STUDIA universitatis babeş-bolyai

PHYSICA

1975

CLUJ-NAPOCA

REDACTOR ŞEF: Acad. prof. ST. PASCU

REDACTORI ȘEFI ADJUNCȚI: Acad. prof. ȘT. PÉTERFI, prof.VL. HANGA, prof. GH. MARCU

COMITETUL, DE REDACȚIE FIZICĂ: Prof. AL. BÓDI, prof. Z. GÁBOS (redactor responsabil), prof. V. MERCEA, membru corespondent al Academiei, prof. I. POP, asist. O. COZAR, (secretar de redacție)

STUDIA universitatis babes-bolyai

PHYSICA

Redacția CLUJ-NAPOCA str M Kogălniceanu, 1 • Telefon 13450

SUMAR - CONTENTS - SOMMAIRE

GI	H ILONCA, I POP, The Anomaly of the Hall Effect in N1-Al Alloys • Effectul	2
NT	Tan in analytic de MI-AI	0
11	(II) • ESD Study of Copper (II) Distributionsphere	10
σ	(II) TASK Study of Copper (II) Distribution phosphase	10
1	prelucrates datelor experimentale priving unale fenomene de transport în semicon-	
	ductori de impuritate • A Program Destinated to HP 9810A Minicompu-	
	ter, for Interpretation of Experimental Data on some Transport Phenomena in	
	Impurity Semiconductors	14
L	STÂNESCU, I ARDELEAN, D STÂNESCU, I HOSCIUC, Structura și conduc-	
_	tibilitatea electrică a unor sisteme pe bază de V.O. cu formatori de fază vi-	
	troasa • Structure and Electrical Conductivity of Some V ₂ O ₅ Systems with	
	Glass Formers	24
0	COZAR, V ZNAMIROVSCHI, I HAIDUC, On the Metal-Ligand Bonding	
	ın Copper(II)—Bıs(8-Hydroxyquinolinate) 💿 Asupra legăturii metal—ligand	
	în cupru(II)—bis (8-hidroxichinolinat)	29
\mathbf{L}	ONIȚIU, Determinarea unor mărimi moleculare din măsurători ultrasonice 🌒 Déter-	
	mination de quelques grandeurs moléculaires par mesurages ultrasoniques	37
F	BOTA, I COVACI, R V BUCUR, Studiul teoretic al oxidării anodice a hidroge-	
	nului dizolvat in strat subțire de paladiu, prin electroliza la curent constant	
	(11) • Theoretical Study of the Anodic Oxidation of Hydrogen Dissolved in a	41
ç	OUDDA Andrewski the Charles State Constant Current (11)	41
S	Configuration of the Inorne-Answeg Incory to Evaluate the Transport	
	Enslog la calculul configuration de transport in america tente incine	
	lichda	47
ਸੋ	PIISKÁS Efectul Seebeck de suprafată la $2\pi\Omega$ policristalin \blacksquare Surface Seebeck	
•	Effect of Policrystalin -ZnO	51
0	POP. L STĂNESCU, Considerații asupra fortei termoelectromotoare la sistemul	
	semiconductor $Cr.OBeO \bullet On$ the Thermoelectromotive Force of the	
	Cr ₂ O ₂ -BeO System	55

о м	 POP, A NÉDÀ, L STÀNESCU, L HOMORODEAN, Difuzivitatea termică a oxizilor Cr₂O₃ și SnO₂ ● Thermal Diffusivity of Cr₂O₃ and SnO₂ Oxides CRIȘAN, R GH. POP, Effect of Magnetic Impurities on the Itinerant-Electron 	59
	Antiferromagnet	00
E	CONSTANTIN, J CH. ABBE, Transfert de charge et réactions ion-molécule dans	63
	l'interaction de H_{2}^{+} et $CH_{n} D_{4-n} \bullet$ Transfer de sarcină și reacții ion-moleculă în interactionea dintre H_{2}^{\pm} și $CH_{2} D_{4-n}$	69
E	TRIF, AL. NICULA, EPR of Gd^{8+} Ions in S(1) Sites of Synthetic Zeolite \bullet	00
	RPE a 10nului Gd ²⁺ în pozițiile S(1) a zeoliților sintetici	74
N	ote — Notes	

,

79

~

I MILEA, Obținerea scărilor micrometrice prin mijloace simple • Sur l'obtention des microéchelles avec des moyens simples

ç

•*

 $\dot{\hat{2}}$

,

THE ANOMALY OF THE HALL EFFECT IN NI-A1 ALLOYS

GH. ILONCA and **IULIU** POP

In this paper was studied the relation between spontaneous Hall constant R_s , spontaneous magnetization σ_s , electrical resistivity ρ , magnetic part of resistivity ρ_m and phononic part of resistivity ρ_F , in the solid solutions of nickel-aluminium alloys with 1%, 2%, 4%, 6%, 8% and 10% at concentrations Al in N1. The measurements performed at temperatures between 77°K and 750°K pointed out that there is a temperature range, where the spin-wave model is well verified (in agreement with the T^{3/2}law) This study allowed us to separate the temperature range in which the mechanism of conduction electrons scattering on spin-wave prevailes from the temperature range, in which the scattering of the conduction electrons on spin-waves in interaction is predominant

Introduction. The connection between the Hall effect, electrical resistivity and spontaneous magnetization studies represents a special interest in ferromagnetic alloys. According to the recent investigations, the anomal Hall effect in ferromagnetic materials is the result of the spin-orbit interaction of conduction electrons which participates in different scattering mechanisms.

The published theoretical works on the Hall effect are dealing with the study of spin-orbit interaction of conduction and localized electrons, associated to the different scattering mechanisms of conduction electrons such as:

— scattering on impurities [1, 2], on phonons [3], on impurities and phonons [4-6], on spin waves [7], on impurities and spin-waves [8] and on lattice defects, on phonons and spin-waves. Taking into account all these interactions between the spontaneous Hall constant R_s and the electrical resistivity the following general analytical form can be written.

 $R_{s} = \alpha_{1}\rho_{0} + \alpha_{2}\rho_{m} + \beta_{1}\rho_{F}^{2} + b\rho_{0}^{2} + \beta_{2}\rho_{0}\rho_{m} + \beta_{3}\rho_{0}\rho_{F} + \beta_{4}\rho_{m}\rho_{F},$

where ρ_0 , ρ_F and ρ_m are the remanent, phononic and magnetic contributions of the electric resistivity.

The theoretical formulas resulted from a differentiated study of different models require to be experimentally verified, establishing in this way the temperature ranges of their validity and the specific mechanisms for the transport phenomena, in ferromagnetic materials.

The samples preparation and experimental technique. The N₁-Al alloys were obtained by melting the components in a Tammann furnace under a vacuum of 10^{-4} mm Hg. A mass of 20 gr. of alloys was melted

in a graphit crucible of spectral purity In order to avoid any segregations and to obtain a homogeneous solid phase, all the samples have been annealed at 1173 K for 24 hours. A metallographic study of the obtained samples confirmed the existence of the unique phase The samples for the Hall effect and electrical resistivity were cut from the lingo and polished to a paralelipipedical form of a thikness of 0,4-0,6mm.

The Hall voltage was measured by a compensation method in magnetic field of 10500 Oe. The electrical resisitivity was measured by the four sounds method [13] and the magnetization intensity by the Weiss and Forrer method [14].

Experimental results. We are going to elucidate in this paper the intimate mechanism of the interaction of the 4s peripheric electron system and 3d magnetic electrons, by studying Ni—Al alloys, of 1%, 2%, 4%, 6%, 8% and 10% at. Al concentrations. The problems of the transport phenomena in such metallic systems have not been clarified yet. We have studied the transport phenomena such as the Hall effect and the electrical conductivity, as well as the magnetic behaviour at saturation as functions of the temperature and intensity of the applied magnetic field. It was necessary to determine the temperature dependence of spontaneous magnetization $\sigma_s(T)_H = 0$ (fig. 1), in order to connect the characteristic parameter, of transport phenomena to magnetic parameters of ferromagnetic alloys.

The specific characteristics of the ferromagnetic nickel-alluminium alloys are given in figure 2. On the same figure is represented the spontaneous magnetization as a function of $T^{3/2}$.

As it can be seen, the spontaneous magnetization depends linearly of $T^{3/2}$ in a relative large temperature range, depending on the alloys concentration The fact that spontaneous magnetization obeys Bloch's law $\sigma_s = \sigma_0 [1 - \alpha T^{3/2}]$ shows that for the ferromagnetism of N₁-Al – alloys, the spin-wave model is valid up to a relative high temperature.

This result will be useful for the Hall effect interpretation

The interactions which determine the magnetic order in alloys have an essential contribution also in transport phenomena as electrical conductivity, Hall effect etc As it was shown in [15] the temperature dependence of the electrical resistivity is strongly influenced by the magnetic contribution. At low temperatures, below 100 K, the electrical resistivity has a little variation with temperature, tending to a bearing in such a way, that at 0 K the ordonate to the origine, ρ_0 is always positive. It means that at low temperatures the scattering mechanisms of the conduction electrons on phonons, on magnetic inhomogenities and on spin-waves become unessential, the predominant mechanism being that of scattering on impurities and on crystal lattice defects.

determine for a ferromagnetic alloy the total electrical resistivity that may be written as

$$\rho =
ho_0 +
ho_n +
ho_F$$

where ρ_m is the magnetic resistivity and ρ_F the phononic resistivity.

We have separated these components of resistivity, ρ_0 , ρ_m and ρ_F using a graphic method. In the case of N1-Al alloys we have obtained the temperature dependence of these components which allowed us to corelate them with the spontaneous magnetisation σ_s and with the spontaneous Hall constant R_s

The linear dependence $\rho_m[\sigma_s^2(0) - \sigma_s^2(T)]$ given in figure 3, shows that the scattering mechanism of conduction electrons on spin-waves and on impurities is varified only in a linear l

on impurities, is verified only in a limited temperature range, at low temperatures. This fact is in agreement to Kasuya's theory [16]

The most faithful and complete image concerning the scattering mechanism of conduction electrons in ferromagnetically ordered alloys results from the study of galvanomagnetic effects From the magnetic field dependence of ρ_H (Fig. 4) we have obtained the ordinary Hall constant R_0 , that was

used to determine the spontaneous Hall constant R_s Using R_0 values, we could determine the temperature dependence of spontaneous Hall constant R_s , from temperature dependence of Hall voltage, given in figure 5. It is pointed out in figure 5, that the curves $R_s(T)$ present a maximum at the Curre point This maximum is characteristic for the phase transition ferromagnetism-paramagnetism Our attention was concentrated especially, on the Hall effect, in the ferromagnetic domaine The spontaneous Hall constant R_s is a better parameter than the total Hall constant and can be correlated with the other physical characteristical parameters for alloys studied by us According to K on d or s k i [5, 9] between spontaneous Hall constant and electrical resistivity of ferromagnetic alloys is the following dependence $R_s = a\rho + b\rho^2$, a and b being constants. By plotting R_s/ρ as function of ρ , generally a straight line is obtained, as it can be seen in figure 6

In this figure one can see that the dependence R_s/ρ of ρ is really linear, in limited temperature ranges, having a broken line. The temperature at wich R_s/ρ has the first elbow represents the high limit up to which the spontaneous magnetization σ_s , verifies the ,3/2- law" (see fig 2)

These results show that at the low temperature the predominant mechanism of scattering of conduction electrons is on spin-waves. On the next linear segment the predominant mechanism of scattering of the conduction electrons is on magnetic inhomogenities, on phonons, and on impurities.

This statement is also supported by the anomal dependence of spontaneous Hall constant R_s on magnetic resistivity ρ_m , given in figure 7.

From this figure one can see that the temperature values on which the elbows occur correspond to the limit up to values which the "3/2 low is valid. As it is well known, the magnetic part of the electric resistivity is caused essentially by the scattering of conduction electrons on spin-waves. This statement is argued by the theoretical results also obtained by Irhin and Abelski [7] and Kasuya [16], expressed by linear relation $R_s = \alpha + \beta \rho_m$, where α and β are constant

Irhin, Abelski and Savrov [3, 7] theoretically had established the relation $R_s = \gamma[\sigma_s^2(0) - \sigma_s^2(T)]$ by studying the mechanism of scattering of conduction electrons on spin-waves and magnetic inhomogenities, where γ is a constant and $T < T_c$ (T_c being the Curie temperature). Our experimental results verify this formula for Ni-Al alloys for temperature below 300 K, as it is pointed out in figure 8.

Concerning the scattering mechanism of conduction electrons on impurities and on phonons, from our experimental data results a linear dependence of spontaneous Hall constant on phononic resistivity for temperatures below T_c .

In figure 9 the dependence of the R_s of ρ_F is plotted. This dependence has a strong maximum at the Curre temperature, which shifts to the lower values of the ρ_F as the aluminium concentration increases. The increasing aluminium concentration also causes a strong increase of the R_s value.

These effects are in good agreement with the scattering mechanism of conduction electrons on phonons and on impulities

Conclusions. The study of the magnetic and electric behaviour of nickel-aluminum alloys leads us to an experimental evidence of the scattering mechanisms of the conduction electrons on impurities, spin-waves, phonons and impurities and on magnetic inhomogenities

Bloch's law indicates that the spin-waves model is valid for nickelaluminum up to about $0.5T_c$ By separating the electrical resistivity components ρ_0 , ρ_m and ρ_F it was possible to determine the temperature values at which the magnetic inhomogenities occur in nickel-aluminium alloys. These values result also from the corelation of the following dependences

$$\sigma_s(T^{3/2}), \ \rho_m[\sigma_s^2(0) - \sigma_s^2(T)], \ R_s[\sigma_s^2(0) - \sigma_s^2(T)], \ R_s(\rho_m), \ \frac{R_s}{\rho}(\rho) \ \text{and} \ R_s(\rho_F)$$

In this study we have determined the temperature range in which different mechanisms of conduction electrons scattering are mainly predominant (Received August 15, 1974)

REFERENCES

- 1 Karplus, R, Luttinger J M, Phys Rev., 95, 1154 (1954)
- 2 Luttinger, J M, Phys Rev, 112, 739 (1958)

- 3 Irhin Iu P, Savrov, V G, JETF, 42, 1233 (1962)
 4 Abdurahmanov, A A, Vestink M G U, Ser fiz, 2 (1964)
 5 Kondorski, E J, Ceremuskina, A V, Kurbaniazev, A, V, F, TT,
- 6, 539 (1964) 6. Kondorski, E J, JETF, 48, 511 (1963)
- 7 Irhin, Iu, Abelski, S S, FT, T, 6, 1635 (1964).

- 8 Kogan, Iu, Maksimov, L A, FTT, 7, 530 (1965)
- 9 Kondorski, E J, JETF, 21, 337 (1966)
- 10 Kikoin, K J, Buriak, E M, Muromskin, Ju A, Dokl AN. SSSR. 125. 1011 (1959)

- 1 Gurevici, L. E., Jasevici, J. N., FTT, 5, 2620 (1963)
 12 Pop Iuliu, Ilonca Gh, Rev. Roum de Phys, 12, 4, 343-352 (1967)
 13 Ilonca Gh, Studia Univ Babeş-Bolyai, ser Math-Phys, f 1, 127-133 (1967)
 14 Weiss, P., Forrer, R., Ann de Phys, 5, 153 (1926)
- 15. Pop, Iuliu, Ilonca, Gh, Phys Status Solidi, 14, 1 (1972)
- 16 Kasuya, T, Progr Theor Phys, 22, 227 (1959)

1

EFECTUL HALL ÎN ALIA JELE DE NIAI

(Rezumat)

S-a studiat dependența constantei Hall spontană R_s , de magnetizarea spontană σ_s , de rezistivitatea electrică ρ , de termenul magnetic al rezistivității ρ_m și de termenul fononic al rezistivității pF, în soluții solide de nichel-aluminiu

Din dependența de temperatură a efectului Hall și a magnetizării spontane s-a stabilit domeniul de valabilitate a modelului undelor de spin Astfel s-a putut separa net domeniul de temperatură în care prevalează mecanismul de împrăștiere a electronilor de conductibilitate pe undele de spin, de domeniul în care împrăștierea electronilor de conducție are loc pe undele de spin în interacțiune.

N. VEZENTAN, O. COZAR și I. MILEA

Dintre complecșii de cupru(II) cu atomi liganzi de sulf, o atenție deosebită s-a acordat ditiocarbamaților [1-3] și ditiofosfaților [4-12]. Ambele tipuri de complecși au fost studiați atît în soluții cît și sub formă de monocristal, unde s-au pus în evidență două poziții neechivalente ale ionilor Cu²⁺ în celula elementară [2, 10, 11].

Vom prezenta în continuare rezultatele obținute de noi asupra dietilditiofosfatului de cupru(II) în benzen la temperatura camerei și la 77°K, precum și asupra monocristalului diluat magnetic cu izomorful de nichel. S-a lucrat cu un spectrometru JES-3B în banda X, avînd modulația cîmpului de 100 Kc/s.

Spectrul RES la temperatura camerei în benzen prezintă atît structura hiperfină datorită interacției electronului paramagnetic cu nucleele izotopilor ⁶³Cu și ⁶⁵Cu(I_{Cu} = 3/2), cît și structura superhiperfină dată de nucleele ³¹P(I_P = 1/2). Parametrii RES obținuți în soluție lichidă sînt:

$$g = 2,045$$
 $A = 66.8 \cdot 10^{-4} \text{cm}^{-1}$ $a^{P} = 8.5 \quad 10^{-4} \text{cm}^{-1}$

La 77°K se obțin rezolvate cele două grupuri de linii hiperfine corespunzătoare lui g_{\parallel} și g_{\perp} , iar despicările superhiperfine ale fosforului, rezolvate atît în absorbția paralelă cît și în cea perpendiculară, sînt izotrope. În acest caz

$$g_{\parallel} = 2,081$$
 $g_{\perp} = 2,024$
 $A_{\parallel} = 146,7$ 10^{-4} cm^{-1} $A_{\perp} = 26,5$ 10^{-4}cm^{-1} $a^{P} = 8,5$ 10^{-4}cm^{-1}

Spectrele obținute pe monocristal indică prezența a două molecule magnetic neechivalente în celula elementară Figura l reprezintă spectrul dietilditiofosfatului de cupru(II) pentru o orientare paralelă a cîm-

Fig I Spectrul RES al monocristalului de dietilditiofosfat de cupru (II), pentru H paralel cu axa tetragonală a moleculei I Linnile asociate celeilalte molecule din celula elementară sînt notate cu II.

pului magnetic extern cu axa tetragonală a uneia din molecule. Valorile tensorului g determinate din aceste spectre ($g_{\parallel} = 2,070$ și $g_{\perp} = 2,024$) sînt în bună concordanță cu cele obținute în soluția înghețată la 77°K Spectrul unei molecule constă din patru grupuri de linii, acestea fiind cele patru componente hiperfine date de nucleele ⁶³Cu și ⁶⁵Cu. Fiecare linie a cuprului este despicată în cîte trei linii avînd raportul intensităților 1 2: 1 datorită cuplajului echivalent cu cele două nuclee ³¹P.

În figura 2 este prezentat cazul cînd cei doi ioni Cu²⁺ din celula elementară sînt echivalenți și spectrele lor coincid Parametrii RES caracteiistici acestui spectru (g = 2,036 și $A = 68 \quad 10^{-4} \text{ cm}^{-1}$) au valori apropiate de cele obținute în soluție lichidă.

Considerînd complexul de simetrie D_{4h} , orbitalii proprii de antilegătură sînt [2, 6]:

$$|B_{1g}\rangle = \alpha d_{x^2-y^2} - \alpha' \Phi_{\sigma} (x^2 - y^2)$$
(1a)

$$|B_{2g}\rangle = \beta d_{xy} - (1 - \beta^2)^{1/2} \Phi_{\pi}(xy)$$
 (1b)

$$|E_{g}\rangle = \begin{cases} \delta d_{xz} - (1 - \delta^{2})^{1/2} \Phi_{\pi}(xz) \\ \delta d_{yz} - (1 - \delta^{2})^{1/2} \Phi_{\pi}(yz) \end{cases}$$
(1 c)

unde Φ_{σ} și Φ_{π} sînt orbitalii de ligand simetrizați, ce contribuie la formarea legăturilor σ și respectiv π . Atomii de sulf participă la legături cu orbitalii atomici 3s, $3p_x$, $3p_y$, $3p_z$.

Fig 2 Spectrul de echivalență a celor două molecule din celula elementară

Valorile principale ale tensorilor g și A sînt date de expresiile (1, 2).

$$g_{\parallel} = 2,0023 - \frac{8\lambda}{\Delta xy} \alpha^2 \beta^2 \left[1 - \frac{\alpha'}{\alpha} S - \frac{1}{2} \frac{\alpha'}{\alpha} \frac{(1 - \beta^2)^{1/2}}{\beta} T(n) \right]$$
(2a)

$$g_{\perp} = 2,0023 - \frac{2\lambda}{\Delta xz} \alpha^2 \,\delta^2 \left[1 - \frac{\alpha'}{\alpha} S - \frac{1}{\sqrt{2}} \frac{\alpha'}{\alpha} \frac{(1 - \delta^2)^{1/2}}{\delta} T(n) \right] \qquad (2b)$$

$$A_{\parallel} = P\left[-\alpha^{2}\left(\frac{4}{7}+k\right) + (g_{\parallel}-2,002) + \frac{3}{7}\left(g_{\perp}-2,002\right)\right]$$
(2c)

$$A_{\perp} = P\left[\alpha^{2}\left(\frac{2}{7}-k\right) + \frac{11}{14}\left(g_{\perp}-2,002\right)\right]$$
(2d)

unde: $P = 0,036 \text{ cm}^{-1}$, $\lambda = -828 \text{ cm}^{-1}$, T(n) = 0,44, iar K este termenul de contact F e r m i [1]. Δxy și Δxz reprezintă tranzițiile electronice între stările $|B_{1g}\rangle - |B_{2g}\rangle$ și respectiv $|B_{1g}\rangle - |E_g\rangle$.

Relațuile (2) sînt utile pentru evaluarea coeficienților orbitalilor moleculari, aceștia dînd informații asupra naturii legăturilor cupru-sulf.

Coeficientul α din starea fundamentală (1a) poate fi evaluat după relația [13]

$$\alpha^{2} = \frac{7}{4} \left[\frac{|A_{\parallel}|}{P} - \frac{|A|}{P} + \frac{2}{3} g_{\parallel} - \frac{5}{21} g_{\perp} - \frac{6}{7} \right]$$
(3)

1ar α' din condiția de normare a acesteia

$$\alpha^2 + \alpha'^2 - 2\alpha\alpha' S = 1 \tag{4}$$

Aici $S = 2\langle d_{x^2-y^2} | - \sigma_x^{(1)} \rangle$ este integrala de suprapunere de grup în starea fundamentală și are valoarea 0,05 [1, 11].

O evaluare mai precisă a coeficientului α' a fost făcută de către Cowsik și Srinivasan [11] din despicările superhiperfine date de nucleele ³³S Din dependența unghiulară a limilor ³³S s-a constatat prezența în acest complex a două legături Cu—S diferite

Ceilalți coeficienți (β , δ) s-au estimat din ecuațiile (2a) și (2b), utilizînd pentru Δxy și Δxz valoarea 15600 cm⁻¹ și respectiv 23800 cm⁻¹ [11]. Coeficienții MO astfel obținuți au valorile.

$$\alpha^2 = 0.47$$
 $\alpha'^2 = 0.58$ $\beta^2 = 0.54$ $\delta^2 = 0.84$

Aceștia inducă un caracter foarte covalent al legăturilor σ și π din planul xOy

Din ecuația (2c) se obține pentru termenul de contact Fermi valoarea 0,48, aceasta fiind mai mare decît în cazul unor complecși în care legătura metal-ligand are un caracter moderat de covalență și unde K = 0,43 [1]. Acest fapt se datorește contribuției în complexul de față la legătura covalentă și a orbitalului metalic 4s.

Valorile izotrope a^{P} indică localizarea electronului neîmperecheat în orbitalul 3s al atomului de fosfor. În acest caz despicarea superhiperfină a nucleelor ³¹P este dată de expresia [7]

$$a^{P} = \frac{8\pi}{3} g_{e} g_{n} \beta_{e} \beta_{n} |\Psi_{3s}(0)|^{2} c_{s}^{2}$$
(5)

unde $|\Psi_{3s}(0)|^2$ reprezintă densitatea electronului 3s la nucleele ³¹P, 1ar c_s^2 este coeficientul orbitalului 3s în orbitalul molecular ce conține electronul neîmperecheat Acesta poate fi determinat din valoarea experimentală a_{exp}^{P} (8,9 Gs) și cea calculată a_{calc}^{P} [7, 14]

$$c_s^2 = \frac{a_{exp}^P}{a_{ealc}^P} = \frac{a_{exp}^P}{3640 G_s} = 0,0024$$

Se observă că densitatea de spin (c_s^2) în orbitalul fosforului este foarte mică. Sursa majoră a interacției superhiperfine dintie Cu și ³¹P se consideră a fi delocalizarea electronului pe "via" atomilor sulf-fosfor [7, 11].

