Survey of the amphibians in “Fânațele Clujului – Copârșaie”, part of the “Dealurile Clujului de Est” (ROSCI0295) Natura 2000 protected area

Authors

  • Nándor ERŐS Babeș-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania; Babeș-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania. erosnandi@gmail.com
  • Mónika IANCULESCU Babeș-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania. Corresponding author: erosnandi@gmail.com
  • Vivien-Beatrix KOCSIS Babeș-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania. Corresponding author: erosnandi@gmail.com
  • Ágnes SZŐCS Babeș-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania. Corresponding author: erosnandi@gmail.com
  • Tibor SOS Babeș-Bolyai University, Doctoral School in Integrative Biology, Cluj-Napoca, Romania; Milvus Group Bird and Nature Protection Association, Târgu-Mureș, Romania. Corresponding author: erosnandi@gmail.com https://orcid.org/0000-0002-7297-0407

DOI:

https://doi.org/10.24193/subbbiol.2022.2.04

Keywords:

amphibian conservation, Transylvanian Plain, SPOM

Abstract

As habitat loss poses challenge to conservation, it is becoming increasingly important to address questions about the extent to which connectivity between habitat patches is changing, and how this affects the local population of different species in these patches. The objective of our research was to monitor ponds and the pond-breeding amphibian species in a protected area. Therefore, we conducted day and night surveys, and compare the data collected in 2022 with the results of the latest available survey (2019), to simulate the patch occupancy of amphibian species over a 25-year timeframe. We found that combining the species occupancy data collected from both day and night surveys lead to higher patch occupancy values and higher number of registered individuals, compared to data collected only during daytime. The number of ponds decreased from 2019 to 2022, and further habitat loss could result in the disappearance of the local population if the area continues to dry out. Climate and landscape change could be major contributors to habitat loss in the future, therefore, in order to ensure the persistence of these local populations, we recommend the development of climate and habitat scenarios, and the planning of conservation measures based on these scenarios.

Article history: Received: 25 September 2022; Revised: 14 December 2022;
Accepted:
16 December 2022; Available online: 22 December 2022.

References

Akeroyd, J. R., & Page, N. (2007). The Saxon Villages of Southern Transylvania: Conserving Biodiversity in a Historic Landscape. In Nature Conservation (pp. 199–210). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-47229-2_21

Arntzen, J. W., Abrahams, C., Meilink, W. R. M., Iosif, R., & Zuiderwijk, A. (2017). Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38-year period. Biodiversity and Conservation, 26(6), 1411–1430. https://doi.org/10.1007/s10531-017-1307-y

Beja, P., & Alcazar, R. (2003). Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians. Biological Conservation, 114(3), 317–326. https://doi.org/10.1016/S0006-3207(03)00051-X

Blaustein, A. R., & Kiesecker, J. M. (2002). Complexity in conservation: lessons from the global decline of amphibian populations. Ecology Letters, 5(4), 597–608. https://doi.org/10.1046/j.1461-0248.2002.00352.x

Bolochio, B. E., Lescano, J. N., Cordier, J. M., Loyola, R., & Nori, J. (2020). A functional perspective for global amphibian conservation. Biological Conservation, 245(March), 108572. https://doi.org/10.1016/j.biocon.2020.108572

Buckley, J., Beebee, T. J. C., & Schmidt, B. R. (2014). Monitoring amphibian declines: population trends of an endangered species over 20 years in Britain. Animal Conservation, 17(1), 27–34. https://doi.org/10.1111/acv.12052

Calhoun, A. J. K., Mushet, D. M., Bell, K. P., Boix, D., Fitzsimons, J. A., & Isselin-Nondedeu, F. (2017). Temporary wetlands: challenges and solutions to conserving a “disappearing” ecosystem. Biological Conservation, 211, 3–11. https://doi.org/10.1016/j.biocon.2016.11.024

Cayuela, H., Besnard, A., Quay, L., Helder, R., Léna, J.-P., Joly, P., & Pichenot, J. (2018). Demographic response to patch destruction in a spatially structured amphibian population. Journal of Applied Ecology, 55(5), 2204–2215. https://doi.org/https://doi.org/10.1111/1365-2664.13198

Cogălniceanu, D., Băncilă, R., Plăiaşu, R., Samoilă, C., & Hartel, T. (2012). Aquatic habitat use by amphibians with specific reference to Rana temporaria at high elevations (Retezat Mountains National Park, Romania). Annales de Limnologie - International Journal of Limnology, 48(4), 355–362. https://doi.org/10.1051/limn/2012026

