ratio m_1/m_2 and size ratio σ_1/σ_2 of the components, for different values of the packing fraction η [4]. These correction terms will be done in the tables 1-11.

Table `1

the interationsion in m-cu system

t(C°)	g ^{CS} ₁₂	$D_{12} = D_{12,0} / g_{12}^{CS}$ (·10 ³ cm ² /s)	с	$D = C \cdot D_{12}$ $(\cdot 10^3 \text{ cm}^2/\text{s})$	D _{exp} (10 ³ cm ² /s)
1 083	3,54	0,763	0,89	0,7416	4,317 5a
1 200	3,357	0,867	0,92	0,866	4,65 5a
1 300	3,125	0,984	0,915	0,975	4,906 5a
1 400	3,093	1,052	0,93	1,055	5,1278 5a

Table 2

The interdiffusion in H-Fe system

		··· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·			
1 535	3,559	0,892	0,848	0,825	0.774 12
1 600	3,354	0,9806	0,846	0.766	0.805 12
1 650	3,37	1,022	0.877	0,96	0.425 12
1 700	3,279	1,05	0,865	0,983	0.8721 12
1 750	3,208	1,104	0,82	0,984	0.899 12

Table 3

The interdiffusion in H-Ni system

1 455	3 579	0.832	0.893	0.91	0.979.10
1 550	3,33	0,9715	0,884	0,93	0,669 10
1 600 1 650	3,213 3,457	1,04	0,8467	0,95	0,704 10

Table 4

The interdiffusion in H-V system

	í í		1 1		
1 912	3,487	1,101	0,861	1,037	-
1 650	3,771	0,782	0,956	0,825	
1 600	3,831	0,782	0,81	0,775	-

Table 5

The interdiffusion in H-Nb system

	<u> </u>			<u> </u>
2 468 3,407	1,409	0,829	1,285	
1 650 4,263	0,8407	0,767	0,649	_
1 600 4,324	1,094	0,636	0,60	-

Table 6

		The interdiff	usion in H	-Al system	
t(°C)	g_{12}^{CS}	$D_{12} = D_{12,0} / g_{12}^{CS}$ (10 ³ · cm ³ /s)	С	$D = C D_{12}$ $(10^3 \cdot \text{cm}^3/\text{s})$	D _{exp} (10 ³ · cm²/s)
770 870 900 950 1 000	3,207 3,04 2,993 2,919 2,850	0,820 0,940 0,980 1,045 1,114	1,01 1,40 1,35 1,286 1,66	1,03 1,424 1,432 1,454 2,00	$\begin{array}{ccccccc} 0,1685\cdot 10^{-6} & 11\\ 3,125 & 11\\ 3,627 & 11\\ 4,63 & 11\\ 0,623\cdot 10^{-5} & 11 \end{array}$
		The interdiff	usion in O-	-Ag system	Table 7
960,8 1 050 1 150 1 250	4,216 3,815 3,625 3,658	0,125 0,1421 0,1579 0,175	0,643 0,687 0,746 0,74	0,085 0,103 0,124 0,136	0,0901 10 0,096 10 0,1346 10 0,148 10 Table 8
		The interdifi	ission in O	-Fe system	
1 535 1 600 1 700 1 800	2,403 4,228 4,019 3,829	0,1336 0,1461 0,1617 0,1783	0,7678 0,792 0,854 —	0,1075 0,1211 0,1442 —	0,0892 26 0,1334 25 0,1565 25 0,1814 25
		The interdifi	'usion in O	— Ga system	Table 9
500 600 700 800	2,602 2,441 2,309 2,197	0,1806 0,2195 0,2599 0,305	1,03 0,79 1,48	0,253 0,334 0,453	
		The interdiff	usion in O	—Cu system	Table 10
1 083 1 150 1 200 1 250 1 300 1 350 1 400	4,383 4,236 4,13 4,03 3,935 3,85 3,769	0,1148 0,2195 0,131 0,1384 0,1448 0,15065 0,16081	0,782 0,823 0,847 0,852 0,90 0,91 0,913	0,094 0,107 0,1161 0,12323 0,1362 0,1441 0,1531	0,0583 22 0,075 15 0,1071 22 0,105 21 0,1113 22 0,144 22 0,172 21
		The interdiff	lusion in N	–Fe system	Table 11
1 535 1 600 1 650 1 700 1 750 1 800	4,403 4,228 4,121 4,019 3,992 3,829	0,143 0,154 0,1622 0,1704 0,179 0,188	0,105 0,956 0,9562 0,957 	0,15 0,161 0,1695 0,178	0,107 5b 0,074 8 0,0792 8 0,08526 8

2 - Physica 1982

6 Finally, the values of interdiffusion coefficient are calculated from the corrected expression (11) of the paper [1] Numerical evaluations were made for the diffusivities of O, H and N in liquid metals as Cu, Fe, Ni, V, Nb. Al. Ag and Ga, for which exist experimental data

The parameters n_i , n, η_i , η_i , ρ_i , ρ_m , Y_i , $\sigma_{i,i}$, $g_{i,i}(\sigma_{ii})$ are not related in detail In the tables 1-11 are presented only the obtained values for g_{12} (σ_{12}), of the correction terms C and calculated interdiffusion coefficients D, compared with the available, selfconsistent experimental data [5] - [26].

We can observe that the results of the theoretical method, obtained with the Mansoori-Carnahan-Starling pair correlations are usually higher than the experimental values for the interdiffusion coefficient, but do not exist very large differences between D_{cale} and D_{exp} The qualitative agreement of numerical evaluations with the experimental data appear to be resonable

Because the measurements of the diffusivity of gases in liquid metals are difficult, some experimental values carry considerable error. More accurate interdiffusion data are needed to test the proposed theory and we must compare our predictions with the experimental values over a wide range of temperatures and compositions At present, such values are unavailable

The problem of accurately predicting of gases diffusion coefficients in liquid metals and alloys still remains to be developed. Knowledge of interdiffusion coefficients is important both for practical use and fundamental research. If we know the diffusion processes we can understand the industrially complex chemical reactions, where the combined kinetic and diffusional effects determine product distribution It is, too, of major interes in testing current models of the liquid state and in formulating models of mass transfer

(Received February 25, 1981)

REFERENCES

- 1 S Coldea, Studia Univ Babeş-Bolyai, Phys, 25 (1), 59(1980)
- 2 G A Mansoori, N F Carnahan and K E Starling, T W Leland, J Chem Phys, 54, 1523 (1971)
- 3 S Chapman and T G Cowling, The Mathematical theory of non-uniform gases, Cambridge Univ Press, 1959
- 4 B J Alder, W E Alley and J H Dymond, J Chem Phys, 61, 1415 (1974)

- 5 a) E M Sacris and N A D Parlee, Metal Trans, 1, 337 (1970)
 b) J Y Lee and N A D Parlee, High Temp Sci, 4, 147 (1972)
 6 P J Depuydt and N A D Parlee, Metal Trans. 3, 521 (1972)
 7 M Y Solar and R I L Guthrie, Metal Trans 2, 457 (1971), 2, 3241 (1971)
 8 V I Arckarov, I A Novohatskii, B S Ershov and A M Kovalenko, Debt Abed North SSP. 100, 1200 (1070) Dokl Akad Nauk SSSR, 190, 1329 (1970)
- 9 G S Ershov and M A Kovalenko, Izv Akad Nauk SSSR, Met, 2, 79 (1972)
- 10 I D Shah and N A D Parlee, Trans, AIME, 239, 763 (1967)
- 11 a) K I Vaschenko, D F Chernega and O M Byalik, Izv Vissh Uchebn Zav,
 - Met, 15, 50 (1972) b) O M Byalık, G A Remizov, K I Vaschenko and D F Chernega, Vestn, Kiev Polit Inst, 8, 127 (1971)
- 12 N M El-Tayeb and N A D Parlee, Trans AIME, 239, 1345 (1967)
- 13 O Nyquist, Zernkontorets Ann, 152, 61(1968)
- 14 C R Masson and S G Whiteway, Canad Met Quart, 6, 199 (1967)
- 15. H Rickert and A A Miligy, Z Metall K, 59, 635 (1968)

- 16 N. Sano, S Honma and Y Matsishita, Trans Iron St. Inst, J. 9, 404 (1969), Metal Trans, 1, 30 (1970)
- 17 L. R. Vehlo and N. M. El-Tayeb, N. A. D. Parlee, Trans. AIME, 245, 14 (1969).
 18 N. A. D. Parlee and M. Zeibel, J. Metals, 17, 112, (1965).
 19 S. Otsuka and Z. Kozuka, J. Japan Inst. Met, 37, 364 (1973).
 20 K. E. Oberg, L. M. Fridman and R. A. Rapp, Metal. Trans. 4, 61 (1973).

- 21. J Gerlach, H G Kleist and K Mayer, Metall, 20, 1272 (1966)
- 22. J Osterwald and G Schwartzlose, Phys. Chem, N F 62, 119 (1968).
- 23. P M Shurighin and V I Kryuk, Russ, Met. Mining, 3, 53 (1963).
- 24. N M A El-Naggar and N A D Parlee, High Temp Sci, 3, 138 (1971) 25. I A Novohartskii and G S Ershov, Russ Met., 2, 20 (1967).
- 26 N. A D Parlee and M Zeobel, J Metals 17, 112 (1965)

CALCULE NUMERICE ALE INTERDIFUZIEI GAZELOR ÎN METALE LICHIDE (II)

(Rezumat)

Pentru a testa modelul teoretic propus anterior [1] pentru interdifuzia gazelor (O, H, N) în metale lichide (Ag, Al, Cu, Fe, Nb, Ni, V, și Ga), sînt calculați detaluat parametru necesari, caracteristici amestecului binar considerat și coeficienții de interdifuzie D_{12} și cei corectați cu ajutorul unui factor de corecție dedus din calcule de dinamici moleculare, C. Valorile obținute pentru D sînt în bună concordanță cu datele experimentale existente pentru interdifuzie

METODĂ NUMERICĂ PENTRU MODELAREA PE CALCULATOR A STRUCTURILOR SEMICONDUCTOARE

GAVRIL BUZAS*

1 Introducere. Modelarea pe calculator a comportării dispozitivelor semiconductoare s-a răspîndit în anii 70, deși primii pași datează încă din 1967 [1]. Primele încercări de acest gen s-au referit la tranzistori [2, 3] Apariția dispozitivelor semiconductoare cu o structură mai complexă și în special a dispozitivelor semiconductoare de foarte înaltă frecvență a determinat ca metodele de simulare să fie preferate de foarte mulți cercetători. Azi practic toate experiențele sînt precedate de simulări, vizînd diverse aspecte generale [4] sau particulare [5,6] ale comportării unei anume structuri. Un alt considerent care a impulsionat dezvoltarea tehnicilor de simulare este aspectul greoi al tratării analitice a ecuațiilor care guvernează comportarea structurilor sus amintite. Răspunzătoare pentru aceste greutăți este în primul rînd nelimaritatea ecuațiilor care descriu transportul purtătorilor. Relațiile folosite în studiul fenomenelor de plasmă în majoritatea cazurilor nu se pot aplica și la semiconductori

În această lucrare se prezintă o metodă numerică de rezolvare a ecuațiilor diferențiale de transport pentru goluri, electroni și cîmpul electric dintr-o structură semiconductoare și aplicarea ei într-o problemă de modelare pe calculator a unei structuri n^+pp^+ cu parametri cunoscuți.

2. Rezolvarea sistemului de bază. Admițînd modelul unidimensional, proprietățile golurilor și electronilor dintr-un semiconductor sînt caracterizate de ecuațiile de continuitate și ecuația lui Poisson

$$\frac{\partial P}{\partial t} + \frac{\partial JP}{\partial x} - G = 0 \tag{1}$$

$$\frac{\partial N}{\partial t} - \frac{\partial JN}{\partial x} - G = 0 \tag{2}$$

$$\frac{\partial E}{\partial x} - \frac{Q}{\varepsilon} \left(P - N - N_D \right) = 0 \tag{3}$$

unde

$$JP = UP \quad E \quad P - \frac{kT}{Q} \quad UP \quad \frac{\partial P}{\partial x} \tag{4}$$

$$JN = UN \cdot E \quad N + \frac{kT}{Q} \quad UN \cdot \frac{\partial N}{\partial x} \quad . \tag{5}$$

$$G = \alpha |JP + JN| - \frac{P \cdot N - N_i^2}{\tau (P + N + 2N_i)}$$
(6)

^{*} Institutul pentru tehnică de calcul, Cluj-Napoca

Notațiile folosite în ecuațiile de mai sus sînt JP, JN — densitățile de curent ale purtătorilor, P, N — densități de purtători, N_D — diferența densităților donorilor și acceptorilor complet ionizați, N_i — densitatea intrinsecă, G termenul de generare, UN, UP — mobilități, k — constanta lui Boltzmann; T — temperatura absolută, τ — timpul de viață al purtătorilor, α — coefificientul de ionizare; Q — sarcina electrică, E — intensitatea cîmpului electric Aceste notații au fost astfel alese încît să fie ușor adaptabile limbajului de programare

Metoda care va fi prezentată presupune că semiconductorul unidimensional este divizat în n regiuni La limitele acestor regiuni se află sarcini spațiale pentru care s-au definit P, N, N_D Între două sarcini spațiale avem o zonă de cîmp electric, iar JP, JN, E sînt mărimi definite în aceste regiuni

Considerăm regiunea cuprinsă între diviziunile j-1 și j+1, conținînd două zone de cîmp (i - 1, i) și trei sarcini spațiale (j-1, j, j+1) Ecuațiile (4)---(5) pentru această regiune devin

$$JP_{i} = UP_{i} \quad E_{i} \quad P_{j} - \frac{kT}{Q} \cdot UP_{i}(P_{j+1} - P_{j})/\Delta x \tag{7}$$

$$JN_{i} = UN_{i} \quad E_{i} \quad P_{j} + \frac{kT}{Q} \cdot UN_{i}(N_{j+1} - N_{j})/\Delta x$$
(8)

Cu aceste notații transcriem ecuațiile de continuitate (1) - (2) și ecuația lui Poisson (3) pentru un interval de timp cuprins între momentele k și k + 1

$$(P_{j}^{k+1} - P_{j}^{k})/\Delta t = G_{j}^{k} - (JP_{i}^{k} - JP_{i-1}^{k})/\Delta x$$
(9)

$$(N_{j}^{k+1} - N_{j}^{k})/\Delta t = G_{j}^{k} + (JN_{i}^{k} - JN_{i-1}^{k})/\Delta x$$
(10)

$$(E_{*}^{k+1} - E_{*-1}^{k+1})/\Delta x = \frac{Q}{\varepsilon} (P_{j}^{k+1} - N_{j}^{k+1} - N_{D})$$
(11)

Relațule (7)—(11) permit aflarea valorilor lui P, N, E într-un moment oarecare. În legătură cu intervalul de timp Δt se demonstrează [7] că el tebuie să satisfacă următoarele condiții $\Delta t < 2\tau_D$ și $\Delta t < 2\tau_L$ în care τ_D — timpul de relaxare dinamică, τ_L — timpul de relaxare dielectrică locală în urma iterațiilor bazate pe relațule (9)—(11) se stabilesc soluțule staționare La limitele extreme presupunem densitatea purtătorilor majoritari = N_D și densitatea purtătorilor minoritari = N_*^*/N_D De asemenea curentul total prin structură îl considerăm constant

După aflarea soluțiilor staționare, soluția la semnale mici o obținem prin aplicarea metodei perturbațiilor mici ecuațiilor (1)-(3) Prin introducerea cantităților ΔP , ΔN , ΔE avem

$$P = P_0 + \Delta P, \quad N = N_0 + \Delta N, \quad E = E_0 + \Delta E \tag{12}$$

unde P_0 , N_0 , E_0 reprezintă soluțiile staționare

Admițînd că perturbațiile variază proporțional cu exp $(j\omega t)$, înlocuind (12) în (1)-(3), efectuînd derivările, eliminînd termenii staționari și notînd

$$FP_{j} = G_{j} - \frac{\partial JP_{j}}{\partial x}, \quad FN_{j} = G_{j} + \frac{\partial JN_{j}}{\partial x}$$

G BUZAS

avem

$$\partial \omega \Delta P = \frac{\partial FP}{\partial P} \Delta P + \frac{\partial FP}{\partial N} \Delta N + \frac{\partial FP}{\partial E} \Delta E$$
(13)

$$j\omega\Delta N = \frac{\partial FN}{\partial P}\Delta P + \frac{\partial FN}{\partial N}\Delta N + \frac{\partial FN}{\partial E}\Delta E$$
(14)

$$\frac{\partial \Delta E}{\partial x} = \frac{Q}{\varepsilon} \left(\Delta P - \Delta N \right) \tag{15}$$

Expresule (13)–(15) reprezintă schimbările soluției staționare în intervalul Δt .

3. Rezultate și concluzii. Metoda descrisă s-a aplicat la o structură n^+pp^+ din Si. Pornind de la următoarele valori cunoscute [8] $\alpha_0 = 5.8 \ 10^7 \ m^{-1}$ (pentru α am admis forma $\alpha = \alpha_0 \exp\left(\frac{\beta}{E}\right) \operatorname{cu} \beta = 1.5 \cdot 10^8 \text{V/m}$), $\varepsilon_r = 12, UP_0$ =480 cm²/V · s, $UN_0 = 1380 \ \text{cm}^2/\text{V} \cdot \text{s}$, $N_D = 0.645 \cdot 10^{10} \ \text{m}^{-3}$, $\tau = 10^{-6} \text{s}$, $\Delta x = 10^{-7} \text{m}$, $\Delta t = 10^{-8} \text{ s}$, am evaluat densitățile de curent din (7)—(8). Apoi am trecut la calculul soluțiilor staționare pe baza ecuațiilor (9)—(11). Figura 1 reprezintă soluțiile staționare relativ la structura considerată pentru trei valori diferite ale densității totale de curent și tensiune de polarizare 60V.

