Differential responses of components of the antioxidant defense system to high salinity stress in the lesser duckweed (“Lemna minor” L.)

Authors

  • Laszlo FODORPATAKI “Babeş-Bolyai” University, Cluj-Napoca. E-mail: lfodorp@gmail.com
  • Szabolcs BARNA “Babeş-Bolyai” University, Cluj-Napoca. E-mail: lfodorp@gmail.com
  • Botond HOLINKA “Babeş-Bolyai” University, Cluj-Napoca. E-mail: lfodorp@gmail.com

Keywords:

ascorbate, carotenoids, protective enzymes, salt stress.

Abstract

Salt stress causes oxidative damage in plants, and it induces protective mechanisms through enzymatic and non-enzymatic components of the antioxidant system. Different components of this system exhibit specific degrees of tolerance toward certain salt concentrations. Their differential responses may contribute not only to a better understanding of the functional interconnections in the antioxidant defense system, but also to a more efficient selection of physiological and biochemical markers of stress reactions of plants, in the effort for an early and precise bioindication of oxidative damage caused by high salinity of the environment. In this context, the molar ratio between the reduced and the oxidized form of ascorbic acid is a more sensitive marker of oxidative stress than the total amount of this vitamin in the biomass of lesser duckweed. Glutathione content exhibits a more moderate variation with increasing salt stress than the concentration of carotenoid pigments in the fronds exposed to constant photon flux density. From among the antioxidant enzymes, ascorbate peroxidase was found to be the most sensitive, and superoxide dismutase was the most resistant to oxidative stress caused by increasing salinity. Catalase and glutathione reductase activities decreased under severe salt stress. Efficiency of the antioxidant system can be monitored by membrane damage through lipid peroxidation. Antioxidants of duckweed are useful tools for indication of increasing salinity of aquatic environments.

Author Biographies

Laszlo FODORPATAKI, “Babeş-Bolyai” University, Cluj-Napoca. E-mail: lfodorp@gmail.com

“Babeş-Bolyai” University, Hungarian Department of Biology and Ecology, RO-400084 Cluj-Napoca, 1 M. Kogălniceanu St. E-mail: lfodorp@gmail.com

Szabolcs BARNA, “Babeş-Bolyai” University, Cluj-Napoca. E-mail: lfodorp@gmail.com

“Babeş-Bolyai” University, Hungarian Department of Biology and Ecology, RO-400084 Cluj-Napoca, 1 M. Kogălniceanu St. E-mail: lfodorp@gmail.com

Botond HOLINKA, “Babeş-Bolyai” University, Cluj-Napoca. E-mail: lfodorp@gmail.com

“Babeş-Bolyai” University, Hungarian Department of Biology and Ecology, RO-400084 Cluj-Napoca, 1 M. Kogălniceanu St. E-mail: lfodorp@gmail.com

References

Alscher, R.G., Erturk, N., Heath, L.S. (2012) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Experim. Bot., 53 (372), 1331-1341

Apel, K., Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373-399

Bartha, C., Fazakas, I., Fodorpataki, L. (2011) Developmental and metabolic changes in different lettuce cultivars under high salinity conditions, Acta Sci.Trans., 19 (1), 40-56

Bartha, C., Fodorpataki, L., Szekely, G., Popescu, O. (2010) Physiological diversity of lettuce cultivars exposed to salinity stress, Contrib. Bot., 45, 47-56

Bordi, A. (2010) The influence of salt stress on seed germination, growth and zield of canola cultivars, Not. Bot. Hort. Agrobot. Cluj, 38, 128-133

Chattopadhyay, S. (2014) Multifaceted role of glutathione in environmental stress management, In: Molecular Approaches in Plant Abiotic Stress, Gaur, R.K., Sharma, P. (eds.), CRC Press, Boca Raton, pp 374-387

Djanaguiraman, M., Prasad, P.V.V. (2013) Effects of salinity on ion transport, water relations and oxidative damage, In: Ecophysiology and Responses of Plants under Salt Stress, Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds.), Springer, New York, pp 89-114

Eraslan, F., Inal, A., Savasturk, O., Gunes, A. (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity, Sci. Horticult., 114 (1), 5-10

Fodorpataki, L., Barna, S., Deak, H., Kovacs, B., Geraj, J., Holinka, B. (2014) Physiological markers of duckweed (Lemna minor L.) for bioindication of water pollution with copper and diuron (3-3,4-dichlorophenyl-1,1-dimethylurea), Anal. Univ. Or., Biol., 21 (1), 19-23