(Initat in redacție la 15 august 1974)

BIBLIOGRAFIE

1 H R Gersmann, J D Swalen, J Chem Phys, 36, 3221 (1962) 2 T R Reddy, R Srinivasan, J Chem Phys, 43, 1404 (1965)

- 2 T R Reddy, R Stinivasan, J Chem Phys, 43, 1404 (1905)
 3 M J Weeks, J P Fackler, Inorg Chemistry, 7, 2548 (1968)
 4 N S Garifianov, B M. Kozîrev, J. Struct Himm, 6, 734 (1965)
 5 N Vezentan, Studia Univ Babeş-Bolya, ser Mat, Phys 1, 91 (1969)
 6 D. Shopov, N D Yordanov, Inorg Chemistry, 9, 1943 (1970)
 7 J R. Wasson, Inorg Chemistry, 10, 1531 (1971)
 8 N. D Yordanov, D Shopov, Inorg Chim Acta, 5, 679 (1971)
 9 G M Larin, P M Solojenkin, M E Diatkina, H J Kapiţa, J Struct Humm, 12, 26 (1971) H1m11, 12, 26 (1971)

- 10 N D Yordanov, D Shopov, J Mol Struct, 19, 617 (1973)
 11 R K Cowsik, R Srinivasan, J Chem Phys, 59, 5517 (1973)
 12 M J Stoklosa, G L Seebach, J R Wasson, J Phys Chem, 78, 962 (1974)
 13 H A Kuska, M T Rogers, R E Drullinger, J Phys. Chem, 71, 109 (1967)
- 14 P W Atkins, M C R Symons, The Structure of Inorganic Radicals, Elsevier, New York, p 21 (1967)

ESR STUDY OF COPPER(II) DIETHYLDITHIOPHOSPHATE

(Summary)

ESR investigation of copper(II) diethyldithiophosphate in benzen soli tion and also in single crystal magnetically diluted with corresponding diamagnetic nickel complex is reported

The single-crystal ESR spectra show the presence of two magnetically non-equivalent molecules in the unit cell

Using the ESR parameters, the MO coefficients are calculated and these show the strong covalent σ and π bonds.

PROGRAM DESTINAT MINICALCULATORULUI HP9810A PENTRÙ PRELUCRAREA DATELOR EXPERIMENTALE PRIVIND UNELE FENOMENE DE TRANSPORT ÎN SEMICONDUCTORI DE IMPURITATE

P. ȘTEȚIU și V. MILITARU

Pielucrarea datelor experimentale privind fenomenele de transport în semiconductori cu un giad de degenerare oarecare se face cu ajutorul funcțulor Fermi sau Fermi generalizate [1-3] În timp ce valorile functulor Fermi sînt publicate (de exemplu [4]), calculul valorilor funcțulor Fermi generalizate se face în funcție de lărgimea benzii interzise a materialului de studiu și de temperatura la care s-au efectuat măsurătorile. În [5] sînt analizate proprietățile funcțulor Fermi generalizate și se indică faptul că autorii pot oferi la nevoie tabele ale acestora dar interpolările ce se impun la folosirea tabelelor implică un calcul laborios fapt ce îngreunează mult lucrul.

În ultimul timp s-au răspîndit tot mai mult minicalculatoarele de birou de genul celor ale firmei Helwett-Packard din seria 9800 Problema pe care ne-am propus să o rezolvăm este de a utiliza acest minicalculator pentru prelucrarea datelor experimentale ce rezultă din măsurători de efect Hall, conductibilitate electrică și forță termoelectromotrice la semiconductori de impuritate cu suprafețe izoenergetice sferice în spațiul \vec{k} dar cu lege de dispersie nepatratică.

Calculul coeficienților de transport pentru fenomenele de transport amintite au fost făcute de Kolodziejczak și Zawadski [2, 3, 5], care au admis că legea de dispersie este de forma:

$$\frac{j^{2}k^{2}}{2m_{i}^{*}} = \varepsilon + \frac{\varepsilon^{2}}{\varepsilon_{g}} \tag{1}$$

unde s-a notat cu m_i^* masa efectivă a purtătorilor de sarcini de specie *i*, înțelegînd prin aceasta cei din unul din minimele sau maximele zonelor energetice ce iau parte la fenomenele de transport, ε_g lărgimea zonei interzise a materialului, ε energia purtătorilor de sarcini, $k = h/2\pi$, iar \vec{k} este vectorul de undă asociat purtătorilor de sarcini în cristal.

Expresiile coeficienților de transport, în parte scrise de noi explicit pe baza relațiilor generale date în [3], sînt.

- mobilitatea de conductibilitate

$$\mu_{\sigma_r} = 2^{r+2} \quad \mu^{2-r} \cdot \mu^0_r(T) \cdot (m^*_i)^{\frac{r-2}{2}} \quad (k_0 T)^{\frac{r+2}{2}} \frac{\mathcal{L}^{\frac{r+3}{2}}_{-2}(a, \zeta^*_i)}{\mathcal{L}^{3/2}_0(a, \zeta^*_i)} \tag{2}$$

- conductibilitatea electrică

$$\sigma_{r} = 2^{\frac{r+9}{2}} \cdot \mu^{-(r+1)} \cdot (m_{i}^{*})^{\frac{r+1}{2}} \cdot (k_{0}T)^{\frac{r+5}{2}} \cdot (3\pi^{2})^{-1} \quad \mu_{r}^{0}(T) \cdot e_{i} \cdot {}^{0} L_{-2}^{\frac{r+5}{2}}(a, \zeta_{i}^{*})$$
(3)

- coeficientul Hall

$$R = \frac{1}{n_{i}e_{i}c} \cdot \frac{\frac{2r+7}{2}(a, \zeta_{i}^{\bullet})}{\left[\frac{r+5}{2}(a, \zeta_{i}^{\bullet})\right]^{2}}$$
(4)

- coeficientul Seebeck:

$$\alpha = \frac{k_0}{e_i} \left[\frac{\frac{r+5}{2}}{\frac{1L_{-2}(a, \zeta_i^*)}{2}} - \zeta_i^*} - \zeta_i^* \right].$$
(5)

Relațiile (2)-(5) sînt valabile în cazul împrăștierii purtătorilor de sarcini prin interacțiunea cu următorii centri

- r = -3 $\mu_{-3}^0 \cong \text{const.} \cdot T^{-1}$ — fononi acustici (6a)
- fononi optici la $T > T_D$ r = -1 $\mu_{-1}^0 \simeq \text{const} \cdot T^{-1}$ (6b)
- ioni de impuritate r = +1 $\mu_{+1}^0 \cong \text{const.}$ (6c)

În cazul împrăștierii purtătorilor de sarcini prin interacțiunea cu fononi optici la temperaturi sub temperatura Debye a materialului (T_D) , sînt valabile următoarele expresii [1]

$$\mu_{opt}^{0} = \mu_{\sigma_{opt}} = \text{const.} \cdot (m_{*}^{*})^{3/2} \cdot \left[\exp\left(\frac{T_{D}}{T}\right) - 1\right]$$
(7)

$$\sigma_{opt} = \frac{e_{*}}{3\pi^{2}} \left(\frac{2k_{0}}{\lambda^{2}}\right)^{3/2} \cdot T^{3/2} \cdot \left[\exp\left(\frac{T_{D}}{T}\right) - 1\right]$$
(8)

$$R_{opt} = \frac{1}{n_i e_i c} \tag{9}$$

$$\boldsymbol{\alpha}_{opt} = \frac{k_0}{e_t} \left[\frac{1 L_0^{3/2}(a, \zeta_s^*)}{0 L_0^{3/2}(a, \zeta_s^*)} - \zeta_s^* \right].$$
(10)

În relațiile (2) - (10) s-a notat (exceptînd notațiile consactate) astfel: - concentrația purtătorilor de sarcıni:

$$n_{i} = \frac{1}{3\pi^{2}} \left(\frac{2m_{i}^{*} h_{0}T}{\hbar^{2}} \right)^{3/2} \cdot {}^{0} L_{0}^{3/2}(a, \zeta_{i}^{*})$$
(11)

- funcția Fermi generalizată ·

$${}^{n} \mathsf{L}_{k}^{m}(a, \zeta_{i}^{*}) = \int_{0}^{\infty} \left(-\frac{\partial f_{0i}}{\partial x_{i}}\right) \cdot x^{n} \quad (x + ax^{2})^{m} \quad (1 + 2ax)^{k} \quad dx \qquad (12)$$

 $k_0 = \text{constanta lui Boltzmann, iar,}$

$$\zeta_{i}^{*} = \frac{\zeta_{i}}{k_{0}T}, \quad a = \frac{k_{0}T}{\varepsilon_{g}}, \quad f_{0i} = \frac{1}{1 + \exp(x - \zeta_{i}^{*})}, \quad x = \frac{\varepsilon}{k_{0}T}$$

Din relațule (2)-(11) se pot deduce ușor următoarele expresii:

e 1 5

$$m_{*}^{*} = \frac{(3\pi^{2})^{3/2}}{2k_{0}T} \frac{\hbar^{2}}{\left(\frac{n_{*}}{0L_{0}^{3/2}(a, \zeta_{*}^{*})}\right)^{2/3}}$$
(13)

$$E = R \quad \sigma \quad (m_i^*)^{\frac{2-r}{2}} \quad \frac{{}^{0}\mathsf{L}_{-2}^{\frac{r+3}{2}}(a, \zeta_i^*)}{{}^{\frac{2r+7}{2}}(a, \zeta_i^*)} = \text{const} \quad \mu_r^0(T) \cdot (k_0 T)^{\frac{r+2}{2}}$$
(14)

$$E' = R_{opt} \quad \sigma_{opt} \quad (m_i^*)^{3/2} = \text{const.} \quad \left[\exp\left(\frac{T_D}{T}\right) - 1 \right]. \tag{15}$$

În relațiile (14) sau (15) sînt separați toți termenii ce nu depind explicit de temperatură în expresia mobilității Hall și ele servesc la decelarea mecanismului de împrăștieie al purtătoiilor de sarcini

Schema logică și programul. În alcătuirea schemei logice și a programului am presupus cunoscute următoarele mărimi $\varepsilon_g(0)$ — lăigimea benzii interzise a materialului la 0 K; $\left(\frac{\partial \varepsilon_g}{\partial T}\right)_p$ — variația izobară cu temperatura a acesteia, l — lungimea, d — grosimea pe direcția cîmpului magnetic în măsurătorile de efect Hall, S — secțiunea probei, I_x — curentul în probă la determinarea tensiunii Hall, constant la toate temperaturile la care s-au efectuat măsurătorile, \mathfrak{B} — inducția magnetică, constantă la toate temperaturile în timpul determinărilor de efect Hall, u_H — tensiunea Hall ca funcție de temperatură, u_P , tensiunea pe probă în timpul măsurătorilor de conductibilitate electrică ca funcție de temperatură, α — coeficientul Seebeck ca funcție de temperatură

Schema logică a programului este prezentată în fig. 1

Se poate vedea că mai întîi se rezolvă ecuația (5) sau (10) în iaport cu ζ_i^* cunoscînd valoarea determinată experimental a coeficientului See-

16

Fig. 1 Schema logică a programului.

beck ζ_i^* aflat astfel este apoi folosit pentru calculul concentrației purtătorilor de sarcini, a masei efective a densității de stări a acestora, ca și a expresiei (14) sau (15) În plus datele experimentale permit calculul lui σ , μ_H .

Metoda de rezolvare a ecuației (5) este cea a tangentei și a fost singura care conduce la rezultate rapide. Înainte de a opta asupra acestei metode, am încercat operativitatea rezolvării ecuației (5) cu alte metode, printre care amintim metoda înjumătățirii intervalului, metoda ccardei și metoda aproximării simple care la aceeași precizie de aflare a rădăcinii necesită un timp de 10-15 ori mai lung în raport cu metoda tangentei.

2 - Physica / 1975

În fig 1 se mai mentionează următoarele mărimi neexplicitate încă de noi.

 $A = \frac{(3\pi^2)^{2/3}}{2k_o} \hbar^2$ este o constantă universală.

$$B = \frac{\varepsilon_g(0)}{k_0}; \quad C = \frac{\left(\frac{\partial \varepsilon_g}{\partial T}\right)_P}{k_0}; \quad D = \frac{I_{pr\,l}}{S} = \sigma \cdot u_{pr}$$
$$G = \frac{I_x \cdot \mathfrak{B}}{d}$$

 $a_1, b_1 =$ limitele domeniului de integrare ale expressilor (12) N = numărul de subintervale în care s-a împărțit domeniul $a_1 - b_1$ $n_1, n_2m_1, m_2 =$ indici ai integralelor " $[m_k]$, a căror valoare depinde de natura

- centrului de împrăștiere ; valorile lor sînt prezentate în tab. 2. = valoarea de pornire a lui ζ_i^* în rezolvarea ecuației (5), dacă <u>۲</u>*. nu se specifică altfel, se ia automat valoarea zero ca $\zeta_{0,.}^*$
 - = creșterea lui ζ, necesară la calculul tangentei
- Δζ; δζ; = precizia impusă pentru aflarea soluției ecuației (5) la care calculul se opreste automat și se trece la calcularea celorlalte mărimi dın program.

Schema logică este astfel concepută încît după terminarea calculelor cu un set de valori experimentale calculatorul revine la pasul program la care se comunică doar acei parametri ce depind de temperatură. În cazul probelor noastre tensiunea Hall a fost constantă, astfel că programul se reia de la introducerea celorlalte variabile T, α , u_{Pr} . Vechea soluție a ecuației (5) devine noua valoare ζ_{0}^{*} de pormire în mod automat.

Programul este prezentat în întregime în tab. 1.

Tabel 1

Textul integral al programului

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ØØ39 2 Ø2 ØØ40 7 Ø7 ØØ41 STP 41 ØØ42 XTO 23 ØØ44 3 Ø3

1	
- 1	~

۰,

	9945 1/X 17	Ø101 — —	- 5		ø5	ø157 — —	XTO		23
	9946 XFR 67	ø1ø2 — —	- 1	~	Ø1	ø158 — —	3		Ø3
	\$\$47 X 36	ø1ø3 — –	- XFR		67	Ø159 — —	8		1Ø
	9948 - 4 94	ø1ø4 — —	. 3		03	ø16ø — —	$\mathbf{x}\mathbf{s}\mathbf{o}$		12
	8849 8 88	Ø1Ø5 — —	- 5		ø5	Ø161 — —	$1/\tilde{x}$		17
	9959 XFR 67	<u>9196 — —</u>	- XTO		23	Ø162 — —	ΧTO		23
	9951 33	Ø107	• +		33	A163	3		63
	9952 - 4 94	0108	- 2	~	92	<u>9164</u> — —	â		00
	0053 - 1 - 91	Ø109	- 0		00 00	Ø165	CNT		17
	8954 - 1/X 17	9119	GTO		44	9166 — —	XFR		67
	9955 - XTO - 23	Ø111	S/R		77	Ø167 — —	4		QA
	$g_{056} = 4 = 94$	Ø112	. 'a		0 0	<u>9168</u> — —	7		07
	$\theta_{057} = 2 = - 02$	Ø113	. <u>3</u>		Ø3	0169 — —	xTO.		22
	A958 - STP - 41	<u>9114 — —</u>	. 4	~	Ø4	0170	$\overline{2}$		A9
	0050 = 011 = 011		. 1		04	9171 — —	4		04
	0000 = 10000	9116 — —	XFR.		67	0172	ਸ਼ਾ		67
	0.000 = 20 = 000000000000000000000000000	0117 — —	. 4		01 01	0173	A		01
	0001 - 2 - 02	Ø118	ਸ਼ਾਲ		67	0170 = -	a Q		104
	0.063 TO 23	a119	DIV		35	Ø175 -	CNT		10
	0.003 = -2.10 = -2.0000	0110 0120	5		00 05	0176	VTO		47
	0004 = 2 = 02	0120 0121	ਕੁਕੁ ਨੂ		67	0170	~ ~ ~ ~		40
	0.000 = -0.000	0121			34	<u>9178</u>	5		04
	0.000 = 0.011 = - 0.000	Ø123 — —	2		02 02	0170	CTO.		11
	9969 - 4 - 94	Ø124 — —	6		96 96	0170	SID		77
5	$\theta \theta \theta \theta = -3 = -4 - \theta \theta$	Ø125 — —	XTX .		67.57 18	9181	a		àà
	9979 6T0 44	Ø126		~ _ ~	34 15	Ø182	ŝ		63
	$\frac{1}{9971} - \frac{1}{971} - 1$	Ø127 — —	2		Ø2	Ø183	4		Q4
	8972 8 88	Ø128 — —	. ø		99	Ø184 — —	4		Q 4
	\$\$\$73 \$\$ 9\$	ø129 — —	UP		27	Ø185	XFR		67
	9974 4 94	ø13ø — —	XFR		67	Ø186	5		Ø5
	9975 4 94	ø131 — —	· _		34	ø187 – –	XTO		23
	9976 XFR 67	Ø132 — —	3		Ø3	Ø188	3		Ø3
	9977 4 94	Ø133 — —	- 4	~	94	Ø189	7		Ø7
	9978 UP 27	ø134 — —	YE		24	ø19ø — —	XTO		23
	9979 XFR 67	ø135 — —	x		36	ø191 — —	x		36
	9989 5 95	ø136 — —	3		Ø3	ø192 — —	3		ø3
	0081 PSE 57	ø137 — —	5		ø5	ø193 — —	, 9		00
	\$\$\$2 DIV 35	ø138 — —	CHS		32	ø194 — —	CNT		47
	9983 YE 24	ø139 — —	DIV		35	Ø195 — —	1	_	Ø1
	ØØ84 — — — — — ·34	Ø14Ø — —	- YE		24	ø196 — —	• -		21
	9985 — 2 — 92	Ø141 — —	· +	·	33	ø197 — —	5		Ø5
	9986 6 '96	Ø142 — —	- 2		Ø2	ø198 — —	$\mathbf{X}\mathbf{T}\mathbf{O}$		23
	9987 YE 24	<i>ø</i> 143 — —	- 0		9.9	ø199 — —	2		Ø2
	ØØ88 34	Ø144 — —	- YTO		40	9209 — —	4		ø4
	ØØ89 2 Ø2	Ø145 — —	- 2		Ø2	9291 — —	CLX		37
	0090 0 00	Ø146	- Ø		00	0202 — —	$\mathbf{X}\mathbf{T}\mathbf{O}$		23
	ØØ91 — - YTO — 4Ø	Ø147 — —	- GTO		44	Ø2Ø3 — —	2	~ -	Ø2
	9892 - 3 - 93	Ø148 — —	- 7		97	ø2ø4 — —	_5	~	Ø5
	$\mathfrak{g}\mathfrak{g}\mathfrak{g}\mathfrak{g}\mathfrak{g}\mathfrak{g}\mathfrak{g}\mathfrak{g}\mathfrak{g}\mathfrak{g}$	Ø149	· Ø		99	02Ø5 — —	GTO		44
	ggg4 G 15	Ø15Ø — —	- CNT		47	<i>9296</i> — —	S/R	~	77
	2000 XFR 67	Ø151	· XFR		67	9297	ø		90
	\mathcal{B}	152	- 2		92 00	9298 —	3		93
	1000 V V TO	Ø153	• 9 • • • •		15 15	x2119	4		104
	$A = \frac{1}{2} - $	x104	- rnt vdd		40 67	MZIN	4		Ø4
		0150	- AFR		0/ 05	9211 — —	XFR.		67
	10 1 0010	ש טפו <i>ע</i>	- J		00	1212 — —	5	~	82

.

Tabel 1 (continuare)

9213		XFR		67
Ø214		x		36
Ø215		3		ø3
ø216		ø		90
Ø217		XFR.		67
Ø218		x		36
Ø219		2		Ø2
0220		3		Ø 3
Ø221		XFR		67
ø222		DIV		35
Ø223		2		Ø2
9224		7		97
ø225		PNT	_	45
Ø226		XTO		23
9227		3		Ø3
Ø228		9		11
8229		XFR		67
A23A		DIV		35
0231		5		Ø5
a232		ŨР		27
6233		2		<u>8</u> 2
Q234		ΠP		27
0235		3		A 3
0236		DIV		35
A237		XEV		30
0238		RUP		22
a239		H		74
024 Q		RAX		67
0240		X		36
0242		3		93
Q243		1		ñ1
Q244		XFR		67
0245		DIV		35
0246		3		Ø 3
Q247		3		8 3
0247		PNT		45
0249		TIP		27
0245 0950		2		a2
0251		4		21
A257		5		a 5
0252		τīթ		27
0254		1		Q 1
0255		eno.		32
A256		AAX.		67
Q257				33
a258		т 4		Q4
0259		5		05
8260		_		34
a261		DN		25
0262		XEV		30
9263		Ĥ		74
A264		ŪΡ		27
9265		XTR		67
9266		4		ø4
A267		4		ø 4
Ø268	<u>د</u> _	XFR		67

\$269 —	·	\mathbf{DIV}		35
ø27ø —		4		Ø4
Ø271 -		3		Ø3
a279		PNT		45
0272 -		VTD		67
9276 -		DIU		25
9274 -		DIV		20
9275 -		3		\$3
ø276 –	·	9		11
ø277 —		\mathbf{UP}		27
ø273 –		1		Ø1
ø279 —				21
9289 -		6		Ø 6
a281		ă		88
0000		õ		~~ a2
9282 -		2		06
9283 -		EEA		20
Ø284 —		CHS		32
ø285 —		1		Ø1
ø286 –		9	<u></u>	11
ø287 –		DIV		35
Ø288 -		DN		25
A289		PNT		45
0200		DN		25
0290 -	-	N MD		67
9291 -	· —	AFR		07
0292 -		DIV		35
ø293 —		4		Ø4
ø294 –		3		Ø3
ø295 —	·	XFR		67
Ø296 -		DIV		35
0297 _		2		92
0200		ã		ñ3
0200		VID		67
9299 -	· —	ALL		07
9399 -		DIV		30
0301 -	-	3		Ø3
0302 -	—	7		97
ø3ø3 —		XFR		67
0304 -		\mathbf{x}		36
ø3ø5 —		3		øЗ
0306 -		8		1Ø
0307 -		Ť	~	65
0300		DNT		45
0200	_	VID.		67
0009 -	-	ALL		02
9319 -	_	0		20
9311 -		3		93
Ø312 —		\mathbf{PNT}		45
ø313 —		\mathbf{UP}		27
ø314 —		1/X	~	17
Ø315 —		PNT .		45
Ø316 -		DN		25
9317 -	_	T		65
6319	_	PNT		45
0210		1 1 1 1 DNT/T		51
2000 -		1.11.1		67
wozw	-	AFR		0/
Ø321 —		4		<i>1</i> 94
ø322 –		5		<i>9</i> 5
ø323 –		\mathbf{X} TO		23
ø324 —		2		02

