Strategies to improve the efficacy of curcumin in colorectal cancer treatment

Authors

  • Alina SESĂRMAN Babes-Bolyai University, Cluj-Napoca, Romania. E-mail: sesarman@gmail.com https://orcid.org/0000-0002-7491-9955
  • Emilia LICĂRETE Babes-Bolyai University, Cluj-Napoca, Romania. E-mail: sesarman@gmail.com

Keywords:

CRC, curcumin, cytotoxic actions, nanoformulations.

Abstract

Colorectal cancer is a severe type of disease, in which surgical therapy complemented by radio- or chemotherapy, is hindered by the chemoresistance or secondary effects. Due to the complex and dynamic interactions in tumor microenvironment, there is constant need in designing new anti-cancer strategies that simultaneously target directly cancer cells development and indirectly the pro-tumor processes mediated by the crosstalk of cells in tumor milieu. Curcumin, is a natural, biological safe polyphenol, with anti-tumor, pro-apoptotic and immunomodulatory actions in a wide spectrum of neoplasia including colorectal cancer. Specifically, its ability to orchestrate the processes associated with tumorigenesis such as cancer cell proliferation, metabolism, angiogenesis, inflammation, oxidative stress and immunosuppression, has been largely documented, but insufficiently exploited. However its use in preclinical and clinical studies is hindered due to low solubility in aqueous environments, poor absorption, instability and high rate of degradation. In this article we review the existing data on the anti-tumor actions of curcumin in colorectal cancer and potential strategies aiming at enhancing its efficacy in the treatment of this disease. Due to its ability to both prevent and treat colorectal cancer, by modulating multiple targets, active delivery of curcumin or curcumin analogues combined with other chemotherapeutic agents, is a promising therapeutic approach for this type of cancer, with minimal toxicity to healthy tissues.

Author Biographies

Alina SESĂRMAN, Babes-Bolyai University, Cluj-Napoca, Romania. E-mail: sesarman@gmail.com

Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania

Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania. E-mail: sesarman@gmail.com

Emilia LICĂRETE, Babes-Bolyai University, Cluj-Napoca, Romania. E-mail: sesarman@gmail.com

Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania

Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania. E-mail: sesarman@gmail.com

References

Aggarwal, B., Prasad, S., Sung, B., Krishnan, S., Guha, S. (2013) Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature, Curr. Colorectal Cancer Rep., 9, 37-56

Aggarwal, B. B., Kumar, A., Bharti, A. C. (2003) Anticancer potential of curcumin: preclinical and clinical studies, Anticancer Res., 23, 363-398

Aggarwal, S., Ichikawa, H., Takada, Y., Sandur, S. K., Shishodia, S., Aggarwal, B. B. (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation, Mol. Pharmacol., 69, 195-206

Anitha, A., Sreeranganathan, M., Chennazhi, K. P., Lakshmanan, V. K., Jayakumar, R. (2014) In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies, Eur. J. Pharm. Biopharm., 88, 238-251

Arias, J. L. (2008) Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems, Molecules, 13, 2340-2369

Banciu, M. (2007) Liposomal Targeting of Glucocorticoids to Inhibit Tumor Angiogenesis, PrintPartners Ipskamp, Enschede, pp 210

Buhrmann, C., Kraehe, P., Lueders, C., Shayan, P., Goel, A., Shakibaei, M. (2014) Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT, PLoS One, 9, e107514

Casey, S. C., Amedei, A., Aquilano, K., Azmi, A.S., Benencia, F., Bhakta, D., Bilsland, A. E., Boosani, C. S., Chen, S., Ciriolo, M. R., et al. (2015) Cancer prevention and therapy through the modulation of the tumor microenvironment, Semin. Cancer Biol.