În continuare, pe baza relațiilor (12)-(15) s-au determinat valorile P, N și E în aproximația perturbațiilor mici. În aceste calcule s-a ținut cont de dependența densitățu de curent de unghiul de zbor dată în lucrarea [6]

Rezultatele calculelor de mai sus s-au reprezentat pe figura 2 avînd ca parametru unghiul de zbor Se remarcă dependența puternică a densităților de acest parametru, atît ca distribuție, cît și ca mărime Intensitatea cîmpului electric este influențată doar în mică măsură de valoarea parametrului În această

Fıg l Densitățile purtătorilor și cîmpul electric în funcție de distanță pentru diverse valori ale densității de curent J_0

Fig 2 Densitățile purtătorilor și cîmpul electric în funcție de distanță pentru diverse valori ale unghiului de zbor Θ

fază a calculelor am considerat $J_0=10^7~\rm A/m^2$ și frecvența de 10 GHz Aceeași strînsă dependență de unghiul de zbor s-a constatat și în [6]

Toate calculele au fost efectuate pe un calculator Tektronix 31, programul fund scris în lumbaj mașină, iar graficele s-au trasat cu ajutorul unui plotter Tektronix 4661 Metoda se poate implementa și pe un calculator Felix C256 cu transcrierea programelor în FORTRAN

Rezultatele obținute sînt într-o remarcabilă concordanță cu datele publicate în [7, 9], iar distribuția densităților coincide cu prezentarea teoretică din [10] Modelul de calcul poate fi particularizat pentru diverse structuri și regimuri de functionare, cum ar fi structurile IMPATT, TRAPATT în regim amplificator sau oscilator Totodată acest model poate fi privit ca un prim pas pe calea extinderii în vederea unei analize la "semnale mari"

(Intrat in redactive la 17 martie 1981)

BIBLIOGRAFIE

- H N Gosh, P H Moneda, N R Dono, Sol St Electron, 10, 705 (1967) B V Gokhale, IEEE Trans El Dev, ED-17, 594 (1970) M Kurata, IEEE Trans El Dev, ED-18, 200 (1971)
- 2
- 3
- T I Seidman, S C Choo, Sol St Electron, 15, 1229 (1972)
- 5 J Christie, J A Stewart, Int J Electronics, 39, 61 (1975) 6 G Buzas, G Nagy-Baka, Progrese în informatică, Simpozionul național de informatică și conducere, Cluj-Napoca, 1976 S P Yu, W Tantraporn, IEEE Trans El Dev, ED-22, 515 (1975)
- 7
- 8 M Neuberger, Handbook of Electronic Materials, Plenum Press, New York, 1971.
- J P McGroddy, P Guéret, Sol St Electron, 14, 1219 (1971) 9
- 10 S M Sze, Physics of Semiconductor Devices, John Wiley, New York, 1969

G BUZAS

A NUMERICAL METHOD FOR COMPUTER MODELLING OF SEMICONDUCTOR STRUCTURES

(Summary)

A numerical method used in solving the set of partial differential transport equations for holes, electrons and electric field in semiconductor structures is described. Using this method the one dimensional steady-state solutions and small signal solutions are given. Some results are given for a Si n+pp+ structure. The method is particularly suited to the solution of problems involving semiconductor devices in various modes of operation.

-

SOME OBSERVATION IN THE TRANSITION REGION BETWEEN THE CHOLESTERIC PHASE AND LIQUID ISOTROPIC

S. SELINGER, AL. NICULA, R. SCHWARTZ, V. SIMON

1. Introduction. The unique property that characterizes the liquid crystal phase is the long-range orientational order retained by the molecules as they diffuse about in a fashion typical of ordinary liquids The value of orientational order provides a correlation between different anisotropic properties.

Macroscopically, cholesteric liquid crystals are spontaneously twisted nematics. It is possible to characterize the average orientation of molecules in a cholesteric with the same set of order parameters as in nematics, with the distinction that in cholesterics the order parameters are defined relative to a local coordinate system twisting along with the optic axis. From this point of view, there is no distinction between chiral nematics and cholesteric liquid crystals, i.e., they have the same symmetry However, the values of the order parameters in nematics — including chiral nematics — and cholesterics might well be different. Indeed typical nematogenic compounds contain aromatic rings linked by double or triple bonds. It is known that dispersion forces in aromatic molecules are larger and more anisotropic than in aliphatic molecules. The sterol groups wich from the rigid part of cholesteric-forming molecules are nonaromatic, indicating smaller dispersion forces.

Hence the dispersion forces are responsible for orientational order parameter at the isotropic transition and the dependence of this order on external variables in cholesterics might well be different from nematics.

The configuration of the protons in cholesteryl esters is not known well enough to permit a precise determination of the order parameter using proton magnetic resonance

In selecting the samples to be studied trough nuclear magnetic resonance (NMR) we could obtain a determination of the transition point liquid crystalline —isotropic phase [1], [2]

The melting points of componds as well as their temperatures of transition from the liquid crystalline to the isotropic phase are closely correlated with the literature data [3]

2. Experimental methods. Cholesteryl derivatives and B-nor cholesteryl derivatives used in our experiments were synthetized at the ICCF Filiala Cluj

The experimental apparatus consisted of a model JNM 3H-60 NMR unit with possibility for heating of samples by means of a blower of the heat aer.

Data were collected at 9 MHz Signals were improved with a integrator linked to an X-Y recorder The temperature controller maintained sample temperatures within ± 2 °C by means of a thermocouple in the sample air cavity

3. Experimental results. The linewidth variation of cholesteryl caprate $C_{33}H_{56}O_2$ with temperature for the liquid crystal and isotropic phase is shown in Figure 1.

Fig 1 Linewidth variation of cholesteryl caprate with temperature

for B-nor cholesteryl caprate: $C_{32}H_{55}O_2$ is shown in Figure 2 The linewidth dependence of the temperature for the cholesteryl propionate $C_{30}H_{50}O_2$ and B-nor cholesteryl propionate $C_{29}H_{48}O_2$ is shown in Figure 3 and Figure 4 respectively

Fig 2 Linewidth variation of B-nor cholesteryl caprate with temperature

Fig 3. Lanewidth variation of cholesteryl propionate with temperature.

Fig 4 Linewidth variation of B-nor cholesteryl propionate with temperature

4. Discussion. The NMR spectrum dramatic change is responsible for the transition values of linewidth in Figure 1-4 are for the transition between the cholesteric and isotropic phases.

Because the linewidth dependence of the temperature for the cholesteryl derivatives and B—nor cholesteryl derivatives shows close similarities, we could conclude that the behaviour of the B—nor cholesteryl derivatives are also not different from those for cholesteric liquid crystals

5. Conclusions. Futher investigation of the B—nor cholesteryl derivatives through NMR spectroscopy, and orientational order parameter measurements are necessary and will be the subject of part II of this series

(Received March 20, 1981)

REFERENCES

1 S Grande, St Limmer and A Lösche, Phys Lett, 54A, 69 (1975)

- 2 A Derzhanski, Z Zheliaskowa and S Nikolow, Phys Lett, 59A, 125 (1976)
- 3 S Selinger, R Schwartz and A Juhász, Revista de chimie, 31, 1196 (1980)

4 P J Collings, T J McKee and J R McColl, J Chem Phys, 65, 3520 (1976)

CÎTEVA OBSERVAȚII ASUPRA TRANZIȚIEI DE FAZĂ ÎNTRE FAZA COLESTERICĂ ȘI CEA DE LICHID IZOTROP

(Rezumat)

În lucrarea de față este prezentată dependența de temperatură a lărgimii limei RMN pentru colesteril caproat, B-nor colesteril caproat, colesteril propionat și B-nor colesteril propionat

Temperaturile de tranziție sînt în concordanță cu datele obținute de noi prin alte metode. Se pare că și derivații B-nor colesteril caproat și B-nor colesteril propionat prezintă proprietăți asemănătoare cu cele ale colesteril caproatului, respectiv ale colesteril propionatului

Pentru ca să putem spune cu certitudine că și derivații B-nor colesteril prezintă proprietăți de cristal lichid a fost necesară efectuarea altor măsurători și determinări de parametru de ordine Rezultatele vor fi comunicate în partea a doua a acestei lucrări

STUDIUL STRUCTURAL AL UNOR COMPLECȘI p-CLORBENZOAȚI DE CUPRU (II) PRIN ABSORBȚIA ÎN I.R. ȘI ANALIZA TERMODIFERENȚIALĂ

O. COZAR, I. BRATU*, R. SEMENIUC, I. ARDELEAN, M. PERICI

1. Introducere. Cercetările asupra complecților dimeri de cupru (II) au cunoscut o deosebită amploare datorită faptului că aceștia constituie modele excelente pentru studiul interacțiunilor magnetice. Au fost sintetizați un număr mare de complecți, iar rezultatele experimentale și teoretice cu privire la dependența de temperatură a susceptibilității magnetice sînt prezentate într-o serie de lucrări [1-8].

În paralel cu acestea au fost efectuate și studii RES [9–15], rezultatele astfel obținute dînd informații mai complete asupra structurii electronice precum și a cuplajului dintre spinii celor doi ioni metalici, datorat atît unei interacțiuni de tip dipol-dipol (magnetic) cît și de schimb electronice [14, 15]. Extinderea acestor investigații prezintă o importanță deosebită și datorită aplicațiilor în biologie [16, 17]. Astfel, studiile RES efectuate asupra unor complecși de cupru (II) cu aminoacizi și polipeptide, complecși considerații drept modele ale sistemelor biologice active, au evidențiat prezența interacțiunilor spin-spin și formarea stărilor dimere ca în cazul Cu(DL, $-\alpha$ -alanină)₂ · H₂O [16] și Cu (L,-tyrosinat)₂ [17]

O atenție deosebită s-a acordat structurilor dimere de tipul acetatului de cupru monohidrat [9-13] care conține ionii Cu-Cu la distanțe mici, de $\simeq 2,64$ Å. În mod particular studule RES și de susceptibilitate magnetică efectuate de noi [18] asupra p-clorbenzoaților Cu₂R₄ · CH₃OH · 2H₂O - (I) și Cu₂R₄ · CH₃COCH₃ 2H₂O - (II), unde R = (p-ClC₆H₄CO₂), au indicat clar existența specilor dimere la temperatura camerei, precum și apariția celor de tip monomer la 77 K Acest fapt este atribuit reorganizării prin înghețare a rețelei structurale a matricilor complecșilor studiați datorită moleculelor de apă pe care le conțin, ducînd în final la ruperea cuplajului dintre ionii de cupru. De asemenea, raportul monomer/dimer este mai mic în cazul complexului (I) decît în (II), lucru explicabil printr-un conținut mai mare de apă a acestua din urmă Totodată în cazul complexului (I) a fost evidențiată prezența a două specii monomere magnetic neechivalente, în timp ce în complexul (II) apare numai una.

Faptul că valoarea raportului monomer/dimer precum și a formei speculor monomere sînt determinate de un conținut de apă diferit în matricile celor doi complecși [18], s-a testat prin studii suplimentare de absorbție în I.R și termogravimetrie. Datele astfel obținute și prezentate în lucrarea da față aduc informații noi cu privire la modul în care structura (natura) celor doi complecși dimeri, (I) cu metanol, respectiv (II) cu acetonă, determină o capacitate proprie diferită de absorbție a apei.

^{*} Institutul de tehnologu izotopice și moleculare, Cluj-Napoca.

2. Tehnica de lucru. Cei doi complecși dimeri au fost preparați după rețeta dată de L e w 1 s și colab. [1]. Ambii se prezintă sub forma unor pulberi de culoare albastru-închis Spectrele I.R. au fost înregistrate cu un spectrofotometru UR 20 Carl Zeiss Jena, utilizînd tehnica pastilării în KBr și a suspensiei în Nujol Pentru calibrarea frecvențelor s-a utilizat spectrul I R al polistirenului. Analiza termodiferențială și termogravimetrică s-a făcut cu un derivatograf ORION GYEM TYD OD — 101 în aer. S-au folosit creuzete de platină, iar ca substanță de referință Al_2O_3 Condițiile de lucru au fost aceleași pentru ambele probe

3 **Rezultate.** a) Atribuirea frecvențelor de vibrație. Spectrele I R. ale celor doi compleși în KBr la temperatura camerei sînt prezentate în fig. 1 și 2. Frecvențele caracteristice ligandului (p-clorbenzoat) pot fi atribuite cu certitudine, neexistînd diferențe semnificative față de spectrele acidului benzoic și benzoatului de Na [19]. Astfel, vibrațiile caracteristice ciclului benzenic sînt cele de la 1605, 1585, 1090 și 1030 cm⁻¹. Vibrațiile grupării carboxilice produc absorbții în jur de 1280 cm⁻¹ și 1695 cm⁻¹ Ele sînt caracteristice formei dimere pe care o adoptă moleculele de ligand Speciile monomere (în soluție de CCl₄) prezintă absorbția v_{co} la 1730 cm⁻¹ [19]. Vibrațiile simetrică și antisimetrică ale ionului carboxilat ($-COO^{-}$) în benzoatul de sodiu se găsesc la 1415 și respectiv 1549 cm⁻¹. Poziția celei din urmă depinde de electronegativitatea cationului prezent în benzoații metalici [19].

Fig. 1. Spectrul I. R. al $[Cu_2(p-ClC_6H_4CO_2)_4 \cdot CH_3OH \cdot 2H_2O] - (I)$ în KBr la temperatura camerei

În scopul identificării vibrațiilor caracteristice $Cu^{2+}-O$ sau a vibrațiilor combinate la care contribuie legătura Cu-O, au fost utilizate ca date ajutătoare atribuirile făcute de N a k a m o t o și colab [20] în cazul unor chelați de cupru (carbonați și oxalați) Menționăm totodată că într-o serie de lucrări [21-25] unde sînt făcute atribuiri ale frecvenței Cu-O, aceasta apare la 420 cm⁻¹ în oxalați și la 462 cm⁻¹ în β — dicetone. De asemenea, N a k a m o t o [22] indică domeniul 420-480 cm⁻¹ ca fiind caracteristic vibrațiilor $v_{M^{2+}-O}$, iar C o t t o n [21] localizează frecvența vibrației metal-ligand la 530 cm⁻¹ și cea M-C între 600-670 cm⁻¹

Frecvențele de combinație $v_{M-0} + \delta_{0-C=0}$ și $v_{M-0} + v_{C-C}$ sînt localizate în spectrul I R. al oxalatului de cupru (II) la 795 și respectiv 541 cm⁻¹ [2] Regiunea spectrală 775–795 cm⁻¹ prezintă modificările vibrației de inel prin prezența cationului metalic (Cu²⁺).

Utilizînd aceste date precum și distribuția de energie potențială pe fiecare mod normal de vibrație [20] în funcție de contribuția relativă a fiecărei coordonate de simetrie pentru complecșii de tip 1 2 oxalați de Cu(II), precum și pentru cei de tip 1 l carbonați monodentați de Co (III), se pot face atribuirile frecvențelor obținute experimental în cazul complecșilor p-clorobenzoați I și II (fig 1,2).

— Banda de la 475 cm⁻¹ este atribuită vibrației Cu²⁺—O. În spectrul din fig 1 mai apar două benzi slabe la 420 și 435 cm⁻¹ O atribuire certă însă a frecvenței Cu²⁺—O implică necesitatea preparării unor complecși marcați cu ¹⁸O.

— La frecvența de 530 cm⁻¹, contribuția importantă o are vibrația metalligand. În cazul oxalatului de Pt (II), banda corespunzătoare acestui tip de vibrație apare la 545 cm⁻¹ [20].

- Banda de la $\simeq 690$ cm⁻¹ poate fi atribuită vibrației combinate de tip $v_{cu-0} + \delta_{inel}$.

— Pentru oxalatul de Pt (II) frecvențele de combinație $v_{Pt-O} + \delta_{O-C=O}$ au fost atribuite intervalului 815—827 cm⁻¹ [20] Benzile ce apar în domeniul 770—800 cm⁻¹ (fig 1 și 2) pentru p—clorbenzoații de Cu (II) pot fi atribuite frecvențelor de combinație $v_{Cu-O} + \delta_{O-C=O}$

— Regiunea spectrală 1300—1500 cm⁻¹ cuprinde pe lîngă vibrația pură a ionului carboxil (COO⁻) și o frecvență de combinație $\nu_{c-0} + \nu_{cu-0} + \delta_{0-c=0}$ mascată însă de banda intensă ν_{coo} -.

b) Studiul I R. al speciilor moleculare ale apei conținută în complecși. În domeniul $3400-3700 \text{ cm}^{-1}$ apar benzile caracteristice moleculelor de apă conținute în matricile celor doi complecși (fig 3 a și 4 a). Banda largă de la 3400 cm^{-1} se datorește moleculelor de apă absorbite fizic, legate între ele prin punți de hidrogen, iar cele două benzi mai înguste de la 3585 și 3609 cm^{-1} sînt caracteristice hidroxililor nelegați între ei și aparținînd moleculelor de apă legate de cele de complex Există două specii de hidroxili, avînd energii de legătură diferite.

Prin încălzirea prealabilă a celor doi complecși la 110°C timp de o oră în vid, banda largă de la 3400 cm⁻¹ dispare, pe cînd cele de la 3585 și 3609 cm⁻¹ rămîn practic neschimbate (tig 3 b și 4b) Ele dispar numai după o încălzire a complecșilor în vid la 170°C, fapt ce indică o legătură puternică între aceste molecule de apă și cele de complex Estimarea comparativă a apei prezente în

F 1 g 3 Regunea 3200-3700 cm⁻¹ din spectrul I R al complexului (I) în Nujol (a) - neîncălzit, (b) - după încălzire la 110°C, (c) - după încălzire la 170°C.

F 1 g 4 Regunea 3200-3700 cm⁻¹ din spectrul I R al complexului (II) în Nujol (a) – neîncălzit, (b) – după încălzire la 110° C, (c) – după încălzire la 170° C.

matricile celor doi complecși se poate face folosind metoda standardului intern (se alege banda de la 1600 cm $^{-1}$, caracteristică benzoatului)

În ceea ce privește apa absorbită (banda de la 3400 cm⁻¹), se constată că în cazul probelor neîncălzite, complexul II conține mai multă apă decît I. Astfel, raportul A_{3400}/A_{1600} este 0,070 pentru complexul cu metanol (I) și 0,112 pentru cel cu acetonă (II).

Raportul celor două specu de hidroxili $(A_{3609}/A_{3585} = 1,60)$ rămîne constant în ambii complecși, atît pentru probele normale cît și pentru cele încălzite la 110°C

Dacă se urmărește micșorarea raportului A_{3609}/A_{1600} sau A_{3585}/A_{1600} prin încălzirea celor doi complecși la 110 °C în vid, se constată că din proba (II) pleacă mai multă apă decît din proba (I) Astfel, dacă în probele normale raportul A_{3609}/A_{1600} este același ($\simeq 0,128$) el devine 0,111 pentru complexul (I) și respectiv 0,069 pentru complexul (II) prin încălzire la 110 °C. De asemenea, dacă se urmărește raportul A_{3585}/A_{1600} el este $\simeq 0,084$ în probele normale și devine prin încălzire 0,069 pentru complexul (I), respectiv 0,040 pentru complexul (II)

Din urmărirea evoluției cu temperatura a benzilor 3400, 3585 și 3609 cm⁻¹ se constată că proba II (complex cu acetonă) are o capacitate de înmagazinare, respectiv de pierdere a apei prin încălzire, mai mare decît I (complex cu metanol)

c) Analiza termodiferențială și termogravimetrică În figurile 5 și 6 sînt prezentate curbele TG, DTG și ATD pentru cei doi complecși, observîndu-se existența a două tipuri de apă, una absorbită fizic și care se evaporă pînă la 100°C, iar cealaltă clatrată în rețeaua complecșilor care pleacă definitiv numai la temperatura de 170°C (I), respectiv 204°C (II).