9325	 4	 Ø4
Ø326	 XFR	 67
Ø327	 4	 Ø4
<i>ø</i> 328	 6	 Ø6
Ø329	 XTO	 23
0330	 2	 Ø2
0331	 5	 Ø5
9332	 GTO	 44
1333	 y ô	 88
M234	 N.	 88
Ø335	 4	 Ø4
0000	 4	 00
0220	 ул С	 00
0220	 ju G	 00
02/0	 a a	 00
0340	 D Q	 00
0342	 a a	 00 00
0343	 â	 88
0344	 â	 66
0345	 xro	 23
9346	 4	 94
9347	 xro	 23
0348	 5	 0 5
0349	 XFR	 67
8358	 7	 97
Ø351	 XTO.	 23
Ø352	 	 10
Ø353	 XFR	 67
Ø353 Ø354	 XFR 6	 67 Ø6
Ø353 Ø354 Ø355	 XFR 6 XTO	 67 Ø6 23
0353 0354 0355 0356	 XFR 6 XTO 1	 67 96 23 91
\$\$353 \$\$354 \$\$355 \$\$356 \$\$357	 XFR 6 XTO 1 GTO	 67 96 23 91 44
\$\overline{\mathcal{\phi}353} \$\overline{\pi}354 \$\overline{\pi}355 \$\overline{\pi}356 \$\overline{\pi}357 \$\overline{\pi}358 \$\	 XFR 6 XTO 1 GTO S/R	 67 96 23 91 44 77
\$\overline{\mathcal{\phi}353} \$\overline{\pi}354 \$\overline{\pi}355 \$\overline{\pi}356 \$\overline{\pi}357 \$\overline{\pi}358 \$\overline{\pi}359 \$\	XFR 6 XTO 1 GTO S/R 9	67 96 23 91 44 77 99
\$\$353 \$\$354 \$\$355 \$\$356 \$\$356 \$\$357 \$\$358 \$\$359 \$\$369 \$\$369	XFR 6 XTO 1 GTO S/R 9 3	67 96 23 91 44 77 99 93
\$\$353 \$\$354 \$\$355 \$\$356 \$\$357 \$\$358 \$\$359 \$\$369 \$\$369 \$\$361	XFR 6 XTO 1 GTO S/R 9 3 7	67 96 23 91 44 77 99 93 97
 \$\mathcal{0}353\$ \$\mathcal{0}354\$ \$\mathcal{0}355\$ \$\mathcal{0}356\$ \$\mathcal{0}357\$ \$\mathcal{0}358\$ \$\mathcal{0}359\$ \$\mathcal{0}360\$ \$\mathcal{0}362\$ 	XFR 6 XTO 1 GTO S/R 9 3 7 2	67 96 23 91 44 77 99 93 97 92
 \$\mathcal{0}353\$ \$\mathcal{0}354\$ \$\mathcal{0}355\$ \$\mathcal{0}356\$ \$\mathcal{0}357\$ \$\mathcal{0}358\$ \$\mathcal{0}359\$ \$\mathcal{0}360\$ \$\mathcal{0}361\$ \$\mathcal{0}362\$ \$\mathcal{0}363\$ 	XFR 6 XTO 1 GTO S/R 9 3 7 2 XFR	67 96 23 91 44 77 99 93 97 92 67
 \$\mathcal{0}353\$ \$\mathcal{0}354\$ \$\mathcal{0}355\$ \$\mathcal{0}356\$ \$\mathcal{0}357\$ \$\mathcal{0}358\$ \$\mathcal{0}359\$ \$\mathcal{0}360\$ \$\mathcal{0}361\$ \$\mathcal{0}362\$ \$\mathcal{0}363\$ \$\mathcal{0}364\$ 	XFR 6 XTO 1 GTO S/R 9 7 2 XFR 9	67 96 23 91 44 77 99 93 97 92 67 11
<pre></pre>	XFR 6 XTO 1 GTO S/R 9 3 7 2 XFR 9 XTO	67 96 23 91 44 77 98 93 97 92 67 11 23
<pre></pre>	XFR 6 XTO 1 GTO S/R 9 3 7 2 XFR 9 XTO X	67 96 23 91 44 77 99 93 97 92 67 11 23 36
<pre></pre>	XFR 6 XTO 1 GTO S/R 9 XFR 9 XTO X 4	67 96 23 91 44 77 99 93 97 92 67 11 23 64
<pre></pre>	XFR 6 XTO 1 GTO S/R 9 XFR 9 XTO X 4 XTO	67 06 23 01 44 77 09 03 07 11 23 67 11 23 64 23
<pre></pre>	XFR 6 XTO 1 GTO S/R 9 3 7 2 XFR 9 XTO X 4 XTO X 4 XTO X	67 96 23 91 44 77 99 93 97 92 67 11 23 64 23 64 23 65 75 96 97 98 97 92 97 92 97 97 97 97 97 97 97 97 97 97
<pre></pre>	XFR 6 XTO 1 GTO S/R 9 3 7 2 XFR 9 XTO X 4 XTO X 5 5	67 96 23 91 44 77 93 97 92 67 11 236 94 236 95 75 96 97 92 97 92 97 92 97 92 97 97 97 97 97 97 97 97 97 97
\$\mathbf{\math}\}\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\math}\mathbf{\math}\mathbf{\mathbf{\math}\}\mathbf{\mathbf{\math}\}\m	SFR 6 XTO 1 GTO S/R 9 3 7 2 XFR 9 XFR 9 XTO X 4 XTO X 5 S/R	67 96 23 91 44 77 93 97 92 67 123 64 23 95 72 26 77 26 97 97 97 97 97 97 97 97 97 97
\$\mathbb{D}_353\$ \$\mathbb{D}_354\$ \$\mathbb{D}_355\$ \$\mathbb{D}_356\$ \$\mathbb{D}_357\$ \$\mathbb{D}_358\$ \$\mathbb{D}_360\$ \$\mathbb{D}_360\$ \$\mathbb{D}_366\$ \$\mathbb{D}_366\$ \$\mathbb{D}_366\$ \$\mathbb{D}_366\$ \$\mathbb{D}_366\$ \$\mathbb{D}_366\$ \$\mathbb{D}_370\$ \$\mathbb{D}_372\$	XFR 6 XTO 1 GTO S/R 9 XTO X 4 XTO X 5 S/R 3 S/R 3 XTO	67 96 23 91 44 77 93 97 92 67 123 64 23 95 73 93 95 73 93 95 75 95 95 95 95 95 95 95 95 95 9
\$\mathbb{\mathbbb\}\mathbb{\math}\mathbbb\\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\math	xFR 6 xTO 1 GTO S/R 3 7 2 xFR 9 xTO x 4 xTO x 5 S/R 3 xTO	676 0 63 0 1 4 4 7 7 0 0 3 7 7 0 2 3 0 4 4 7 7 0 0 3 7 0 2 3 6 7 1 2 3 6 4 2 3 6 5 7 7 3 2 9 0 2 3 7 0 2 3
9353 9354 9355 9356 9357 9369 9369 9369 9369 9369 9363 9364 9365 9366 9366 9366 9366 9366 9366 9366	SFR 6 XTO 1 GTO S/R 9 XTO X 4 XTO X 5 S/R 3 XTO 9 XTO 9 XTO 1 CTO S/R 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO X 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 XTO 9 X 7 7 7 7 7 7 7 7 7 7 7 7 7	676 0 23 0 44 7 0 0 3 7 0 2 3 0 4 7 0 0 3 7 0 2 3 0 4 7 0 0 3 7 0 2 3 0 4 3 0 5 7 0 3 2 0 0 7 0 3 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0
9353 9354 9355 9356 9357 9358 9359 9369 9369 9369 9369 9364 9365 9366 9366 9366 9366 9366 9366 9366	SFR 6 XTO 1 GTO S/R 3 7 2 XFR 9 XTO X 4 XTO X 5 S/R 3 XTO 0 X 1 CTO S/R 1 CTO S/R 9 XTO 1 CTO S/R S/R S/R S/R S/R S/R S/R S/R	676 023 0477 0372 027 027 0372 047 0372 047 0372 047 0372 047 0372 047 0372 047 0372 047 0372 0477 037 0477 037 0477 03777 0377 03777 03777 0377 03777 03777 03777 037777 037777 03777 037777 0377777 037777777777
9353 9354 9355 9356 9357 9358 9359 9369 9369 9369 9369 9364 9365 9366 9365 9366 9367 9368 9379 9371 9374 9375 9376	XFR 6 XTO 1 GTO S/R 3 7 2 XFR 9 XTO X 4 XTO X 5 S/R 3 XTO 9 CNT 1 8	676 623 1477 0372 0477 0372 0471 2364 2365 773 207 10 10 10 10 10 10 10 10 10 10
9353 9354 9355 9356 9357 9358 9359 9369 9369 9362 9363 9364 9362 9363 9364 9365 9367 9368 9379 9374 9372 9374 9375 9376 9376	XFR 6 XTO 1 GTO S/R 9 7 2 XFR 9 XTO X 4 XTO X 5 S/R 3 XTO 9 XTO X 4 XTO X 5 S/R 9 XTO X 4 XTO X 5 S/R 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 X 7 2 XFR 9 X 7 2 XFR 9 XTO X 7 2 XFR 9 X 7 2 XFR 9 X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 9 XTO X 7 2 XFR 8 3 7 2 XFR 9 XTO X 7 2 XFR 8 3 X 7 2 XFR 8 XTO X 7 2 X X 7 2 X X 7 2 X X 7 2 X X X X X	606230144700307236447700370230471236643365770330047112364401023
0353 0354 0355 0356 0357 0358 0357 0358 0360 0363 0364 0365 0366 0367 0368 0366 0367 0368 0369 0370 0378 0374 0378 0374 0377 0378	XFR. 6 XTO 1 GTO S/R. 9 XTO X 4 XTO X 5 S/R. 3 XTO 2 XFR. 9 XTO X 4 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XFR. 9 XTO 2 XTO 2 XFR. 9 XTO 2 X 3 XTO 9 XTO 2 X 3 XTO 2 X 3 XTO 9 X 2 X 3 XTO 9 X 3 XTO 9 X 3 XTO 9 X 3 XTO 9 X 3 XTO 9 X 3 XTO 9 X 3 XTO 2 X 3 XTO 2 3 XTO 2 3 XTO 3 X XTO 3 X XTO 3 X XTO 3 X XTO 3 X X X X X X X X X X X X X	60623014470030723644770037023047123664336577332047112336423657733204711233
0353 0354 0355 0356 0357 0358 0357 0358 0359 0359 0359 0359 0360 0361 0363 0364 0365 0366 0367 0372 0378 0379 0375 0376 0377 0378 0377 0378 0377	XFR 6 XTO 1 GTO S/R 3 7 2 XFR 9 XTO X 4 XTO 2 S/R 3 XTO 9 XTO 2 XFR 9 XTO 2 XFR 9 XTO 2 XTO 2 XFR 9 XTO 2 XTO 2 XFR 9 XTO 2 X 4 XTO 2 X 4 XTO 2 X 4 X 2 XTO 2 X 4 X 3 XTO 2 X 4 X 3 XTO 2 X 4 X 3 XTO 2 X 4 X 3 XTO 2 X 4 2 X 3 X 2 X 4 2 X 3 X 2 2 X 3 X 2 2 X 3 X 2 2 X 3 X 2 2 X 3 X 2 2 X 3 X 2 2 X 3 X 2 2 X 3 X 2 2 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 8 X 1 1 1 1 1 1 1 1 1 1 1 1 1	606230147003072611236423657703300471023301

Tabel 1 (continuare)

$g_{381} = - 6 = g_{6}$	9421 — J — 75	9461 X 36
9382 XTO 23	ø422 X 36	\$462 \$3 \$3
9383 b 14	9423 — UP — 27	$\emptyset 463 + 33$
9384 XFR 67	$\emptyset 424 - 1 - \emptyset 1$	9464 DN 25
\$385 9 11	$\emptyset 425 + 33$	9465 H 74
\$386 XTO 23	9426 - DN - 25	Ø466 XFR 67
\$387 34	\$427 XSQ 12	Ø467 — X — 36
Ø388 — 8 — 1Ø	9428 - DIV 35	$\vartheta 468 - 2 - \vartheta 2$
\$389 GTO 44	\$429 YTO 4\$	Ø469 XFR 67
\$39\$ S/R 77	9439 —	\$47\$ IND 31
Ø391 — Ø — — ØØ	9431 — – XFR — – 67	9471 X 36
\$392 3 \$3	<u>9432 — 2 — 92</u>	9472 b 14
\$393 9 11	ø433 — 4 — — ø4	\$473 XTO 23
Ø394 — 8 — 1Ø	, $\$434 = -$ UP $ 27$	Ø474 + 33
Ø395 K 55	\$435 XFR 67	\$475 — 5 — — \$5
\$396 S/R 77	9436 — 3 — — 93	Ø476 XFR 67
$\emptyset 397 = -1 = \emptyset 1$	9437 — UP — 27	\$477 X 36
9398 XFR 67	\$438 XSQ 12	\$478 \$3 \$3
\$399 IND 31	9439 XFR 67	\$479 XTO 23
Ø4ØØ — a — — — 13	9949 — X — 36	9489 + 33
9491 XFR 67	\$441 <u> </u>	Ø481 — 4 — — Ø4
9492 X 36	<u>9442 — 2 — 92</u>	\$482 CNT 47
\$4\$3 9 11	\$443 + 33	\$483 1 \$1
ø4ø4 —— XFR ——— 67	<i>9</i> 444 — DN — 25	9484 XTO 23
$\emptyset 4 \emptyset 5 + 33$	9445 — H — - 74	\$485 34
9496 8 10	Ø446 —— XTO ——— 23	Ø486 a 13
9497 UP 27	9447 X 36	9487 C 61
\$4\$8 UP 27	$\vartheta 448 - 2 - \vartheta 2$	\$488 - x > y - 53
\$4\$9 XTO 23	9449 —— XFR ——— 67	9489 — - 9 — 99
$\mathfrak{g}41\mathfrak{g} - \mathfrak{g} - \mathfrak{g}3 = \mathfrak{g}3$	9459 —	\$49\$\$ 3 \$3
9411 XFR 67	0051 —	9491 - 9 11
$\vartheta 412 - 1 - \vartheta 1$	Ø452 — UP — 27	$\emptyset 492 = -8 =10$
<i>9</i> 413 — 9 — — — 11	\$453 — 1 — \$1	\$493 3 \$3
\$414 XEY 3\$	0454 — UP — 27 、	Ø494 UP 27
9415 H 74	9455 —	g495 = -1 =g1
9416 - RUP - 22	9456 XFR 67	\$496 D 63
9417 XFR 67	Ø457 — X — — 36	Ø497 — K — — — 55
9418 34	Ø458 — 4 — — Ø4	\$498 S/R 77
$\vartheta 419 = - 2 = - \vartheta 2$	ø459 <u>-</u> 2 <u>-</u> ø2	ø499 ø øø
9429 9	\$46\$ XFR 67	9599 —

Integralele " L_k^m se calculează aici cu ajutorul unei subrutine ce începe la pasul Ø344. Programul ei este un hibrid între o metodă Gauss și integrarea pe intervale echudistante în următorul sens. Domeniul $a_1 - b_1$ este împărțit în N subdomenii, fiecare din acestea fiind integrat după o metodă Gauss cu șase noduri [6]. În acest fel valoarea integralei pe fiecare subinterval a fost calculată cu o precizie foarte bună fără a ocupa cu noduri sau ponderi mai mult de zece registre de memorie ceea ce a fost important.

Limita superioară de integrare în (12) este $b_1 = +\infty$. Calculul nostru a arătat că pentru ordinele și valorile parametrilor $0 \le a \le 1, -5 < \zeta_t^* < 10$, o limită superioară de +40 dă același rezultat cu 12 zecimale exacte, ca pentru o valoare a lui $b_1 = +100$ De asemenea împărțirea domeniului de integrare într-un număr de subdomenii N > 10 duce la corectarea valorii integralelor doar la a șasea sau a șaptea cifră semnificativă, pentru $b_1 = +40$, în timp ce durata calculului se prelungește nejustificat.

Indicele *n* 1a în toate integralele (12) menționate sau valoarea 0 sau valoarea 1. Pentru a scurta programul, subrutina amintită calculează atît $n+1L_{k}^{m}$ cît și L_{k}^{m} .

În tab 3 se prezintă conținutul registrelor de memorie al calculatorului Datele numerice ce se introduc în registrele 6-18, ca și întreg programul, se înregistrează pe o cartelă magnetică pentru a mări operativitatea lucrului.

Tabel 2

Mecanism de împrăști ^e re	Index	<i>m</i> 2	k_2	<i>m</i> ₁	k1
Vibr acustice Vibrații optice $T < T_D^*$ Vibrații optice $T > T_D$ Iom de impuritate		1 1,5 2 3	$-2 \\ 0 \\ -2 \\ -2$	1/2 1,5 2,5 4,5	-4 -4 -4 -4

Valorile indiculor m și k ce intervin în calculul coeficiențulor de transport

* Vezi modificările din program

Ca instrucțiuni de lucru menționăm următoarele

Se aduce calculatorul la pasul 0000 și se introduc datele în următoarea ordine.

 $B, C, m_2, k_2, m_1, k_1, G, D, u_H, T, \alpha, u_{Pr}$

După aproximativ patru minute calculatorul imprimă pe hîrtie (în ordinea tipăririi lor).

 $\zeta_{i}^{*}, m_{i}^{*}, \sigma, \mu_{H}, \ln E, T, 1/T, \ln T.$

În cazul calculului în ipoteza împrăștierii purtătorilor de sarcini pe fononi optici programul se modifică după cum urmează

Pasul \emptyset 155 și următorii se vor modifica astfel·G0, \emptyset , 2, 1, 8,.

Pasul Ø218 devine XFR., Pasul Ø252 devine Ø

În acest caz în loc de ln E calculatorul tipărește ln E'.

În încheiere dorim să subliniem că programul prezentat de noi prelucrează rapid și exact datele experimentale privind efectul Hall, conductibilitatea electrică și forța termoelectromotoare nu numai la semiconductori de impunitate cu legea de dispersie nepatratică, ci și la cei cu legea de dispersie patratică, pentru aceasta fiind suficient ca "a" să se comunice ca o valoare suficient de mică pentru ca $ax \leq 0$ pe tot intervalul de integrare, cu care integralele (12) se transformă în integrale Fermi [5]

(Initat in redacție la 15 februarie 1975)

22

Registru nr.	Conținut**	Registru nr.	Conținut**
999	operațional	801	operațional
992	operațional	893	operational
ØØ4	$^{n+1}L_k^m(a, \zeta_i^*)$	\$ 95	${}^{n}L_{k}^{m}(a, \zeta_{i}^{*})$
ØØ 6	N	997	b_1
808	operațional	809	b_1/N
Ø1Ø	Ø,2339569673	911	ø,3869ø4ø7ø
£ 12	ø,6193ø 9593 ø	913	Ø,18Ø38Ø7865
.914	ø,169 3953ø 68	915	9,8306046932
Ø 16	Ø,Ø8566224262Ø	917	· Ø,Ø337652429Ø
Ø18	0,9662347571	£ 19	$n = \theta, \theta$
929	ζ* ۱	921	k _o
922	elk_	923	G
022	w curent	925	k curent
a26	$\alpha \cdot elk$	927	u_H
000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	@29	liber
Ø28	۵ ډ	.031	A
Ø3Ø	operațional	.933	T
Ø 32	$^{-0}L_{k_{2}}^{m_{2}}(a, \zeta_{i}^{*})$	\$35	$\Delta \zeta_{t}^{*}$
Ø34	$y_1(*)$	\$ 37	${}^{0}L_{1}^{m_{1}}(a, \zeta^{*})$
Ø36	liber	030	
Ø38	${}^{0}L_{1}^{m_{2}}(a, \zeta_{1}^{*})$	011	" <u>*</u>
940	R^{μ_2}	941	
942		\$43	u_{Pr} .
044	۳ ת	.045	m_2 curent
946	k. curent	.ø47	m_1 curent
948	k, curent	a	, operațional
b	operational		

Conținutul registrelor de memorie

** Vezi notația din schema logică

BIBLIOGRAFIE

- 1 Anselm, I. A Vedenie v fizicu poluprovodnicov, Izd Akad Nauk, Moskva, 1962.

- 2 Kolodziejczak, J., Sosnowski, L., Acta Phys. Polonica, 21, 399, 1962
 3. Kolodziejczak, J., Acta Phys Polonica, 20, 379, 1961.
 4 Blakamore, J., Semiconductor Statistics, PP, 1962
 5. Zawadski, W., Kovalczyk, R., Kolodziejczak, J., Phys. Stat. Solidi, 10, 510 513, 1965.
- 6. Crilov,, A N., Lecfu de calcul prin aproximații, Ed tehnică, București, 1962.

A PROGRAM DESTINATED TO HP 9810A MINICOMPUTER, FOR INTERPRETATION OF EXPERIMENTAL DATA ON SOME TRANSPORT PHENOMENA IN IMPURITY SEMICONDUCTORS .

(Summary)

The program permits the calculus of concentration, Fermi-level, Hall mobility, effective mass of charge carriers and the dominant scattering mechanism of charge carriers.

23

Tabel 3

STRUCTURA ȘI CONDUCTIBILITATEA ELECTRICĂ A UNOR SISTEME PE BAZĂ DE V $_2O_5$ CU FORMATORI DE FAZĂ VITROASĂ

L. STĂNESCU, I. ARDELEAN, D. STĂNESCU și I. HOȘCIUC

Lucrarea constituie o continuare a studiiloi efectuate asupra unor sticle semiconductoare pe bază de V_2O_5 [1 - 4]

În lucrarea [4] s-au expus unele considerații privind acțiunea formatorilor de sticlă ca "otrăvuri" asupra catalizatorilor pe bază de V_2O_5 Întrucît conductibilitatea electrică reprezintă un indicator folosit pentru caracterizarea activității catalitice [5–9], considerăm util studiul acesteia în cazul sistemelor pe bază de V_2O_5 aliate cu formatori de sticlă

Am urmărit piin absorbția în IR și analiza termică unele sisteme pe bază de V_2O_5 cu formatori de sticle P_2O_5 și GeO_2 atît în stare vitroasă cît și în stare cristalină și acțiunea acestor formatori asupra conductibitibilității electrice

Partea experimentală. Au fost preparate probele avînd compoziția $69V_2O_5 - 21MoO_3 - 9P_2O_5$ (VMP) și 84 $V_2O_5 - 16GeO_2$ (VG) prin toprea componenților în creuzete de platină și călnea topiturilor prin turnare pe o placă de oțel inoxidabil (Cifiele indică concentrația în procente molare a componenților). Pentru a crește concentrația de V⁴⁺, sticla VMP a fost în prealabil topită cu zaharoză obținîndu-se o substanță vitroasă de culoare înclusă în urma călnii prin turnare [4].

Probele astfel obținute au fost supuse unui studiu de absorbție în IR folosind instalația UR 10 De asemenea s-a efectuat analiza termică la sticla VMP, în instalația ORION — GYEM, pentru a se pune în evidență procesul de cristalizare

Rezistența electrică în funcție de temperatură a fost măsurată folosind instalația redată în figura l

Pentru măsurarea rezistenței electiice probele au fost argintate folosindu-se pasta de argint Degussa Ca instrumente de măsură s-au folosit o punte de precizie RLC-ORION pentru măsurarea rezistenței electrice și un potențiometru P 306 pentru măsurarea temperatuiii.

Rezultate și discuții. În figura 2 redăm spectrele de absorbție în IR. Sticla VMP (fig 2, curba 2a) este caracterizată de un spectru IR, care în comparație cu spectrul V_2O_5 pur (fig 2, curba 1) prezintă în locul benzii de absorbție cu maximul la cca 830 cm⁻¹ un palier de absorbție intensă În cazul V_2O_5 pur banda de la 830 cm⁻¹ este datorată vibrațiulor de valență ale celor trei legături V-O (1,77 Å, 1,88 Å, 2,02 Å) iar în cazul sticlei apariția palierului este explicabilă dacă admitem că legăturile V-O-V pot fi de cele mai diverse lungimi În locul benzii înguste și intense de la 1019 cm⁻¹ a V_2O_5 (curba 1) care este datorată vibrației de valență a legăturii V=O, apare o bandă mult mai puțin intensă, care este deplasată spre numere de unde mai mici. Micsorarea

însemnată a acestui maxım și diversificarea lungimilor legătuiilor V-O exprimă schimbările structurale induse de prezența P_2O_5 .

În lucrarea [10] am arătat că în spectrul IR al probei 80% mol $V_2O_5 + 20\%$ mol MoO_3 nu apar schimbări semnificative față de V_2O_5 . Astfel, schimbările observate reflectă formarea fazei vitrcase cu participarea P_2O_5 , cînd în locul structurii în straturi (plane ac) legate prin forțe slabe de-a lungul axei b (vezi figura 3) apar legături puternice pe seama distrugerii legăturilor V=O. Modelul propus este în acord și cu ideile expuse de D r a k e și S c a n 1 a n [11] privind tipul de legătură în sticle.

Prin răcirea lentă a topiturii se obține o substanță care nu mar are aspect de sticlă, iar benzile amintite sînt mult mai clar exprimate (fig. 2, curba 2b) indicînd prezența unei faze cvasicristaline.

Acțiunea distructivă specifică formatorilor de sticlă asupra legăturii V=O din V_2O_5 se manifestă și atunci cînd se adaugă GeO_2 . Pe spectrul

L STĂNESCU, I ARDELEAN, D. STĂNESCU, I HOȘCIUC

de absorbție IR al probei VG (fig 2, curba 3) se constată atît micșorarea intensității benzii de la 1019 cm⁻¹ cît și lărgirea, celei de la 830 cm⁻¹ [4], fenomene care pot fi interpretate în mod analog ca și în cazul sticlei VMP Trebuie să remarcăm că deși concentrația de 16% mol GeO₂ este insuficientă pentru formarea unei sticle (cca 43% GeO₂ după [12]) structura V_2O_5 este puternic afectată chiar și la această concentrație.

În figura 4 redăm o termogramă a probei VMP

Se constată că prin încălzire la cca. 300° C are loc un proces de cristalizare pus în evidență printr-un efect exoterm puternic pe curba ATD Efectul endoterm de instensitate mică, care apare sub temperatura de 300° C este datorat probabil formării de nuclee de cristalizare Peste temperatura de 300° C se atinge un grad de fluiditate suficient pentru ca faza cristalină conținînd ionii V⁴⁺ să se manifeste în curba TG printr-o creștere corespunzătoare absorbției de oxigen la topirea probei [4].

În figura 5 redăm dependența lg $\rho = f\left(\frac{1}{T}\right)$ pentru probele studiate mai sus.

Pentru fiecare porțiune lineară se indică pe curbe valoarea energiei de activare a conductibilității electrice considerînd $\rho = \rho_0 \exp(\Delta E/kT)$.

În figura 5a, curba I se referă la proba vitroasă VMP iar curba II la proba VMP cristalizată. Se constată că proba vitroasă are o rezistivitate mai mare cu trei ordine de mărime decît proba cristalizată. De asemenea și energiile de activare pentru sticla VMP sînt mai mari

27

decît pentru proba VMP cristalizată În stare cristalizată proba VMP are totuși o rezistivitate cu cca două ordine de mărime mai mare față de proba 80% mol V₂O₅-20% mol MoO₃ [13] la temperatura camerei și o energie de activare mai mare.