Chambers, A. F., Groom, A. C., MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer, 2, 563-572

Chen, A., Xu, J., Johnson, A. C. (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1, Oncogene, 25, 278-287

Chen, C. C., Sureshbabul, M., Chen, H. W., Lin, Y. S., Lee, J. Y., Hong, Q. S., Yang, Y. C., Yu, S. L. (2013) Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer, Evid Based Complement Alternat. Med., 2013, 541695

Chen, J., Shao, R., Li, L., Xu, Z. P., Gu, W. (2014) Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways, Int. J. Nanomedicine, 9, 3403-3411

Chibaudel, B., Tournigand, C., Andre, T., de Gramont, A. (2012) Therapeutic strategy in unresectable metastatic colorectal cancer, Ther. Adv. Med. Oncol., 4, 75-89

Clares, B., Biedma-Ortiz, R. A., Saez-Fernandez, E., Prados, J. C., Melguizo, C., Cabeza, L., Ortiz, R., Arias, J. L. (2013) Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer, Eur. J. Pharm. Biopharm., 85, 329-338

Collett, G. P., Campbell, F. C. (2004) Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells, Carcinogenesis, 25, 2183-2189

Das, L., Vinayak, M. (2014) Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer, PLoS One, 9, e99583

DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell. Metab., 7, 11-20

Erreni, M., Mantovani, A., Allavena, P. (2011) Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer, Cancer Microenviron., 4, 141-154

Fantini, M., Benvenuto, M., Masuelli, L., Frajese, G. V., Tresoldi, I., Modesti, A.,Bei, R. (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment, Int. J. Mol. Sci., 16, 9236-9282

Gandhy, S. U., Kim, K., Larsen, L., Rosengren, R. J., Safe, S. (2012) Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs, BMC Cancer, 12, 564

Goel, A., Aggarwal, B. B. (2010) Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs, Nutr. Cancer, 62, 919-930

Goel, A., Boland, C. R., Chauhan, D. P. (2001) Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells, Cancer Lett., 172, 111-118

Guo, L. D., Shen, Y. Q., Zhao, X. H., Guo, L. J., Yu, Z. J., Wang, D., Liu, L. M., Liu, J. Z. (2015a) Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis, Phytother. Res., 29, 357-365

Guo, Y., Shu, L., Zhang, C., Su, Z. Y., Kong, A. N. (2015b) Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1, Biochem. Pharmacol., 94, 69-78

Haggar, F. A., Boushey, R. P. (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors, Clin. Colon. Rectal Surg., 22, 191-197

Hasima, N., Aggarwal, B. B. (2014) Targeting proteasomal pathways by dietary curcumin for cancer prevention and treatment, Curr. Med. Chem., 21, 1583-1594

Jain, A., Jain, S. K. (2008) In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors, Eur. J. Pharm. Sci., 35, 404-416

Jaiswal, A. S., Marlow, B. P., Gupta, N., Narayan, S. (2002) Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells, Oncogene, 21, 8414-8427

James, M. I., Iwuji, C., Irving, G., Karmokar, A., Higgins, J. A., Griffin-Teal, N., Thomas, A., Greaves, P., Cai, H., Patel, S.R., et al. (2015) Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy, Cancer Lett., 364, 135-141

Kim, J. W., Dang, C.V. (2005) Multifaceted roles of glycolytic enzymes, Trends Biochem. Sci., 30, 142-150

Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L., Dang, C. V. (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1, Mol. Cell. Biol., 27, 7381-7393

Kim, T. H., Jiang, H. H., Youn, Y. S., Park, C. W., Tak, K. K., Lee, S., Kim, H., Jon, S., Chen, X., Lee, K. C. (2011) Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity, Int. J. Pharm., 403, 285-291

Kunnumakkara, A. B., Anand, P., Aggarwal, B. B. (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins, Cancer Lett., 269, 199-225

Lao, V. V., Grady, W. M. (2011) Epigenetics and colorectal cancer, Nat. Rev. Gastroenterol Hepatol., 8, 686-700

Li, L., Xiang, D., Shigdar, S., Yang, W., Li, Q., Lin, J., Liu, K., Duan, W. (2014a) Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells, Int. J. Nanomedicine, 9, 1083-1096