Moleculele de apă absorbite formează între ele legături prin punți de hidrogen, dînd în spectrele I R banda largă de la 3400 cm⁻¹ Din termogramele caracteristice celor doi compuși rezultă că în complexul (II), cu acetonă, există 2,63% apă absorbită pe cînd în complexul (I), cu metanol, numai 1,30%

Tot din curbele TG s-a găsit cantitatea de apă legată de moleculele de complex și care dă în spectrele I R. benzile de la 3585 și 3609 cm⁻¹. Aceasta este de 3,81% (teoretic 3,93%) în complexul (I) și respectiv 5,26% (teoretic 3,81%)

F1g. 5 Curbele de analiză termodiferențială și termogravimetrică pentru complexul (I)

F1g. 6. Curbele de analıză termodiferențială și termogravimetrică pentru complexul (II).

în complexul (II). Alura curbelor TG evidențiază de asemenea și faptul că apa clatrată, legată de moleculele de complex, se desprinde treptat și nu brusc în intervalul de temperaturi 100-170 °C respectiv 100-204 °C, ceea ce sugerează prezența unei distribuții statistice a tăriei de legături ale acesteia cu moleculele de complex.

Prezența a două tipuri de apă în matricile celor doi complecși este evidențiată și de curbele DTG, care prezintă două picuri distincte (fig 5, 6)

Pe curbele ATD se remarcă un pic aplatisat, endoterm, corespunzător apei clatrate. Faptul că picul este apalatisat, susține de asemenea ideea prezenței unei distribuții statistice a tăriei legăturii dintre moleculele de apă și cele de complex.

4. **Concluzii.** Datele experimentale obținute din spectrele I.R. și analiza termodiferențială indică prezența a două tipuri de apă în matricile celor doi complecși. Una absorbită, care se evaporă pînă la 100°C, iar cealaltă clatrată, puternic legată de moleculele de complex, care pleacă definitiv numai la temperatura de 170°C, respectiv 204°C. De asemenea, complexul cu acetonă (II) conține mai multă apă, atît absorbită, cît și clatrată, față de cel cu metanol (I)

O importanță deosebită o prezintă moleculele de apă legate de ale complexului, în particular chiar la ionul Cu²⁺, acestea fiind determinate atît în formarea speciilor monomere prin înghețare la 77 K, cît și a formei, simetriei, speciilor monomere [18]. Astfel, în complexul (II) raportul monomer/dimer este 3/1 și apar numai specii monomere de simetrie D_{4h} , dar cu o perturbație octaedrală O_h în direcția O_h datorită interacției a două molecule de apă cu orbitalul $d_{2^{*}}$ al ionului Cu²⁺ [18]. Spre deosebire de aceasta în complexul (I) apar și specii monomere de simetrie D_{4b} , planar-pătrată, fără interacțiuni axiale pe O_z , iar raportul monomer/dimer este 2/3.

Comportarea diferită a celor doi complecși de cupiu (II) poate fi explicată presupunînd că aceștia au proprietăți de clatrare reținînd cîte o moleculă din solventul care este și mediu de reacție, CH_3OH (I), respectiv CH_3COCH_3 (II). În timp are loc desorbția moleculelor organice clatrate, în locul cărora sînt absorbite moleculele de apă. Deoarece moleculele de acetonă au însă un volum mai mare decît cele de metanol, ele vor lăsa goluri active ale rețelei, pentru absorbția apei, de dimensiuni mai mari. Acest lucru concordă cu caracterul hidroscopic mai accentuat al complexului (II) decît al complexului (I)

(Intrat in redactie la 15 sume 1981)

BIBLIOGARAFIE

- 1 J Lewis, Y C Linn, L K Royston, R C Thompson, J Chem Soc, 6464 (1965).
- 2 J Lewis, F E Mabbs, L K. Royston, W R Smail, J Chem Soc A, 291 (1969). 3 W E Hatfield, Inorg, Chem, 11, 2216 (1972)
- 4 W E Hatfield, in Theory and Applications of Molecular Paramagnetism, (Ed by E A Boudreaux and L N Mulay), John Wiley & Sons, New York, 1976
- 5 M S Haddad, D. N Hendrickson, Inorg Chem, 17, 2622 (1978)
- 6 T R Felthouse, D N Hendrickson, Inorg Chem, 17, 2636 (1978)
- 7 M S. Haddad, E N Duesler, D N Hendrickson, Inorg Chem, 18, 141 (1979)
- 8 J W Guthrie, R L Lintnedt, M D Glick, Inorg Chem, 19, 2949 (1980)
- 9 B Bleaney, K P Bowers, Proc Roy Soc London, A 214, 451 (1952)
- 10 G F Kokoska, M. Linzer, G Gordon, Inorg Chem, 7, 1730 (1968)
- 11 D. Chasteen, Inorg Chem, 10, 2339 (1971)
- 12 J Doumit, G L McPherson, R L Belford, S B Lanoux, H B Jonassen, Inorg Chem, 16, 565 (1977)
- 13 P Sharrock, C H Thibaudeau, A Caillé, Inorg, Chem, 18, 510 (1979)
- 14 J F Boas, R H Dunhill, J R Pilbrow, R C Srivastava, T D Smith, J Chem Soc A, 94 (1969)
- 15 P D W Boyd, T D Smith, J H Price, J R Pilbrow, J Chem, Phys, 56, 1253 (1972)
- 16 B Jezowska-Trzebiatowska Pure Appl Chem, 38, 367 (1974)
- 17. J F Villa, W E Hatfield, Inorg Chem, 11, 1331 (1972)
- 18 O Cozar, I Bratu, Lucrările Simpozionului Național ICEFIZ, Progrese în Fizică", Cluj-Napoca, 19-21 iunie, 1980 (în curs de apariție)
- 19. M Avram, Gh D Mateescu, Spectroscopia în infraroșu și aplicatule sale în chimia organică, Ed tehnică, București, 1976
- 20 J Fujita, A E Martell, K Nakamoto, J Chem Phys, 36, 324 și 339 (1962)
- 21 F A Cotton, în Modern Coordination Chemistry (Ed by J Lewis and R G Wilkins), Interscience Publichers INC, New York, 1960
- 22 K Nakamoto, Nature, 183, 459 (1959)
- 23 J H Van Niekerk, F'R L Schiening, Nature, 171, 36 (1953)
- 24 K E Lawson, Infrared Absorption of Inorganic Substances, Reinhold Publ Co, New York, 1961
- 25 K Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, London, 1963.

34
STUDIU IR ȘI ATD AL UNOR p-CLORBENZOAȚI DE Cu (II)

STRUCTURAL STUDIES OF SOME Cu(II) p-CLORBENZOATES BY I.R AND THERMODIFFERENTIAL METHODS

(Summary)

I.R. and thermodifferential data obtained on the $[Cu_3R_4 \cdot CH_3OH \cdot 2H_3O] - (I)$ and $[Cu_3R_4 \cdot CH_3COCH_3 \cdot 2H_3O] - (II)$ with $R = (p-ClC_6H_4CO_3)$ idicate the presence of two species of water molecules in the matrix of both complexes. One of them corresponds to the absorbed water molecules which evaporate at 100 °C. The other specie corresponds to the water molecules strongly bonded by complex molecules which leave the matrix at 170°C and 204°C respectively. The second complex shows a more pronounced hygroscopic character than the first complex. The different behaviour of the two complexes is explained by their chaltrate properties.

MESONS IN A QUARK NONRELATIVISTIC MODEL

T. BENCZI, R. I. CÂMPEANU

Introduction. Quantum chromodynamics (QCD) is a quantum field theory of strong interactions based on the colour SU_3 gauge group. Aside from many attractive aesthetic and phenomenological features, this theory has also the important quality of being rigorously testable and therefore of being disproved QCD is a strongly interacting field theory at large distances and becomes asymptotically free at small distances, where perturbative techniques can be applied. Although QCD had a few insuccesses, like the prediction of too many hadronic states, it is still regarded as the most likely candidate theory for the strong interactions

Recently N at h a n I s g u r and collaborators [1,2] proposed a new and simpler approach to the hadronic bound states and to the low energy hadron dynamics. Tested initially against noncharmed baryons, their ",soft" QCD (or SQCD) is a simple nonrelativistic model with medium-mass quarks moving in a flavour-independent confinement potential perturbed by various short range interactions anticipated from one gluon exchange in ",hard" QCD. Their model contains a number of parameters determined from the fit to an equal number of wellknown barion masses Going then to mesons, I s g u r [1] proposed to use the same barion parameters and was able to predict masses in close agreement with the experimental predictions The motivation of this procedure was the fact that the experimental results from meson spectroscopy were too sparse and uncertain to rely in on the calculation of the parameter values

Our approach will be somewhat different from Isgur's, we shall still use one barion parameter, but we shall parametrize the confinement potential employing 4 accurate meson masses. Like in the papers of Isgur and co-workers we shall restrict our calculation to the mesons in a SU₄ symmetry group, i.e. containing quarks and antiquarks of 4 flavours up, down, strange and charm. In SU₄ the meson states correspond to the basis vectors of the $\{4\} \neq \{4\}$ representation, which can be reduced to 2 invariant and irreducible subspaces $\{4\} \neq \{4\} =$ $= \{15\} + \{1\}$

The theoretical model. We employed the following form of the hamiltonian

$$H = m_1 + m_2 + H_0 + H_{so} + H_{hyp} \tag{1}$$

where m_1 and m_2 are the quark and respectively antiquark masses, H_0 is of the form

$$H_0 = p^2 / (2\mu) + V_{conf}$$
(2)

with μ the reduced mass of the system $\mu = m_1 m_2/(m_1 + m_2)$, H_{so} is the residual spin-orbit interaction of the form

$$H_{so} = -\frac{1}{m_1 m_2} \left(\frac{1}{r} \frac{dV_{conf}}{dr} \right) \overline{L} \quad \overline{S}$$
(3)

and H_{hyp} is the hyperfine interaction containing a ,,contact" term and a magnetic dipolmagnetic dipol tensor

$$H_{hyp} = \frac{2}{3} \frac{\alpha_s}{m_1 m_2} \left[\frac{8\pi}{3} \overline{S}_1 \cdot \overline{S}_2 \delta(\overline{r}) + \frac{1}{r^3} \left(\frac{3(\overline{S}_1 \cdot \overline{r})(\overline{S}_2 - \overline{r})}{r^3} - \overline{S}_1 - \overline{S}_2 \right) \right]$$

$$(4)$$

The flavour-independent confinement potential (figure 1) can be taken of the form \cdot

$$V_{conf} = k \cdot r^2/2 + Q(r) \tag{5}$$

where the first term is the well-known harmonic oscillator potential and the second is some unknown potential, which we expect to incorporate a short range Coulomb-like attractive part and deviations of the long range part from the harmonic oscillator form.

Fig 1 The shape of the flavour-independent confinement potential

A simple method to calculate the eigenvalues of the hamiltonian (1) is to solve first the reduced mass harmonic oscillator problem, whose low-lying eigenfunctions Φ_{nim} (r) are well-known, and then to consider the other potentials in a first order perturbation treatment. Doing so we obtained the following matrix elements:

$$\langle H_{hyp} \rangle = V_{nn'} + V_{JL}$$

$$V_{nn'} = \frac{1}{2} V_0 \left[S(S+1) - \frac{3}{2} \right] \left| \Phi_{nlm}(0) \right| \left| \Phi_{n'lm}(0) \right|$$

$$V_{JL} = \frac{1}{2} \omega_0 \left\langle \frac{1}{r^3} \right\rangle \frac{1}{(2L-1)(2L+3)} \left\{ 2L(L+1)(S+1)S - \frac{3}{2} \left[J(J+1) - L(L+1) - S(S+1) \right] \right\}$$

$$- S(S+1) \left| 2 - \frac{3}{2} \left[J(J+1) - L(L+1) - S(S+1) \right] \right\}$$

$$\langle H_{so} \rangle = \frac{1}{2} \left[-\frac{k}{m_1 m_2} + \frac{2\alpha_s}{m_1 m_2} \left\langle \frac{1}{r^3} \right\rangle \right] \left[J(J+1) - L(L+1) - S(S+1) \right]$$

$$(7)$$
with $V_0 = \frac{8\sqrt{2}}{3 \cdot 3^{3/4}} \cdot \frac{\pi^{3/2}}{\alpha^3} \frac{m_d^2}{m_1 m_2} \delta, \quad \left\langle \frac{1}{r^3} \right\rangle = \int \frac{1}{r^3} |\Phi_{nlm}|^2 d\vec{r}$

and

$$w_0 = rac{\sqrt{2}}{3^{3/4}} rac{\sqrt{\pi}}{\alpha^3} rac{m_d^3}{m_1 m_2} \, \delta$$

The perturbation due to the confinement potential Q(r) has the following from for the first quantum states.

$$Q_{00} = \frac{4}{\sqrt{\pi}} \alpha^{3} q_{1}$$

$$Q_{11} = \frac{8}{3\sqrt{\pi}} \alpha^{5} q_{2}$$

$$Q_{20} = \frac{8}{3\sqrt{\pi}} \alpha^{3} \left[\frac{9}{4} q_{1} - 3\alpha_{1}^{2} q_{2} + \alpha^{4} q_{3} \right]$$
(8)

where

$$q_n = \int_0^\infty r^{2n} \exp (-\alpha^2 r^2) Q(r) \mathrm{d}r$$

and

$$\alpha = [m_1 m_2 k / (m_1 + m_2)]^{1/4}$$

The parameters q_n (which are related to the unknown Q(r)) and k are the four unknown constants The barion constant δ is calculated from the difference between Λ° and proton masses to be 300 MeV. The colour parameter α_s is related to the barion constant through the relation $\alpha_s = 3 \sqrt{2\pi} m_d^2 \delta/(16 \alpha^3)$ The masses of the four quarks considered are. $m_d = m_u = 350$ MeV, $m_s = 580$ MeV and $m_c = 1500$ MeV.

Results and discussion. In order to determine the unknown parameters we employed the masses determined experimentally for π , ρ , K and K* mesons [3]. After solving a system of four linear equations we obtained

$$\begin{split} k &= 3703 \cdot 10^4 \text{MeV}^3, \quad q_1 = -12, 3 \cdot 10^{-6} \text{MeV}^{-2} \\ q_2 &= -20 \cdot 8 \quad 10^{-11} \text{MeV}^{-4}, \quad q_3 = -69 \cdot 8 \cdot 10^{-6} \text{ MeV}^{-6} \end{split}$$

These values were then used to calculate the S and P meson states în calculating the perturbations corresponding to different states we noticed that for the s-wave mesons the main contribution came from ,,contact" interactions $(V_{nn'})$, while for the p-wave mesons $V_{nn'}$ vanishes and the tensor force (V_{JL}) becomes most important

We calculated S states with isospin number I = 0, $\frac{1}{2}$, 1 and P states with I = 1. We didn't attempt to calculate P states with $I = \frac{1}{2}$ because of the uncertainties in the spin-orbit term [1]. The calculated states are presented in figure 2 with the following notation ${}^{2S+1}L_J \{J^{PC}\}$, where J, L, S are the total, orbital and spin quantum numbers and P, C are the space and charge parity

Fig 2 Mesonic masses obtained in the present calculation The states are presented with names and quantum numbers in the notation ${}^{2S+1}L_J$ { J^{PC} }

Table 1 gives a comparison between our numerical values, the known experimental masses [3] and the teoretical findings of I s g u r [1]. It appears from table 1 that our SQCD calculation gives mesonic masses in good agreement with the experimental values and in excellent agreement with the results of Isgur However the number of levels predicted by our theory exceeds the number of experimentally observed states. By considering different levels of the confinement potential the model can explain the existence of several meson states with the same quantum numbers but different masses. The mass differences between the mesons with different hypercharge (unexplained by the simple SU₄ theory) is now explained by the differences existent between the quark masses, these differences determine the mass splitting of the unitary multiplet {15}. The meson states belonging to the isospin singlet are in relatively poorer agreement with the experimental values than the other states This is due to the neglect of the relativistic effects [1]

(Received July 9, 1981)

Table 1

1S ₀ {0 ⁻⁺ }				3S ₁ {1 }			Р				
I	exp mass	calc mass	mass of [1]	I	exp mass	calc mass	mass of [1]	I	exp mass	calc mass	mass of [1]
1 1	139 —	139 1 015	160 1 010	1	773 1 250	752 1 232	755 1 225	1 1 1	978 1 241 1 300	887 1 275 1 329	875 1 275 1 325
$\frac{1}{2}$	498	517	510	$\frac{1}{2}$	892	960	965		1 317	1 320	1 325
$\frac{1}{2}$	1 400	1 227	1 230	$\frac{1}{2}$	1 650	1 430	1 405				
$\frac{1}{2}$	1 863	1 832	_	$\frac{1}{2}$	2 009	2 042	-				
$\frac{1}{2}$	_	2 413	_	$\frac{1}{2}$	-	2 508	_				
					500						
0	549	560	_		1 000	933	_				
U A	1 95/	1 254	_		1 0 2 0	1 491	_				
ň	1 273	1 407	_		_	1 635	_				
Ň		2 882		1 0	3 097	2 967	_				
ŏ	_	3 393	_	ŏ	3 684	3 437	—				

Comparison between the mesonic masses predicted by our calculation, the experimental masses of [3] and the theoretical results of Isgur [1]

REFERENCES

- 1 N Isgur, Lectures presented at the XVI International School of Subnuclear Physics, Erice, 1978 (preprint)
- 2 L. A Copley, N Isgur, G Karl, Phys Rev, D 20, 768 (1979) 3 C Bricman et al, Rev Mod Phys, 52, nr 2, 1 (1980).

÷

MEZONI ÎNTR-UM MODEL DE QUARKURI NERELATIVIST (Rezumat)

Folosindu-se un model de quarkuri nerelativist propus de către Isgur și colaboratorii, se calculează într-o nouă manieră cele mai joase stări s și p mezonice. Considerarea interacțiunilor spin-orbită și hiperfine, sugerate de către cromodinamica cuantică, permit obținerea de rezultate în bun acord cu observațiile experimentale Sînt propuse cîteva stări noi, neobservate încă

STUDIUL RES AL FORMĂRII PERECHILOR MIXTE DE IONI Cu²⁺ – V⁴⁺ ȘI Cu²⁺ – Mn²⁺ ÎN MATRICEA $2B_2O_3 \cdot K_2O$

O. COZAR, I. ARDELEAN

1. Introducere. Sticlele oxidice conținînd amestec de ioni ai metalelor de tranziție (MT) prezintă un interes deosebit datorită formării perechilor mixte de ioni cuplați prin interacțiunea de schimb [1-7], care se manifestă în proprietățile electrice și magnetice ale acestora Studiile RES efectuate de B o g om o l o v a și colab [5-7] asupra unor sticle pe bază de V_2O_5 și $V_2O_5 - P_2O_5$ conținînd CuO au arătat că există o puternică interacție de schimb între ionii Cu^{2+} și V^{4+} dînd naștere la perechi mixte de ioni $Cu^{2+} - V^{4+}$ Recent, B a n d y op a d h y a y [8] a evidențiat și formarea perechilor mixte de ioni $Cu^{2+} - Mn^{2+}$ cuplați prin interacțiunea de schimb în sticle de tipul $30Na_2O-70 B_2O_3$ cu un conținut mic de ioni MT. Efectele formării perechilor mixte de ioni MT asupra proprietăților electrice ale unor sticle oxidice sînt prezentate în lucrările [5, 7].