Influența alierii a V_2O_5 cu GeO₂ asupra conductibilității electrice este reprezentată în figura 5b Față de cca $5 \cdot 10^2\Omega$ cm, rezistivitatea pentru V_2O_5 , pentru proba VG, aceasta are o valoare de peste $10^5\Omega$ cm, la temperatura camerei și de asemenea o energie de activare a conductibilității mult mai ridicată (pentru V_2O_5 , $\Delta E \approx 0.20$ eV).

Concluzii. Formatorii de sticlă influențează negativ conductibilitatea electrică a V_2O_5 și a sistemului V_2O_5 -MoO₃.

În lucrarea [4] s-a prezentat acțiunea otrăvitoare a formatorilor de sticlă asupia unor procese catalitice. Formatorii de sticlă acționează deci negativ atît asupra unor procese catalitice cît și asupra procesului de conducție electrică în cazul sistemelor pe bază de V_2O_5

(Intrat in redactie la 15 februarie 1975)

BIBLIOGRAFIE

- 1. L. Stänescu, S. Gocan, I. Ardelean și Șt. Man, Studia Univ Babeș-Bolyai, ser Math-Phys f 2, 81 (1969)
- 2 S Gocan, L Stănescu, I. Ardelean, și Șt Man, Studia Univ Babeș-Bolyai, ser. Chem f 1, 43 (1970)
- 3 S Gocan, L Stănescu, I Ardelean și Șt Man, Studia Univ Babeș-Bolyai, ser Phys, f 1, 3 (1971)
- 4 L. Stănescu, I Ardelean, M Peteanu și K Kovacs, Rev. Roum Phys. 20, nr 1, 67 (1975)
 5 F F Volkenstein, Elektronnaia teoria kataliza na poluprovodnikah, Gosudarstv
- 5 F F Volkenstein, Elektronnara teoria kataliza na poluprovodnikah, Gosudarstv Izd Fiz Mat, 1960
- 6 I A Miasnikov, Izv Akad Nauk SSSR Ser Fiz, 21, 192 (1957)
- 7 S Z Roghinski, Prblemå kinetiki i kataliza, Izd Akad Nauk SSSR, Moskva, 1955, T VIII p 110
- 8 D Gutschick, J Scheve, G Rienaker, Z anorg. allg Chem 369, 198 (1969)
- 9 A I Lesnikowitsch, J Scheve, I Ebert, Z anorg allg Chem 370 40 (1969)
- I. Stänescu și I Ardeleau, Studia Univ Babeș-Bolyai, ser Math-Phys, f 1, 101 (1969)
- 11 C F Drake and I F Scanlan, J Non Crystalline Solids 4, 234 (1970)
- 12 G Sperlich, P Urban and G Frank Z Physik 263, 315 (1973)

13 L Stänescu și I Ardelean, Lucrare nepublicată

STRUCTURE AND ELECTRICAL CONDUCTIVITY OF SOME $\mathrm{V_2O_5}$ SYSTEMS WITH GLASS FORMERS

(Summary)

The infrared absorbtion, thermal analysis and electrical conductivity studies show that the glass formers distory V = 0 bounds, which are typical for the layer lattice of the V_2O_5 and in turn set up the tridimensional bounds. At the same time, a significant increase of the electrical resistivity and activation energy of the V_2O_5 and V_2O_5 -MoO₃ samples alloyed with glass formers (P₂O₅ and GeO₂), is ascertained.

ÓN THE METAL-LÍGAND BONDING IN COPPER(II)-BÍS (8-HYDROXYQUINOLINATE)

O. COZAR, V. ZNAMIROVSCHI, I. HAIDUC

1. Introduction. Copper(II)—bis(8-hydroxyquinolinate) has been investigated by ESR, ENDOR, and optical methods with emphasis upon certain structural aspects, in particular upon the metal—ligand bond [1-6].

Thus, Gersmann and Swalen [1] investigated the ESR spectra of $Cu(Ox)_2$ in 60% chloroform + 40% toluene solution at 77°K from which they determined the values of the g, A and a^N tensors. The MO coefficients were determined by assuming D_{2h} symmetry with d_{xy} ground state and g_x and g_y axes bisecting the ligand-copper-ligand bond angles.

K o k o s z k a et al. [2] have investigated ESR spectra of polycrystalline samples of [⁶³Cu(Ox) 2H₂O], magnetically diluted with the isomorphous zinc—bis(8-hydroxyquinolinate), in the X and K bands. In the electronic spectra they found three absorption bands $\Delta_1 = 15400$, $\Delta_2 = 23000$ and $\Delta_3 = 28500$ cm⁻¹. The MO coefficients were estimated assuming D_{4h} symmetry with $d_{x^2-y^2}$ as ground state and $\Delta_1 = \Delta_{xy}$, $\Delta_2 =$ $= \Delta_{xx}$. The differences between ESR and optical data were attributed [1-2] to the presence of different ligands on the Oz axis.

R is t et al. [3] have studied the matrix effects upon the ESR parameters of $Cu(Ox)_2$ incorporated in phtalimide, phtalic acid, 8-hydroxyquinoline and zinc bis(8-hydroxyquinolinate) and found that the values of g, A and a^N tensors are sensitive to the lattice environments. The MO treatment was done assuming a rhombic symmetry (D_{2k}) with the $d_{x^2-y^2}$ as ground orbital and the α , α' coefficients were determined.

The ESR and ENDOR investigations [3-6]on the Cu(Ox)₂ have shown that the g_x axis is along the O-Cu-O direction and g_y forms a 5° angle with the N-Cu-N axis (fig. 1).

In this work we have investigated the solvent effects on the ESR and electronic spectra of $Cu(Ox_2)$. Also, assuming the D_{2k} symmetry with $d_{x^2-y^2}$ as ground state, the MO coefficients for the metal-ligand bond were estimated. Unlike previous works [1-3], in this one the bonding parameters for the Cu—O and Cu—N σ -bonds as well as for the π -bonds out of the xOy plane are determined

2. Experimental results. a) ESR measurements. ESR spectra of $Cu(Ox)_2$ in various solvents (chloroform, toluene, pyridine, etc.) were

recorded both at room and liquid nitrogen temperatures The concentration of the samples was 7 mg/ml $Cu(Ox)_2$

The ESR spectra were recorded with a JES-3B spectrometer working in the X band with a field modulation of 100 Kc/s

At room temperature all the spectra contain four well resolved components of the Cu(II) hyperfine structure, but none shows the nitrogen superhyperfine structure.

At 77°K the hyperfine structure from the parallel band of the spectra is resolved for all solvents used which afforded an estimation of the g_{\parallel} and A_{\parallel} parameters. The nitrogen superhyperfine structure is best resolved on the $m_I = + 3/2$ signal in the parallel absorption and in the region of perpendicular absorption (fig. 2).

The presence in the ESR spectrum of more than five superhyperfine lines is due to ⁶³Cu and ⁶⁵Cu isotopes.

Fig 2 The ESR spectrum of $Cu(Ox)_2$ in a solvent mixture containing 55% chloroform + +40% toluene + 5% ethanol at 77°K The expanded peak $m_I = +3/2$ was recorded in a 70% chloroform + 30% ethanol mixture

In order to determine the components of the superhyperfine tensor, a_{\parallel}^{N} and a_{\perp}^{N} , it was assumed that the splitting between two superhyperfine lines on the signal $m_I = +3/2$ in the parallel band represents a_{\perp}^N , and the splitting between the lines around g_{\perp} represents 1/2 $(a_{\parallel}^N + a_{\perp}^N)$ [8] The ESR parameters thus obtained are given in table 1.

Table 1

Nr	Solvent	σ.	· ø.	$ A_{\parallel} $	$ A_{\perp} $	$ a_{\parallel}^N $	$ a_{\perp}^{N} $	$ a_s^N $
141		5¶	<u>г</u> •Т	ex	pressed	ın 10-	4 cm-	1
1	60% chloroform	2 219	2 046	176 4	22 8	12 2	82	95
_	40% toluene						~ •	
2	70% carbon tetrachloride	2 221	2 042	175 8	$23 \ 4$	$12\ 0$	81	94
•	30% ethanol	0.004	0.040	170.0	00 C	10.0	0.0	0.5
3	25% chloroform	2 224	2 049	1723	20.6	14 4	84	95
4	40% toluene							
7	55% chloroform	2 2 2 9	2 044	176 5	23 1	14 2	81	10 1
	5% ethanol							
5	100% pyridine	2 231	-2-051 -	168 3	127	_	_	_
		•	•					

The values of the ESR parameters for Cu(Ox)2 in various solvents

In pyridine (fig. 3) the superhyperfine structure is not resolved and the shape of the spectrum differs from the others in that the peak $m_I =$ = -3/2 from the parallel absorption band overlaps on the perpendicular absorption, the separation of the two being small This is due to the higher donor ability of the pyridine molecules, which becomes coordinated to copper on the Oz axis, resulting in a modification of the ligand field symmetry and of the metal - ligand bond

b) Optical data. Electronic spectra of $Cu(Ox)_2$ in various solvents were recorded on a SPECORD UV-VIS instrument at room temperature. For each solvent used three absorption bands in the $14\,000-30\,000$ cm⁻¹ range were observed (table 2)

These bands can be assigned as follows [9], $\Delta_1 = d_{x^2-y^2} - d_{xy}$, $\Delta_2 =$ $= d_{x^2-y^2} - d_{xx}, \ \Delta_3 = d_{x^2-y^2} - d_{yz} \text{ transitions}$ For the $d_{x^2-y^2} - d_{xy}$ band

Table 2

no solvent shifts were observed, because of its low intensity. For other bands slight solvent shifts noticeable, and these are due to the coordination of solvent molecules on the Oz axis.

3. The molecular orbitals and the values of the g and A tensors. In assumption that the investiThe absorption bands in the electronic spectra of $Cu(Ox)_2$ in various solvents

Nr	$\Delta_1(\text{cm}^{-1})$	$\Delta_2(\mathrm{cm}^{-1})$	Δ ₃ (cm ⁻¹)
1 2 3 4 5	14 640 14 640 14 640 14 640 14 640 14 640	24 000 25 120 24 800 24 400 24 400	29 600 30 000 29 760 29 680 29 360

F1g. 3 The ESR spectrum of Cu(Ox)2 in pyridine at 77°K.

gated complex has a D_{2h} symmetry, the ²D term of the Cu(II) is split into five levels, corresponding to the following atomic orbitals $d_{x^2-y^2}$, d_{z^2} , d_{xy} , d_{xz} and d_{yz} Since in this symmetry both $d_{x^2-y^2}$ and d_{z^2} functions belong to the same A_g representation, for the construction of the molecular orbitals Ψ_{Ag} , Buluggiu et al [9-10] use their linear combinations.

The calculation of the α and ξ coefficients in the case of complexes with the same symmetry [9-10] shows that $\alpha^2 \gg \xi^2$, therefore one can neglect the mixing of the d_{z^2} orbital with $d_{x^2-y^2}$, which is assumed to be the essentially ground state [3-5]. Also, assuming that in the LCAO-MO scheme, the ligand atoms participate in bonding with 2s, $2p_x$, $2p_y$ and $2p_x$ orbitals, the antibonding molecular orbital of the complex will be:

$$\begin{split} \Psi_{Ag} &= \alpha d_{x^{3}-y^{3}} - \alpha_{0}^{\prime} \left(-\sigma_{x}^{(1)} + \sigma_{x}^{(3)}\right)/\sqrt{2} - \alpha_{N}^{\prime} (\sigma_{y}^{(2)} - \sigma_{y}^{(4)})/\sqrt{2} \\ \Psi_{Ag} &= \alpha_{1} d_{z}^{2} - \alpha_{10}^{\prime} (\sigma_{x}^{(1)} - \sigma_{x}^{(3)})/\sqrt{2} - \alpha_{1N}^{\prime} (\sigma_{y}^{(2)} - \sigma_{y}^{(4)})/\sqrt{2} \\ \Psi_{B_{3g}} &= \beta d_{xy} - (1 - \beta^{2})^{1/2} (p_{y}^{(1)} + p_{x}^{(2)} - p_{y}^{(3)} - p_{x}^{(4)})/2 \qquad (1) \\ \Psi_{B_{3g}} &= \delta_{0} d_{xz} - (1 - \delta_{0}^{2})^{1/2} (p_{z}^{(1)} - p_{z}^{(3)})/\sqrt{2} \\ \Psi_{B_{3g}} &= \delta_{N} d_{yz} - (1 - \delta_{N}^{2})^{1/2} (p_{z}^{(2)} - p_{z}^{(4)})/\sqrt{2} \end{split}$$

where $\sigma^{(i)} = np^{(i)} \mp (1 - n^2)^{1/2} s^{(i)}$ are the sp^2 hybridized $(n = \sqrt{2/3})$ orbitals of the ligands. This hybridization is imposed to nitrogen atoms by the fact that they belong to a pyridine-type ring, with a C-N-C bond angle of 120°.

Assuming the wave functions (1) and using the second order perturbation theory [9-10] for the rhombic symmetry the following spin – Hamiltonian is obtained:

$$\begin{aligned} \hat{\mathcal{X}}_{s} &= \beta_{e} \left[g_{x} H_{x} S_{x} + g_{y} H_{y} S_{y} + g_{z} H_{z} S_{z} \right] + \\ &+ A_{x} I_{x} S_{x} + A_{y} I_{y} S_{y} + A_{z} I_{z} S_{z} + \hat{\mathcal{X}}_{L} \end{aligned}$$

$$(2)$$

where:

$$g_{\mathbf{x}} = 2.0023 - (2\lambda/\Delta_{\mathbf{y}\mathbf{z}})\alpha\delta_{N}[\alpha\delta_{N} - 2\alpha'_{N}\delta_{N}S_{N} - \alpha'_{N}(1 - \delta_{N}^{2})^{1/2}T_{N}(n)] \quad (3a)$$

$$g_{y} = 2.0023 - (2\lambda/\Delta_{xz})\alpha\delta_{0}[\alpha\delta_{0} - 2\alpha_{0}'\delta_{0}S_{0} - \alpha_{0}'(1 - \delta_{0}^{2})^{1/2}T_{0}(n)]$$
(3b)

$$g_{z} = 2.0023 - (8\lambda/\Delta_{xy})\alpha\beta\{\alpha\beta - \beta(\alpha'_{0}S_{0} + \alpha'_{N}S_{N}) - (3c)$$

$$- (1 - \beta^2)^{1/2} (2\sqrt{2})^{-1} [\alpha'_0 T_0(n) + \alpha'_N T_N(n)] \}$$

$$A = P[\alpha^2 (2/7 - k) + (3/7)(\lambda/\Lambda_n) \alpha^2 \delta_n^2 - (2\lambda/\Lambda_n) \alpha^2 \delta_n^2]$$
(3d)

$$A = D[a^{2}(2/7 - b) + (2/7)(2/A) a^{2} b^{2} - (22/A) a^{2} b^{2}]$$
(3e)

$$A_{y} = F \left[a^{-} (2/7 - k) + (3/7) (k/\Delta_{yz}) a^{-} \delta_{N} - (2/7) (2/\Delta_{xz}) a^{-} \delta_{0} \right]$$
(36)
$$A_{y} = D \left[a^{-} (2/7 - k) + (3/7) (k/\Delta_{yz}) a^{-} \delta_{N} - (2/7) (2/A) (k/\Delta_{xz}) a^{-} \delta_{0} \right]$$
(36)

$$A_{s} = P[-\alpha^{2}(4/7 + k) - (8\lambda/\Delta_{xy})\alpha^{2}\beta^{2} - (3/7)(\lambda/\Delta_{xz})\alpha^{2}\delta_{0}^{2} - (3f)$$

 $- (3/7) \left(\lambda/\Delta_{yz} \right) \alpha^2 \, \delta_N^2 \right]$

The usual values for the Fermi contact term K, dipolar interaction term P, and spin-orbital coupling constant λ are respectively 0.43, 0.036 cm⁻¹ and -828 cm⁻¹ [11]. Δ_{xy} , Δ_{xx} and Δ_{yx} represent the energy transitions between the states $B_{1g} - A_{g}$, $B_{2g} - A_{g}$ and $B_{3g} = A_{g}$.

The T(n) integral can be written as:

$$T_{i}(n) = n + (1 - n^{2})^{1/2} \frac{R_{i}}{\sqrt{3}} \int_{0}^{\infty} r^{2} \Re_{p_{i}}(r) \frac{d}{dr} \Re_{s_{i}}(r) dr \qquad (4)$$

3 — Physica / 1975

where $\mathfrak{A}_{pi}(r)$ and $\mathfrak{A}_{si}(r)$ are the normalized radial functions p and s for the *i*-th ligand and R_i is the metal-ligand distance. Using the hydorgenlike wave functions 2s and 2p for the ligands, T(n) can be estimated with the aid of relation [11-12]:

$$T(n) = n - (1 - n^2)^{1/2} 8R(Z_p Z_s)^{5/2} (Z_s - Z_p) / (Z_s + Z_p)^5 a_0$$
(5)

In the present case $n = \sqrt{2/3}$, R(Cu - O) = 1.930 Å, R(Cu - N) = 1.973 Å and Z_s and Z_p are the effective nuclear charges for the 2s and 2p ligand orbitals. Using for Z_s and Z_p the values given by K₁velson and Neiman [11] for oxygen and nitrogen one obtained respectively $T_0(n) = 0.215$ and $T_N(n) = 0.32$

 S_0 and S_N are the overlap integrals between the $d_{x^*-y^*}$ orbital of Cu(II) ion and the symmetrized σ orbital of oxygen and mitrogen respectively. They can be expressed as

$$S_{0} = \sqrt{2} \langle d_{x^{2} - y^{2}} | - \sigma_{x}^{(1)} \rangle$$

$$S_{N} = \sqrt{2} \langle d_{x^{2} - y^{2}} | \sigma_{y}^{(2)} \rangle \cos \varphi$$
(6)

where $\varphi = 17^{\circ}$ is the angle between the direction of the nitrogen σ orbital and the y-axis [5]. For S_0 we considered a value of 0.106[10] and $S_N = 0.093$ which was obtained after [9].

4. Evaluation of MO coefficients. The calculation of the MO coefficients for the ground state $\Psi_{Ag(x^2-y^2)}$ was done by taking into account its normalization condition:

$$\alpha^{2} + \alpha_{0}^{\prime 2} + \alpha_{N}^{\prime 2} - 2\alpha \alpha_{0}^{\prime} S_{0} - 2\alpha \alpha_{N}^{\prime} S_{N} = 1$$
(7)

Introducing the equations (3a), (3b) and (3c) in (3f) the following approximate relation is obtained for α [11]:

$$\alpha^{2} = (|A_{\parallel}|/P) + \Delta g_{\parallel} + (3/7)\Delta g_{\perp} + 0.04$$

$$A_{\parallel} = A_{\star}, \ g_{\parallel} = g_{\star}, \ \Delta g_{\parallel} = g_{\parallel} - 2.002,$$
(8)

Here,

$$g_{\perp} = 1/2 \ (g_z + g_y)$$
 and $\Delta g_{\perp} = g_{\perp} - 2.002.$

The α'_N coefficient can be estimated from the nitrogen superhyperfine splittings, by assuming that [8]:

$$a_{\parallel}^{N} = a_{s}^{N} + 2a_{p}^{N} \tag{9}$$

$$a_{\perp}^{N} = a_{s}^{N} - a_{p}^{N} \tag{10}$$

where,

$$a_s^N = (8\pi/3)\beta_s \ \beta_N \ g_s \ g_N | \ S(0)|^2 (1-n^2) \alpha_N'^2/2 \tag{11}$$

$$a_{p}^{N} = (2/5) \beta_{e} \beta_{N} g_{e} g_{N} \langle r^{-3} \rangle_{2p} n^{2} \alpha_{N}^{\prime 2} / 2$$
(12)
The calculations of Maki and McGarvey [12] for $|S(0)|^2$ and $\langle r^{-3} \rangle_{2p}$ gave respectively the values of $33.4 \times 10^{24} \,\mathrm{cm}^{-3}$ and $21.1 \times 10^{24} \,\mathrm{cm}^{-3}$. By using the necessary experimental data, from relation (8) and (11) the α and α'_N coefficients were estimated Introducing these values and the overlap integrals in relation (7) the values of α'_0 were obtained (table 3).

Table 3

Nr	α ²	α(2	$\alpha_N^{\prime 2}$	β²	δ_0^2	δ_N^2
1 2 3	0,766 0 764 0 761	0,282 0 285 0 287	0,103 0 102 0 103	0,737 0 743 0 758	0,959 0 912 1 066	1,106 1 017 1 194
4 5	0 775			0 757	0,907	1 039 1 216

The values of MO coefficients for $Cu(O_{\lambda})_2$ in various solvents

The values of the other coefficients, which characterize the in-plane π -bond (β) and out-of-plane π -bonds (δ_0 , δ_N) were estimated from the equations (3a), (3b) and (3c) in which the already known parameters and optical transitions were introduced. In the (3a) and (3b) relations the last term was neglected because δ_0 , $\delta_N \simeq 1$.

5. Discussions. An interesting result obtained in this work, in addition to what is known from previous ones [1-3] is the strong anisotropy of the covalence in the ground state $\Psi_{A\ell}(x^2-y^2)$ The Cu-O bond has twice as much covalent character than Cu-N bond. The value of the coefficient $\alpha_0'^2 \simeq 0.28$ which characterizes the covalent degree of the Cu-O bond is in good agreement with the value reported by Buluggiu [10] for CuCl₂ \cdot 2H₂O, where $\alpha_0'^2 = 0.25$.

It can be seen that in these compounds the covalent character of Cu–O bond is more pronounced than is usual square-planar complexes of copper. The electron density at mitrogen sites $(\alpha_N^{\prime 2} \simeq 0 \ 10)$ determined in our compound from superhyperfine splittings is smaller than in square-planar complexes, but in agreement with data obtained on monocrystal of Cu(Ox)₂ [3] and also in monocrystals of dimethylalanine, α — glycine and L-alanine copper (II) derivates [13].

The coefficient $\beta^2 \simeq 0.76$ shows a considerable covalent character of the π bond in the molecular plane. At the same time the out-of-plane π bonds are practically ionic, but there in some difference in the character of the Cu-O and Cu-N bonds. The most stressed ionic character of the out-of-plane π bonds was observed in pyridine (tabele 3), due to a strong coordination of the pyridine molecules on the Oz axis.

(Received February 17, 1975)

REFERENCES

- H. R. Gersman, J. D. Swalen, J. Chem. Phys, 36, 3221 (1962).
 G. F. Kokoszka, H. C. Allen Jr, G. Gordon, J. Chem. Phys, 42, 3730 (1965)
 G. H. Rist, J. Ammeter, H. H. Gunthard, J. Chem. Phys, 49, 2210 (1968)
 G. H. Rist, J. S. Hyde, J. Chem. Phys, 49, 2449 (1968)
 G. H. Rist, J. S. Hyde, J. Chem. Phys, 50, 4532 (1969)
 G. H. Rist, J. S. Hyde, J. Chem. Phys, 52, 4633 (1970)
 G. J. Palenik, Acta Cryst, 17, 687 (1964).
 B. D. Rehorek, Ph. Thomas, E. Uhleman, Z. anorg allg. Chem. 396, 59 (1973))
 F. Buluggiu, A. Vera, A. A. G. Tomlinson, J. Chem. Phys. 56, 5602 (1972)
 E. Buluggiu, G. Dascola, D. C. Giori, A. Vera, J. Chem. Phys. 54, 2191 (1971)
- (1971) 11. D. Kivelson, R. Neiman, J. Chem. Phys., 35, 149 (1961)
- 12. A. H. Makı, B. R. McGarvey, J. Chem. Phys. 29, 31 (1958) 13. M. Fujimoto, J. Janecka, J. Chem. Phys. 55, 1152 (1971).

ASUPRA LEGĂTURII METAL-LIGAND ÎN CUPRU(II)-BIS(8-HIDROXICHINOLINAT)

(Rezumat)

Se face un studiu RES și optic asupra bis-8-hidroxichinolinatului de cupru(II)în diferiți solvenți.

Considerind complexul de simetrie D_{2h} cu starea fundamentală $d_{x^2-y^2}$, se estimează coeficienții MO caracteristici legăturii metal — ligand Rezultatele indică o puternică ani-zotropie a covalenței în starea fundamentală. Gradul de covalență al legăturii Cu-O este de peste două ori mai pronunțat decît al legăturii Cu-N

Legătura π în plan are un grad de covalență apreciabil ($\beta^2 \simeq 0.76$), 1ar cea π în afara planului este practic ionică

DETERMINAREA UNOR MĂRIMI MOLECULARE DIN MĂSURĂTORI ULTRASONICE

LIA ONIȚIU

Conform lui Brillouin [1] și Frenkel [2] un lichid se deosebește de solidul corespunzător prin absența modulului transversal de elasticitate, astfel încît se poate concepe propagarea unei unde plane în lichid ca făcîndu-se în lungul unui cristal unidimensional.