Collserola Natural Park's project: https://www.europarc.org/case-studies/pond-management-conservation-amphibians-collserola-natural-park/

Curado, N., Hartel, T., & Arntzen, J. W. (2011). Amphibian pond loss as a function of landscape change - A case study over three decades in an agricultural area of northern France. Biological Conservation, 144(5), 1610–1618. https://doi.org/10.1016/j.biocon.2011.02.011

Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biological Conservation, 128(2), 231–240. https://doi.org/10.1016/j.biocon.2005.09.031

Erős, N., Maloș, C. V., Horváth, C., & Hartel, T. (2020). Temporary pond loss as a result of pasture abandonment: exploring the social-ecological drivers and consequences for amphibians. Journal for Nature Conservation, 55(October 2019), 125836. https://doi.org/10.1016/j.jnc.2020.125836

Grodzińska-Jurczak, M., & Cent, J. (2011). Can public participation increase nature conservation effectiveness? Innovation: The European Journal of Social Science Research, 24(3), 371–378. https://doi.org/10.1080/13511610.2011.592069

Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 151–162.

Hanski, I., & others. (1999). Metapopulation ecology. Oxford University Press.

Hartel, T., & Öllerer, K. (2009). Local turnover and factors influencing the persistence of amphibians in permanent ponds from the saxon landscapes of transylvania. North-Western Journal of Zoology, 5(1), 40–52.

Hartel, T., & von Wehrden, H. (2013). Farmed areas predict the distribution of amphibian ponds in a traditional rural landscape. PLoS ONE, 8(5), 1–8. https://doi.org/10.1371/journal.pone.0063649

Hartel, T., Sos, T., Popescu, V. D., Băncilă, R. I., Cogălniceanu, D., & Rozylowicz, L. (2014). Amphibian conservation in traditional cultural landscapes: the case of Central Romania. North-Western Journal of Zoology, 10(Supplement 1), S51-S61.

He, S., Yang, L., & Min, Q. (2020). Community Participation in Nature Conservation: The Chinese Experience and Its Implication to National Park Management. Sustainability, 12(11), 4760. https://doi.org/10.3390/su12114760

Hero, J.-M., Morrison, C., Gillespie, G., Dale Roberts, J., Newell, D., Meyer, E., … Shoo, L. (2006). Overview of the conservation status of Australian frogs. Pacific Conservation Biology, 12(4), 313. https://doi.org/10.1071/PC060313

Ives, C. D., Abson, D. J., von Wehrden, H., Dorninger, C., Klaniecki, K., & Fischer, J. (2018). Reconnecting with nature for sustainability. Sustainability Science, 13(5), 1389–1397. https://doi.org/10.1007/s11625-018-0542-9

MacKenzie, D. I. (2005). What are the issues with presence-absence data for wildlife managers? Wildlife Research, 69(3), 849–860. https://doi.org/10.2193/0022-541X(2005)069

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A. A., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

Mathwin, R., Wassens, S., Young, J., Ye, Q., & Bradshaw, C. J. A. (2021). Manipulating water for amphibian conservation. Conservation Biology, 35(1), 24–34. https://doi.org/10.1111/cobi.13501

McGrath, A. L., & Lorenzen, K. (2010). Management history and climate as key factors driving natterjack toad population trends in Britain. Animal Conservation, 13(5), 483–494. https://doi.org/10.1111/j.1469-1795.2010.00367.x

Mestre, F., Canovas, F., Pita, R., Mira, A., & Beja, P. (2016). An R Package for simulating metapopulation dynamics and range expansion under environmental change. Environmental Modelling and Software.