În lucrarea de față vom prezenta rezultatele obținute prin RES asupra formării perechilor mixte de ioni cuplați, $Cu^{2+} - V^{4+}$ și $Cu^{2+} - Mn^{2+}$, în funcție de concentrația ionilor MT în sticle din sistemele $x(CuO \cdot V_2O_5)$ $(1-x)[2B_2O_3 \cdot V_2O_5]$

K₂O] și \dot{x} (CuO MnO) (1 - x) [2B₂O₃ · K₂O], unde $0,2 \leq x \leq 50\%$ mol

2. Tehnica experimentală. Pentru studiul interacției ionilor $Cu^{2+} - V^{4+}$ și $Cu^{2+} - Mn^{2+}$ prin RES s-a ales o mátrice din sistemul $2B_2O_3 - K_2O$, care formează sticle transparente într-un domeniu larg de concentrații [9]

Noi am studiat sticlele din sistemele $x(\text{CuO } V_2\text{O}_5) \cdot (1-x) [2\text{B}_2\text{O}_3 \cdot \text{K}_2\text{O}]$ și $x(\text{CuO } \cdot \text{MnO})$ $(1-x) [2\text{B}_2\text{O}_3 \quad \text{K}_2\text{O}]$ cu $0 \leq x \leq 50\%$ mol menținînd raportul $B_2\text{O}_3/\text{K}_2\text{O}$ constant, prin urmare păstrînd structura matricei nemodificată în acest sens, inițial s-a preparat matricea de sticlă $2\text{B}_2\text{O}_3 \cdot \text{K}_2\text{O}$ prin amestecarea componenților $H_3\text{BO}_3$ și K_2CO_3 și topirea acestui amestec într-un creuzet de sintercorund folosind tehnica descrisă în lucrarea [10]. După răcire, matricea a fost mojarată și amestecată cu proporții corespunzătoare de CuO $\cdot \text{V}_2\text{O}$ și CuO \cdot MnO conform formulelor de mai sus Aceste amestecuri au fost topite la temperatura de echilibru de 1150 °C timp de o oră, în aer Răcirea sticlelor s-a efectuat prin turnarea topiturii pe o placă de oțel inoxidabil, la temperatura camerei

Măsurătorile RES s-au efectuat în bandă X folosind o instalație standard JEOL-JES-3B, la temperatura camerei Masa tuturor probelor studiate a fost de 100 mg

3 Rezultate și discuții. a) Studrul sistemului de sticle $x(\text{CuO} \cdot \text{V}_2\text{O}_5)$ (1 — -x) [2B₂O₃ · K₂O] Spectrele RES obținute la temperatura camerei (fig. 1) pentru sticle cu $x \leq 5\%$ mol sînt tipice ionilor Cu²⁺ izolați, în simetrie axială [10, 11] Ele prezintă rezolvate cele patru linii de structură hiperfină $\left(I_{Cu} = \frac{3}{2}\right)$ atît în banda paralelă (g_{ii}) cît și în cea perpendiculară (g₁)

F₁g 1 Spectrele RES ale studelor din sistemul $x(CuO \cdot V_2O_5)(1 - x)[2B_2O_3 \cdot K_2O]$

Odată cu cresterea conținutului de ioni MT (x > 20%mol) se observă o dispariție a structurii hiperfine din banda perpendiculară și apariția în regiunea $g \simeq 2$ a unei linii largi caracteristică ionilor metalici asociați [7, 12] De asemenea tot pentru x > 20% mol apare rezolvată și structura hiperfină datorită ionilor V^{4+} , aceasta fiind însă acoperită în mare parte de cea a ionilor $C_{11^{2}}$ + Distanta între linule hiperfine date de ionn V4+ este 69,6 gauss, care comparată cu constantele de structură hiperfină ale unor complecși de vanadil [13, 14] arată că acestea aparțin absorbtiei perpendiculare.

Parametrii RES $(g_{\parallel}, g_{\perp}, A_{\parallel}, A_{\perp})$ obținuți din aceste spectre pentru ionu Cu²⁺ sînt dați în tabelul 1 Deoarece $g_{\parallel} > g_{\perp} > 2,002$ se poate considera că starea fundamentală pentru electronul paramegnetic este orbitalul $d_{x^1-y^2}$, ionii Cu²⁺ fund dispuși în stări avînd simetria octaedrică — distorsionată (D_{4h}) , alungită pe direcția

Oz [15] Această configurație satisface condiția pentru aplicarea analizei prin metoda orbitalilor moleculari dezvoltată de Makı și McGarvey [16].

Tabel 1

x % mol	g	g ₁	$\begin{vmatrix} A_{ } \\ 10^{-4} \mathrm{cm}^{-1} \end{vmatrix}$	$\begin{array}{c} A_{\perp} \\ 10^{-4} \mathrm{cm}^{-1} \end{array}$	α2	β²	δ^2			
0,5	2,277	2,051	138,2	27,3	0,72	0,73	0,68			
3	2,278	2,044	142,3	27,4	0,73	0,72	0,58			
10	2,274	2,045	142,1	27,4	0,73	0,71	0,62			
30	2,266	2,046	141,6	27,4	0,72	0,70	0,61			
50	2,273	2,044	142,0	_	0,72	0,71	0,58			

Valorile parametrilor RES și ale coeficienților MO pentru sticle din sistemul $x(CuO \cdot V_2O_2) = (1 - x)[2B_2O_2 \cdot K_2O]$

modificată apoi de Kivelson și Neiman [17]. Gradul de covalență al legăturilor σ și π din planul xOy, precum și π în afara planului xOy, realizate între ionul central Cu²⁺ și atomii liganzi de oxigen în cadrul octaedrului distorsionat Cu²⁺O₆ este dat de coeficienții α^2, β^2 și δ^2 , care pot fi calculați cu ajutorul parametrilor RES, folosind ecuațiile date în lucrările [16, 17]. Aceste ecuații conțin termenii ΔE_{xy} și ΔE_{xi} , care reprezintă energiile de tranziție între stările $B_{2g} \rightarrow B_{1g}$ și respectiv $E_g \rightarrow B_{1g}$. Pentru ionii Cu²⁺ în sticle 30Na₂O- $-7OB_2O_3$ cele două tranziții au fost observate la 12 600 cm⁻¹, respectiv 16 600 cm⁻¹ [8]. Considerînd aceste valori pentru ΔE_{xy} și ΔE_{xi} ca plauzibile și în cazul sticlelor borice cu potasiu, am obținut pentru α^2 , β^2 și δ^2 valorile date în tabelul 1. Se constată că practic atît valorile parametrilor RES cît și ale coeficienților MO rămîn constante odată cu creșterea concentrației de ioni MT în aceste sticle ceea ce indică faptul că simetria locală a stărilor în care se află ionii Cu²⁺ rămîne aceeași

Totodată 10nii Cu^{2+} se manifestă predominant ca specii 1zolate, distribuite aleator, chiar și la concentrații mari de ioni MT (x > 20% mol) unde mai par încă rezolvate liniile de structură hiperfină din banda paralelă (fig. 1). Acest lucru se explică prin faptul că numărul de 10ni V⁴⁺ nu crește proporțional cu x% mol, cea mai mare parte din ionui de vanadiu rămînînd în starea V⁵⁺, asigurînd astfel o diluție magnetică suficientă chiar la concentrații mari de ioni MT La concentrații mici x < 20% mol, 10nii V⁴⁺ sînt atît de puțini încît nu dau linii RES observabile. Abia la concentrații mari, x > 20% mol, se formează un număr suficient de ioni V⁴⁺, din care o parte se manifestă ca specii 1zolate, iar ceilalți formează împreună cu ionii Cu²⁺ perechi mixte de ioni Cu²⁺ — V⁴⁺, cuplați prin interacțiunea de schimb. Prezența acestora se reflectă în spectrele RES prin dispariția structurii hiperfine din banda perpendiculară și lărgirea liniei RES în regiunea $g \simeq 2$, fapt semnalat și în lucrările [6,7]

b) Studiul sistemului de sticle $x(\text{CuO} \cdot \text{MnO})(1 - x)$ [2B₂O₃ · K₂O]. La fel ca în cazul sistemului anterior, spectrele RES pentru sticle cu un conținut mic de ioni MT ($x \leq 3\%$ mol) conțin clar rezolvate liniile hiperfine datorate ionilor Cu²⁺, atît în banda paralelă cît și în cea perpendiculară (fig. 2). Tot în acest domeniu de concentrații a ionilor MT apare de data aceasta și structura hiperfină datorită ionilor Mn²⁺, care este însă parțial observabilă (fig. 2) datorită suprapunerii cu cea a ionilor Cu²⁺. Cele șase linii de structură hiperfină tipice ionilor Mn²⁺ sînt centrate în jur de $g \simeq 2$, iar $A_{\text{Mn}} = 87,4 \cdot 10^{-4}$ cm⁻¹.

Valorile parametrilor RES pentru ionn Cu^{2+} , precum și ale coeficienților MO evaluați după metoda descrisă anterior sînt date în tabelul 2. Se constată o creștere a acestora odată cu creșterea lui x în intervalul 0,2-1% mol, fapt ce indică totodată o scădere a gradului de covalență al legăturilor $Cu^{2+} - O$.

Este de remarcat faptul că și valorile lui g_{\parallel} și g_{\perp} cresc odată cu creșterea lui x în intervalul menționat mai sus. Această creștere a valorilor tensorului \tilde{g} poate fi explicată printr-o modificare a simetriei locale a ionilor Cu²⁺, de la cea octaedrică distorsionată (sau tetragonală D_{4h}) la o simetrie caracterizată prin prezența unei puternice componente tetraedrice Td [18]. O astfel de modificare a simetriei locale a ionilor Cu²⁺ odată cu creșterea conținutului deioni MT a fost observată și în cazul soluțiilor apă-etanol la 77 K [19]. La sticla cu x = 3% mol (tabel 2) apare însă o scădere a valorilor tensorului \tilde{g} și parametri-

		-	, .				
x % mol	g	g T	$\begin{vmatrix} A_{ } \\ 10^{-4} \mathrm{cm}^{-1} \end{vmatrix}$	$\begin{vmatrix} A \\ \bot \\ 10^{-4} \mathrm{cm}^{-1} \end{vmatrix}$	α2	β2	δ2
0,2	2,287	2,050	133,2	24,8	0,72	0,75	0,67
0,5	2,304	2,058	134,2	27,5	0,74	0,78	0,76
1	2,325	2,068	141,1	25,1	0,78	0,79	0,85
3	2,287	2,034	138,8	24,7	0,72	0,75	0,45

Valorile parametrilor RES și ale coeficienților MO pentru stiele din sistemul $x(CuO \cdot MnO)(1 - x)[2B_2O_3 \cdot K_2O]$

lor de legătură (α^2 , β^2 , δ^2) datorită interacțiunilor dipolare puternice dintre ionii metalici care determină dispariția structurii hiperfine și adunarea (gruparea)

spectrului caracteristic ionilor izolați într-o singură linie largă la $g \simeq 2$, tipică ionilor asociați [12]. În acest mod centrele celor două seturi de linii hiperfine din banda paralelă și cea perpendiculară sînt deplasate spre g = 2, rezultînd astfel valori mai mici pentru $g_{||}$ și g_{\perp} .

În sticlele cu un conținut $x \ge 5\%$ mol domină interacțiunile dipolare între 101111 metalici care determină apariția ionilor asociați, aceștia manifestîndu-se în spectrele RES printr-o lime largă la g=2(fig 2)Lărgimea (ΔH) devine maximă pentru x == 30% mol $(\Delta H_{\rm max} =$ = 500 gs), 1ar apoi scade odată cu creșterea lui x, astfel încît la x = 50% mol, $\Delta H = 300 \text{ gs}$

Rezultă deci că pînă la concentrația x = 30%mol între ionu metalici se manifestă predominant cuplajul dipolar La concentrații mai mari de ioni MT (x > 30% mol) apare și devine predominantă interacțiunea de superschimb

8

magnetic, care se manifestă prin îngustarea liniilor RES [20]. Aceste interacțiuni determină formarea perechilor mixte de ioni $Cu^{2+} - Mn^{2+}$ cuplați prin interacțiunea de schimb [8].

În timpul topirii sticlei cu ambii oxizi CuO și MnO este posibilă o reacție de tipul [8]:

$$Cu^{2+} + Mn^{2+} \rightarrow Cu^{+} + Mn^{3+}$$

Desigur aceasta se realizează numai parțial în sticlele studiate, fapt demonstrat pe baza măsurătorilor de susceptibilitate magnetică [20]. Se poate astfel considera că pe lîngă ionii Cu^{2+} și Mn^{2+} în aceste sticle sînt prezenți și ioni Cu^{+} și Mn^{3+} [8, 20]. Trebuie să remarcăm totuși că viteza de creștere a raportului Mn^{3+}/Mn^{2+} odată cu creșterea lui x în sticlele din sistemul $x(CuO \cdot MnO)$ (1 - x) [2B₂O₃ · K₂O] este relativ mică [20]. Acest fapt duce la apariția ionilor asociați în locul celor izolați chiar la concentrații relativ mici de ioni MT (x < 3-5% mol) în al doilea sistem față de primul $x(CuO \cdot V_2O)(1 - x)$ [2B₂O₃ · K_2O] unde ionii Cu^{2+} se manifestă ca specii izolate (ce dau structură hiperfină) chiar pentru x = 40 - 50% mol, datorită creșterii lente a raportului V^{4+}/V^{5+} cu creșterea lui x% mol.

4. Concluzii. În urma analizei spectrelor RES obținute pentru sticlele din cele două sisteme studiate, s-a constatat că în cazul $x(\text{CuO} \cdot \text{V}_2\text{O}_5)$ (1 - x) $[2\text{B}_2\text{O}_3 \cdot \text{K}_2\text{O}]$ formarea perechilor mixte de ioni $\text{Cu}^{2+} - \text{V}^{4+}$ se manifestă abia la concentrații mari de ioni MT ($x \ge 20\%$ mol). Acest fapt este atribuit creșteru lente a raportului $\text{V}^{4+}/\text{V}^{5+}$ odată cu creșterea conținutului de ioni MT (x%mol). De aceea la concentrații mici (x < 20% mol) ionii V^{4+} care există în sticle sînt așa de puțini încît nu-și manifestă prezența în spectrele RES. Numai la concentrații mari x > 20% mol rezultă un număr suficient de ioni V^{4+} , o parte din ei manifestîndu-se ca specii izolate, iar ceilalți formează împreună cu ionii Cu^{2+} perechi mixte de ioni $\text{Cu}^{2+} - \text{V}^{4+}$ cuplați prin interacțiunea de schimb

În cazul celui de al doilea sistem $x(\text{CuO} \cdot \text{MnO}) \cdot (1 - x) [2B_2O_3 \cdot K_2O]$, s-a evidențiat faptul că sticlele cu $x \leq 3\%$ mol conțin ionii Cu^{2+} și Mn^{2+} în poziții izolate, specii aleator dispersate, ce dau structură hiperfină bine rezolvată. Pentru ionii Cu^{2+} s-a observat o creștere a valorilor tensorului g cînd x = 0,2 - 1% mol, fapt ce este corelat cu o modificare a simetriei locale de la cea octaedrică-distorsionată (D_{4h}) spre cea tetraedrică (Td).

Cînd $5 \le x \le 30\%$ mol apar considerabile interacții dipolare între ionii MT ce duc la formarea unor puternice asocieri cationice (dipol-dipol) care se manifestă în spectrele RES prin apariția unei linii largi la $g \simeq 2$. Existența interacțiilor puternice între ionii metalici în aceste sticle se explică printr-o creștere proporțională a numărului de ioni Mn^{2+} cu concentrația x% mol de ioni MT, numărul celor care trec în Mn^{3+} fund relativ mic [20].

La concentrații $30 \le x \le 50\%$ mol domină însă interacțiile de schimb între ionii Cu^{2+} și Mn^{2+} care produc perechi mixte de schimb $Cu^{2+} - Mn^{2+}$. Acestea se manifestă în spectrele RES printr-o scădere pronunțată a lărgimii de linie (ΔH).

(Intrat in redacite la 29 septembrie 1981)

BIBLIOGRAFIE

- 1 G F Lynch, M Sayer, J Phys C, 6, 3661 (1973)
- 2 M Sayer, G F Lynch, J. Phys C, 6, 3774 (1973) 3. L D. Bogomolova, T F Dolgolenko, V N Lazukin, I V Filatova, Fiz Tv. Tela, 15, 3713 (1973).

- 4 A K Bandyopadhyay, J. O Isard, J Phys D, 10, L 99 (1977) 5 L D Bogomolova, J Non-Crystalline Solids, 30, 379 (1979) 6 L D Bogomolova, M. P Glassova, V A Shmucler, Phys, Khim Steela, 5, 26 (1979)

- 7 L. D. Bogomolova, M. P. Glassova, J. Non-Crystalline Solids, 37, 423 (1980)
 8 A. K. Bandyopadhyay, J. Mater, Sci., 15, 1605 (1980)
 9. J. Wong, C. A. Angell, Glass-Structure by Spectroscopy, Marcel Dekker Inc., New York and Basel, 1976
- 10 O. Cozar, I Ardelean, M Coldea, Studia Univ Babeş-Bolyai, Physica, 25 (2), 52 (1980)
- 11 H Hosono, H. Kawazoe, T Kanazawa, J Non-Crytalline Solids, 34, 339 (1979)
- 12 S Fujiwara, S. Katsumata, T Seki, J Phys Chem., 71, 115 (1967)
- 13 Teh Fu Yen (Ed), Electron Spin Resonance of metal complexes, Adam Hilger LTD, London, 1969
- 14 D Kivelson, S. K. Lee, J. Chem Phys, 41, 1896 (1964)
- 15 B. Bleaney, K. D Bowers, M H L Pryce, Proc Roy Soc (London) A 228, 116 (1955).
- 16 A H Maki, B. R. McGarvey, J Chem Phys, 29, 31 (1958).
 17 D Kivelson, R. Neiman, J Chem Phys., 35, 149 (1961)
 18 H Tominaga, Y. Ono, T Keii, J. Catal, 40, 197 (1975)

- 19 O Cozar, Teză, Universitatea "Babeș-Bolyai", Cluj-Napoca, 1978 20. O Cozar, I. Ardelean, Gh Ilonca (în curs de publicare).