Limitînd problema la temperaturi suficient de îndepărtate de cele critice, astfel încît componenta cinetică a energiei interne a lichidului să poată fi neglijată, energia internă este reprezentată prin energia potențială de interacțiune a moleculelor; prin neglijarea acțiunii reciproce cu moleculele îndepărtate și limitarea la interacțiunile dintre vecinii cei mai apropiați, Altenburg [3] calculează viteza de propagare a ultrasunetului din ecuația:

$$v^2 = \frac{\varphi''(r)}{r\rho} \tag{1}$$

unde $\varphi''(r)$ este derivata a doua în raport cu r/γ ($\gamma = C_p/C_v$) a energieu potențiale de interacțiune $\varphi(r)$ a două molecule vecine, aflate la distanța r

În general $\varphi(r)$ poate fi exprimată analitic în funcție de volumul molar V printr-o diferență de doi termeni de forma:

$$\varphi(r) = \frac{A}{V^m} - \frac{B}{V^n} \tag{2}$$

unde m și n sînt constante independente de volum și aceleași pentru toate lichidele, iar A și B sînt mărimi dependente de temperatură, avînd valori caracteristice pentru fiecare lichid. Ca urmare, viteza sunetului este dată de relația:

$$v^2 = \gamma m n \varphi \tag{3}$$

Într-o soluție, și în special în soluțiile electrolitice, K u d r e a v \ddagger e v consideră [4, 5] respectată aditivitatea energiei interne, deci, \ddagger inînd seama de cele de mai sus, într-o astfel de soluție viteza ultrasunetului poate fi exprimată prin relația:

$$v^{2} = (1 - v)v_{0}^{2} + v v_{s}^{2}$$
(4)

unde v_0 reprezintă viteza ultrasunetului în solventul pur, v_s este viteza ultrasunetului în substanța cristalină dizolvată, iar v este cantitatea de sare conținută în 100 g soluție.

Viteza în substanța dizolvată, v_s , poate fi exprimată în funcție de energia potențială a rețelei cristaline ionice, φ_s . Astfel:

$$\varphi_s = \frac{a}{r^{n_1}} - \frac{b(Ze)^2}{r} \tag{5}$$

L ONIȚIU *

și considerînd $r = V^{1/3}$, rezultă:

$$v_s^2 = \frac{1}{9} \, v \gamma n_1 \varphi_s \tag{6}$$

În relația (5) r reprezintă distanța dintre ionii rețelei cristaline cu sarcina Ze, iar a, b, n_1 sînt constante

Expressa vitezei într-o soluție electrolitică devine.

$$v^{2} = (1 - \nu)v_{0}^{2} + \frac{1}{9}\nu\gamma n_{1}\varphi_{s}$$
⁽⁷⁾

Pentru substanțele solide se poate considera $\gamma = 1$, iar Kudreavțev și colab [4, 5] propun pentru n_1 valoarea 5

Privind problema invers, ecuația (7) permite calcularea energiei rețelelor cristaline din măsurători de viteză a ultiasunetului în soluțiile sărurilor respective În acest scop am utilizat valorile măsuiate experimental [6-8] în soluțiile apoase ale unor cloruri și fluoruii, în tabelul Î fiind prezentate valorile medii obținute pentru energia de rețea a diferitelor cristale Pentru comparare au fost trecute și valorile corespunzătoare $\varphi_{\rm ht}$ determinate de M.P. Tosi în 1964, prin alte metode

Tabel 1

sare	L1Cl	NaCl	KCI	NaF	KF
φs K _{cal} mol	179,8	166,0	157,8	182,0	176,3
φlit Kzal mol	192,9	178,6	161,6	215,2	189,1

La o examinare mai riguroasă a fenomenului, e necesar să se țină seama de efectul caloric apărut la dizolvare, astfel încît relația (7) devine

$$v^{2} = (1 - \nu)v_{0}^{2} + \frac{1}{9}\nu\gamma n_{1}\varphi_{s} + \nu qL$$
(8)

în care L este căldura de dizolvare și q o constantă. Deoarece $\varphi_s + L = H^+ + H^-$, $(H^+$ și H^- reprezentînd căldurile de hidratare corespunzătoare cationului și anionului) se poate transcrie relația (8) în forma

$$v^{2} = (1 - \nu)v_{0}^{2} + \nu K(H^{+} + H^{-})$$
(9)

care permite determinarea călduru de hidratare $H = H^+ + H^-$ dun măsurători ultrasonice. Dacă se exprimă căldura de hidratare în cal/g și viteza în m/s, K este un coeficient care are valoarea $K = 2 \cdot 10^7$ pentru cationi monovalenți și $K = 10^7$ pentru cationi bivalenți.

În tabelul 2 sînt trecute valorile medu obținute din măsurătorile noastre efectuate într-o serie de soluții apoase de cloruri și fluoruri, fiind trecute de asemenea, pentru comparare, valorile H_{lit} comunicate de Miscenko în 1947 și determinate prin alte metode.

38

sare.'	LaC1	NaCl	KCI	NaF	KF	MgCl ₂	CaCl ₂	SrCl ₂	, BaCl ₂
HKcailmoi	195	174	167	225	200	599	529	475	467
H _{l1t} Kcailmoi	200	177	162	211	193	628	533	496	470

Deoarece căldurile de hıdratare sînt dependente de razele ionilor, relația (9) ar putea stabili o legătură între viteza ultrasunetului și dimensiumle ionilor sării dizolvate.

Considerînd în primă aproximație valabilă ecuația lui Voet pentru săruri care disociază în ioni monovalenți, căldura de hidratare e dată de relația:

$$H^{+} + H^{-} = \frac{165 \cdot 5 \cdot 10^{3}}{M} \left[\frac{1}{r^{+} + 0.8} + \frac{1}{r^{-} + 0.4} \right]$$
(10)

unde prin r^+ și r^- s-au notat razele corespunzătoare cationilor și anionilor exprimate în angstromi și M este greutatea moleculară a sării. Înlocuind (10) în (9) se obține pentru viteza de propagare a sunetului:

$$v^{2} = (1 - \nu)v_{0}^{2} + \frac{331 \cdot 10^{10}}{M}\nu \left[\frac{1}{r^{+} + 0.8} + \frac{1}{r^{-} + 0.4}\right]$$
(11)

În tabelul 3 sînt trecute valorile medii pentru razele ionilor aflați în soluțiile apoase studiate, determinate conform relației (11) din date de viteză. Pentru comparare sînt trecute și razele ionice determinate de L. Pauling în 1945.

Tabel 3

	1011	L1+	Na+	K+	Mg ²⁺	Ca²+	Sr ²⁺	Ba ²⁺	C1	F-
r Å		0,59	0,90	1,30	0,64	0,87	1,01	1,22	1, 78	1,26
r _{lut} Å		0,60	0,95	1,33	0,65	0,99	1,13	1,35	1,81	1,36

Deși pînă acum [5] relația (11) a fost utilizată numai pentru ioni monovalenți, am încercat extinderea ei și pentru cationii bivalenți, cu rezultate mulțumitoare.

În concluzie, viteza de propagare a ultrasunetului poate fi privită ca o proprietate intermoleculară, datele ultrasonice permițînd determinarea a o serie de parametri moleculari în acord mulțumitor cu rezultatele obținute utilizînd alte tehnici experimentale. Totuși, examinînd tabelele 1-3, se constată că determinările acustice rămîn aproape în permanență la valori

Tabel 2

L ONITIU

ceva mai scăzute și cauza acestei divergențe sistematice ar putea fi căutată în schimbarea caracterului interacțiunilor moleculare, care cu siguranță are loc la dizolvarea sării, schimbare care n-a fost luată în considerare în modelul teoretic simplu aflat la baza calculelor.

(Intrat in redacție la 17 februarie 1975)

BIBLIOGRAFIE

- Brillouin, A., Phys Rev 34, 916 (1938)
 Frenkel, I. I., Usp Fiz Nauk, 25, 1, (1941)
 Altenburg, K. Z. Phys Chem 195, 145, (1950) și 216, 126 (1961)

- 4 Dubinina, E I, Kudreavtev, B B, J Fiz Him 31, 2191, (1957) 5 Kudreavtev, B B, Kanatova, R F, J Fiz Him 39, 11, 2810
- (1965) și 40, 6, 1385 (1966)
- 6 Auslander, D, Onițiu, L, Studia Univ Babeș-Bolyai, Phys, f 1, 81 (1970) 7 Auslander, D, Onițiu, L, Acta Phys Hung, 30, 253, (1971) 8 Auslander, D, Onițiu, L, Acustica, 24, 4, 205, (1971)

DÉTERMINATION DE OUELOUES GRANDEURS MOLÉCULAIRES PAR MESURAGES ULTRASONIQUES

(Résumé)

On a calculé l'énergie du réseau cristallin, la chaleur d' hydratation et le rayon ionique, en utilisant les valeurs expérimentales de la vitesse de l'ultrason dans les solutions aqueuses diluées de chlorures et fluorures On a constaté que les grandeurs déterminées par voie ultrasonore ont une valeur un peu plus basse que les mêmes grandeurs déterminées par d'autres méthodes. On explique cette différence systématique par la simplification du modèle théorique utilisé

STUDIUL TEORETIC AL OXIDĂRII ANODICE A HIDROGENULUI DIZOLVAT ÎN STRAT SUBȚIRE DE PALADIU, PRIN ELECTROLIZA LA CURENT CONSTANT (II)

F. BOTA, I. COVACI*, R. V. BUCUR*

În procesul de difuzie cu adsorbție pentru un electrod finit, modelul matematic de la care s-a pornit [5] a condus la următoarea soluție:

$$u_{1}(\xi, t^{*}) = 1 - \gamma \left\{ \frac{1}{2(1+m)} \left[(1+\xi)^{2} + 2t^{*} - \frac{1+3m}{3(1+m)} \right] - 2 \sum_{S=1}^{\infty} a_{s}(\xi, \theta_{s}) e^{-\theta_{S}^{2} t^{*}} \right\}$$
$$t^{*} \ge 0, \ -1 \le \xi \le 0,$$
(1)

unde s-a notat.

$$a_s(\xi, \theta_s) = \frac{\cos \theta_s(1+\xi)}{\theta_s^2[(1+m)\cos \theta_s - m\theta_s \sin \theta_s]}, \qquad (S = 1, 2, \ldots) \qquad (2)$$

ıar θ_s sînt rădăcinile ecuației transcendente.

$$tg \ \theta = -m\theta \tag{3}$$

S-a arătat [5] că o soluție aproximativă, care păstrează numai primul termen al seriei din ec. (1), conduce la stabilirea dependenței liniare $i\tau$ vs. i:

$$i\tau = n FC^{\circ}(l+K) - \frac{l^3}{3D(l+K)} i$$
(4)

relație verificată experimental pentru sistemul Pd-H și Pd-D.

În cazul în care se caută o altă soluție aproximativă, se constată prin simplă verificare că ,,partea principală" a soluției $u_1(\xi, t^*)$ și anume, funcția:

$$\tilde{u}_1(\xi, t^*) = 1 - \frac{\gamma}{2(1+m)} \left[(1+\xi)^2 + 2t_f^* - \frac{1+3m}{3(1+m)} \right]$$
(5)

satisface același model matematic ca și soluția exactă, exceptînd condiția inițială, în locul căreia avem

$$u_{1}(\xi, t_{f}^{*}) = 1 - \frac{\gamma}{2(1+m)} \left[(1+\xi)^{2} + 2t^{*} - \frac{1+3m}{3(1+m)} \right]$$
(6)

"Partea principală", $\tilde{u}_1(\xi, t^*)$ poate fi privită ca soluția analitică a unui model matematic aproximant, pentru modelul inițial. Pentru ca modelul aproximant să aibă un sens fizic, trebuie să ne asigurăm că $\tilde{u}_1(\xi, t_f^*) < 0$ pentru $\xi \in [-1, 0]$.

^{*} Institutul de izotopi stabili, Cluj-Napoca.

Constatăm imediat că:

$$\frac{d}{d\xi} [\widetilde{u}_1(\xi, t_f^*)] \leq 0 \quad \text{pentru} \quad \xi \in [-1, 0]$$
$$\frac{d^2}{d\xi^2} [\widetilde{u}_1(\xi, t_f^*)] < 0 \quad \text{pentru} \quad \xi \in [-1, 0]$$

deci rezultă că $\widetilde{u}_1(\xi, t_f^*)$ pentru modelul aproximant-notant simbolic prin ($\widetilde{\mathfrak{M}}$) — este o funcție monoton descrescătoare pe segmentul [-1, 0] și are în $\xi = -1$ un maxim:

$$\tilde{u}_{1 \max} \equiv 1 - \frac{\gamma}{2(1+m)} \left[2t_f^* - \frac{1+3m}{3(1+m)} \right]$$
(7)

ıar în punctul $\xi = 0$ atinge o valoare minimă ·

$$\widetilde{u}_{1 \min} \equiv 1 - \frac{\gamma}{2(1+m)} \left[2t_f^* + \frac{2}{3(1+m)} \right]$$
 (8)

Considerente de ordin fizic impun.

 $\widetilde{u}_{1 \max} < 1$ și $\widetilde{u}_{1 \min} > 0$

Aceste condiții implică ·

$$t_{f}^{*} < \frac{1+3m}{6(1+m)} \equiv t_{f \, \rm mun}^{*} \tag{9}$$

respectiv:

$$t_f^* < \frac{1+m}{\gamma} - \frac{1}{3(1+m)} \equiv t_f^* \max \equiv \tau^*$$
(10)

Reținem dependența:

$$t_{f \min}^* = t_{f \min}^*(m)$$
$$t_{f \max}^* = t_{f \max}^*(m, \gamma)$$

și precizăm domeniul de valabilitate al modelului aproximant

$$(\widetilde{\mathfrak{M}}) \begin{cases} t_f^* \leq t^* \leq \tau^*, \\ -1 \leq \xi \leq 0 \end{cases} \qquad t_f^* \in [t_{\min}^*, t_{\max}^*]$$

Revenind la ecuația transcendentă [5] ·

$$\alpha^* t_f^* + \beta^* = e^{-\theta_1^* t_f^*}$$

membrul stîng al acesteia, în raport cu t_i^* reprezintă o dreaptă, ai cărei coeficienți depind de ε^* , m și γ . Dacă ε^* și m au fost fixați, avem de-a face cu o familie de drepte paralele, parametrul de dependență fiind γ .

Ne propunem determinarea valorilor limită. $\gamma_{lum.inf}$ și respectiv $\gamma_{lum.sup}$ pentru care dreptele limită (d_{inf}) respectiv (d_{sup}) corespunzătoare, încadrează familia de drepte paralele ce realizează o intersecție reală cu exponențiala $e^{-\theta_1^2 t^*}$

a) În poteza că sîntem interesați numai în aproximarea soluției pentru $\xi = 0$, singura restricție pe care o cerem este ca $t_f^* > 0$. Dreapta limită (d_{sup}) va fi aceea care

1. are panta familiei de drepte $-\frac{\varepsilon^*}{1-\varepsilon^*} \cdot \frac{1}{2(1+m)a_1(0, \theta_1)}$

2. trece prin punctul M(0, 1), (fig 1).

1

Rezultă imediat că pentru (d_{\sup}) , avem $\beta^* = 1$, așa încît pentru dreptele din familie impunem: $\beta^* < 1$ Cum $\beta^* = \beta^*(\varepsilon^*, m, \gamma)$ condiția precedentă reprezintă o limitare inferioară pentru parametrul generalizat γ . În mod explicit: $\beta^* < 1$ conduce la.

$$\gamma > \frac{1}{\frac{1}{3(1+m)^2} + \frac{2(1-\varepsilon^*)}{\varepsilon^*} a_1(0, \theta_1)} \equiv \gamma_{\lim \inf}^{(a)}$$
(11)

b) În ipoteza că avem în vedere modelul aproximant (\mathfrak{M}), dreapta limită (d_{sup}) va satisface în locul condiției (2), următoarea condiție:

(2') trece prin punctul $M'(t_{f \min}^*, e^{-\frac{02}{1}t_{f}^*\min})$, (fig. 2).

De aici rezultă că termenul liber β^* din ecuația dreptei (d_{sup}) va avea expresia:

$$\beta_{\sup}^{*} = e^{-\theta_{1}^{*} t_{f}^{*} \min} - \alpha^{*} t_{f\min}^{*} \qquad (12)$$

Cu această precizare, dreptele din familie vor satisface obligatoriu condiția: $\beta^* \leq \beta^*_{sup}$, condiție care implică:

$$\gamma \ge \frac{1}{\frac{1}{2(1+m)} + \frac{2a_1(0, \theta_1)(1-\varepsilon^*)}{\varepsilon^*} e^{-\theta_1} \frac{1+3m}{6(1+m)}} \equiv \gamma_{\lim finf}^{(b)}$$
(13)

Dreapta inferioară, care mărginește familia dreptelor de intersecție, este caracterizată prin faptul că este tangentă exponențialei $e^{-\theta_1^2 t^*}$, și are ca pantă pe α^* Punctul de tangență $M_T(t_T^*, e^{-\theta_1^2 t_T^*})$ va avea deci proprietatea următoare pentru dreapta (d_{inf}) .

$$\begin{cases} (1) & -\theta_1^2 e^{-\theta_1^2 t_T^*} = \alpha^* \\ (2) & e^{-\theta_1^2 t_T^*} - \alpha^* t_T^{*} = \beta^* \end{cases}$$

Condiția (1) exprimă egalitatea pantelor: a dreptei și a exponențialei, în punctul M_T de pe exponențială; condiția (2) exprimă egalitatea ordonatelor, în același punct, M_T .

Ținînd seama de expresia lui $a_1(0, \theta_1)$ condițiile (1) și (2) de mai sus ne conduc la:

$$\beta_{\inf}^{*} = \rho(1 - \ln \rho) \tag{14}$$

unde s-a notat :

$$\rho = \frac{\varepsilon^*}{1 - \varepsilon^*} \cdot \frac{1 + m + m^2 \theta_1^2}{2(1 + m)}$$
(15)

În acest caz, pentru familia dreptelor de intersecție, avem limitarea obligatorie, prin termenul liber β^* .

$$\beta^* \ge \beta_{\inf}^*$$

inegalitate care se traduce prin:

$$\gamma \leq \frac{1}{\frac{1}{3(1+m)^2} + \frac{2\beta_{\sup}^*}{\theta_1^2[1+m+m^2\theta_1^2]}} \equiv \gamma_{\lim \sup}$$
(16)

În concluzie, pentru modelul aproximant, $(\widetilde{\mathfrak{M}})$ parametrul generalizat γ are următoarea libertate de mișcare:

$$\gamma_{\text{inm,inf}}^{(b)} \leq \gamma \leq \gamma_{\text{inm,sup}}$$

în timp ce pentru aproximarea la $\xi = 0$, avem o restricție mai ușoară:

$$\gamma_{\lim \inf}^{(a)} < \gamma \leq \gamma_{\lim \sup}$$

unde marginile care intervin, $\gamma_{\lim \min}^{(a)}$, $\gamma_{\lim \min}^{(b)}$, și $\gamma_{\lim \sup}$, sînt cantități calculabile și depind, așa cum se vede din expresia lor, de ε^* și *m*.

În particular, din expresia $\gamma_{\lim sup}$ se poate determina \imath_{\lim} , care reprezintă densitatea maximă a curentului de electroliză pînă la care dependența liniară $\imath\tau$ vs. \imath este satisfăcută. Conform notației [5]:

$$\gamma = \frac{il}{nFDC^{\circ}}$$

și utilizînd expresia dată de ec. (16) se obține:

$$\dot{t}_{\rm int} = \frac{nFDC^8}{\left[\frac{1}{8(1+m)^2} + 2\frac{\frac{\epsilon^*}{1-\epsilon^*} \cdot \frac{1+m+m^2\theta_1^3}{2(1+m)} \left[1-\ln\frac{1+m+m^2\theta_1^2}{2(1+m)} \cdot \frac{\epsilon^*}{1-\epsilon^*}\right]}{\theta_1^4 \left[1+m+m^2\theta_1^8\right]}\right] 17$$

(İtilital in Fedachie la 17 februarie 1975)

F BOTA, I COVACI, R V BUCUR

BIBLIOGRAFFE

- 1 Bucur, R V, Rev Phys, Bucharest, 7, 91 (1962), Bucur, R V și Morariu, V V, Electrochim Acta, 14, 1318 (1969)
- 2 Bota F și Bucur, R V, Conferința Republicană de Chimie Fizică Generală și Aplicată, București, 1–4 sept 1970, 177
- 3 Bota, F, Bucur, R V, și Covaci, I, Studia Univ Babeș-Bolyai, ser Phys f 2, 1972, 91
- 4 Bota, F, Bucur, R V, Covacı, I, Studia Univ Babeş-Bolyai, ser Phys, f 2, 1974, 61

THEORETICAL STUDY OF THE ANODIC OXIDATION OF HYDROGEN DISSOLVED IN A THIN PALLADIUM LAYER BY ELECTROLYSIS IN CONSTANT CURRENT(II)

(Summary)

The mathematical treatment of the anodic oxidation of the hydrogen contained in a thin palladium layer, by electrolysis in constant current is continued in this paper. The overall reaction determined by the two partial processes diffusion and adsorption, supposing a rapid equilibrium between adsorbed and absorbed hydrogen, leads to the determination of the limiting current density up to which a linear dependence $i\tau$ vs i is maintained

27

3

, *'*

,

ÁPPLICATION OF THE THORNE-ENSKOG THEORY TO ÉVÁLUATE THE TRANSPORT COEFFICIENTS IN THE BINARY LIQUID METAL MIXTURES

SPERANȚA COLDEA

The Enskog theory for dense fluids [1], [2] was recently used in the case of a simple liquid metal with the purpose to calculate the selfdiffusion coefficient D [3]. Making a generalisation of an approach for dense fluids to the liquid metals [4] and using a correction factor which results from the molecular dynamics calculations [5]-[6], a relatively simple expressions for the diffusion coefficient D was obtained It was found quite a good agreement of the theoretical calculated data with experiment for a great number of liquid metals

It is possible to extend this theory to the other transport coefficients of a liquid metal (shear and bulk viscosity for example) by using the similar correction factors from molecular dynamics calculations and the corresponding Enskog theory [7] But the aim of the present note is to generalize this approximation of the well-known Thorne-Enskog theory for dense fluid mixtures to the binary liquid metals mixtures. Without knowing too much molecular dynamics data for the transport coefficients of the binary dense mixtures and the correction factors respectively, we are able to apply the Thorne-Enskog theory in the case of a binary mixture of liquid metals. Here are presented the results for some relatively simple transport coefficients as the mutual diffusion, thermal diffusion, and bulk viscosity.

The Thorne's expression for the mutual diffusion D_{12} of the components ,,1" and ,,2" of a dense fluid binary mixture is the following [2]:

$$[D_{12}]_{T-E} = [D_{12}]_1 / \chi_{12} = \frac{3}{16nm_0 \sigma_{12}^2 \chi_{12}} \left(\frac{2kTm_0}{M_1'M_2'} \right)^{1/2}$$
(1)

where $\chi_{12} = g(\sigma_{12})$ is the Enskog correction factor for dense fluids (binary mixtures), e.g. the pair or radial correlation function for $r = \sigma_{12}$, and $\sigma_{12} = (\sigma_1 + \sigma_2)/2$ (the aditivity condition), σ_1 and σ_2 are the diameters of the mixture components, $n = n_1 + n_2$ and $m_0 = m_1 + m_2$ (the total density number and the sum of the atomic masses), $M'_1 = m_1/m_0$ (i = 1,2).

As in the initial liquid metals theory [3], the binary mixture can be assimilated with a hard-sphere dense fluids mixture. The mass of each atom of the liquid metal must be the same as the mass of a hard sphere, both for the components ",1" and ".2" of the mixture. For $g(\sigma_{12})$ is used a similar relation to that of the basic 'theory for a simple liquid metal [3]. e.g. a function of the compressibility factor Z:

$$g(\sigma_{12}) = \frac{Z_{CS}^m - 1}{4\xi}$$
(2)

S COLDEA

where [8b].

$$\xi = \sum_{i=1}^{2} \xi_{i} = \pi/6 \cdot n(\sigma_{1}^{3}\chi_{1} + \sigma_{2}^{3}\chi_{2})$$
(3)

is the corresponding packing fraction for a binary liquid metal mixture [8b]. Z_{CS}^m is determined from the Carnahan-Starling-Mansoori state equation for a fluid mixture [8b-c].

$$Z_{CS}^{m} = \frac{(1+\xi+\xi^{2}-\xi^{3}(y_{1}+y_{3})-y_{2}\xi^{4})}{(1-\xi)^{3}}$$
(4)

with ξ from the relation (3).