Li, P. -W., Wang, G., Yang, Z. -M., Duan, W., Peng, Z., Kong, L. -X., Wang, Q. -H. (2014b) Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells, Drug Deliv., 1-6

Lin, J. K. (2007) Molecular targets of curcumin, Adv. Exp. Med. Biol., 595, 227-243

Lin, Y. L., Liu, Y. K., Tsai, N. M., Hsieh, J. H., Chen, C. H., Lin, C. M., Liao, K. W. (2012) A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells, Nanomedicine, 8, 318-327

Link, A., Balaguer, F., Shen, Y., Lozano, J. J., Leung, H. C., Boland, C. R., Goel, A. (2013) Curcumin modulates DNA methylation in colorectal cancer cells, PLoS One, 8, e57709

Longley, D. B., Harkin, D. P., Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer, 3, 330-338

Lu, W. D., Qin, Y., Yang, C., Li, L., Fu, Z. X. (2013) Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo, Clinics (Sao Paulo), 68, 694-701

Macheda, M. L., Rogers, S., Best, J. D. (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer, J. Cell Physiol., 202, 654-662

Malet-Martino, M., Martino, R. (2002) Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review, Oncologist, 7, 288-323

Martindale, J. L., Holbrook, N. J. (2002) Cellular response to oxidative stress: signaling for suicide and survival, J. Cell. Physiol., 192, 1-15

Mishra, R. K., Ramasamy, K., Ahmad, N. A., Eshak, Z., Majeed, A. B. (2014) pH dependent poly[2-(methacryloyloxyethyl)trimetylammonium chloride-co-methacrylic acid]hydrogels for enhanced targeted delivery of 5-fluorouracil in colon cancer cells, J. Mater Sci. Mater Med., 25, 999-1012

Mohanty, C., Sahoo, S. K. (2010) The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation, Biomaterials, 31, 6597-6611

Moos, P. J., Edes, K., Mullally, J. E., Fitzpatrick, F. A. (2004) Curcumin impairs tumor suppressor p53 function in colon cancer cells, Carcinogenesis, 25, 1611-1617

Narayan, S. (2004) Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting beta-catenin-mediated transactivation and cell-cell adhesion pathways, J. Mol. Histol., 35, 301-307

Ortiz, R., Prados, J., Melguizo, C., Arias, J. L., Ruiz, M. A., Alvarez, P. J., Caba, O., Luque, R., Segura, A., Aranega, A. (2012) 5-Fluorouracil-loaded poly(epsilon-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer, Int. J. Nanomedicine, 7, 95-107

Patel, B. B., Majumdar, A. P. (2009) Synergistic role of curcumin with current therapeutics in colorectal cancer: minireview, Nutr. Cancer., 61, 842-846

Phan, L. M., Yeung, S. C., Lee, M. H. (2014) Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies, Cancer Biol. Med., 11, 1-19

Prajakta, D., Ratnesh, J., Chandan, K., Suresh, S., Grace, S., Meera, V., Vandana, P. (2009) Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer, J Biomed. Nanotechnol., 5, 445-455

Rahman, S., Cao, S., Steadman, K. J., Wei, M., Parekh, H. S. (2012) Native and beta-cyclodextrin-enclosed curcumin: entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer, Drug Deliv., 19, 346-353

Raveendran, R., Bhuvaneshwar, G., Sharma, C. P. (2013) In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells, J. Biomater. Appl., 27, 811-827

Rayburn, E. R., Ezell, S. ., Zhang, R. (2009) Anti-Inflammatory Agents for Cancer Therapy, Mol. Cell. Pharmacol., 1, 29-43

Reuter, S., Gupta, S. C., Park, B., Goel, A., Aggarwal, B. B. (2011) Epigenetic changes induced by curcumin and other natural compounds, Genes. Nutr., 6, 93-108