ESR STUDY OF THE $Cu^{2+} - V^{4+}$ AND $Cu^{2+} - Mn^{2+}$ MIXED EXCHANGE PAIRS FORMATION IN THE 2B₂O₃ · K₂O MATRIX

(Summary)

The ESR study of $x(CuO \cdot V_2O_5)(1-x)[2B_2O_3 K_2O]$ glasses has shown that mixed exchange $Cu^{1+}-V^{4+}$ pairs occur at high concentration of metal transition ions, i.e. 20 < x < 50% mol In the case of $x(\text{CuO} \text{MnO})(1-x)[2B_2O_3, K_2O]$ glasses, for $5 \le x \le 30\%$ mol are evidenced the strong dipol-dipol interactions between the metal ions. At $30 \le x \le 50\%$ mol concentrations the exchange interactions become dominant, leading to the mixed exchange $Cu^{2+} - Mn^{2+}$ clusters formation.

. .

DETERMINAREA CONȚINUTULUI DE URANIU ÎN DAVIDIT PRIN METODELE ACTIVĂRII CU NEUTRONI ȘI NEUTRONI ÎNTÎRZIAȚI

V. ZNAMIROVSCHI, M. SĂLĂGEAN*, M. CONSTANTINESCU*, C. NICOLAU, A. MOȚIU

1. Introducere. Datele din literatură [1-3] menționează daviditul ca un mineral ce ar putea constitui și o eventuală sursă de uraniu, conținutul în acest element variind între 2-25% [4].

Daviditul este un mineral oxidic cu o compoziție complexă, avînd formula generală $X_2Y_5O_{12}$ unde X = U, Ce, La Fe³⁺, Fe²⁺ iar Y = Ti, Cr, V. Eșantionul analizat în prezenta lucrare provine din sudul Australiei de la Radium Hill (= Olary), zonă cunoscută pentru varietatea uraniferă de davidit.

Pentru determinarea conținutului de uraniu s-a folosit pe de o parte metoda analizei prin activare cu neutroni, iar pe de altă parte metoda neutronilor întîrziați.

2. Date mineralogice. Daviditul studiat în prezenta lucrare reprezintă un fragment al mineralizației principale cantonate în gneisse rubanate [5] constituită dintr-o asociație de ilmenit, rutil și hematit. După [6] secvența paragenetică a debutat prin formarea unei asociații intime de hematit, ilmenit și rutil, într-o gangă de biotit, urmată de intruziuni aplitice sodice cărora le corespunde apariția daviditului

Śtudiul microscopic pune în evidență o serie de caracteristici specifice. Se constată prezența unui clivaj slab \parallel (0001). De cele mai multe ori are o culoare închisă, neagră-brume cu $n \sim 2,35$ dar după o încălzire de 950°C culoarea se deschide în mod vizibil. Daviditul prezintă o fractură concoidală în special la probele caracterizate printr-o izotropizare avansată. Unii autori au presupus că daviditul este o varietate de ilmenit însă studiile prin raze X atestă individualitatea acestui mineral chiar și în cazurile în care izotropizarea este accentuată Daviditul prezintă o capacitate de reflexie slabă și adeseori inconstantă. La observațiile efectuate în imersie s-a constatat uneori că în cadrul aceleiași granule capacitatea de reflexie este diferită. S-a determinat cantitativ valoarea capacității de reflexie la 17,2% La o observare atentă se constată prezența unor reflexii interne slabe de culoare brun-închisă.

Daviditul apare atît granular cu conture puternic rotunjite cît și tabular Frecvent se pot observa dezamestecuri de rutil în davidit ale căror dimensiuni sînt de multe ori submicronice. Cercetarea prin raze X a pulberii de davidit, în prealabil tratată termic pune în evidență următoarele reflexe caracteristice (10) 3,45, (10)2,87, (9)2,47, (7) 2,25; (8) 1,81, (8) 1,60.

Ținînd seama de faptul că apar fluctuații mari în ceea ce privește compoziția chimică și implicit conținutul de uraniu, caracteristicile microscopice vor suferi și ele modificări corespunzătoare. Acestui fapt i se datorește și aspectul microscopic neomogen al probei. În pofida acestor variații puternice ale conținutului de uraniu, individualitatea daviditului este de necontestat.

. .

^{*} Institutul de fizică și inginerie nucleară, București.

3. Metoda activării cu neutroni. Metoda se bazează pe proprietatea nucleelor de-a interacționa cu neutronu și de-a se transforma pe această cale în nuclee radioactive Detecția radiațiilor γ caracteristice emise de aceste nuclee dă informații cu privire la compoziția elementală a esantionului studiat.

Ca sursă de neutroni s-a utilizat reactorul VVR-S al IFIN-București, făcîndu-se două seturi de iradieri, lungi și scurte.

În iradierile lungi, proba investigată, împreună cu proba standard GSP-1 [7-8] a fost iradiată timp de 20 ore la un flux de neutroni de 10¹³ n/cm² s Pentru

Fıg 1 Evidențierea produșilor fisionabili în spectrul γ al probei de davidit la iradieri lungi

detectarea radiațiilor s-a folosit un detector de Ge(Li) de volum 55 cm³, cu o rezoluție de 4,5ke V la ⁶⁰Co, cuplat la un analizor de tip Canberra cu 4096 canale Măsurătorile s-au efectuat după un timp de răcire de 10 zile, durînd 600 s.

Se observă (fig 1) razele cracteristice ale diverselor elemente, alături de elementele fisionabile U și Th Se observă de asemenea și produșii de fisiune (P.F.) ¹³¹I, ¹⁴⁰Ba și ¹³²I.

Iradierea scurtă s-a efectuat la poșta pneumatică existentă la unul din canalele orizontale ale reactorului, destinată urmăririi izotopilor cu viață scurtă. Proba s-a iradiat timp de 3 min la un flux de 10¹¹ n/cm² s. Măsurătorile s-au efectuat după un timp de răcire de 10 min durînd 120 s

Se observă (fig. 2) și în acest caz existența elementelor fisionabile alături de alte elemente dozate anterior [9]

Concentrația de Th a fost determinată din primul set de iradieri considerînd drept etalon roca standard GSP-1 și luînd în considerare radiația de 311 keV a ²³³Pa ($T_{1/2} = 27$ zile).

Concentrația de U s-a determinat din iradierea la poșta peneumatică luînd ca etalon un minereu cu conținutul de 0,528% U considerînd radiația γ de 74 keV a ²³⁹U($T_{1/2}$ =23,54 min) precum și radiațiile de 106 keV, 228 keV si 278 keV ale ²³⁹Np ($T_{1/2} = 56.3$ ore). Ultimele radiații au fost luate dintr-un spectru înregistrat după un timp de răcire de 30 ore, timp în care 165Dy $(T_{1/2} = 139 \text{ min})$ s-a dezintegrat total (165Dy are de aemenea o radiație de 279 keV)

Concentrațule elementelor U și Th astfel determinate sînt 2,10% (0,06) si respectiv 595 ppm (30), în paranteze fiind date erorile absolute

4 Metoda neutronilor întîrziali. Concentria de U în davidit s-a determinat și prin metoda neutronilor întîrziați Spre deosebire de alte metode tradiționale pentru determinarea conținutului de uraniu, metoda neutronilor întîrziați are avantajul simplității, rapidității și preciziei. În urma interacției neutronilor cu un nucleu fisionabil, apar fragmentele de fisiune si neutronii prompti. Unele fragmente de fisiune reprezintă precursorii neutronilor întîrziați. Aceste fragmente, prin emisie β^- , conduc la nuclee în stare excitată ce se dezexcită prin emisie de radiații y și neutroni întîrziați

Dintre nucleele fisionabile 235U și 239Pu fisionează cu neutronii termici, iar ²³⁸U și ²³²Th fisionează cu neutroni rapizi

În cazul unei probe de uraniu, contribuția esențială în emisia de neutroni întîrziați o are 235 U pentru care există 6 grupe de precursori cu $T_{1/2}$ variind între 55,75 s. s1 0,23 s.

S-a găsit că tumpii optumi de tradiere, răcire și măsură sînt respectiv 2 min. 12 s și l min Iradierea probei de davidit s-a făcut la poșta pneumatică a reactorului, detecția neutronilor fiind asigurată de o baterie de contori pentru neutroni constind din cristale scintilatoare cu plastic de bor [10] Ca etalon s-a folosit o probă geologică cu un conținut de 0,528 % U.

În limita erorilor experimentale, concentrația de uraniu în davidit coincide cu cea determinată prin activare cu neutroni.

(Intrat in redactie la 29 septembrie 1981)

BIBLIOGRAFIE

1 P Ramdohr, Die Mineralien und Ihre Verwachsungen, Acad Verlag, Berlin (1960)

- 1 R & Soboleva, J & Pudovkina, Minerali Urana, Moskwa (1957)
 3 A W G Whittle, J Geol Soc Austral, 2, 59 (1954)
 4 N H Fisher, C J Sullivan, Econ Geol, 49, 8, 826 (1953)
 5 L W Parkin, K R Glasson, Econ, Geol, 49, 8, 815 (1953)

- 6 R S Prigg, A W G Whittle, Bull 30, Geol Surv of South Australia

- 6 K S Filgg, A w G whittle, Bull 30, Geof Sulv of South Australia
 7 F J Flanagan, Geochim Cosmochim Acta, 37, 1189 (1973)
 8 J C Laul, L A Rancitelli, J Radioanal Chem, 38, 461 (1977)
 9 V Znamirovschi, M Sălăgean, A Moțiu, C Negucioiu, Studia Univ Babeş-Bolyai, Phys, 26 (1), 47 (1981)
 10 V Mateiciuc, M Constantinescu, T Stadnicov, T Burtic, Stud cercet fiz
- 3, 247 (1979)

THE URANIUM CONTENT DETERMINATION IN DAVIDITE BY NEUTRON ACTIVATION AND DELAYED NEUTRONS METHODS

(Summary)

The uranium content determination in a davidite sample by thermal neutron activation method and delayed neutrons method was made It was found the same uranium concentration in davidite by these two complementary methods

4 - Physica 1982

EPR ON SODA-BORATE GLASSES WITH NIO

S. SIMON and AL. NICULA

Introduction. In earlier papers [1-5] it was shown that the modifications of the local order in the alkali borate glasses, determined by the alkali oxide content and evidenced by NMR measurements [6] are also found in the modifications of the shape and parameters of the EPR spectra from different paramagnetic ions doped in these glasses In order to obtain sufficient intensive EPR signals to evidence in the limits of the experimental errors the effects of the alkali oxide it was necessary to introduce different contents of paramagnetic ions. In the case of the samples containing NiO it was necessary to add at least 5 mol %N1O. Because these relative high contensts of transition metal oxides may determine themselves modifications of the local order in the investigated samples it was followed by "B-NMR measurements the influence of the N1O content on the boron atoms coordination [7], determined in the alkali-borate glasses by the alkali oxide content. One noticed that the tetracoordinated boron atoms fraction was only affected at higher than 10 mol% NiO concentrations that showed that the evolution of the shape and parameters of the EPR spectra from glasses with 5 mol% NiO may be used to describe the local order in the nickel doped soda-borate glasses.

The borate glasses with NiO were investigated by optical spectroscopy and magnetic neasurements [8], without knowing papers studying the EPR investigation of these glasses

Experimental results. The glasses were prepared by the technique described in other papers [1-5,7] at a temperature of 1000 °C. The samples were noted with the symbol ^{*R*}N₁, where *z* represents the inolar concentration of NiO and *R* is the ratio between the sodium oxide concentration and the boron oxide one (see Table 1) The samples composition is given in Table 1

The EPR measurements were carried out in X band, at room temperature, on powder samples Figure 1 shows the recorded spectra. One notices that these spectra may be regarded as the superposition of two signals. a broad one with a width of ≈ 900 Gs and a narrow one at $g_{\rm eff} \approx 2.2$ with a width of ≈ 300 Gs. One observes that the share of the two signals in the EPR lineshapes modifies both with the alkali oxide content and with the increase of the nickel oxide. The dependence of the relative intensity of these signals on the alkali oxide content is shown in Figure 2. One remarks that the intensity of the broad line is a maximum for $0.2 \le R \le 0.4$ while the intensity of the narrow line is a minimum in this composition range.

The increase of the nickel oxide content from $5 \mod \%$ to $10 \mod \%$ determines two effects a diminution of the total intensity of the EPR signals accompanied by the increase of the broad line intensity (fig 1b) and at the same time the alkali oxide exhibits a weaker effect than in the case of the samples with $5 \mod \%$ NiO. Increasing the concentration of NiO to $15 \mod \%$, for the samples with

Tabel 1

Samples composition and symbol

<u>،</u> ۲

`

.

x mol % B ₂ O ₃ .	86,36	81,80	79,16	75	70,83	73,07	69,23	67,85	61,28	63,33	60	56,66
y mol % Na ₂ O	8,64	8,20	15,84	15	14,17	21,93	20,77	27,15	25,72	31,67	30	28,34
$R=\frac{y}{x}$		01		02	, -	0	3	0	4		0.5	
z-mol % N1O	5	10	5	10	15	5	10	5	10	5	10	15
Sample symbol	0,1 Ni ₈	0,1 N110	0,2 N15	0,2 N110	0,2 N115	0,3 Ni ₁₀	0,3 Ni ₁₀	0,4 Nia	0,4 Ni ₁₀	0,5 Nis	0,5 N110	0,5 N115

٠

٦

EPR ON SODA-BORATE GLASSES WITH NiO

1

51

R = 0.2 and R=0.5 (fig 1c) leads to the considerable increase of the broad line intensity, especially in the case of the samples with R = 0.2

Discussion and conclusions. The shape of the EPR signals from the samples containing 15 mol% NiO and with R = 0.2(Fig. 1c) allowed the supposition that the broad line arises from Ni²⁺ ions grouped in from of clusters in the vitreous matrix. The narrow line could be assigned to the Ni²⁺ ions disposed relatively izolated in the matrix, the interaction between these ions being weak. In this hypothesis it is evidenly that as the nickel oxide content increases the probability of clusters building is higher, that determines the increase of the broad line intensity in the EPR spectra

Fig 2 The R dependence of the intensity of the two signals identified in the EPR spectra from soda-borate glasses containing 5 mol% N₁O

The decrease of the total intensity of the EPR signals with the nickel oxide concentration could be the result of the existence of paramagnetic ion pairs with antiparalell coupled spins. The effective spin of these pairs is S = 0 and therefore the greater the fraction of these pairs is, the lower is the intensity of the EPR signal. This possibility is also supported by the fact that the magnetic measurements evidenced the existence of strong interactions of antiferomagnetic type. These measurements also indicated that the increase of the nickel oxide content leads to a smaller magnetic moment per nickel atom. It is not excluded that inside of the clusters the magnetic interactions are strong enough to exist magnetic order so that practically an effective spin S' could be assigned to the cluster. A superparamagnetic component could arise in this case in the EPR spectra. In this way one could also realize a diminution of the paramagnetic center density and thus a decrease of the EPR signal intensity.

This conclusion is supported in addition by the results of other studies which evidenced the phase separation in this composition range of the alkali-borate glasses [1, 9]

It was shown that there takes place the separation of a microphase in form of droplets, rich in alkali oxide, and its fraction is a maximum for the glasses with $0.2 \le R \le 0.3$ The scanning microscopy correlated with X—ray diffraction indicated [9] that the nickel ions are preponderently disposed in the microphase in form of droplets rich in modifier oxides The distribution of the nickel ions, in the investigated glasses, in the microphase in form of droplets rich in sodium oxide results in a considerable increase of the effective density of nickel ions in these zones of the matrix. The increase of the nickel oxide concentration makes more probable the clusters building and implicitly the broad line intensity will be higher (Fig 2). It is evident that in this case the number of the nickel ions disposed in the microphase poor in alkali oxide, majoritare as volumia, decreases and the intensity of the narrow line assigned to the relative isoleted nickel ions will be smaller

The apparent uniformizing of the shape of the EPR spectra from the samples with 10 mol% NiO is the result both of the diminution of the phase separation phenomenon and of the increase of the density of the nickel ions disposed. in the microphase poor in sodium oxide. Thus it becomes possible the building of the clusters also in this microphase and therefore in all the samples the intensity of the broad line increases.

The obtained results confirm once more that due to the effect of the vitreous matrix on the EPR spectra of the paramagnetic ions doped in them, these spectra may provide information about the matrix structure on the whole. It is inferred in addition, the nostatistical character of the paramagnetic ions distribution in the alkali-borate glasses.

(Received October 7 1981)

REFERENCES

- 1 S Simon, Al Nicula, Studia Univ Babes-Bolyai, Phys., 25 (2), 39 (1980)
- 2 S Simon, V Simon, Al. Nicula, Papers Submitted to the National Symposium on Physics of Amorphous Materials, May 30-31, 1981, p 47
- 3 S S1mon, Al N1cula, Papers Submitted to the National Symposium on Physics of Amorphous Materials, May 30-31, 1981, p 61
- 4 S Simon, Al Nicula, Papers Submitted to the National Symposium on Physics of Amorphous Materials, May 30-31, 1981, p 65
- 5 Al Nicula, S Simon, Int Conf on Amorphous Systems Investigated by Nuclear Methods, Balatonfured, 30 aug -4 sept. 1981, p 95. 6 G. E. Jellinson, P. J. Bray, J. Non-Cryst. Solids, 29, 187 (1978)
- 7 S. Simon, V. Simon, Al. Nicula, Studia Univ. Babes-Bolyai, Phys., 26 (1), 11 (1981)
- 8 R Juza, H Seidel, J Tiedemann, Angew, Chem, 5, 1, 85 (1966) 9 W Vogel, J Non-Cryst Solids, 25, 1-3, 171 (1977).

RES PE STICLE BORO-SODICE CU NIO

(Rezumat)

S-au studiat prin RFE sticle Loro-sodice cu 5, 10 -1 15% mel NiO Modificarea formei și a paremetrilor RIE în funcție de concentrația de oxid de sodiu și oxid de nichel au condus la concluzia că iorii de richel se dispun nestatistic în matricea vitroasă. Această distribuție a fost corelată cu separarea microfazelor în acest tip de stiele

DIELECTRIC PROPERTIES OF GLASSES WITH HIGH TITANIUM OXIDE CONTENT

S. SIMON, V. SIMON, AL. NICULA

1 Introduction. The amorphous materials, like glasses, as well as the partial crystallized ones, like vitroceramics, have been lately the matter of a great number of studies, due to their large applications in the most variant fields of the techniques and at the same time to the theoretical interest to elucidate the structure and the properties of these materials.