Substituting the definitions [2]-[4] in the relation (1), the expression for the coefficient D_{12} of a liquid metal mixture will be given as follows.

$$D_{12}(t) \simeq 0.6 \frac{(1-\xi)^3}{n\sigma_{12}^3(-2(2-\xi)-\xi^2(y_1+y_3-1)-y_2\xi^3)} \cdot \left(\frac{RT(M_1+M_2)}{M_1M_2}\right)^{1/2}$$
(5)

where

$$y_{1}(T) = \frac{(\sigma_{1T}\sigma_{2T})^{1/2}(\sigma_{1T} - \sigma_{2T})^{2}(\sigma_{1T} + \sigma_{2T})n_{1}n_{2}}{n(\sigma_{1T}^{3}n_{1} + \sigma_{2T}^{3}n_{2})}$$
(6)

$$y_{2}(T) = \frac{(\sigma_{1T}\sigma_{2T})^{3/2} (\sigma_{1T} - \sigma_{2T})^{2} (\sigma_{1T}^{2}n_{1} + \sigma_{1T}^{2}n_{2}) n_{1}n_{2}}{n(\sigma_{1T}^{3}n_{1} + \sigma_{2T}^{3}n_{2})^{2}}$$
(7)

and

$$y_3(T) = \frac{(\sigma_{1T}^2 n_1 + \sigma_{2T}^2 n_2)^3}{n(\sigma_{1T}^3 n_1 + \sigma_{2T}^3 n_2)^2}$$
(8)

with

$$\sigma_{s}(T) = \sigma_{sm}(T_{m}) \cdot \frac{\left(1 - B\left(\frac{T}{T_{m}}\right)^{1/2}\right)}{(1 - B)}$$
(9)

the hard sphere diameter of the mixture components being temperaturedependent; this dependence is considered to follow the same rule as for the atom diameters of a simple liquid metal [3]; here $M_s = m_s/N_A$ (i = 1, 2), and

$$\sigma_{sm}(T_m) = \left(\frac{6 \, \xi_{sm}}{n_{sm}}\right)^{1/3} \tag{10}$$

is the melting point diameter; B = 0.112 and $\xi_{m} = 0.472$ are constant for all metals (the same as for the components of a simple liquid metal). In the relation (5) $\xi_T = \xi(T)$ is considered as a function of T,

because σ_{12} is temperature-dependent.

48

In the same way it is possible to obtain the generalised expressions for the other transport coefficients of a liquid metal mixture, for example the thermal diffusion k_{τ} :

$$[k_T]_{12}(T) = \frac{(a_{0-1}a_{1-1} - a_{0-1}a_{1-1})}{(a_{11}a_{-1-1} - a_{1-1}^2)} \cdot \left[\frac{10(N_A)^{1/2}a_1(1-\xi)^3}{nM_1^{1/2}(4-2\xi-\xi^2(y_1+y_3-1)-y_2\xi^3)} + \frac{2N_A^{1/2}a_1^3(2-\xi_1)(1-\xi)^3}{nM_1^{1/2}(1-\xi_1)^3(4-2\xi-\xi)^2(y_1+y_3-1)} + \frac{10(N_A)a_1^{1/2}a_1M_1^{1/2}\cdot M_2a_1^3}{n}\right] + \\ + \left[\frac{(a_{\theta-1}a_{11} - a_{01}a_{1-1})}{(a_{11}a_{-1-1} - a_{1-1}^2)} \cdot \frac{10N_A^{1/2}a_2(1-\xi)^3}{nM_2^{1/2}(4-2\xi-\xi^2(y_1+y_3-1)-y_2\xi^3)} + \frac{5N_A^{1/2}a_2^3(2-\xi_2)(1-\xi)^3}{nM_2^{1/2}(1-\xi_2)^3} + \frac{4N_A^{1/2}a_1a_2M_2^{1/2}M_1a_1^2}{n}\right]$$
(11)

where

$$\xi_{i} = \frac{\pi}{6} n_{i} \sigma_{i}^{3}(T) \qquad (i = 1, 2)$$
(12)

and $\sigma_i(T)$ is given by the relation (9). The other quantities a_{01} , a_{11} etc. are the same as in the Thorne's theory [2] and can be calculated

By using the same method as for the diffusion and thermal diffusion the obtained expression for the bulk viscosity of a liquid metal mixture is the following:

$$\begin{aligned} \xi_{12}(T) &\simeq 0.885 (\pi kT/N_A)^{1/2} \left[n_1^2 \ \sigma_{1T}^4 \ M_1^{1/2} \ \frac{\left(2 - \frac{\pi}{6} n_1 \cdot \sigma_{1T}^3\right)}{\left(1 - \frac{\pi}{6} n_2 \cdot \sigma_{2T}^3\right)^3} + \right. \\ &+ n_1 n_2 \ \sigma_{12T}^4 \left(\frac{M_1 M_2}{M_1 + M_2}\right)^{1/2} \cdot \frac{\left(4 - 2\xi - \xi^2(y_1 + y_3 - 1) - y_2\xi^3\right)}{(1 - \xi)^3} + \\ &+ n_2^2 \ \sigma_{2T}^4 \ M_2^{1/2} \ \frac{\left(2 - \frac{\pi}{6} n_2 \sigma_{2T}^3\right)}{\left(1 - \frac{\pi}{6} n_2 \sigma_{2T}^3\right)^3} \right] \end{aligned}$$
(13)

with the previous notations. It is possible to obtain an analogous expression for the shear viscosity of a binary liquid metal mixture, by using the same method (the Thorne approximation) but the results are more complicated and will be reported elsewhere with the numerical calculations and the comparison with the experiment.

The obtained formulas for the considered coefficients contain only known quantities, e.g. the te perature, the density, the diameter, and the masses (or the atomic weigths) of the liquid metal components, or quantities which can be easily evaluated, for example $\sigma_{im}(T_m)$, σ_{iT} , ξ_{iT} etc. This approach

4 - Physica / 1975

to the theory of transport in a liquid metal mixture can be corrected for a real mixture by using an analogous correction factor, as in the case of the self-diffusion of a simple liquid metal [3]. For example, if we choose the molecular dynamics calculations recorded for the mutual diffusion in a dense fluid mixture [5], we can use a correction factor $C(\xi_{12})$ defined by the ratio of the experimental mutual diffusion D_{12} to the Thorne's coefficient $[D_{12}]_{TE}$ and calculated from the diagrams of the figures nr 2 and nr 3 on the reference paper [5] Then, a better approximation for the diffusion D_{12} will be the following

$$D_{12}'(T) = C(\xi_{12}) \cdot D_{12}(T)$$

where $D_{12}(T)$ is calculated from the relation (5).

To our knowledge there are no published molecular dynamics data for the transport coefficients of a binary dense fluid mixture to use them as corrections for the viscosities. for example.

The obtained expressions (5), (13)-(14) can be used for an effective calculation of the corresponding coefficients and for a comparison with the experimental data known, or for the predication of unknown transport coefficients in various liquid metal mixtures. Numerical results will be reported in a forthcoming publication.

(Received February 22, 1975)

REFERENCES

- 1 Enskog, D, Kungl. Svens Akad Handl, 63, 4 (1922). 2. Chapman, S and Cowling, T. G, The mathematical theory of nonuniform gases, Cambridge, 1953, p. 292 3. Protopapas, P., Andersen, H C and Parlee, N A. D, J. Chem Phys.,
- 59, 15 (Î973).

- 59, 15 (1973).
 4 Dymond, J H and Alder, B J., J Chem. Phys, 45, 2061, (1966); 48, 343 (1968).
 5 Dymond, J. H and Alder, B J., J Chem Phys, 52, 923 (1970)
 6 Alder, B. J., Gass, D. M., and Wainwright, J., Chem Phys, 53, 3813, (1970)
 7 Coldea, S., Studia Univ Babeş-Bolyai, ser Phys, f 1, 65 (1974)
 8. a) Carnahan, N. F., and Starling, K E., J Chem Phys, 57, 635 (1969),
 b) Mansoori, R. Carnahan, N F and Starling, K E, J. Chem Phys, 54, 702 (1071)
 7 L Bhur David 22, 895 (1064) 783 (1971), c) Lebowitz, J. L., Phys Rev., 133 A, 895 (1964)

APLICAREA TEORIEI THORNE-ENSKOG LA CALCULUL COEFICIENTILOR DE TRANSPORT ÎN AMESTECURI BINARE DE METALE LICHIDE

(Rezumat)

Se efectuează o generalizare a aproximației Thorne-Enskog pentru fluide binare dense la amestecuri de metale lichide Sint prezentate rezultatele pentru unu coeficienți de transport de formă mai simplă cum sînt difuzia mutuală, difuzia termică și viscozitatea de volum. Se poate utiliza un factor de corecție ce rezultă din calcule de dinamici moleculare numai în cazul difuziei D_{12}

F. PUSKÁS

Suprafața semiconductorului, datorită stărilor de suprafață T a m m [1], se comportă de multe ori altfel decît înteriorul probei În cadrul acestei lucrăii a fost pusă în evidență existența stărilor de suprafață la ZnO policristalin Probele de ZnO studiate au fost obținute prin sinterizare în aer la temperaturi relativ înalte, 1200°C. Prepararea probelor, precum și studiul lor prin conductivitate electrică, efect Hall, efect Seebeck (volumic) au fost descrise în lucrările [2-4]

Descrierea metodei. Pe aceeași față a probei studiate se aplică doi electrozi de măsură (vezi fig 1) Unul din electrozi este un microcuptor, iar electrodul celălalt este un mic vas metalic prin care circulă apă de răcire. Astfel, pe aceeași față a semiconductorului, prin cei doi electrozi de măsură, între marginile probei se realizează un gradient de temperatură Măsurarea termotensiunii se face cu un milivoltmetru electronic iar temperatura probei, iespectiv a electrozilor, cu două termocupluri

Cu această instalație de măsură am reușit să obținem o variație de temperatură între 20-300 °C. Prin această metodă se poate determina variația constantei termoelectrice α în funcție de temperatură, iar pe baza datelor experimentale s-a calculat cu ajutorul relațiilor (1) și (2) concentrația n și energia de activare ΔE ale purtătorilor de sarcină.

$$\alpha = -\frac{k}{s} \left[2 + \frac{\Delta E}{2k T} \right] \tag{1}$$

$$n = (N_e T)^{3/2} \exp\left[-\frac{\Delta E}{2k T}\right]$$
(2)

unde

$$N_{c} = 2\left[\frac{2\pi \ m^{*} \ h}{h^{2}}\right]$$

masa efectivă m^* am considerat-o egală cu masa electronului (notația utilizată în cele două relații este bine cunoscută în teoria semiconductorilor).

Pentru a studia proprietățile de suprafață ale oxidului de zinc am utilizat probe de trei tipuri diferite.

a) sinterizate în aer;

b) după sinterizare tratate în hidrogen la temperatura de 600 °C la o presiune de 2,5 at " timp de 5 ore;

c) probe sinterizate și șlefuite — pentru a îndepărta stratul exterior de pe suprafața probei.

Rezultate experimentale. Figurile 2 și 3 arată modul în care variază constanta termoelectrică și concentrația electronilor de conducție în funcție de temperatură la probe sinterizate (curba a), la cele care au fost tratate în hidrogen (b) și la probe șlefuite (c).

La aceste probe în cadrul altor studii [3, 4] a fost determinată concentrația purtătorilor de sarcină cu ajutorul efectului Hall și a efectului Seebeck (efect volumic). În ambele cazuri concentrația electronilor a variat între $10^{16} - 10^{18}$ cm⁻³.

Din rezultatele experimentale reiese că la proba sinterizată concentrația este mult mai mică $(10^{12} \text{ cm}^{-3})$, iar la probele șlefuite sau tratate în hidrogen s-au găsit valori care coincid cu concentrația volumică date în lucrările [3, 4].

Nu putem afirma că efectul Seebeck măsurat în acest caz este un efect pur de suprafață deoarece nu numar electronii din stratul de suprafață participă la generarea tensiunii Seebeck, întrucît gradientul de temperatură nu se limitează doar la stratul de suprafață. Totuși, cum rezultă din datele experimentale, se observă că suprafața are o influență foarte mare asupra tensiunii termoelectrice. La temperatura ambiantă, în cazul probelor sinterizate în aer, s-a obținut o densitate electronică de ordinul 10^{12} cm⁻³. Cum este cunoscut din literatură, pentru probe policristaline de oxid de zinc densitatea electronilor în stratul de suprafață variază între 10^{16} cm⁻³ [5].

Densitatea mică, obținută pentiu prole sinterizate, o putem explica în felul următor sinterizatea probelor s-a făcut în aer, la o temperatură ridicată (1200° C). Astfel este fcarte posibilă adsorbția oxigenului pe suprafața probei. Moleculele de oxigen pot juca rolul capcanelor pentru electronii excedentari ce apar în timpul sınterızării. Datorită acestor capcane concentrația electronilor din banda de conducție scade în apropierea suprafeței. La șlefuire, acest strat sărăcit de pe suprafață este îndepărtat. Astfel se explică faptul că la probele șlefuite concentrația electronilor este mult mai mare și corespunde concentrației din volumul probei.

În cazul probelor tratate în hidrogen concentrația electronilor are aproape aceeași valoare ca și la probele șlefuite. Acest fapt se datorește efectului de reducere a hidrogenului, care astfel îndepărtează oxigenul adsorbit pe suprafața probei. Efectul de reducere a hidrogenului îl putem urmări în mod direct, deoarece în urma tratamentului în hidrogen se schimbă și culoarea probei, pe suprafața ei apare un strat închis, bogat în atomi de zinc interstițiali. Cum rezultă din măsurătorile noastre, prin tratamentul în hidrogen nu s-a obținut reducerea completă a oxigenului adsorbit, deoarece concentrația electronilor este mai mică decît la probe șelefuite.

Electronii captați în capcane la temperaturi mai ridicate sînt eliberați din nou și astfel, cum rezultă din fig. 3, concentrația electronilor crește cu temperatura.

Din variația concentrației cu temperatură se poate calcula energia de activare a purtătorilor de sarcină. Cum se observă, panta curbei (a) (fig. 3) nu este constantă, astfel că energia de activare variază între valorile 0,24-1,71 eV.

Concluzii. Pe baza rezultatelor experimentale putem spune că oxigenul adsorbit pe suprafața oxidului de zinc joacă rolul capcanelor, și din această cauză concentrația electronilor de conducție în stratul de suprafață este foarte scăzută. Nivelele energetice ale capcanelor sînt nivele localizate, care apar numai în stratul de suprafață și se așază în interiorul zonei interzise formînd un sistem de nivele cvazi-continue, a căror energie este cuprinsă între 0,24-1,71 eV.

Din rezultatele obținute reiese că metoda concepută de autor poate fi aplicată la studiul stărilor de suprafață ale semiconductorilor.

(Intrat in redactie la 24 februarie 1975)

BIBLIOGRAFIE

- 1. J Tamm, Physik Zeitschrift Sowjetunion, 1, 733, 1932
- 2 I. Ursu, F Puskás, V Cristea, Rev Roumanie de Physique, tome 10, nr. 2, 223, 1965
- 3 I. Ursu, F. Puskás, V. Cristea, Rev Roumaine de Physique, tome 7, nr. 2, 277, 1962.
- 4. F. Puskás, Studiul unor proprietăți electrice ale sistemului oxid de zinc oxid de aluminiu Teza de doctorat, Univ "Babeș-Bolyai", 1968
- 5 G Heiland, E Mollwo, F Stockmann, Electronic processes in ZnO, Solid State Physics, vol 8, 1959.

F PUSKAS

SURFACE SEEBECK EFFECT OF POLICRYSTALLIN-ZnO

(Summary)

In this paper the surface Seebeck effect at sintered ZnO was studied

The thermoelectric voltage was measured between the electrodes at different temperatures,

on the same side of the samples From the experimental results the density of charge carriers and the activation energy can be determined

In the samples sintered in air at 1200 °C the existance of surface states can be demonstrated, the electronic density being 10^{12} cm⁻³ This can be explained by the existence of adsorbed oxygen at the surface

,

.

CONSIDERAȚII ASUPRA FORȚEI TERMOELECTROMOTOARE LA SISTEMUL SEMICONDUCTOR Cr₂O₃-BeO

OLIVIA POP și L. STĂNESCU

Introducere. Într-o lucrare anterioară [1] s-au prezentat proprietățile electrice și magnetice ale sistemului oxidic semiconductor în întreg intervalul de concentrații. Se pune astfel în evidență limita de solubilitate a componenților (5% mol BeO în Cr_2O_3) și formarea unei combinații la 50% mol BeO Se relevă apariția ionilor de crom de valență superioară Cr^4 +, ca defecte induse în rețea, defecte ce favorizează schimbul de sarcini în procesul de conducție. V e r w e y [2] arată că în general pentru oxizii elementelor de tranziție modelul zonal nu poate fi aplicat și este nevoie de un alt mecanism pentru explicarea transportului de sarcini.

Am considerat necesară investigarea acestui sistem prin măsurări de forță termoelectromotoare, deoarece determinarea coeficientului Seebeck oferă posibilitatea interpretării mecanismului de conducție a semiconductorului, pune în evidență dependența de temperatură a nivelului Fermi, permițînd calcularea concentrației purtătorilor de curent și a mobilității acestora.

Rezultate experimentale și interpretarea lor. Determinările de forță termoelectromotoare au fost efectuate cu o instalație analogă cu cea descrisă în lucrarea [3], menținîndu-se între capetele probei un gradient de temperatură de ordinul 15°C. Studiul sistematic al dependenței coeficientului Seebeck în funcție de concentrație s-a urmărit în intervalul de temperatură 600-1200°K.

În figura 1 este redată dependența forței termoelectromotoare de temperatură pentru acest sistem.

Se constată că pentru toate probele studiate coeficientul Seebeck scade puțin wyr cu creșterea temperaturi pînă la 800°K, continuînd apoi cu un palier pînă la 1000°K, care la unele concentrații se menține și la temperaturi mai ridicate.

Întrucît coeficientul Seebeck depinde de concentrația purtătorilor, izoterma de concentrație prin anomaliile pe care le prezintă la limitele de separare a diferitelor faze cristalografice, oferă informații prețioase asupra solubili-

tății componenților. În acest sens s-a reprezentat în figura 2 izoterma de concentrație a forței termoelectromotcare luată la T = 1000 °K.

Se constată că pentru întreg intervalul studiat semnul purtătorilor de curent este același, conductibilitatea fiind de tip p Izoterma prezintă două minime corespunzătcare concentrațiilor de 5% și 30% mol BeO. Ținînd seama de măsurătorile de conductibilitate electrică și cele magnetice

[1], se pcate spune că minimul de la 5% mol BeO indică limita de solubilitate solidă a oxidului de beriliu în sescuioxidul de crom Scăderea valorii lui α în domeniul soluției solide este în acord cu dependența coeficientului Seebeck de concentrația purtătorilor conform formulei

$$\alpha = -\frac{k}{e} \log \frac{N_0}{p} \tag{1}$$

în care N_0 reprezintă densitatea de stări din teoria conducției "prin salt", piactic egală cu numărul de cationi dintr-un cm³

Revenind la curbele din figura 1, se constată că α depinde relativ puțin de creșterea temperaturii, ceea ce indică o menținere apreape constantă a numărului de puitători Această dependență este caracteristică existenței unui mecanism de conducție "prin salt".

Aceeași concluzie a constanței concentrației purtătorilor de cuient reiese și din prelucrarea curbelor din figura 3, în care s-a reprezentat dependența de temperatură a poziției nivelului Fermi

Pe porțiunea liniară a acestor curbe forța termoelectromotoare este practic independentă de temperatură. Deoarece vrem să evaluăm atît concentrația cît și mobilitatea purtătorilor de sarcină, vom ține seama în expresia energiei nivelului Fermi și de termenul cinetic A [5] Vom avea

$$E_F = \alpha T + A \tag{2}$$

Calcularea concentrației golurilor se face pe baza relației [6].

$$p = N_0 \exp\left(-\frac{E_F}{kT}\right) \tag{3}$$

utilizînd porțiunea liniară a curbelor din figura 3 S-a calculat astfel că valoarea concentrației purtătorilor de sarcină pentru proba cu 2% mol BeO este $p = 2,5 \cdot 10^{16}$ goluri/cm³.

Folosim teoria conducției ,,prm salt", care admite că energia de activare a conductibilității nu caracterizează procesul de ionizare ci mobili-

tatea, în sensul că mobilitatea este un proces activat, iar valoarea acesteia crește după o lege exponențială cu creșterea temperaturii [7] Calculînd valoarea mobilității după expresia: $\mu = \frac{1}{\rho \cdot e \cdot p}$, în care am înlocuit valorile rezistivității ρ corespunzătoare diferitelor temperaturi, am reprezentat grafic log $\mu = f\left(\frac{1}{T}\right)$. Această dependență calculată pentru proba cu 2% mol BeO este redată în figura 4.

Valorile obținute pentru mobilitatea purtătorilor sînt foarte mici și sînt cuprinse între 1,7 10^{-1} cm²/V · s la temperatura de 1000°K și 9,3 10^{-6} cm²/V · s la 293°K, valori caracteristice unui mecanism de conducție ,,prin salt'' [8]

Concluzii. Conductibilitatea electrică a sistemului semiconductor studiat pentru dopări mici cu BeO (5% mol BeO) se realizează prin saltul golurilor între cationii de valență diferită (Cr^{4+} , Cr^{3+}) Acest mecanism de conducție prin salt este relevat de următoarele rezultate

a) Coeficientul Seebeck este practic independent de temperatură, deci numărul de purtători de curent este constant

b) Concentrația golurilor calculată este de ordinul 10¹⁶ cm⁻³, valoare caracteristică pentru semiconductori în care conducția are loc "prin salt".

c) Mobilitatea purtătorilor la temperatura camerei este foarte mică ($\mu = 9.3 \quad 10^{-6} \text{ cm}^2/\text{V}$ s) și crește exponențial cu temperatura, așa cum o cere relația de bază a teoriei conducției "prin salt"

(Intrat in redacție la 25 februarie 1975)

BIBLIOGRAFIE

- I Ursu, Olivia Pop, L Stänescu și I Pop, Rev Roum Phys, 11, 751 (1966).
- 2 E. Verwey, Semiconducting materials, p 201, London (1951), (ed. 1r).

- 3 M. Nachman, L. Cojocaru, L. Ribca, Phys. Stat Soldi, 8, 773 (1961).
- 4 Y M Ksendzov, L N. Anslem, L Vasilieva, V Latiseva, FTT 5, 1537 (1963)
- 5 E G Schlosser, Z Elecktrochem 65, 453 (1961) 6 I Morin, Semiconductors, N B Hannay, New-York-London (1960)
- 7 R Heikes, W D Johnston, J Chem Phys, 26, 582 (1957) 8 F J Morin, Phys Rev 83, 5, 1005 (1959)

,

ø

ON THE THERMOELECTROMOTIVE FORCE OF THE Cr2O3-BeO SYSTEM

(Summary)

The semiconductor system Cr_2O_3 -BeO was investigated in the temperature range of 600-1200 K, up to 50% mol BeO, from the standpoint of the thermoelectromotive force It has been established that all samples present a p-type conductivity The limit of the solid solubility of the BeO in Cr2O3 (5% mol) was carried out by the minimum value of the isotherms of Seebeck coefficient versus concentrations of BeO

It was pointed out that the mechanism of conduction is ,,by hopping" The concentration of current carriers, and their mobility was calculated

58

DIFUZIVITATEA TERMICĂ A OXIZILOR Cr₂O₃ și SnÒ₂

OLIVIA POP, A. NÉDA, L. STĂNESCU și L. HOMORODEAN

Introducere. Proprietățile electrice și magnetice ale sescvioxidului de crom și bioxidului de staniu au fost studiate detaliat în lucrările [1, 2]. S-a confirmat că în cazul Cr_2O_3 -lui conductibilitatea electrică se realizează printr-un mecanism de "hopping" între ionii Cr^{4+} și Ci^{3+} , aflați în poziții echivalente ale rețelei cristaline Din punct de vedere magnetic s-a precizat că, în afară de anomalia corespunzătoare temperaturii de tranziție ordinedezordine situată la cea. 314°K, susceptibilitatea magnetică mai depinde anomal de temperatură pînă la aproximativ 600°K La temperaturi mai înalte comportarea magnetică corespunde unei stări paramagnetice normale Relativ là SnO_2 s-a pus în evidență o valoare ridicată a conductibilității electrice [2, 3], valcare care nu poate fi justificată de structura electronică a oxidului Măsurătorile magnetice relevă o comportare diamagnetică a acestuma

Ca urmare a acestor rezultate, am considerat că investigarea acestor oxizi din punct de vedere termic ar putea aduce informații edificatoare în ce privește fenomenele de transport și mecanismul lor.

Difuzivitatea termică a fost măsurată cu un dispozitiv construit pe principiul conductibilității termice nestaționare, sau a impulsului de căldură [4] Determinările experimentale au fost făcute în intervalul de temperatură 100-600°K, cu o eroare relativă ce nu depășește 5%

Rezultatele experimentale și discutarea lor. Din dependența de temperatură a difuzivității termice reprezentată în figura 1 se poate constata o diferență esențială în comportarea termică a celor doi oxizi, determinată de caracteristicile lor electrice și magnetice.