Nori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J., & Loyola, R. (2015). Amphibian conservation, land-use changes and protected areas: A global overview. Biological Conservation, 191(October 2017), 367–374. https://doi.org/10.1016/j.biocon.2015.07.028

Oertli, B., & Parris, K. M. (2019). Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere, 10(7). https://doi.org/10.1002/ecs2.2810

Oksanen, J. (2004). Incidence Function Model in R. https://www.researchgate.net/publication/239921870_Incidence_Function_Model_in_R

Pellet, J., & Schmidt, B. R. (2005). Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biological Conservation, 123(1), 27–35. https://doi.org/10.1016/j.biocon.2004.10.005

Petitot, M., Manceau, N., Geniez, P., & Besnard, A. (2014). Optimizing occupancy surveys by maximizing detection probability: application to amphibian monitoring in the Mediterranean region. Ecology and Evolution, 4(18), 3538–3549. https://doi.org/10.1002/ece3.1207

Pinto-Cruz, C., Marques, J., Lumbreras, A., Meireles, C., Belo, A., Sousa, L., … Lúcio, C. (2017). Ecological restoration of Mediterranean temporary ponds in Portugal. 7th European Pond Conservation Network Workshop + LIFE Charcos Seminar, 50.

Popescu, V. D., Rozylowicz, L., Cogălniceanu, D., Niculae, I. M., & Cucu, A. L. (2013). Moving into Protected Areas? Setting Conservation Priorities for Romanian Reptiles and Amphibians at Risk from Climate Change. PLoS ONE, 8(11), e79330. https://doi.org/10.1371/journal.pone.0079330

R Core Team. (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from https://www.r-project.org/

Robinson, J. G. (2006). Conservation Biology and Real-World Conservation. Conservation Biology, 20(3), 658–669. https://doi.org/10.1111/j.1523-1739.2006.00469.x

Roth, T., Bühler, C., & Amrhein, V. (2016). Estimating effects of species interactions on populations of endangered species. The American Naturalist, 187, 457–467. https://doi.org/https://doi.org/10.1086/685095

Schmidt, B. R., Băncilă, R. I., Hartel, T., Grossenbacher, K., and Schaub, M. (2021). Shifts in amphibian population dynamics in response to a change in the predator community. Ecosphere, 12(5), e03528. https://doi.org/10.1002/ecs2.3528

Schmidt, B.R. (2005). Monitoring the distribution of pond-breeding amphibians when species are detected imperfectly. Aquatic Conservation: Marine and Freshwater Ecosystems, 15, 681-692. https://doi.org/10.1002/aqc.740

Sewell, D., Beebee, T. J. C., & Griffiths, R. A. (2010). Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biological Conservation, 143(9), 2102–2110. https://doi.org/10.1016/j.biocon.2010.05.019

Shoo, L. P., Olson, D. H., McMenamin, S. K., Murray, K. A., Van Sluys, M., Donnelly, M. A., … Hero, J.-M. (2011). Engineering a future for amphibians under climate change. Journal of Applied Ecology, 48(2), 487–492. https://doi.org/10.1111/j.1365-2664.2010.01942.x

Sos, T., & Hegyeli, Z. (2015). Characteristic morphotype distribution predicts the extended range of the “Transylvanian” smooth newt, Lissotriton vulgaris ampelensis Fuhn 1951, in Romania. North-Western Journal of Zoology, 11(1), 34–40.

Strohbach, M. W., Kohler, M. L., Dauber, J., & Klimek, S. (2015). High Nature Value farming: From indication to conservation. Ecological Indicators, 57(2015), 557–563. https://doi.org/10.1016/j.ecolind.2015.05.021

Tournier, E., Besnard, A., Tournier, V., & Cayuela, H. (2017). Manipulating waterbody hydroperiod affects movement behaviour and occupancy dynamics in an amphibian. Freshwater Biology, 62, 1768– 1782. https://doi.org/https://doi.org/10.1111/fwb.12988

Trochet, A., Moulherat, S., Calvez, O., Stevens, V. M., Clobert, J., & Schmeller, D. S. (2014). A database of life-history traits of European amphibians. Biodiversity Data Journal, 2, e4123. https://doi.org/10.3897/BDJ.2.e4123

Walls, S. C., & Gabor, C. R. (2019). Integrating Behavior and Physiology Into Strategies for Amphibian Conservation. Frontiers in Ecology and Evolution, 7(JUN), 1–13. https://doi.org/10.3389/fevo.2019.00234

Downloads

Published

2022-12-22

How to Cite

ERŐS, N., IANCULESCU, M., KOCSIS, V.-B., SZŐCS, Ágnes, & SOS, T. (2022). Survey of the amphibians in “Fânațele Clujului – Copârșaie”, part of the “Dealurile Clujului de Est” (ROSCI0295) Natura 2000 protected area. Studia Universitatis Babeș-Bolyai Biologia, 67(2), 51–65. https://doi.org/10.24193/subbbiol.2022.2.04

Issue

Section

Articles