The dielectric properties of glasses are caused by the delayed response of carrier motion in an applied field. This response is experimentally manifested as dielectric polarization and an electric conductivity which depend on the frequency of the external field [1] The relative permittivity of dielectric constant ε , is commonly used to provide a measure of the polarizability of a material At very high frequencies, 1017-1018 Hz, any polarization process is possible, so that $\varepsilon_{r} = 1$ for all dielectrics In most dielectrics the carrier motions (migration, jump, distortion) which produce the polarization do not all take place at the same rate (Fig. I). The distortion of the electron clouds around individual nuclei occurs in $\sim 10^{-15}$'s The displacement of ions within their potential wells takes $\sim 10^{-13}$ s, the jumping motion over a barrier into an adjacent site may take 10^{-11} -10^{-4} s, while the migration of the carriers towards the separation zones of the heterogenous dielectrics, or the reorientation of the permanent dipoles is very much slower and may take from 10^{-6} s to minutes or aven hours depending on the particular process, the material and the temperature [3]. Electronic and ionic effects often make very similar contributions to dielectric polarization phenomena and they may indead be closely interwoven [1]

The frequency and the heat treatment dependences of the relative permittivity, measured in the range $10^4 - 10^7$ Hz, of samples from $T_{1O_2} - BaO - Gd_{2O_3}$ and TiO,-PbO-Gd,O3 systems were investigated

2 Experimental. The samples were prepared by melting of the components (Table 1) in alumina crucibles, at 1300 °C for 30 minutes in an electric furnace The melts were poured onto stainless steel plates at room temperature. The partial crystallization of the glass samples was carried out at 850°C for 15 and 25 hours

The dielectic measurements were carried out by means of a TESLA Qmeter at room temperature, from 51 kHz to 50 MHz

Samples composition

Γ		010	

Tabel 1

Sample symbol	Component oxides	T1O2 mol %	BaO mol %	PbO mol %	Gd ₂ O ₃ mol %
T · 2B [T 2B]G ₅ [TP]G ₅	I	33 3 31 7 47.5	66 7 63 3		

Fig 1 Theoretical frequency dependence of the dielectric permittivity [2]

3. Results and discussion. The variation with frequency of the permittivity of glasses is more complex than that shown in Fig. 1 For glass, and for many other dielectrics, the irregularity of structure and the variety of atoms and ions make it very difficult to calculate the macroscopic polarization and thus the relative permittivity from the properties of the ions. However this value can be determined for certain systems by means of the relationship [4]

$$\varepsilon_r = \sum_i \varepsilon_{r_i} \cdot x_i$$

where ε_r is the dielectric permittivity of the glass, ε_{r_i} the dielectric permittivity of the component oxides and x_i is the molar concentration of the component oxides. In this way it was possible to determine the values of ε_r for some samples at 1 MHz. The calculated data were in good agreement with the experimental ones, determined at the same frequency

Figure 2 shows the frequency dependence for the sample T 2B untreated and heat treated at 850 °C for 15 hours. One notices that the ε , value increases by partial crystallization about 2.5 times due to the BaTiO₃ microcrystallites grown in the samples The nonspectacular increase of the dielectric constant

could be explained by the distortion of $BaTiO_3$ microcrystallites submitted to the strains exerted by the vitreous phase.

Adding 5 mol % Gd₂O₃ to the matrix $T \cdot 2B$ the melt becomes more fluid and the glass more homogeneous, as evidenced in the electron microscopies The dielectric permittivity is lower than that of the matrix (Fig 3) and practically remains constant in this frequency range The dielectric permittivity of the $[T \cdot 2B]G_5$ of the partial crystallized samples increases with the treatment time in the first part of the frequency range and then slightly decreases

In this case the dielectric constant may be regarded as an amount charac-

T-2B

Fig 2 The frequency dependence of the dielectric permittivity for the T 2B samples

٤r

25

terizing the structural homogenity of the samples. The best constance of its value was obtained for the vitreous $[T \cdot 2B]G_5$ sample which is the most homogeneous glass, as evidenced by electron microscopy [5] With the growth of the different microcrystallites ε , modifies in function of frequency

The $[TP]G_5$ samples (fig 4) exhibit a weak increase of the dielectric constant with the heat treatment time and a frequency dependence even for the untreated sample (t=0)which denotes that also the untreated sample contains crystalline phase the fraction and symmetry of which does not pronouncedly change with the heat treatment time t. In these samples takes place only the development of the gadolinium containing microcrystallites after the heat treatment, which results in the symmetrization of the environment of the Gd^{3+} ions. This process was also evidenced by Gd3+ EPR from samples of the both investigated systems [6]

4 **Conclusions.** The behaviour of the studied samples in the investigated frequency range could be assigned both to migration and to jumping of the ions and electrons, without being possible the separation of these processes in the absence of other electrical measurements

٤r (T · 28) Gg 20 15 T = 850°C 10 • 25h log (f [Hz]) Fig 3 The frequency dependence of the dielectric permittivity for $[T \cdot 2B]G_5$ samples ITPIG_s ۶ŗ = 0 = 15 h t = 25h ţ 15 10 7 log (f (Hz)) Fig 4 The frequency dependence of the dielectric per-

mittivity for [TP]G₅ samples

It is also necessary to take into account the fact that in these glasses the oxygen atoms may be connected either to two network former cations (bridging oxygens) or to a network former and to a network modifier cation (unbridging oxygens). Therefore the polarizability of the two types of oxygens is different in the studied glasses

The possibility to obtain yitreous or vitroceramic samples with high dielectric constant it was evidenced. The values of z, may be modified by the controlled heat treatment.

The frequency dependence of the dielectric permittivity may be used to reflect the structural modifications induced in samples by different factors as preparation temperature, heat treatment temperature and time, or by other conditions.

(Received October 7, 1981)

REFERENCES

- 1. A E Owen, J Non-Cryst Solids, 25, 1-3, 370 (1977)
- 2 Yu, M. Poplavko, Fizika dielektrikov, Kiev, 1980 3 D. G. Holloway, The Physical Properties of Glass, London and Winchester, 1973
- 4 J Stanek, Elektriceskaia varka stekla, Moskva, 1979.
 5 S Simon, I Biris, Communication to the National Symposium on Physics of Amorphous Materials, May 30-31, 1981.
- 6. S. Simon, Al Nicula, Rev Roum Phys. (under press).

PROPRIETĂȚI DIELECTRICE ALE UNOR STICLE CU CONTINUT RIDICAT DE OXID DE TITAN

(Rezumat)

Se urmărește dependența de frecvență și de durata de tratament termic a permitivității dielectrice a sticlelor din sistemele T1O₂-BaO-Gd₂O₃ 91 T1O₂-PbO-Gd₃O₃

MAGNETIC RESONANCE ON BORATE GLASSES WITH Gd₂O₃ and Eu₂O₃

S. SIMON and AL. NICULA

Introduction. Part of the EPR results on some sodium borate glasses containing different Gd_2O_3 content were given in our previous papers [1-4]. The Gd^{3+} EPR spectra from all the investigated glasses are similar to those recorded from silicate [5] or chalcogenide [6,7] glasses. In these spectra in addition to the transition from $g_{eff} \approx 20$ other transitions at lower magnetic fields, i e with high g_{eff} factors, were evidenced The same spectrum type was also obtained from synthetic zeolites doped with Gd_2O_3 [8,9] To be noticed that in the case of these zeolites the Eu^{2+} ion exhibits a lineshape similar to the Gd^{3+} EPR spectrum, without that the hyperfine structure to be resolved. The same Eu^{2+} lineshape was observed in phosphate glasses [10].

In order to interpret the lines from low magnetic fields, characterized by large g_{eff} factors the possible transitions of the Gd³⁺ and Eu²⁺ ions disposed in strong crystalline fields of different symmetry [5-9, 11, 12,] were analized. According to these theories one considers that the Gd³⁺ and Eu²⁺ EPR spectra from glasses may be regarded as the superposition of the resonance lines arising from these ions disposed at least in three types of sites

a) sites in which the paramagnetic ions are submitted to the action of a weak crystalline field and give rise to a resonance line with $g_{\rm eff} \approx 20$

b) sites for which the crystalline field term and the Zeeman term from the spin Hamiltonian have approached values, and the ions disposed in these sites contribute to the resonance line with $g_{\rm eff} \approx 2.8$

c) sites of strong crystalline field which contribute to the resonance line with $g_{\rm eff} \approx 6.0$

Analyzing the manner in which the relative intensity of these lines from the Gd^{3+} EPR spectrum modify in function of the different factors it was established that the Gd^{3+} EPR spectrum is sensitive to the structural modifications induced in the vitreous matrices by the matrix composition and preparation temperature [3] or by their partial crystallization [4]. Although the NMR studies [13, 14] indicated that in the sodium-borate and lithium-borate glasses there is approximately the same type of structural elements, the EPR studies evidenced considerable differences between the two types of glasses regarding the dependence of the Gd^{3+} EPR spectra on the alkali oxide content and preparation temperature These results make the matter of the present paper Results obtained by the EPR study of the Eu²⁺ ion from lithium-borate glasses are also presented

Experimental. The effect of the glass composition on the Gd^{3+} EPR spectra was followed on the samples given in Table 1, where M denotes sodium or lithium. The samples were obtained by melting at 900 °C mixtures of H₃BO₃, Na₂CO₃ or Li₂CO₃ and Gd₂O₃ in suitable proportions, according to Table 1 The melts were kept at the preparation temperature for 30 minutes and then they were poured onto stainless steel plates at the room temperature

Tabel 1

Composition of the alkali borate glasses containing Gd₂O₃

x mol% B ₂ O ₃	90 45	82 92	76 54	71 07	66 33
y mol% M_2O	9 05	16 58	22 96	28 43	33 17
$R = \frac{y}{x}$	01	02	03	04	05
$z \mod \% \operatorname{Gd}_2\operatorname{O}_3$	05	05	05	05	05

The samples with europium were only prepared in the lithium-borate glasses. The Eu₂O₃ concentration was the same as that of the Gd₂O₃ introduced in the lithium-borate glasses. The Eu³⁺ ions were reduced to Eu²⁺ by adding 1% carbon and 1% Sb₂O₃ The preparation temperature of the samples which contains Eu₂O₃ was of 1100 °C The effect of the preparation temperature was followed in the range 800-1300 °C on lithium-borate glasses with R = 0 1 and R = 0 5 and on soda-borate glasses with R = 0 25 and R = 0 5 All the samples were prepared in alumina crucibles. In order to verify and to eliminate the possible effect of the alumina crucibles about 30% of samples were melted in platinum crucibles

The EPR spectra were recorded on powder samples at the room temperature, on a standard Jeol equipment, at 93 GHz

Results. The Gd^{3+} and $Eu^{2+} EPR$ spectra recorded from the lithium-borate glasses are like those shown in Figure 1. The registration gain for the samples containing europium was three times higher than for those soped with gado-linium $Eu^{2+} EPR$ signals were obtained for the samples with $0.2 \le R \le 0.4$, the intensity of these signals being a maximum in the case of the samples with R = 0.25 (Fig. 2) The dependence of the Gd³⁺ EPR signal intensity on the alkali oxide content is shown in Figures 3 and 4. The effect of the alkali

 Γ_{12} 1 EPR spectra from lithium borate glasses containing $\mathrm{Gd}_{2}\mathrm{O}_{3}$ and $\mathrm{Eu}_{2}\mathrm{O}_{3}$ (samples with R = 0.25)

oxide content on the Gd^{3+} signal shape, evidenced by the modification of the ratio between the intensity of the lines with large g_{eff} factors (60 or 28) and the intensity of the line with $g_{eff} \approx 20$ is given in F1gure 5.

The manner in which the preparation temperature influences the shape of the Gd^{3+} EPR spectra from sodium-borate glasses is shown in Figures 6 and 7 In contrast with the previous works [3, 4] in which only the evolution of the ratio between the amplitudes of the different lines from the Gd^{3+} EPR spectre

rent lines from the Gd³⁺ EPR spectra was regarded, in this paper the line intensity was determined also taking into account the broadening of these lines.

Discussion. The identity observed between the lineshapes of the Eu²⁺ and Gd³⁺ EPR spectra from the studied borate glasses represents an argument in the favour of the assumption that the two ions are disposed in similar sites in the disordered systems. The more weaker Eu²⁺ signal in the case of the europium doped samples in comparison with the Gd³⁺ EPR signal obtained for the same concentration of rare earth oxide concentration proved that only a part of the Eu³⁺ ions were reduced to Eu²⁺. The dependence of the Eu²⁺ EPR line intensities on the alkali oxide content also demonstrates a change in the redox equilibrium of the lithium-borate glasses. The evolution of the EPR signal intensities confirms the earlier conclusions [15, 16] regarding the more reductive character of the alkali-borate glasses with $0.2 \leq R \leq 0.3$.

Fig 3 The relative intensity of the lines with $g_{\rm eff} \approx 60.28$ and 2.0 from the Gd³⁺ EPR spectra vs the alkali oxide content a) samples with Na_sO, b) samples with Li_sO.

F 1 g 4 The dependence of the total intensity of the Gd^{3+} EPR signals on the alkali oxide content

Following in parallel the manner in which the Gd³⁺ EPR spectra are influenced by the alkali oxide content one notices a difference between the effect of the sodium and of the lithium oxides. Li2O determines a relatively linear decrease of the EPR signal intensities (Figs 3b and 4), while for the glasses with Na_2O the EPR line intensity is a maximum for the samples with R < 0.2 and R > 0.4 and a minimum for the samples with R = 0.3 (Figs. 3a and 4) The diminution of the intensity in the samples with R = 0.3, although identical Gd₂O₃ contents were introduced in all the samples, could be explained accepting that in the studied glasses the antiferromagnetic interaction, evidenced by susceptibility measurements [17], is sufficently strong to form ion pairs with

the spin S = 0. The presence of these strong interactions in the samples with low Gd_2O_3 concentration is possible in the case when the Gd^{3+} ions are not uniformly distributed in the vitreous matrix. In the case of the samples with

Fig 5 The modification of the intensity of the lines with large g_{eff} factors in the samples doped with $Gd_{9}O_{3}$ vs the alkali oxide content. a) samples with Na₂O, b) samples with Li₂O.

Fig 6 The effect of the preparation temperature on the ratio between the intensity of the lines with $g_{\rm eff} \approx 60$ and $g_{\rm eff} \approx 20$ from the Gd³⁺ EPR spectra a) glasses with Na₂O b) glasses with I_{A2}O

a weaker EPR signal it is to suppose that the Gd^{3+} ions are disposed in zones relatively reduced as volume, increasing thus the probability to exist here Gd^{3+} ions sufficiently approached to realize the mentioned coupling.

In addition to the dependence of the EPR signal intensity on the alkali oxide content, one also noticed a particular change of the EPR signal shape, shown in Figure 5, where the intensity of the lines with $g_{\text{eff}} \approx 6.0$ and 2.8

F 1g 7 The effect of the preparation temperature on the ratio between the intensity of the line with $g_{\rm eff} \approx 2.8$ and the line with $g_{\rm eff} \approx 2.0$ from the Gd³⁺ EPR spectra a) glasses with Na₃O, b) glasses with Li₃O.

in relation with the line with $g_{\rm eff} \approx 20$ versus the alkali oxide content is given. The increase of the intensity of the lines with $g_{\rm eff} > 2.0$ indicates an increase of the Gd³⁺ ions number disposed in relatively strained sites, characterized by strong crystalline fields.

The intensity of these lines is a maximum in the case of the samples for which the total intensity of the EPR signal is a minimum. Therefore one considers that the Gd³⁺ ions submitted to the tensions of the vitreous matrix move in the melt towards the zones richer in alkali oxide and thus there are conditions to appear the above mentioned ion pairs

The raising of the preparation temperature yields both in the sodium-borate glasses and in the lithium-borate ones the increase of the Gd³⁺ ions number disposed in sites characterized by strong crystalline fields The broadening of the Gd^{3+} EPR lines is the result of the increase of the microenvironmental fluctuations around the Gd³⁺ ions. The increasing preparation temperature also determines the decrease of the melt viscosity, so that by undercooling a higher disorder degree is frozen in the vitreous matrix, what leads both to a broadening of the distribution range of the oxygens from the first coordination shell of the Gd^{3+} ion and to increase of the Gd^{3+} ions number disposed in relatively strained sites, characterized by strong crystalline fields

One notices (Figs 6 and 7) that by raising the preparation temperature the differences observed between the shape of the Gd^{3+} EPR lines in the glasses with different alkalı oxide content are diminished. That confirms once more [18] that the increase of the preparation temperature induces a diminution of the structural effects caused by the increase of the alkali oxide content

Conclusions. The Eu²⁺ spectrum, obtained for the first time in this glass system, proves that the Eu^{2+} ions are disposed in similar sites to those of the Gd^{3+} ions. Analogous to the situation observed in zeolites also in glasses the hyperfine structure for Eu²⁺ is not resolved

The shape modification of the Gd³⁺ EPR spectra as the alkali oxide and the preparation temperature increase indicate the possibility to use it in the obtaining of information concerning the structural modifications induced in the different matrices by some factors which determines changes of the local order.

(Received October 7, 1981)

REFERENCES

- 1. S Simon, F Tolea, I Duca and Al Nicula, Studia, Univ Babes-Bolyai, Phys, 24, (1), 37 (1979) 2 S S1mon, Al N1cula, Progresse in fizică, V, p 22, 1979

· •

- 3 S. Simon and Al Nicula, Papers submitted to the National Symposium on Physics of Amorphous Materials, Cluj-Napoca, 1981, p 65
- 4 S Simon and Al Nicula (under press in Rev Roum Phys)
- 4 S Simon and AI Nicula (under press in Rev Roum Phys)
 5. R C Nicklin, J K Johnstone, R G Baines and D R Wilder, J Chem Phys, 59, 1, 1652 (1973)
 6. I V Chepeleva, V N Lazukin and S A Dembovsci, D A N, 11, 864 (1967)
 7 I.B Chepeleva and V N Lazukin, D A D, 226, 2, 311 (1976)
 8 Al Nicula adn E Trif, Proc of the XVII-th Congres Ampère, Turku, 1972
 9 Al. Nicula and J. Turkevich, Rev Roum Phys, 19, 2191 (1974)

- 10 G O Karapetyan, D M Yudin, D G Gallinov, Izv Acad Nauk, SSSR, ser. Fiz, 31, 809 (1967)
- 14 Al Nicula, Rezonantă magnetică, Ed did. și ped., București, 1980.
- 12. E. Trif, V. Militaru and Al. Nicula, Rev. Roum. Phys, 20, 1, 89 (1975)
- 13 G E. Jellison, P. J. Bray, J. Non-Cryst. Solids, 29, 187 (1978) 14 P. J.2Bray, S A Faller, G E Jellison, Y H Yun, J Non-Cryst. Solids, 39-38, 93 (1980)
- 15 S 51m on and Al Nicula, Studia, Univ. Babeoş-Bolyai, Phys., 25 (2), 39 (1980).
 16. S. 51m on and Al Nicula, Papers submitted to the National Symposium on Physics of Amorphous Materials, Cluj-Napoca, May 30-31, 1981 p. 61.
 17 S 51m on T. T. Battaiae, A. Clugan, and Al Nicula, Studia, and Al Nicula, Studia, Studi
- 17 S Simon, T. Petrişor, A Giurgiu and Al. Nicula (to be published)
 18 Al Nicula and S Simon, Int Conf on Amorphous Systems Investigated by Nuclear Methods, Balatonfured, 31 aug - 4 sept. 1981.