Astfel pentru Cr_2O_3 , care este antiferomagnetic, variația termică a difuzivității scade limar cu creșterea temperaturii între 100°K și 314°K, temperatură la care apare o pronunțată discontinuitate corespunzătoare tranziției de fază magnetică antiferomagnetism-paramagnetism La temperaturi superioare temperaturii critice Néel, pînă la aproximativ 600°K, dependența este totuși anomală prezentînd minime și maxime, fapt ce indică că nu s-a stabilit încă o fază paramagnetică normală Cu alte cuvinte, ordinea la distanță a fost distrusă la temperatura Néel, dar ordinea apropiată se mai menține încă pînă la aproximativ 600°K. Acest rezultat este în bun acord cu datele relative la dependența de temperatură și de cîmp a susceptibilității magnetice [2, 5], care relevă comportarea anomală pentru Cr_2O_3 pînă la aceste temperaturi.

Dependența de cîmp a susceptibilității magnetice este elocventă în acest sens Astfel în domeniul antiferomagnetic susceptibilitatea magnetică nu depinde vizibil de cîmp, cel puțin pînă la 18 000 Oe, în timp ce peste temperatura Néel pînă aproape la 600 °K susceptuibilitatea scade cu creșterea cîmpului [5].

F1g.2,

.

dependența de temperatură a difuzivității prezintă Pentru SnO, scădere invers proporțională cu temperatura, iar ca valoare este mai mică decît în cazul sescvioxidului de crom.

Pe baza acestor rezultate se pot aduce informații care contribuie la elucidarea mecanismului de conductibilitate termică în acești oxizi Reprezentînd difuzivitatea termică în funcție de temperatura reciprocă, așa cum este redat în figura 2, pentru bioxidul de staniu se obține o dependență liniară în tot domeniul de temperatură studiat.

Această dependență este caracteristică pentru un mecanism de conducție termică pur fononică, componenta electronică a conductibilității termice este nesemnificativă Astfel valoarea difuzivității termice scade odată cu creșterea temperaturii datorită împrăștierii fononilor pe oscilațiile termice ale rețelei cristaline, pe defectele de rețea și structurale. Diferența între valorile difuzivității termice ale SnO₂ față de Cr₂O₃ și modul diferit de variație al acesteia, funcție de temperatură, se datorește faptului că sescvioxidul de crom prezintă o ordonare antiferomagnetică, ceea ce determină o anumită diferențiere în împrăștierea purtătorilor de energie. Astfel în domeniul antiferomagnetic difuzivitatea termică pentru Cr2O3 scade aproape limar cu creșterea temperaturii pînă la punctul Néel, variație ce se poate explica prin împrăștierea purtătorilor de energie pe oscilațiile termice ale rețelei cristaline, pe undele de spin și pe defectele de rețea Anomalia din domeniul paramagnetic în dependența de temperatură a difuzivității termice apare datorită împrăștierii fononilor pe fluctuațiile magnetice locale, pînă la stabilirea fazei paramagnetice normale

Concluzii. Din studiul dependenței de temperatură a difuzivității termice efectuat asupra oxizilor Cr₂O₃ și SnO₂ rezultă că mecanismul de conducție predominant se realizează prin fononi. Pentru sesculoxidul de crom, care este un semiconductor cu o comportare antiferomagnetică, difuzivitatea termică prezintă o valcare mai ridicată decît în cazul bioxidului de staniu Se pune în evidență pentru Cr₂O₃ anomalia difuzivității de la temperatura Néel (T = 314°K), anomalie care se extinde pînă la aproximativ 600°K, în deplin acord cu măsurătorile magnetice Comportarea deosebită a acestui oxid implică mecanisme suplimentare de împrăștiere pe neomogenități magnetice.

(Intrat in redactie la 21 februarie 1975)

BIBLIOGRAFIE

- 1 Olivia Pop, Studia Univ Babes-Bolyai, 1, 119 (1969).
- 2 Olivia Pop, Bul Inst Politehnic, 11, 41 (1969).
- 3 B P. Kruzhanovski, JTF 7, 1489 (1958).
 4 F Kelemen, A Néda, Studia Univ Babes-Bolyai, 2, 107 (1967)
 5. V. I. Cecernicov, I S Liubitin, Vestnik Mosk Univ 1, 20 (1963).

O POP, A NEDA, L STĂNESCU, L HOMORODEAN

THERMAL DIFFUSIVITY OF Cr₂O₃ AND SnO₂ OXIDES (Summary)

The thermal diffusivity measurements were carried out for Cr_2O_3 and SnO_2 oxide semiconductors in the temperature range of 100-600 K using the heat pulse methods. From these results correlated with electric and magnetic measurements, have been obtained some information about the heat conduction mechanism and different contributions to the thermal resistivity.

It has been established that the thermal conduction mechanism is a phononic one Our results pointed out that the thermal diffusivity presents an anomaly at the critical point of the magnetic phase transition antiferromagnetism — paramagnetism

, ²

EFFECT OF MAGNETIC IMPURITIES ON THE ITINERANT-ELECTRON ANTIFERROMAGNET

M. CRIŞAN and R. GH. POP

1 Introduction. In recent years, the antiferromagnetism of Cr and its alloys has been studied extensively It has been well established that the antiferromagnetism in Cr and its alloys is itinerant, given by S D.W. [1] a two-band mcdel is apropriate.

On the other hand the recent experimental results on the Cr-Mn alloys obtained by P o p and al. [2] suggested the existence of an inhomogenous state of the itineiant-electron antiferromagnet given by the magnetic moments of Mn which present an exchange field behaviour.

In order to consider the influence of the exchange field on the itinerant-electron antiferromagnet we adopt the Feders-Martin [3] model and take for the itinerant-antiferromagnet the Hamiltonin.

$$H_{a} = \sum_{k,\sigma} \varepsilon_{(k)}^{1,2} c_{k\sigma}^{+} c_{k\sigma} - \Delta \sum_{k,q} \left(c_{k+q\downarrow}^{+} c_{k\uparrow}^{+} + C_{k\uparrow}^{+} C_{k+q\downarrow}^{-} \right)$$
(1)

where :

$$\Delta = \frac{v}{2N} \sum_{k} \langle C_{k+q\downarrow}^{+} C_{k\uparrow} \rangle$$

$$\varepsilon_{\langle k \rangle}^{1} = v_{0} \langle k - k_{0} \rangle$$

$$\varepsilon_{\langle k + q \rangle}^{2} = -v_{0} \langle k + q - k_{0} \rangle$$
(2)

The interaction of the electrons and impurities will be treated using the ,,s-d'' exchange Ha iltonian:

$$H_{s-d} = -\frac{J}{2N} \sum_{k,k',n} e^{i(k-k')Rn} C_k \vec{\sigma} C_k, \vec{S}_n$$

where. J is the ,,s-d" exchange interaction, $\vec{\sigma}$ is the Pauli matrix. In the external field $h_0 = 2\mu_0 H_0$ we can write the total Hamiltonian as:

$$H = H_a - h_0 \sum_{k,\sigma} \sigma C_{k\sigma}^+ C_{k\sigma} - \frac{J}{2N} \sum_{k,k',\eta} e^{i(k-lk')Rn} C_k^+ \vec{\sigma} C_k, \vec{S}_n$$
(3)

where the vector k is the electron or hole vector if $k > k_0$ or $k < k_0$.

In the present paper we are mainly interested in the following problems:

a) How does the presence of the exchange field affect the transition from the paramagnetic into the antiferromagnetic state.

b) Which is the influence of the exchange field on the order parameter Δ .

c) The type of the phase transition.

We are going to study these problems in the sections II, III and IV respectively.

II The paramagnetic-antiferromagnetic phase transition in an exchange field. From the Hamiltonian (3) we obtain the exchange field, as a molecular field (if we take $\langle S_{v} \rangle = \langle S_{y} \rangle = 0$).

$$I = \sigma h_0 + \sigma c |J| < S_x >$$

and the Green function 1s:

$$G^{\circ}(k, \omega) = \frac{1}{\omega \pm \varepsilon(k) \pm I}$$
(4)

١

Using this Green function we are going to calculate the value of the susceptibility $\chi(q, \omega)$ and to point out that a phase transition is possible for $I \neq 0$

The susceptibility $\chi(q,\omega)$ is proportional to the spin polarization operator $\pi(q, \omega)$, I) and thus we consider $X(q, \omega)$, I expressed as

$$X(q,\omega,I) = \text{const. } \pi(q,\ \omega,\ I) \tag{5}$$

where

$$\pi(q, \ \omega, \ I) = \int \frac{d\omega_1 d^{3k}}{(2\pi)^4} T_r \left\{ G^{\circ} \left(\frac{\omega}{2} + \omega_1, \frac{q}{2} + K \right) \sigma_3 G^{\circ} \left(\frac{\omega}{2} - \omega_1, \frac{q}{2} - k \right) \sigma_3 \right\} (6)$$

which for $I = 0$ is

$$\pi(q, \omega_0) = 1 + \ln \frac{2\omega_D}{V_0 q}$$
(7)

where ω_p is the band-width

In order to perform the integrals from (6) we consider in (5) the limit

$$\chi(q, I) = \lim_{\omega \to 0} \chi(q, \omega, I)$$
(8)

and after a little algebra we get.

$$\chi(q, I) = \chi_0 \left[2 + \ln \frac{4\omega_D^2}{V_0^2 q^2 - I^2} - \frac{2I}{V_0 q} \ln \frac{2I + V_0 q}{V_0 q - 2I} \right]$$
(9)

The phase transition appears if:

$$1 = \frac{V \rho_0}{4} \pi(q, I) \tag{10}$$

and for the approximation q = 0 we have the solution:

$$I = \frac{\Delta_0}{2} \tag{11}$$

Another solution is obtained if $q \neq 0$ from the condition:

$$\frac{\partial \chi(q, I)}{\partial q} = 0 \tag{12}$$

which gives the equation .

$$\frac{2I}{V_0q^2} \ln \frac{V_0q + 2I}{V_0q - 2I} - \frac{2\omega_D^4 V_0^2 q}{V_0^2 q^2 - 4I^2} + \frac{8I^2}{q(V_0^2 q^2 - 4I^2)} = 0$$
(13)

In this equation we neglect the last term and using the relation

$$\log \frac{x+1}{x-1} = 2 \sum_{k=1}^{\infty} \frac{1}{(2k-1)x^{2k-1}}$$

we obtain:

$$q = \frac{4I^2}{V_0 \omega_D^2}$$

We can conclude that χ has a maximum in the presence of the exchange field, thus the phase transition is possible for $q \neq 0$. Before we are studying the type of this phase transition it is necessary to consider the influence of the exchange field on the order parameter.

III The equation for the order parameter in the presence of the exchange field. The problem of an itinerant-electron antiferromagnet in an exchange field has been studied by M a l a s p i n a s and R i c e [4] near They used a Ghinsburg-Landau equation but they did not consider the depairing effect given by exchange field which is similar with the Fulde-Ferrell state in superconductors

On the other hand we have to remark that the coupling between electrons and holes given by the ,s-d'' exchange interaction has a different sign because of the different spins of electrons and holes

The Green function.

$$\hat{G} = \begin{pmatrix} G_{\uparrow\uparrow}(k\,;\,\omega) & F_{\uparrow\downarrow}(k,\,k+q\,;\,\omega) \\ (F_{\downarrow\uparrow}^+(k+q,\,k\,;\,\omega) & G_{\downarrow\downarrow}(k+q\,,\,\omega) \end{pmatrix}$$

will be obtained from the equations:

$$[\omega - \varepsilon(k) + I)G_{\uparrow\uparrow}(k; \omega) = 1 - \Delta F_{\downarrow\uparrow}(k + q; k; \omega)$$

$$[\omega - \varepsilon(k + q) - I]G_{\downarrow\downarrow}(k + q; \omega) = 1 - \Delta F_{\uparrow\downarrow}(k, k + q; \omega)$$

$$[\omega - \varepsilon(k + q) + I]F_{\downarrow\uparrow}(k + q, k; \omega) = -\Delta G_{\downarrow\downarrow}(k, \omega)$$

$$[\omega - \alpha(k) - I]F_{\uparrow\downarrow}(k, k + q); \omega) = -\Delta G_{\downarrow\downarrow}(k + q); \omega)$$
(15)

where we have to mention .

$$\varepsilon(k) = -\varepsilon(k+q)$$

5 - Physica / 1975

<u>ب</u> اد

From these equations we obtain:

۵

$$(G_{\dagger\dagger}k;\omega) = \frac{\omega - \varepsilon(k) - I}{[\omega - \varepsilon(k) + I][\omega - \varepsilon(k + q) - I] - \Delta^2}$$

$$F_{\dagger\dagger}(k + q, k;\omega) = \frac{-\Delta}{[\omega - \varepsilon(k + q) + I][\omega - \varepsilon(k) + I] - \Delta^2} \cdot G_{1\downarrow}(k + q;\omega) = \frac{\omega - \varepsilon(k + q) - I}{[\omega - \varepsilon(k + q) - I]}$$
(16)

$$[\omega - \varepsilon(k+q) - I][\omega - \varepsilon(k) - I] - \Delta^{2}$$

$$F_{\uparrow\downarrow}(k, \ k+q, \ \omega) = \frac{-\Delta}{[\omega - \varepsilon(k+q) - I][\omega - \varepsilon(k) - I] - \Delta^{2}}$$

If we write the energy ε (k) and ε (k + q) as

$$\varepsilon (k) = \varepsilon(k) + \sigma I$$

 $\varepsilon (k+q) = \varepsilon(k+q) + \sigma I, \qquad \sigma = \pm 1$

the elementary excitation spectrum is:

$$\omega^2 - \omega [\varepsilon_{\uparrow}(k+q) - \varepsilon_{\downarrow}(k)] - \Delta^2 - \varepsilon(k)\varepsilon(k+q) = 0$$
(17)

This equation gives the solutions:

$$\omega_{1,2} = \sigma[(qk\cos\theta - I) \pm \sqrt{\varepsilon^2(k) + \Delta^2}]$$
(18)

and let us consider the branch:

$$E_{\sigma}(k, q) = \sigma[(qk\cos\theta - I) + \sqrt{\varepsilon^2(k) + \Delta^2}]$$
(19)

It is easy to see that:

$$E_{\sigma}(k, q) > 0 \qquad if \quad \Delta_{q} > k_{2}q - I$$

$$E_{\sigma}(k, q) < 0 \qquad if \quad \Delta_{q} < kq_{0} - I$$
(20)

With this result we reconsider the equation :

$$1 = \frac{V}{2N} \sum_{k} \frac{1}{\sqrt{\epsilon_{(k)}^{2} + \Delta^{2}}}$$
(21)

in the k-space which contains the states E(k, q) > 0 and E(k, q) < 0. The equation (21) is now:

$$1 = \frac{V}{2N} \left(\sum_{E < 0} - \sum_{E < 0} \right) \frac{1}{\sqrt{\epsilon_{(k)}^2 + \Delta^2}}$$
(22)

and if the integral over $\varepsilon(k)$ is performed we get:

$$\ln \frac{\Delta_q}{\Delta_q} = \frac{1}{2} \ln \frac{1 - \sqrt{1 - \Delta_q^2/I^2}}{1 + \sqrt{1 - \Delta_q^2/I^2}} + 4\sqrt{1 - \Delta_q^2/I^3}$$
(23)

which may be written as .

$$\frac{\Delta_{q}^{2}}{\Delta_{0}^{2}} = \frac{1 - \sqrt{1 - \Delta_{q}^{2}/\Delta_{0}^{2}}}{1 + \sqrt{1 + \Delta_{q}^{2}/\Delta_{0}^{2}}}$$
(24)

For $\frac{\Delta_0}{2} < I$ we get the solution:

$$\Delta_q^2 = \Delta_0 (2I - \Delta_0) \tag{25}$$

IV The Phase Transition. In order to study the type of the phase transition for $I \neq 0$ we write down the free energy

$$\Omega - \Omega_0 = -\int_0^{\mathbf{p}} |\Delta(r)|^2 d_r^3 \frac{d\lambda}{\lambda}$$
(26)

or as a function of Δ_0 .

$$\Omega - \Omega_0 = -\frac{\rho_0}{2} \int |\Delta(r)|^2 d_r^3 \cdot \frac{d\Delta_0}{\Delta_0}$$
(27)

Where ρ_0 is the density of states For the usual solution $\Delta_q = \Delta_0$ we obtain:

$$\Omega - \Omega_0 = -\frac{\rho_0 \Delta_0^2}{4}$$

but for the solution (25) the free energy becomes.

$$\Omega - \Omega_0 = \frac{\rho_0}{4} \left[\Delta_0^2 + 2I^2 - 4\Delta_0 I \right]$$
(28)

and from the condition

$$\Omega - \Omega_0 < 0 \tag{29}$$

we get:

$$I_1 = \Delta_0 - \frac{\sqrt{2}}{2} \Delta_0, \qquad I_0 = \Delta_0 + \frac{\sqrt{2}}{2} \Delta_0 \tag{30}$$

Using the conditions $I > \frac{\Delta_a}{2}$ and (30) we can easy conclude that for I which satisfy the relation:

$$\frac{\Delta_{\mathfrak{o}}}{2} \leqslant I \leqslant \Delta_{\mathfrak{o}} + \frac{\sqrt{2}}{2} \Delta_{\mathfrak{o}}$$

the localized moments $\langle S_{s} \rangle$ may coexist with the itinerant-electron antiferromagnetic state.

67

M. CRISAN, R GH POP

One of the authors (M.C) would like to thank Dr. A. Malaspinas for useful conversations about this subject during the period of his postdoctoral position in D.P M C of Geneva University.

(Received February 28, 1975)

REFERENCES

- A W Overhauser, Phys Rev 128-1437 (1962)
 V Iuşan, I Pop, V I. Chechernikov, Phys Stat Sol 58, 785, (1973) and Studia Univ Babeş-Bolyai ser Physica, 2, 68 (1974)
 P. A Feders, P. C Martin, Phys Rev 143, 245 (1966)
 A. Malaspinas, T M Rice, Phys Kond Materie, 13, 193 (1971)

EFECTUL IMPURITĂȚILOR MAGNETICE ASUPRA ANTIFEROMAGNETISMULUI DE BANDĂ

(Rezumat)

Se studiază efectul impurităților cu moment magnetic asupra stării ordonate de antiferomagnet de bandă.

Rezultatul obținut confirmă coexistența dintre momentele localizate și antiferomagnetismul de bandă obținut experimental de Pop și colaboratorii

TRANSFERT DE CHARGE ET REACTIONS ION-MOLECULE DANS L'INTERACTION DE H_2^+ ET CH_nD_{4-n}

E. CONSTANTIN et J. CH. ABBE*

Introduction. On a étudié les réactions entre H_2^+ et les méthanes deutériés, entre 2 et 100 eV, en utilisant un spectromètre de masse a deux étages, de type longitudinal [1] Dans le présent travail nous donnons les résultats détaillés concernant la dépendance des sections efficaces relatives I_{sec}/I_i ($I_{sec} =$ le courant ionique pour un type d'ion secondaire, $I_i = \Sigma I_{sec}$) de l'énergie cinétique de l'ion projectile H_a^+ . On complète ainsi le schéma d'une note antérieure [2].

Résultats expérimentaux. Les résultats expérimentaux montrent la formation des ions secondaires par transfert de charge aussi bien que l'existence des réactions ion-molécule. On va noter dans les suivantes par A, B, C les différents processus d'apparition des ions secondaires transfert de charge non-dissociatif (A), transfert de charge avec dissociation (B) et réactions ion-molécule (C).

En ce qui concerne le transfert de charge, l'allure des courbes I_{sec}/I , est dépendante du rapport qui existe entre le potentiel d'ionisation (I P) ou d'apparition (A P) des ions secondaires et l'énergie de recombinasion du projectile (R E). On peut donc prévoir l'aspect des courbes pour différents ions tenant compte de la distribution des valeurs des potentiels I P., A.P. et R E En considérant les valeurs de l'énergie de recombinaison comprises entre 12,5 et 17,5 eV, la possibilité des réactions suivantes résulte:

- transfert de charge résonante: la formation des ions CX_{4}^{+} , CX_{3}^{+} , CX_{4}^{+} , C

- transfert de charge exothérmique ions secondaires CX_4^+ , CX_3^+ , CX_3^+ ;

- transfert de charge endothermique: la formation des ions CX_{s}^{+} CX_{s}^{+} .

Les réactions 10n-molécule qui se déroulent simultanément avec le transfert de charge donnent naissance aux 10ns qui parfois ont le même m/e que les 10ns provenant du transfert de charge. Leur présence change l'allure des courbes I/I, mais l'emploi des formés deutériés de méthane facilite l'interprétation des résultats.

Sur la fig 1 on voit la dépendance de l'énergie de la section efficace des ions CD_2H^+ (courbe 3) formés par réactions ion-molécule (R.I.M.)-processus C3:

$$H_2^+ + CD_4 \dots CD_2 H^+$$

* Centre des Recherches Nucléaires, Laboratoire de Chimie Nucléaire, 67037 Strasbourg CEDEX, France.

Dans ce cas il n'y a pas de juxtaposition avec des ions formés par transfert de charge, l'allure vite décroissante de la curbe est donc caractéristique pour les ions CX_{a}^{+} provenant des processus C3

L'analyse de la nature des 10ns ayant m/e = 16, 18, 19, 20 montre que seuls les 10ns moléculaires sont collectés à chacune de ces valeurs de m/e On trouve par conséquent un comportement spécifique pour un transfert de charge partiellement endothermique. Sur la fig 2 (courbes 1, 2) on remarque l'aspect des courbes pour CH_4^+ et CD_3H^+

Les interférences interviennent dans le cas des ions CX_s^+ et CX_2^+ , les produits de transfert de charge ayant des fois le même m/e que ceux formés par R I.M -C3 Ainsi, l'allure vite décroissante des courbes représentées sur la fig 3 est due aux ions CX_s^+ provenant de R I M -C3, juxtaposés avec ceux formés par la rupture d'une liaison C-D C' est le cas de l'interaction de H_2^+ avec CD_3H (courbe 2), CH_2D_2 (courbe 3) donnant naissance aux ions.

$$\dot{\mathrm{H}}_{2}^{+} + \mathrm{CH}_{2}\mathrm{H}_{2} \quad . \quad \mathrm{CH}_{2}\mathrm{D}^{+} \tag{B}$$

C

$$H_2^+ + CD_3H \dots CD_2H^+$$
(B)

 $CD_2\dot{H}^+$ (C3)

En même temps, lorsque H_2^+ interagit avec CD_4 (courbe 1) on a seulement les 10ns CD_3^+ (B) à m/e = 18, ce qui fait que la courbe 1 soit caractéristique pour un transfert partiellement endothermique:

$$H_{a}^{+} + CD_{4} \dots CD_{a}^{+}$$
(B)

Sur la fig. 2 (courbes 3, 4, 5) on a porté aussi les valeurs de la section efficace pour les ions qui se forment de l'ion moléculaire par la perte de H. Aux faibles énergies on peut observer la contribution des ions CX_s^+ provenant des processus C3 Ainsi, on a pour m/e = 15 (c 3) et 17 (c.4):

$$\dot{\mathrm{H}}_{2}^{+} + \mathrm{CH}_{4} \ldots \mathrm{CH}_{3}^{+} \tag{B}$$

$$CH_2H^+$$
 (C3)

$$\mathbf{H}_{2}^{+} + \mathbf{C}\mathbf{H}_{2}\mathbf{D}_{2} \dots \mathbf{C}\mathbf{D}_{2}\mathbf{H}^{+}$$
(B)

$$CD_2H^+$$
 (C3)

D'autre part, les 10ns CD₃⁺ ont à l'origine un transfert endothermique, l'interférence avec les 10ns CD₃⁺ d'un processus C3 étant exclue (courbe 5):

$$H_s^+ + CD_3H \dots CD_s^+$$
(B)

On a représenté sur la fig. 1 — courbes 1,2 — les résultats concernant les 10ns CX_{a}^{+} qui peuvent apparaître de l'ion moléculaire par la perte de DH. L'examen des courbes met en évidence la juxtaposition des ions CX_{a}^{+} (C3) et CX_{a}^{+} :

$\dot{\mathrm{H}_{2}^{+}} + \mathrm{CH}_{2}\mathrm{D}_{2}$	CDH^+	(B)-courbe I
-	CH₂ṫ+	(C3)
$\dot{H}_{3}^{+} + CD_{3}H$	CD_{2}^{+}	(B)-courbe 2
÷ •	CDHH+	(C3)

71

E CONSTANTIN, J CH ABBE

Les résultats donnés sur la fig 4 (courbes 1, 2, 3) s'en réfèrent aux ions CX_2^+ qui peuvent provenir par la coupure de deux liaisons C-DOn a trouvé aussi des ions CX_4^+ formés par RIM -C4 La dépendance de l'énergie pour les 10ns CD_3H^+ sur la fig 4 est donnée (courbe 4).

$$H_2^+ + CD_4 \dots CD_3H^+$$

Effets isotopiques. Pour discuter les effets isotopiques des rapports $y = y_{e}/y_{s}$ ont été calculés y, représente la valeur expérimentale et y, la valeur statistique du rapport des intensités de deux courants ioniques $CH_{n}D_{3-n}^{+}/CH D_{3-n}^{+}$ 1

C-11-2-	-1	
aoueau		

Les valeurs de y, y_s , y_e pour les ions CX_s^+						
Nr	Rapport	Уе	Уs	у		
1 2 3 4 5 6	$CHD_{2}^{+}(CH_{2}D_{2})/CH_{3}^{+}(CH_{4})$ $CD_{3}^{+}(CD_{3}H)/CH_{3}^{+}(CH_{4})$ $CD_{3}^{+}(CD_{4})/CH_{3}^{+}(CH_{4})$ $CD_{3}^{+}(CD_{3}H)/CD_{2}H^{+}(CD_{3}H)$ $CDH^{+}(CH_{2}D_{2})/CD_{2}^{+}(CD_{3}H)$ $CDH^{+}(CH_{3}D_{3})/CH_{3}^{+}(CH_{3}D_{3})$	0,67 0,53 1,01 0,93 1,43 2,55	0,5 0,25 1 0,33 1,33 4	1,35 2,14 1,01 2,82 1,07 0,64		

Il résulte du tableau nr. 1 l'existence des effets isotopiques associés avec la rupture des liaisons C-H, C-D Les effets sont qualitativement identiques avec ceux trouvés dans la fragmentation induite par les élect.ons.