Fodorpataki, L., Bartha, L. (2008) Differential sensitivity of the photosynthetic apparatus of a freshwater green alga and of duckweed exposed to salinity and heavy metal stress, In: Photosynthesis: energy from the Sun, Allen, J.F., Gantt, E., Golbeck, J.H., Osmond, B. (eds.), Springer, Dordrecht, pp 1451-1454

Gill, S.S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48, 909-930

Kampfenkel, K., Van Montagu, M., Inze, D. (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue, Anal. Biochem., 225, 165-167

Karatas, F., Obek, E., Kamisli, F. (2009) Antioxidant capacity of Lemna gibba L. exposed to wastewater treatment, Ecol Engin., 35, 1225-1230

Khanna-Chopra, R., Selote, D.S. (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions, Environ. Experim. Bot., 60, 276-283

Laloi, C., Apel, K., Danon, A. (2004) Reactive oxygen signalling: the latest news, Curr. Opin. Plant Biol., 7, 323-328

Mahmoudi, H., Huang, J., Gruber, M.Y., Kaddour, R., Lachaal, M., Ouerghi, Z., Hannoufa, A. (2010) The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce, J. Agric. Food Chem., 58, 5122-5130

Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 7 (9), 405-411

Oh, M. -M., Trick, H.N., Rajashekar, C.B. (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce, J. Plant Physiol., 166, 180-191

Pallag, A., Ritli, L., Szabo, I., Mureşan, M., Bei, D. (2009) Preliminary study of cell metabolism, bz use of NBT test, determination of the intensity of lipid peroxidation and antioxidant activity, Analele Univ. Oradea, Fasc. Biol., 16(1), 86-90

Panda, S.K., Chaudhury, I., Khan, M.H. (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves, Biol. Plant., 46 (2), 289-294

Parra, L.-M. M., Torres, G., Arenas, A.D., Sanchez, E., Rodriguez, K. (2012) Phytoremediation of low levels of heavy metals using duckweed (Lemna minor), In: Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability, Ahmad, P., Prasad, M. N. V. (eds.), Springer, New York, pp 451-463

Pogany, M., Harrach, B.D., Hafez, Y.M., Barna, B., Kiraly, Z., Paldi, E. (2006) Role of reactive oxygen species in abiotic and biotic stresses in plants, Acta Phytopath. Entom. Hung., 41 (1-2), 23-35

Radic, S., Stipanicev, D., Cvjetko, P., Marijanovic-Rajcic, M., Sirac, S., Pevalek-Kozlina, B., Pavlica, M. (2011) Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters, Ecotox. Environ. Safety, 74 (2), 182-187

Razinger, J., Dermastia, M., Koce, J.D., Zrimec, A. (2008) Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure, Environ. Pollut., 153, 687-694

Rios, J.J., Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L., Ruiz, J.M. (2008) Biofortification of Se and induction of the antioxidant capacity in lettuce plants, Sci. Horticult., 116, 248-255

Rouhier, N., Lemaire, S.D., Jacquot, J.-P. (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation, Annu. Rev. Plant Biol., 59, 143-166

Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes, Biol. Plant., 49 (1), 85-91

Shah, K., Kumar, R.G., Verma, S., Dubey, R.S. (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings, Plant Sci., 161, 1135-1144

Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K. (2012) Regulation and function of ascorbate peroxidase isoenzymes, J. Experim. Bot., 53 (372), 1305-1319

Smirnoff, N. (2005) Antioxidants and reactive oxygen species in plants, Blackwell, Oxford, pp 53-195

Tkalec, M., Malaric, K., Pevalek-Kozlina, B. (2007) Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L., Sci. Total Environ., 388, 78-89

Wang, W.-B., Kim, Y.-H., Lee, H.-S., Kim, K.-Y., Deng, X.-P., Kwak, S.-S. (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses, Plant Physiol. Biochem., 47, 570-577

Zhang, B., Li, X., Chen, D., Wang, J. (2013) Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor, Protoplasma, 250, 103-110

Zushi, K., Matsuzoe, N., Kitano, M. (2009) Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress, Sci. Horticult., 122, 362-368

Downloads

Published

2015-06-22

How to Cite

FODORPATAKI, L., BARNA, S., & HOLINKA, B. (2015). Differential responses of components of the antioxidant defense system to high salinity stress in the lesser duckweed (“Lemna minor” L.). Studia Universitatis Babeș-Bolyai Biologia, 60(1), 39–55. Retrieved from http://193.231.18.162/index.php/subbbiologia/article/view/4558

Issue

Section

Articles