REZONANȚA MAGNETICĂ PE STICLE BORICE CU Gd.O., SI Eu.O.

(Rezumat)

Sticlele litu-borice și sodiu-borice dopate cu Gd2O4 și Eu2O4 au fost investigate prin RES. Spectrul RES al Eu²⁺ obținut pentru prima dată în aceste sticle este similar cu cell al Gd²⁺. Se arată că natura oxidului alcalin, ponderea lui în raport cu oxidul de bor și temperatura de preparare a probelor influențează în mod deosebit forma spectrelor RES. Aceste modificări sînt corelate cu efectele factorilor menționați asupra ordinii locale din sticlele studiate

9

CONTRÔLEUR DE NIVEAU POUR LES LIQUIDES CRYOGÉNIQUES

I. POP, V. IONCU

L'emploi des liquides cryogéniques pour diverses études dans les laboratoires reçoit une importance de plus en plus grande De ce fait, il est trés important, dans de nombreux cas, de connaître, à tout moment, la hauteur des niveaux des liquides cryogéniques pour éviter de graves préjudices (voir le cas des bobines surconductrices).

D'autre part, on peut réaliser un système de remplissage automatique des récipients à azote ou helium liquide, en employant le même appareil, ce qui est très utile.

Les différents systèmes existants utilisent des résistances au charbon, thérmorésistances, des tablettes à silicium, etc. [1-8]

Le procédé décrit 101, ne comprend aucun élément actif dans la sonde à mesurer introduite dans le liquide en obtenant de cette manière une fiabilité élevée.

Le contrôleur de niveau que nous avons réalisé et que nous allons y décrire, fait partie de la catégorie des contrôleurs capacitifs

La sonde (fig 1) est en effet un coaxial composé d'un tube en inoxe d'un diamètre intérieur de 6 mm et d'un axe centrale (noyau) toujours en inoxe d'un diamètre de 2 mm Le noyau central est convenablement axé à l'aide des pièces d'écartement, disques en teflon placés dans le tube de 10 à 10 cm et qui présentent 4 trous ($\emptyset = 1$ mm) en croix qui laissent passer le liquide (fig. 1)

Dans la paroi du fourreau (le tube inoxe) est pratiqué une série de trous avec un dyamètre d'un mm intervalle entre les pièces d'écartement en teflon pour éviter un pompage du liquide cryogénique, ce qui déterminera l'accroissement de la consomniation du hélium ou de l'azote liquide

L'épaisseur du fourreau extérieur doit être compatible avec une bonne résistence mécanique dans le cas où la sonde est mobile Si elle fait partie commune d'un récipient Dewar, l'épaisseur peut en être réduite, ce qui diminue la consommation du liquide cryogénique

Le bloc électronique (fig. 2) comprend le générateur (multivibrateur) réalisé par trois portes logiques de l'intégré CDB 400 (A, B, C), celles-ci étant liés en montage d'une telle manière qu'elles engendrent des oscillations d'une fréquence de 1 MHz.

La 4-ème porte (D) de l'intégré joue le rôle d'un formateur de signal, ce qui n'est pas absoluement nécessaire le signal arrivant sur le monostable CDB 4121 sur l'éntrée B, où la commande peut être faite à un signal lent, variable et irrégulier

Le multivibrateur monostable est réalisé avec le circuit intégré CDB 4121 alimenté, tout comme CDB 400, à une tension de 5 V. Le déclanchement sera

\$ \$

Fig. 1 La sonde capacitive

fait par l'entrée B, spécialement adaptée à l'attaque par une tension qui peut varier lentement et irrégulièrement.

La constante de temps de l'impulsion de sortie du monostable est :

۲

,

 $\tau = RC_{s} \ln 2$

Avec le changement de la capacité C_x , qui détermine la constante de temps du monostable, on change aussi la caractéristique de déclanchement du mono-

F1g. 2. Le bloc électronique du contrôleur de niveau.

Fig 3. Schéma de principe de l'alimentateur

stable, respectivement la valeur moyenne de la tension à la sortie du multivibrateur monostable (on sait qu'après le déclanchement, les sorties de CDB 4121 sont indépendantes des transitions ultérieures des signaux d'éntrée et dependent seulement de la constante de temps).

En nous appuyant sur ces faits, les indications μ A-mètre (100 μ A) seront proportionnelles à la capacité de la sonde (respectivement au niveau du liquide cryogénique dans la sonde).

Le mesurage du niveau (de la capacité de la sonde) est assuré par l'entrée B du monostable d'une fréquence étalon quand la sonde est couplée aux bornes C_x . La variation de la capacité C_x de la sonde (par le remplissage avec du liquide), détermine, à la sortie Q du monostable, l'apparition des impulsions dont la durée est fonction de la capacité de la sonde ce qui conduit au changement de la valeur moyenne de la tension de la sortie.

À cause du fait que les variations ΔC_x de la sonde pour les liquides cryogéniques sont petites, le bloc électronique a été complété par un amplificateur de courent (T₁) protégé pour les variations de température (D₁). Celui-ci actionne l'instrument analogique (μ A-mètre) connecté dans un montage en pont

Pour les mesurages on fait le réglage de R_6 (avec $R_5 = 0$) en mettant à zéro l'aiguille de l'instrument pour la sonde non introduite dans le liquide Puis on fait le réglage de R_5 j'usqu'à ce que l'instrument indique 100 (la sonde du dispositif est complètement plongée dans le liquide -1 m).

L'alimentation du montage est faite par une source de tension stabilisée à 5 V (fig. 3).

L'importance de tels dispositifs de mesure a été mentionnée au début de ce travail. L'appareil est réalisé par une technique moderne (circuits intégrés logiques) en suivant un schéma simple, robuste, en travaillant avec une sonde sans éléments actifs, motif qui donne la garantie d'une fiabilité élevée.

(Manuscrst reçu le 29 octobre 1981)

CONTRÔLEUR DE NIVEAU

BIBLIOGRAPHIE

K. P Klein, J Scient Instrum, 43/12, 957 (1966) 1

2 P K Mital, Electronics, 10, 71 (1967)

J K Marsh, Electronics, 3, 90 (1967)' 3

j,

S M Beniaminovici, L Fiser, Priborî i teh eksperimenta, 2, 258 (1971) A Mole Electr Microel Ind, 166/15, 1 (1973) 4

5

6 P Vezeanu, Măsurarea nivelului în tehnică, Ed tehnică, București, 1973 7. M A. Arutunian, G D Movseion, Priborî 1 teh eksperimenta, 2, 270 (1979)

Gh. Cristea, V Ioncu, D. Stănilă, Studia Univ Babeș-Bolyai, Phys, 24 (2), 45 (1979). 8

CONTROLOR DE NIVEL PENTRU LICHIDE CRIOGENICE

(Rezumat)

Este prezentat un dispozitiv electronic pentru controlul nivelului lichidelor criogenice în containere închise, realizat în tehnica circuitelor integrate logice, permițînd măsurarea nivelelor în plaja 0-1 m Precizia măsurătorilor - 2%

. 1

CONSTRUIREA CÎMPURILOR JOOS-WEINBERG DIN CÎMPURI DIRAC

Z. GÁBOS

În lucrare se ajunge la vectorul de stare Joos-Weinberg al particulei cu spinul unu și masa de repaos diferită de zero, prin combinarea bispinorilor particulei și antiparticulei Dirac. Se arată în continuare că și pe această cale putem ajunge la unele rezultate stabilite [4], [5], [7] privind parametrizarea matricei densității de spin.

1º. Utilizînd matricele

$$\gamma_{j} = \begin{pmatrix} 0 & -i\sigma_{j} \\ i\sigma_{j} & 0 \end{pmatrix}, \quad \gamma_{4} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \tag{1}$$

care se obțin din matricele Dirac prin

$$\gamma_{\mu} = U \gamma_{\mu}^{D} U^{-1}, \quad U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$
 (2)

pornind de la ecuația Dirac

$$\gamma_{\mu} \frac{\partial \Psi}{\partial x_{\mu}} + m_{0} \Psi = 0, \qquad (3)$$

pentru particulele cu helicitate pozitivă și negativă obținem bispinorii

$$\Psi_{\lambda} = u_{\lambda}(\vec{v})e^{ipx}, \quad \lambda = +\frac{1}{2}, \quad -\frac{1}{2}, \quad px = \vec{p} \quad \vec{x} - \varepsilon t, \quad (4)$$

unde

$$u_{1/2} = \frac{1}{\sqrt{2}} \begin{pmatrix} A \varphi_{1/2} \\ -A^{-1} \varphi_{1/2} \end{pmatrix}, \quad u_{-1/2} = \frac{1}{\sqrt{2}} \begin{pmatrix} A^{-1} \varphi_{-1/2} \\ -A \varphi_{-1/2} \end{pmatrix}, \tag{5}$$

cu

$$A = \sqrt[4]{\frac{1+v}{1-v}}, \quad \varphi_{1/2} = \begin{pmatrix} \cos\frac{\vartheta}{2} \\ \\ \sin\frac{\vartheta}{2} e^{i\varphi} \end{pmatrix}, \quad \varphi_{-1/2} = \begin{pmatrix} -\sin\frac{\vartheta}{2} e^{-i\varphi} \\ \\ \\ \cos\frac{\vartheta}{2} \end{pmatrix}. \tag{6}$$

Unghiurile ϑ , φ sînt definite prin $e_1 = \sin \vartheta \cos \varphi$, $e_2 = \sin \vartheta \sin \varphi$, $e_3 = \cos \vartheta$ (\dot{e} fiind versorul în direcția mișcării). Bispinoru u_{λ} satisfac condiția

$$\bar{u}_{\lambda}u_{\lambda'} = \delta_{\lambda\lambda}, \quad \text{unde} \quad \bar{u}_{\lambda} = u_{\lambda}^{+}\gamma_{4}.$$
(7)

Pentiu antiparticula Dirac avem

$$\Psi_{\lambda}^{a} = v_{\lambda}(\vec{v}) e^{-i\rho x}, \text{ cu } v_{\lambda}(\vec{v}) = \gamma_{2} u_{\lambda}^{*}(\vec{v}).$$
(8)
Bispinorii

,

$$v_{1/2} = -\frac{1}{\sqrt{2}} \begin{pmatrix} A^{-1}\varphi_{-1/2} \\ A\varphi_{-1/2} \end{pmatrix}, \quad v_{-1/2} = \frac{1}{\sqrt{2}} \begin{pmatrix} A\varphi_{1/2} \\ A^{-1}\varphi_{1/2} \end{pmatrix}$$
(9)

satisfac condiția

$$\bar{v}_{\lambda}v_{\lambda'} = -\delta_{\lambda\lambda'}.$$
 (10)

În continuare vom mai avea; nevoie de matricea

$$\gamma_5 = \gamma_1 \gamma_2 \gamma_3 \gamma_4 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \tag{11}$$

2°. Să considerăm particula liberă cu spinul unu, viteza \vec{v} , și masa de repaos M_0 . Afirmăm că vectorul de stare al acestor particule

$$\Psi_{\Lambda} = \Phi_{\Lambda}(\vec{v}) e^{i\vec{P}\cdot\vec{t}} \quad \Lambda = +1, \ 0, \ -1, \quad Px = \vec{P} \cdot \vec{x} - Et,$$
(12)

poate fi construit cu ajutorul bispinorilor $u_{\lambda}(\vec{v})$, $v_{\lambda}(\vec{v})$. În acest scop folosim matricele

$$M_{s}^{\mp} = -\frac{1}{4\iota} \varepsilon_{ijk} (\gamma_{j} \gamma_{k} - \gamma_{k} \gamma_{j}) (1 \mp \gamma_{5})$$
(13)

scriind expresia

$$\Phi_{\Lambda}(\vec{v}) = \begin{pmatrix} C_{1\lambda}^{1\Lambda} & v_{\lambda}^{+} M_{\star}^{-} u_{\lambda'} \\ \frac{1}{2}\lambda \frac{1}{2}\lambda'}{v_{\lambda}^{+} M_{\star}^{+} u_{\lambda'}} \\ C_{\frac{1}{2}\lambda \frac{1}{2}\lambda'}^{1\Lambda} v_{\lambda}^{+} M_{\star}^{+} u_{\lambda'} \end{pmatrix}$$
(14)

formată cu coeficienții Clebsch-Gordan.

Prin efectuarea concretă a calculelor se ajunge la

$$\Phi_{1} = \frac{1}{2} e^{i\varphi} \begin{pmatrix} A^{2}\varphi_{1} \\ -A^{-2}\varphi_{1} \end{pmatrix}, \quad \Phi_{0} = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_{0} \\ -\varphi_{0} \end{pmatrix}, \quad \Phi_{-1} = \frac{1}{2} e^{-i\varphi} \begin{pmatrix} A^{-2}\varphi_{-1} \\ -A^{2}\varphi_{-1} \end{pmatrix}.$$
(15)

Mărımile

$$\varphi_{1} = \begin{pmatrix} -\cos\vartheta & \cos\varphi + i & \sin\varphi \\ -\cos\vartheta & \sin\varphi - i & \cos\varphi \\ \sin\vartheta \end{pmatrix}, \quad \varphi_{2} = \begin{pmatrix} \sin\vartheta & \cos\varphi \\ \sin\vartheta & \sin\varphi \\ \cos\vartheta \end{pmatrix},$$
$$\varphi_{-1} = \begin{pmatrix} \cos\vartheta & \cos\varphi + i & \sin\varphi \\ \cos\vartheta & \sin\varphi - i & \cos\varphi \\ -\sin\vartheta \end{pmatrix}$$
(16)

—sin ð

satisfac condiția

$$(\vec{e}, \ \vec{\vartheta})\varphi_{\Lambda} = \Lambda \varphi_{\Lambda},$$
 (17)

unde

$$(\vartheta_i)_{jk} = -i\varepsilon_{ijk}.\tag{18}$$

Z GÁBOS

Nu este greu să ne convingem de faptul că mărimile de sub (12) satisfac ecuația Joos-Weinberg a particulelor cu spinul unu

$$\gamma_{\mu\nu} \frac{\partial^2 \Psi}{\partial x_{\mu} \partial x_{\nu}} + M_0^2 \Psi = 0, \qquad (19)$$

care conține matricele

$$\gamma_{44} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \gamma_{4y} = \begin{pmatrix} 0 & i\vartheta_j \\ -i\vartheta_j & 0 \end{pmatrix}, \quad \gamma_{y} = \begin{pmatrix} 0 & 1\vartheta_y - (\vartheta_i\vartheta_j + \vartheta_j\vartheta_i) \\ 1\vartheta_y - (\vartheta_i\vartheta_j + \vartheta_j\vartheta_i) & 0 \end{pmatrix}.$$
(20)

Mărimile de sub (14) satisfac condiția

$$\overline{\Phi}_{\Lambda} \Phi_{\Lambda'} = -\delta_{\Lambda\Lambda'}, \text{ unde } \overline{\Phi}_{\Lambda} = \Phi^+_{\Lambda\Upsilon_{44}}.$$
 (21)

3°. Matricea de densitate de spin a particulei respectiv antiparticulei Dirac poate fi formată cu ajutorul vectorului Stokes $\vec{\xi}$ și $\vec{\eta}$:

$$\rho^{\mathfrak{p}} = \frac{1}{2} \left(\vec{\xi}, \ \vec{\sigma} \right), \ \rho^{\mathfrak{s}} = \frac{1}{2} \left(\vec{\eta}, \ \vec{\sigma} \right).$$
(22)

Cu ajutorul acestor matrice putem construi matricea nenormată cu elementele

$$P_{MM'}^{(n)} = C_{\frac{1}{2}m_1\frac{1}{2}m_2}^{1M} C_{\frac{1}{2}m_1'\frac{1}{2}m_1'}^{1M'} \rho_{m_1m_1'}^{\phi} \rho_{m_1m_1'}^{\phi} \rho_{m_1m_2'}^{a}$$
(23)

Indicele de rînd M respectiv de coloană M' ia valorile +1, 0, -1, pe cînd indicele de rînd m_1 , m_2 respectiv de coloană m'_1 , m'_2 iau valorile 1/2, -1/2.

În urma efectuării unor calcule simple pentru elementele acestei matrice obținem

$$P_{11}^{(n)} = \frac{1}{4} \left(1 + \xi_3 + \eta_3 + \xi_3 \eta_3 \right), \ P_{00}^{(n)} = \frac{1}{4} \left(1 + \xi_1 \eta_1 + \xi_2 \eta_2 - \xi_3 \eta_3 \right),$$

$$P_{-1-1}^{(n)} = \frac{1}{4} \left(1 - \xi_3 - \eta_3 + \xi_3 \eta_3 \right), \ P_{1-1}^{(n)} = P_{-11}^{(n)\bullet} = \frac{1}{4} \left[\xi_1 \eta_1 - \xi_2 \eta_2 - i(\xi_1 \eta_2 + \xi_2 \eta_1) \right],$$

$$P_{10}^{(n)} = P_{01}^{(n)\bullet} = \frac{1}{4} \left[\xi_1 + \eta_1 - i(\xi_2 + \eta_2) + (\xi_1 \eta_2 + \xi_2 \eta_1) - i(\xi_2 \eta_2 + \xi_2 \eta_2) \right],$$
(24)

$$P_{0-1}^{(n)} = P_{-10}^{(n \cdot 1)} = \frac{1}{4\sqrt{2}} \left[\xi_1 + \eta_1 - i(\xi_2 + \eta_2) - (\xi_1\eta_3 + \xi_3\eta_1) + i(\xi_2\eta_3 + \xi_3\eta_2) \right].$$

Împărțind aceste expresii cu

Sp
$$\rho^{(n)} = \frac{1}{4} [3 + (\vec{\xi}, \vec{\eta})]$$
 (25)

se ajunge la matricea p cu spurul unu

$$\rho = \frac{1}{\operatorname{Sp}\rho^{(n)}} \rho^{(n)}.$$
 (26)

Elementele matricei de densitate de spin pentru particulele cu spinul unu sînt date de

$$\rho_{11} = \frac{1}{3} + \frac{1}{\sqrt{2}} t_3 + \frac{1}{2} t_{33}, \quad \rho_{00} = \frac{1}{3} - t_{33},$$

$$\rho_{-1-1} = \frac{1}{3} - \frac{1}{\sqrt{2}} t_3 + \frac{1}{2} t_{33}, \quad \rho_{1-1} = \rho_{-11}^* = \frac{1}{2} (t_{11} - t_{22}) - it_{12}, \quad (27)$$

$$\rho_{10} = \rho_{01}^* = \frac{1}{2} (t_1 - it_2) + \frac{1}{\sqrt{2}} (t_{13} - it_{23}),$$

$$\rho_{0-1} = \rho_{-10}^* = \frac{1}{2} (t_1 - it_2) - \frac{1}{\sqrt{2}} (t_{13} - it_{23}).$$

Utilizînd (24), (25), (26), (27) se ajunge la expresiile stabilite de noi pe o altă cale [7]:

$$t_{j} = \frac{\sqrt{2}}{3 + (\vec{\xi}, \vec{\eta})} (\xi_{j} + \eta_{j}), \ t_{km} = \frac{1}{3 + (\vec{\xi}, \vec{\eta})} \left[\xi_{k} \eta_{m} + \xi_{m} \eta_{k} - \frac{2}{3} (\xi, \eta) \delta_{km} \right].$$
(28)

Rezultatul obținut este valabil pentru o superpoziție coerentă a stărilor de bază. (Intrat in redactie la 18 noiembrie 1981)

BIBLIOGRAFIE

- H Joos, Fortschr Phys, 10, 65 (1962)
 S Weinberg, Phys Rev 133, B 1318 (1964)
 A Sankaranarayanan, R. H Good, jr, II Nuovo Cumento, 36, 1303 (1965)
 L C. Biedenharn, Ann. of Phys, 4, 104 (1958), 6, 399 (1959)
 C. J. Mullin, J M Keller, C L Hammer, R H Good, jr, Ann of Phys, 37, 55 (1966).
- Z. Gábos, Acta Physica Polonica, 34, 223 (1968), Studia Univ Babes-Bolyai, ser Math -6 Phys, 13 (2), 85 (1968)

7 Z Gábos, Studia Univ Babes-Bolyai, ser Phys., 19 (1), 27 (1974)

LA CONSTRUCTION DES CHAMPS JOOS-WEINBERG À L'AIDE DES CHAMPS DIRAC (R'ésumé)

On obtient la fonction d'onde des particules de spin 1 et de masse de repos différente de zéro, en partant des bispineurs d'une particule et d'une antiparticule Dirac Ainsi avons nous obtenu une nouvelle possibilité pour établir très simplement les expressions connues concernant la paramétrisation de la matrice de densité de spin des états purs.