Ainsi, le perte de H par les molécules deutériées est plus probable que la perte de H par CH₄ (ligne 1, 2). L'effet croît avec le degré de deutération de la molécule En même temps la perte de H par CD₃H est favorisée par 1apport à la perte de D de la même molécule (ligne 4) D'autre part, la dissociation des composés simétriques CH_4 et CD_4 n'implique pas de différences trop significatives dans la perte de H, respectivement D,

le rapport CD₃⁺/CH₃⁺ étant très proche de l'unité (ligne 3) Dans tous les cas, après 40 eV les valeurs restent pratiquement constantes

Les effets isotopiques concernant les groupes CX₂⁺ résultent en considérant les courbes tracées sur la fig 5 Les valeurs pour différents rapports peuvent être comparées avec leur correspondentes de la fragmentation $f_1, f_2, \ldots, ($ induite par électrons ayant 70 eV) On remarque

- la formation de CH₂+(CH₄) est plus probable que celle de $CD_{\bullet}^{+}(CD_{\bullet})$. La curbe 1 augmente aux faibles énergies puis elle reste parallèle avec l'abscisse:

(C4)

— le rapport CDH+(CD₃H)/CD₂+(CD₄) — courbe 2-présente un maximum aux faibles énergies Les valeurs expérimentales sont supérieures a celle statistique (y > 1) aux énergies inférieurs à 20 eV. Les valeurs sont très différentes de celle de la fragmentation (f_2) La correspondence est seulement qualitative jusqu'a 20 eV. En admettant que les ions CX₂+ se forment uniquement par transfert de charge, il résulte que la formation de CD₂+(CD₄) a plus de chance que celle de CDH+(CD₃H) ou bien la perte de D₂ par CD₄ est plus probable que la perte de D₂(CD₃H),

— dans le cas du rapport $CH_2^+(CH_2D_2)/CD_2^+(CD_4)$ les valeurs de y sont inférieurs à l'unité jusqu'à 5 eV II y a une correspondance avec f_3 seulement pour ce domaine d'énergie. La courbe 3 présente aussi un maximum,

— la courbe 4 montre que la formation de $CD_2^+(CD_3H)$ est favorisée en comparaison de celle de $CDH^+(CD_3H)$ L'effet décroît vite avec l'énergie et les valeurs deviennent inférieures à f_4 ,

— les valeurs comprises dans le tableau 1-ligne 6-montrent que la formation de $CDH^{\neg}(CH_2D_2)$ est moins favorisée que la formation de $CH_2^+(CH_2D_2)$. Il résulte que la perte de $DH(CH_2D_2)$ est moins probable que la perte de $D_2(CH_2D_2)$ pendant que pour CD_3H l'effet est inverse (courbe 4-fig 5) Dans la fragmentation $f_4(CH_2D_2)$ est égale a 2,8 et $f_4(CD_3H) = 1,97$ la correspondance avec la fragmentation existe donc seulement pour CD_3H ,

— la probabilité de formation de $CDH^+(CH_2D_2)$ est supérieure à la probabilité de formation de $CD_2^+(CD_3H)$ L'effet est inverse par rapport à la fragmentation (f = 0,55).

(Manuscrit reçu le 4 mars, 1975)

BIBLIOGRAFIE

1 J P L'Hote, J Ch Abbe, J M Paulus et R Igerseim, Int J Mass Spectrom Ion Phys, 7, 309 (1971)

2 J Ch Abbe, E Constantin, Int J Mass Spectrom Ion Phys, 12, 91 (1973)

TRANSFER DE SARCINĂ ȘI REACȚII ION-MOLECULĂ ÎN INTERACȚIUNEA DINTRE ${\rm H_2^+}$ ȘI ${\rm CH_nD_{4-n}}$

(Rezumat)

Lucrarea cuprinde rezultatele experimentale privind transferul de sarcină și reacțule 1011—moleculă între H_2^+ și speciile deuterate de metan Se dau secțiuni eficace relative de formare a ionilor și se prezintă efectele izotopice H-D.

E. TRIF, AL. NICULA

1. Introduction. In the previous studies [1-3] of the X and Y zeolite, we identified the Gd³⁺ ions in several unequivalent positions The EPR spectra of Gd³⁺ show large , effective'' g factors, that is $g \ge 2$ C as t n er et al. [4], considered, for the first time, that the spectra with large $g_{\rm eff}$ suggest the existence of a strong crystal field In such a field the spins prefer to align themselves parallel to certain crystal field directions, the Hund's rules being violated. However, we accept the A b r a g a m and B l e a n e y's therminology [5] of issonance in weak magnetic static field, $g_0\beta H < \mathcal{H}_0$, when the EPR transitions arise only inside of the zero field states

The Gd^{3+} ions in S(1) sites of trigonal local symmetry show an isotropic resonance at $g_{eff} = 5.00 \pm 0.25$ This determined us to develop the resonance theory of Gd^{3+} ions in trigonal field.

2 Experimental results. In X and Y zeolite, the Gd^{3+} ions form all sort of complexes such as

a) a hydrated one, $Gd(H_2O)_{x}^{3,+}$, (x = 6, 8, 9) which in hydrated zeolite moves freely in the large cavities, and by lowering the temperature, a part of them migrates in S(1) sites During the calcination in vacuum of the samples, a hydration, without oxidation, process takes place. By calcination at 400-600 °C, this complex transforms itself in a grey oxide Gd_2O_3 deposited in S(5) sites, having a nearly axial symmetry ($\lambda = E/D = 0.02$), b) $Gd(H_2O)_{1}^{3+}$, in S(4) sites, of strong rhombic crystal field ($\lambda = E/D =$ '= 0.319 ± 0.014), which was theoretically analysed in a previous work [3] By calcination at 600 °C, this complex loses the water and goes into the 6MR of C local symmetry

c) Gd^{3+} ions giving resonances at $g = 5.00 \pm 0.25$ whose theory we have presented in this paper. The temperature variation of the EPR line intensity and line width for the hydrated samples, and the EPR line positions in terms of effective g factors for the calcined samples, showed [6] that this resonance arises from Gd^{3+} , isolated in the unhydrated S(1) sites of the 6DMR hexagonal prisms, being coordinated to six 0(3) type oxigens of the rigid network

3 Theory. Niklin et al [7] have considered that a g = 51 resonance of the Gd³⁺ ions, may arise by EPR transitions inside an excited rhombic, state, when $\lambda = E/D = 0.12$

Generally, according to B a r r y and L a y [8] the local symmetry of the ions in S(1) sites is an octahedral one with a weak trigonal distortion This determined us to analyse the resonance conditions of Gd^{3+} in a trigonal crystal field. If the zero field splittings ($\vec{H} = 0$) are larger than the microwave field quantum, the Zeeman interaction rises the degeneracy of the zero field states ψ_k , but does not mix them. It is customary to report the resonance lines in terms of ,,effective'' g factors, defined by assuming that the resonances arise only inside every zero field states, that is .

$$g_{ef} = \frac{E_k^{(i)} - E_k^{(j)}}{_{\Theta H}} = \frac{h\nu}{_{\Theta H}}$$
(1)

We are interested in the comoponents g(i), (i = x, y, z) of the effective g factors, for the three principal directions [100], [010], [001] of the magnetic static field \vec{H} , since these are the most probable transitions in powdered samples. We noted that only the averages of the transition probability over α (α defines the orientation of \vec{H}) are of physical significance, the average procedure leading to

$$P_k \sim |g_k(+)|^2 \tag{2}$$

where $g_k(+) = g_k(x) + ig_k(y)$. So, when $g_k(+) = 0$, the transitions between the Zeeman states are forbidden.

A) It is known [5] that in a cubic crystal field, the ground state, $S_{7/2}$, of the Gd^{3+} ions, splits according to the representations ${}^{2}\Gamma_{6} + {}^{2}\Gamma_{7} + {}^{4}\Gamma_{8}$ Taking the crystal field reported to the trigonal Z[111] axes,

$$\mathscr{X}_{0} = \frac{2}{3} B_{4}^{0} [O_{4}^{0} + 20 \sqrt{2} O_{4}^{3}] + \frac{16}{9} B_{6}^{0} \Big[O_{6}^{0} - \frac{35}{\sqrt{8}} O_{6}^{3} - \frac{77}{8} O_{6}^{6} \Big]$$
(3)

and defining the parameter $x \in [-1, +1]$ as L e a et al [9]

$$\frac{B_4^0}{B_6^0} = \frac{x}{(1-|x|)} \frac{F(6)}{F(4)} \tag{4}$$

where F(4) = 60, F(6) = 1260, the eigenvalues and eigenfunctions of the Hamiltonian (3) will be

$$E_{6} = 14x - 20(1 - |x|) \quad \psi_{6}^{(1, 2)} = \pm \frac{1}{6} \sqrt{\frac{10}{3}} \left| \pm \frac{7}{2} \right| \pm \frac{1}{6} \sqrt{\frac{70}{3}} \left| \pm \frac{1}{2} \right| \\ \pm \frac{5}{2} \right| \pm \frac{1}{6} \sqrt{\frac{28}{3}} \left| \pm \frac{1}{2} \right| \\ E_{7} = -18x - 12(1 - |x|) \quad \psi_{7}^{(1, 2)} = \pm \frac{1}{3} \sqrt{\frac{7}{2}} \left| \pm \frac{7}{2} \right| \pm \frac{7}{2} \right| \\ \mp \frac{5}{2} \right| \pm \frac{\sqrt{5}}{3} \left| \pm \frac{1}{2} \right| \\ \pm \frac{5}{2} \right| \\ E_{8} = 2x + 16(1 - |x|) \quad \psi_{8}^{(1, 2)} = \left| \pm \frac{3}{2} \right| \\ \pm \frac{3}{2} \right| \\ \pm \frac{3}{2} \right|$$
(5)

١

$$\psi_{8}^{(3, 4)} = \left| \pm \frac{\tilde{1}}{2} > = \mp \sqrt{\frac{14}{3}} \right| \mp \\ \mp \frac{7}{2} > \mp \frac{2}{3} \left| \mp \frac{5}{2} > \pm \frac{1}{3} \sqrt{\frac{5}{2}} \right| \pm \frac{1}{2} >$$

The Γ_6 and Γ_7 states present the isotropic, $g_x = g_y = g_z$ factors, that is $g_6 = 4.66$, respectively $g_7 = 6$ In the state the transitions with the selection rules $\Delta M_S \neq 3$, present the following isotropic resonances: $g_8(1, 3) = g_8(2, 4) = 0.66$, $g_8(1, 4) = g_8(2, 3) = 5.13$ and $g_8(3, 4) = 4.66$, as it can be seen in figure 1

A weak trigonal distortion, $D\left[S_x^2 - \frac{1}{3}S(S+1)\right]$, however greater than the Zeeman interactions, does not affect the resonances of the states Γ_6 and Γ_7 , connected by time inversion, but removes the degeneracy of the state Γ_8 , resulting two independent doublets $\psi_8^{(1,2)}$ respectively $\psi_8^{(3,4)}$. The $\psi_8^{(1,2)}$ doublet presents a forbidden transition ($g_{11} = 6$, $g_{\perp} = 0$), and the resonances inside the state appear at $g_{11} = 4.66$ and $g_{\perp} = 2.66$. Hence in a cubic crystal field with a weak trigonal distortion the EPR transitions appear at g = 6, 4.66, 2.66, which it is not our case.

Fig 1 Resonances in the Γ_6 state of the cubic field reported to trigonal axis.

F 1 g 2 The effective g factors, $g_8^{(k)}(i)$ as function of the hexagonal parameter $\alpha_8 \in (0, 180^\circ)$

EPR OF Gd+ IONS IN S(1) SITES OF ZEOLITE

B) In the S(1) site, presenting a C_{3i} local symmetry the resonances of the Gd³⁺ ions are described by the trigonal Hamiltonian. Not only for C_3 and C_{3v} symmetries, as pointed out Abragam and Bleaney [5], but also for C_{3i} symmetry of the Gd³⁺ in a powder, the trigonal contribution $B_4^3 O_4^3 + B_6^3 O_6^3$ is averaged to zero. So, the resonances may be studied with the hexagonal fine structure Hamiltonian

$$\mathcal{H}_{0}^{(h)} = \frac{1}{3} b_{2}^{0} O_{2}^{0} + \frac{1}{60} b_{4}^{0} O_{4}^{0} + \frac{1}{1260} b_{6}^{0} O_{6}^{0} + \frac{1}{1260} b_{6}^{0} O_{6}^{0} \tag{6}$$

This field splits the ground state into four doublets, corresponding to the representations ${}^{2}\Gamma_{7}^{h} + 2{}^{2}\Gamma_{8}^{h} + {}^{2}\Gamma_{9}^{h}$, having the following eigenvalues and eigenfunctions:

$$E_{7} = -3b_{2}^{0} - 3b_{4}^{0} + 9b_{6}^{0} \qquad \psi_{7}(\pm) = \left| \pm \frac{3}{2} \right| > E_{8} = -5b_{2}^{0} + 9b_{4}^{0} - 5b_{6}^{0} \qquad \psi_{1}(\pm) = \left| \pm \frac{1}{2} \right| > E_{8}^{(1)} = 4b_{2}^{0} - 3b_{4}^{0} - 2b_{6}^{0} + (3b_{2}^{0} + 10b_{4}^{0} + 3b_{6}^{0})\sqrt{1 + t_{g}^{2}2\alpha_{8}} \qquad (7)$$

$$\psi_{8}^{(1)}(\pm) = \left(\left| \pm \frac{7}{2} \right| + t_{g}^{0} \alpha_{8} \right| \pm \frac{5}{2} \right) \sqrt{1 - t_{g}^{2} \alpha_{8}} \qquad E_{8}^{(2)} = 4b_{2}^{0} - 3b_{4}^{0} - 2b_{6}^{0} - (3b_{2}^{0} + 10b_{4}^{0} + 3b_{6}^{0})\sqrt{1 + t_{g}^{2}2\alpha_{8}} \qquad \psi_{8}^{(2)}(\pm) = \left(t_{g}^{0} \alpha_{8} \right| \pm \frac{7}{2} > - \left| \pm \frac{5}{2} \right) \left| \sqrt{1 + t_{g}^{2} \alpha_{8}} \right|$$

where α_8 is the hexagonal parameter defined as:

$$\alpha_8 = \frac{1}{2} \arctan \frac{2b_6^8}{\sqrt{7}(3b_2^0 + 10b_4 + 3b_6^0)} \tag{8}$$

These states show the following g_{eff} factors:

a)
$$\Gamma_{7}^{(h)} - g_{7}^{(||)} = 6$$
; $g_{7}^{(\perp)} = 0$ - fordidden transitions;
b) $\Gamma_{8}^{(h)} - g_{8}^{(||)} = 2$; $g_{8}^{(\perp)} = 8$;
c) $2\Gamma_{8}^{(h)} - g_{8}^{(1)}(||) = 4 \left[\frac{7}{2} - \frac{5}{2} tg^{2} \alpha_{8}\right] |(1 + tg^{2} \alpha_{8}),$
 $g_{8}^{(1)}(\perp) = 4 \sqrt{7} / (1 + tg^{2} \alpha_{8}), g_{8}^{(2)}(||) = 4 \left[\frac{7}{2} tg^{2} \alpha_{8} - \frac{5}{2}\right] \frac{1}{1} / (1 + tg^{2} \alpha_{8}),$
 $g_{8}^{(2)}(\perp) = 4 \sqrt{7} tg \alpha_{8} / (1 + tg^{2} \alpha_{8}).$

In figure 2 we plotted the $g_{i}^{(k)}(i)$ $(k = 1, 2), i = (\parallel, \perp)$ as function of the parameter $\alpha_8 \in (0, 180^\circ)$. It may be observed that there are two

isotropic g_{eff} factors, for every two Γ_8 doublets, namely $g_8^{(1)} = 5.10$ $(\alpha_8 = 375), g_8^{(1)} = 446(\alpha_8 = 119^\circ),$

$$g_8^{(2)} = 5\ 10 = (\alpha_8 = 52.5^\circ),\ g_8^{(2)} = 4\ 46(\alpha_8 = 151^\circ).$$

Hence, the isotropic $g = 5.00 \pm 0.25$ resonance may arise when the $\Gamma_{\circ}^{(2)}$ s state 15 the lowest 11 energy and when the hexagonal parameter σ_8 has the value $\sigma_8 = 52.4^\circ$

Such a case in zeolite appears when the paramagnetic ions are placed in S(1) site, and when the spins are quantified in the xy plane parallel to the hexagonal 6MR rings of the 6DMR hexagonal prisms

Conclusions. The EPR studies of the Gd³⁺ ions in zeolite confirm the Pickert's et all [8] idea, that an unusually strong electrostatic field surrounds the cations in zeolite and this field aligns the spins parallel to certain crystal field direction When the ions are placed is S(1) sites, of C_{3i} symmetry, the spins are quantified in the xy plane of the 6MR rings, and the fine structure Hamiltonian presents a strong B_6^6 type contribution comparable with the axial terms.

(Received March 4, 1975)

к. I

REFERENCES

- 1 Al Nicula, E Trif, Proc of the XVII-th Congress AMPERE, Turku, 543, 1972
 2 Al Nicula, J Turkevich, Rev Roum Phys 2, 193, 1974
 3 E Trif, V Militaru, Al Nicula, Rev Roum Phys 2, 89, 1975
 4 T Castner Jr, G S Newell, W C Holton, C P Slichter, J Chem Phys 32, 668, 1960.
- 5 A Abragam, B Bleaney, "Electron Paramagnetic Resonance of Transition Ions", Clarendon Press, Oxford, 1970
- 6 E Trif, Thesis, 1974
- 7 R C Niklin, J K Johnstone, R G Barnes, D R Wilder, J Chem.

- Phys 59, 1652, 1973
 8 T I Barry, L A Lay, J Chem Phys. Solids, 27, 1821, 1966
 9 K. R Lea, M J Leask, W P Wolf, Phys Chem Solids, 23, 1381, 1962
 10 P E Pickert, J A. Rabo, E Dempsey, V. Schoemaker, Pioc Intern. Congr Catalysis 3rd, Amsterdam, 714, 1964

RPE A IONULUI Gdo+ ÎN POZIȚIILE S(I) A ZEOLIȚILOR SINTETICI (Rezumat)

În acest articol am prezentat teoria rezonanței paramagnetice a ionului Gd⁸⁺ în pozițule S(1) din zecliți A fost confirmată ideea lui Pickert și colab că în zeoliți există cîmpuri cristaline intense în vecinătatea cationilor.

78

OBȚINEREA SCĂRILOR MICROMETRICE PRIN MIJLOACE SIMPLE

IRIMIE MILEA

Metoda descrisă permite obținerea scărilor cu suport transparent, folosite curent în microscopie, spectroscopie, etc Datorită simplității ei și materialelor ușor de procurat este mai avantajoasă decît metoda prin gravare, care necesită un pantograf de precizie

Obținerea scării micrometrice comportă următoarele etape

1 Realizarea unui desen cît mai exact în tuș, pe hîrtie de bună calitate, la o scară de cel puțin doăzeci de ori mai mare ca scara micrometrică dorită.

2 Fotografierea la scara aleasă a desenului, pe un film de mare contrast și obținerea unui negativ Este iecomandabil ca aparatul fotografic folosit să fie prevăzut cu un obiectiv de bună calitate (de exemplu Tessar, f = 180 mm, $\frac{d}{f} = 4,5$) [1] Pentru punerea la punct, care se face pe geamul mat al aparatului, se va folosi un microscop cu grosisment 30-40. Filmul folosit poate fi de tip poligrafic ORWO F05, sau cel folosit pentru diapozitive. Developarea se face într-un revelator contrast ORWO R71 folosit în poligrafie, sau orice alt tip de revelator contrast adecvat filmului ales Se vor aplica metodele cunoscute [2] pentru eliminarea difuziei și efectului Eberhard Se va folosi o baie de întrerupere cu acid acetic glacial 1% iar fixarea se face într-un fixator acid

3 Obținerea pozitivului final Se pot realiza trei variante

a) Pe film poligrafic. Pe același tip de film ca și cel folosit pentru obținerea negativului se obține, prin copiere prin contact cu negativul, un pozitiv. Materialele de prelucrare și precauțiile necesare pentru obținerea pozitivului sînt aceleași ca la punctul 2 Scara micrometrică obținută nu este rigidă și este necesar să fie lipită pe un suport transparent.

b) Pe suport de sticlă Se alege o placă de sticlă de grosime și formă potrivite scopului propus pe care, după o curățire temeinică, se depune un strat de alcool polivinilic (M-20-98) folosit în poligrafie, fotosensibilizat cu bicromat de amoniu [3]. Întinderea și uscarea stratului fotosensibil pe suport se face prin centrifugare. După o copiere prin contact cu negativul și developare prin clătire în apă la 30 °C se obține o copie pozitivă, regiunile atinse de lumină devenind insolubile. Microscara obținută se colorează cu un colorant organic (eritrozină), iar după spălare și uscare se încălzește pînă la 80 °C, operație prin care stratul de alcool polivimilic devine suficient de rigid pentru a nu mai fi necesare operații de protecție deosebite.

c) Pe un suport de argint metalic depus pe o placă de sticlă Pe stratul subțire de argint depus prin vaporizare în vid sau chimic pînă la o transparență de 10-15%, se obține scara micrometrică prin metc da descrisă la punctul b. Pentru îndepărtarea stratului de argint suplimentar se introduce placa în clorură ferică 1-2% și cu o pensulă fină se freacă ușor suprafața de argint liber pînă la schimbarea colorației lui spie gri închis, moment în care placa se introduce într-o soluție de tiosulfat de sodiu, unde clorura de argint formată se dizolvă. Dizolvarea are loc în regiunile neprotejate de alcoolul polivinilic, deci neimpresionate de lumină și, în concluzie, desenul scării micrometrice rezultate are ca suport stratul de argint rămas, protejat de alcoolul polivinilic întărit prin încălzire [4]

Pentru toate variantele descrise sînt necesare în final mici operații de retuș, care se pot face privind scara micrometrică printr-un microscop binocular Luîndu-se toate măsurile de protecție împotiiva depunerii prafului, lucrînd curat și îngrijit, metoda descrisă permite realizarea de scări micrometrice cu pînă la 100 linii pe milimetru.

(Intrat in redactie la 30 mai 1974)

BIBLIOGRAFIE

- 1 Pierre Pizon, Photomicrographie et photomacrographie, Ed Revue d'optique, Paris, 1966
- 2 Mircea Novac, Fotografia de la A la Z, Ed tehnică, București, 1973
- 3 A Mihai și V Neacșu, Tehnica fotoreproducerii în poligrafie, Ed tehnică, București, 1967
- 4 L. K. H. van Beek, The D. D. photografic proces, Philips Tehnical Review 33, 1, 1973

SUR L'OBTENTION DES MICROÉCHELLES AVEC DES MOYENS SIMPLES (R é s u m é)

On présente trois méthodes pour obtenir une microéchelle sur un support transparent flexible ou rigide La précision résultée est de 1/100 mm

I P Cluj, Municipiul Cluj-Napoca, com 331/1975

În cel de al XX-lea an de apariție (1975) Studia Universitatis Babes-Bolyai cuprinde fasciculelele :

matematică fizică chimie geologie — geografie biologie filozofie științe economice științe juridice istorie filologie

На XX году издания (1975) Studia Universitatis Babes – Bolyai выходит следующими ыпусками:

математика физика химия геология — география биология философия экономические науки юридические науки история филология

Dans leur XX-e année de publication (1975) les Studia Universitatis Babeş-Bolyai comportent les fascicules suivantes :

mathématiques physique chimie géologie – géographie biologie philosophie sciences économiques sciences juridiques histoire philologie

Abonamentele se fac prin oficiile poștale, prin factorii poștali și prin difuzorii de presă.

Lei 10