PROPAGATION OF ION-ACOUSTIC WAVES IN AN ARGON-HELIUM PLASMA WITH WARM IONS (II) Nonlinear propagation

M. CRISTEA

In the first part of this paper [1] we have analysed the propagation of the ion-acoustic waves in an Ar—He plasma in the linear approximation, assuming unequal ion temperatures In order to compare our results with those reported in the literature, we have considered, as a particular case, equal ion temperatures.

In this part of the paper we are going to extend the investigation, taking into account the nonlinear effects The system of basic equations leads to a Korteweg-de Vries type equation, which admits solitary waves solutions We analyse the soliton amplitude and width dependence on the light ions (He) concentration and on the temperature of the two ion species

Making use of equations (1) and (5) from [1] we can get the following relations

$$v_1^{(1)} = \frac{\lambda}{A\lambda^2 - \sigma_1} n_e^{(1)} = \frac{\mu\lambda}{X} n_e^{(1)}$$
(1)

$$v_{2}^{(1)} = \frac{\lambda}{\mu A \lambda^{2} - \sigma_{2}} n_{e}^{(1)} = \frac{\lambda}{Y} n_{e}^{(1)}$$
(2)

$$n_1^{(1)} = \frac{\alpha}{A \lambda^2 - \sigma_1} \quad n_e^{(1)} = \frac{\mu \alpha}{X} \quad n_e^{(1)}$$
(3)

$$n_2^{(1)} = \frac{1-\alpha}{\mu A \lambda^2 - \sigma_2} \ n_e^{(1)} = \frac{1-\alpha}{Y} \ n_e^{(1)}$$
(4)

$$\Phi^{(1)} = n_e^{(1)} \tag{5}$$

With the help of (1) - (5), in the second order approximation, the following system of equations is obtained

$$-\lambda \frac{\partial n_1^{(2)}}{\partial \xi} + \alpha \frac{\partial v_1^{(2)}}{\partial \xi} + \frac{\mu \alpha}{X} \frac{\partial n_e^{(1)}}{\partial \tau} + \frac{\mu^2 \alpha \lambda}{X^2} \frac{\partial}{\partial \xi} (n_e^{(1)})^2 = 0$$
(6)

$$-A\alpha\lambda\frac{\partial v_1^{(2)}}{\partial \xi} + \sigma_1\frac{\partial n_1^{(2)}}{\partial \xi} + \alpha\frac{\partial \Phi^{(2)}}{\partial \xi} + \frac{\mu A\alpha\lambda}{X}\frac{\partial n_e^{(1)}}{\partial \tau} + \frac{\mu\alpha}{X}n_e^{(1)}\frac{\partial n_e^{(1)}}{\partial \xi} = 0$$
(7)

$$-\lambda \frac{\partial n_2^{(2)}}{\partial \xi} + (1-\alpha) \frac{\partial v_2^{(2)}}{\partial \xi} + \frac{1-\alpha}{Y} \frac{\partial n_e^{(1)}}{\partial \tau} + \frac{(1-\alpha)\lambda}{Y^2} \frac{\partial}{\partial \xi} (n_e^{(1)})^2 = 0$$
(8)

$$-\mu A(1-\alpha)\lambda \frac{\partial v_2^{(2)}}{\partial \xi} + \sigma_2 \frac{\partial n_2^{(2)}}{\partial \xi} + (1-\alpha) \frac{\partial \Phi^{(2)}}{\partial \xi} +$$
(9)

$$+\frac{\mu A (1-\alpha)\lambda}{Y} \frac{\partial n_e^{(1)}}{\partial \tau} + \frac{1-\alpha}{Y} n_e^{(1)} \frac{\partial n_e^{(1)}}{\partial \xi} = 0$$
$$\frac{\partial n_e^{(2)}}{\partial \xi} - \frac{\partial \Phi^{(2)}}{\partial \xi} - n_e^{(1)} \frac{\partial n_e^{(1)}}{\partial \xi} = 0$$
(10)

$$\frac{\partial^2 n_s^{(1)}}{\partial \xi^2} + n_1^{(2)} + n_2^{(2)} - n_s^{(2)} = 0$$
(11)

Eliminating the quantities $v_1^{(2)}$, $v_2^{(2)}$ and $\Phi^{(2)}$ we find the second order corrections to the densities

$$\frac{\partial n_{1}^{(2)}}{\partial \xi} = \frac{\mu \alpha}{X} \frac{\partial n_{e}^{(2)}}{\partial \xi} + \frac{2\mu^{2}A \alpha \lambda}{X^{2}} \frac{\partial n_{e}^{(1)}}{\partial \tau} +$$

$$+ \left(\frac{\mu^{2}\alpha}{X^{2}} - \frac{\mu \alpha}{X} + \frac{2\mu^{3}A \alpha \lambda^{2}}{X^{3}}\right) \cdot n_{e}^{(1)} \frac{\partial n_{e}^{(1)}}{\partial \xi} , \qquad (12)$$

$$\frac{\partial n_{2}^{(2)}}{\partial \xi} = \frac{1 - \alpha}{Y} \frac{\partial n_{e}^{(2)}}{\partial \xi} + \frac{2\mu A (1 - \alpha) \lambda}{Y^{2}} \frac{\partial n_{e}^{(1)}}{\partial \tau} +$$

$$+ \left(\frac{1 - \alpha}{Y^{2}} - \frac{1 - \alpha}{Y} + \frac{2\mu A (1 - \alpha) \lambda^{2}}{Y^{3}} - n_{e}^{(1)} \frac{\partial n_{e}^{(1)}}{\partial \xi} - \frac{\partial n_{e}^{(1)}}{\partial \xi} +$$

$$(13)$$

Differentiating now equation (11) with respect to ξ and substituting there (12) and (13) we obtain the nonlinear equation for $n_e^{(1)}$

$$\frac{\partial^{3} n_{e}^{(1)}}{\partial \xi^{3}} + 2\mu A \lambda \left(\frac{\mu \alpha}{X^{2}} + \frac{1-\alpha}{Y^{2}}\right) \frac{\partial n_{e}^{(1)}}{\partial \tau} + \left[\frac{\mu^{3} \alpha}{X^{2}} + \frac{1-\alpha}{Y^{2}} - 1 + 2\mu A \lambda^{2} \left(\frac{\mu^{2} \alpha}{X^{3}} + \frac{1-\alpha}{Y^{3}}\right)\right] n_{e}^{(1)} \frac{\partial n_{e}^{(1)}}{\partial \xi} = 0$$
(14)

which can be written in the form

۱

,

ł

١

$$\frac{\partial n_e^{(1)}}{\partial \tau} + P n_e^{(1)} \frac{\partial n_e^{(1)}}{\partial \xi} + Q \frac{\partial^3 n_e^{(1)}}{\partial \xi^3} = 0$$
(15)

where we have introduced the notations

$$P = N_2/N_1, \ Q = 1/N_1 \tag{16}$$

with

$$N_1 = 2\mu A \lambda \left(\frac{\mu \alpha}{X^2} + \frac{1 - \alpha}{Y^2} \right)$$
(17)

$$N_{2} = \frac{\mu^{2}\alpha}{X^{2}} + \frac{1-\alpha}{Y^{2}} - 1 + 2\mu A \lambda^{2} \left(\frac{\mu^{2}\alpha}{X^{3}} + \frac{1-\alpha}{Y^{3}} \right)$$
(18)

Equation (15) is a Korteweg-de Vries (KdV) equation, the coefficients P and Q being functions of the plasma parameters Although the KdV equation has been deduced a century ago, during the last years considerable research has been devoted to the study of this equation [4, 6, 7, 13] in view of its many diverse applications [5, 8, 9, 12]

The stationary solutions of the KdV equation can be obtained [2, 3, 8] introducing the new variable

$$\chi = \xi - U\tau \tag{19}$$

so that (15) becomes an ordinary differential equation

$$-U\frac{dw}{d\chi} + Pw\frac{dw}{d\chi} + Q\frac{d^3w}{d\chi^3} = 0$$
⁽²⁰⁾

where $w = n_e^{(1)}$. This equation can be integrated once to obtain

$$Q \, \frac{d^2 w}{d\chi^2} = C_1 + U w - \frac{P}{2} \, w^2 \tag{21}$$

 C_1 being a constant of integration. The second integration can be effected after multiplying both sides of (21) by $dw/d\chi$ Then

$$\frac{Q}{2} \left(\frac{dw}{d\chi}\right)^2 = C_2 + C_1 w + \frac{U}{2} w^2 - \frac{P}{6} w^3$$
(22)

and the general solution can be written in the form of an elliptic integral

$$\int_{w_s}^{w} \frac{dw}{\sqrt{F(w)}} = \chi \tag{23}$$

where w_0 is the value of w at $\chi = 0$ and

$$F(w) = \frac{1}{g} \left(2C_2 + 2C_1 w + U w^2 - \frac{P}{3} w^3 \right)$$
(24)

, Imposing now the boundary conditions

$$w \to 0, \frac{dw}{d\chi} \to 0, \frac{d^2w}{d\chi^2} \to 0 \text{ as } |\chi| \to \infty$$
 (25)

which require $C_1 = C_2 = 0$, equation (23) can be integrated to yield the solutary wave

$$n_{\star}^{(1)}(\xi - U\tau) = \frac{3U}{P} \operatorname{sech}^{2}\left[\frac{1}{2}\sqrt{\frac{U}{Q}}\left(\xi - U\tau\right)\right]$$
(26)

The solution (26) shows that the soluton amplitude is proportional to P^{-1} and its width is proportional to $Q^{1/2}$. Further we shall analyse the dependence of these quantities on the He ions concentration and on the ionic fluid temperatures.

Figs 1-4 represent P^{-1} and $Q^{1/2}$ as functions of the concentration α , whereas on figs. 5-7 the variation of these quantities with the He ions temperature is plotted For each curve the plasma parameters are indicated.

Fig. 1 represents the variation of soliton amplitude with the concentration α , for both ion species described by adiabatic equations of state ($\gamma_1 = \gamma_2 = 3$). All the curves have similar shapes. From the maximum value, corresponding to $\alpha = 0$, the amplitude first decreases abruptly and attains a minimum value situated in the range $\alpha < 0.2$, then starts increasing monotonically as α increases. The curve I, which corresponds to cold ions ($\theta_1 = \theta_2 = 0$), is identical with that obtained in [11] The amplitude has higher values if the Ar ions are warm (curve II), and lower and lower values as the He ions temperature increases.

The soliton with (fig 2) is independent of the concentration in the case of cold ions (curve I), is less affected (for small α) if the Ar ions only are warm (curve II), and presents a minimum all the more pronounced as the He ions temperature is higher.

If the Ar or He ions are isothermal the behaviour of the amplitudes is different (fig. 3). For K > 0, when the He ions are isothermal (curves I and III), the soliton amplitude decreases with increasing α . This result is similar to that reported in [12] On the other hand, for K < 0, i.e. isothermal Ar ions, the amplitude increases as the concentration increases (curve II). In both cases (K > 0 and K < 0) the amplitude can take negative values, consequently rarefaction solitary waves are possible. The soliton width (fig. 4) decreases monotonically as the concentration increases for both K > 0 and K < 0.

The variation of P^{-1} and $Q^{1/2}$ with the He ions temperature, plotted on figs. 5–7, has been calculated for a single value of the concentration, namely $\alpha = 0,1$.

Fig 5 shows the variation of soliton amplitude and width with the He ions temperature for $\gamma_1 = \gamma_2 = 3$ (adiabatic equations of state). It can be noticed that at different values of the Ar ions temperature the amplitudes are identical for $\theta > 0.2$ and take different values only for small θ_1 values The soliton

width is not influenced by the temperature of heavy ions, all the three curves which correspond to different Argions temperature being identical. Hence, the variation of the Ar ions temperature does not affect the soliton amplitude and width. On the other hand, the curves show clearly that these quantities decrease significantly as the He ions temperature increases, at least for the considered value of α It is well known that the effect of a finite ionic temperature is to reduce the amplitude of the solitary wave [9, 10, 12]. Furthermore, considering unequal ionic temperatures, one can see that this effect is mainly determined by the light ions temperature.

Fig 6 shows the variation of soliton amplitude with the He ions temperature when one ion species is isothermal. The heavy ion fluid is isothermal only in a very narrow domain of θ_1 values (curve I) In this range the amplitude decreases monotonically with the growth of the temperature. For K > 0 the amplitude also decreases as θ_1 increases, but for small θ_1 values it is negative The scale on the right-hand side of fig. 6 refers to the curve III, corresponding to cold Ar ions. It is interesting to notice that by increasing solely the He ions temperature, the soliton amplitude is larger by about one order of magnitude, compared with the case of relatively warm heavy ions (curve II) The soliton width (fig 7) decreases as θ_1 increases if K < 0 (curve I), and increases with increasing θ_1 if K > 0 (curves II and III).

The results of our computations, which are displayed in figs. 1--7, show clearly that significant changes occur in a two ion species plasma with unequal temperatures, compared to the case of more usually considered plasma with equal ionic temperatures

Firstly, if both ionic fluids follow adiabatic equations of state, the behaviour of the soliton amplitude and width is similar to that reported in the literature for plasmas with equal ionic temperatures. But the increase of one or other ionic temperature has opposite effects. Thus, the increase of heavy ions temperature favours the formation of solitons, while the increase of light ions temperature prevents their formation

Secondly, as it is well known, in the case of equal ionic temperatures, one ion species (namely the light ions) can be isothermal (in our notation K > 0) Apart from this situation, in the case of unequal ionic temperatures there exists also the possibility of isothermal heavy ions (K < 0) Whereas for isothermal light ions our results are similar to those already known, for isothermal heavy ions the behaviour of the soliton amplitude and width is quite peculiar

Finally, it is worth noticing that in both cases (K > 0 and K < 0) it seems that rarefaction solitary waves can appear in certain ranges of the concentration and temperature, where the amplitude takes negative values. The points of discontinuity, where the amplitude would become infinite, correspond to such

M CRISTEA

values of plasma parameters which prevent the formation of solitons Indeed, for these values the coefficient P tends to zero, consequently in equation (15) the nonlinear term vanishes. Or, as it is well known [2, 3, 8] the solitons can appear only if both the dispersion, determined by charge separation, and the nonlinearity, determined by convection, are present simultaneously.

(Received December 18, 1981)

REFERENCES

- 1. M. Cristea, Studia Univ. Babes-Bolyai, Phys., 26, (2), 3 (1981).
- 2. R. C. Davidson, Methods in Nonlinear Plasma Theory, Academic Press New York, 1972
- 3 B Kadomtsev, Phénomenes collectifs dans las plasmas, Mir, Moscou, 1979 4 C S Lai, Can. J. Phys., 57, 490 (1979)
- 5 A. N. Leznov, M. V. Saveliev, V G. Smirnov, Teor. Mat. Fiz., 47, 216 (1981)-6 L. Martina, P M Santini, Lett. Nuovo Cimento, 29, 513 (1980).

- 7 R. M. Miura, J. Math. Phys., 9, 1202 (1968). 8 A. C. Scott, F. Y. F. Chu, D. W. McLaughlin, Proceed, IEEE, 61, 1443 (1973)
- 9. B K Shivamoggi, Can. J. Phys., 59, 719 (1981)
- 10 F. Tappert, Phys Fluids, 15, 2446 (1972).
- 11. M Q Tran, P. J Hirt, Plasma Phys., 16, 617 (1974)
- 12 M Q. Tran, Plasma Phys., 16, 1167 (1974).
- 13 G Turchetti, Lett. Nuovo Cimento, 27, 107 (1980)

PROPAGAREA UNDELOR IONO-ACUSTICE ÎNTR-O PLASMĂ Ar-He CU IONI CALZI

(II)

(Rezumat)

În lucrare se analızează dependența amplitudinii și lărgimii solitonilor iono-acustici de concentrația și temperatura ionilor ușori într-o plasă Ar-He cu temperaturi neegale ale fluidelor 10nice

în cel de al XXVII-lea an (1982) Studia Universitatis Babeş-Bolyai apare în specialitățile: matematică fizică chimie geologie-geografie biologie filozofie ştiințe economice ştiințe juridice istorie

filologie

На XXVII году издания (1982) Studia Universitatis Babeş-Bolyai выходит по следующим специальностям :

математика физика химия геология-география биология философия экономические науки юридические науки история филология Dans sa XXVII-е an

Dans sa XXVII-e année (1982) Studia Universistatis Babes-Bolyai paralt dans les spécialités : mathématiques physique chimie géologie-géographie biologie philosophie sciences économiques sciences juridiques histoire philologie

43 904

Abonamentele se fac la oficiile poștale, prin factorii poștali și prin difuzorii de presă, iar pentru străinătate prin ILEXIM, Departamentul export-import presă, P.O. Box 136-137, telex 11226, București, str. 13 Decembrie nr. 3,

Lei 35