Roy, S., Yu, Y., Padhye, S. B., Sarkar, F. H., Majumdar, A. P. (2013) Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21, PLoS One, 8, e68543

Sadoul, K., Boyault, C., Pabion, M., Khochbin, S. (2008) Regulation of protein turnover by acetyltransferases and deacetylases, Biochimie, 90, 306-312

Shakibaei, M., Buhrmann, C., Kraehe, P., Shayan, P., Lueders, C., Goel, A. (2014) Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures, PLoS One, 9, e85397

Shakibaei, M., Kraehe, P., Popper, B., Shayan, P., Goel, A., Buhrmann, C. (2015) Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer, BMC Cancer, 15, 250

Shakibaei, M., Mobasheri, A., Lueders, C., Busch, F., Shayan, P., Goel, A. (2013) Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-kappaB and Src protein kinase signaling pathways, PLoS One, 8, e57218

Shehzad, A., Khan, S., Shehzad, O., Lee, Y. S. (2010) Curcumin therapeutic promises and bioavailability in colorectal cancer, Drugs Today (Barc), 46, 523-532

Shehzad, A., Lee, J., Huh, T. L., Lee, Y. S. (2013) Curcumin induces apoptosis in human colorectal carcinoma (HCT-15) cells by regulating expression of Prp4 and p53, Mol. Cells, 35, 526-532

Shen, F., Cai, W. S., Li, J. L., Feng, Z., Liu, Q.C., Xiao, H. Q., Cao, J., Xu, B. (2014) Synergism from the combination of ulinastatin and curcumin offers greater inhibition against colorectal cancer liver metastases via modulating matrix metalloproteinase-9 and E-cadherin expression, Onco Targets Ther., 7, 305-314

Shiri, S., Alizadeh, A. M., Baradaran, B., Farhanghi, B., Shanehbandi, D., Khodayari, S., Khodayari, H., Tavassoli, A. (2015) Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment, Asian Pac. J. Cancer Prev., 16, 3917-3922

Sica, A., Mantovani, A. (2012) Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest., 122, 787-795

Singh, S. P., Sharma, M., Gupta, P. K. (2015) Cytotoxicity of curcumin silica nanoparticle complexes conjugated with hyaluronic acid on colon cancer cells, Int. J. Biol. Macromol., 74, 162-170

Srimuangwong, K., Tocharus, C., Tocharus, J., Suksamrarn, A., Chintana, P. Y. (2012) Effects of hexahydrocurcumin in combination with 5-fluorouracil on dimethylhydrazine-induced colon cancer in rats, World J. Gastroenterol., 18, 6951-6959

Su, C. C., Lin, J. G., Li, T. M., Chung, J. G., Yang, J. S., Ip, S. W., Lin, W. C., Chen, G. W. (2006) Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3, Anticancer Res., 26, 4379-4389

Subramaniam, D., May, R., Sureban, S. M., Lee, K. B., George, R., Kuppusamy, P., Ramanujam, R. P., Hideg, K., Dieckgraefe, B. K., Houchen, C. W., et al. (2008) Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity, Cancer Res., 68, 1962-1969

Surh, Y. J. (2003) Cancer chemoprevention with dietary phytochemicals, Nat. Rev. Cancer, 3, 768-780

Tamvakopoulos, C., Dimas, K., Sofianos, Z. D., Hatziantoniou, S., Han, Z., Liu, Z. L., Wyche, J. H., Pantazis, P. (2007) Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin, Clin. Cancer Res., 13, 1269-1277

Tan, M., Luo, J., Tian, Y. (2014) Delivering curcumin and gemcitabine in one nanoparticle platform for colon cancer therapy, RSC Advances, 4, 61948-61959

Toden, S., Okugawa, Y., Buhrmann, C., Nattamai, D., Anguiano, E., Baldwin, N., Shakibaei, M., Boland, C. R., Goel, A. (2015a) Novel Evidence for Curcumin and Boswellic Acid-Induced Chemoprevention through Regulation of miR-34a and miR-27a in Colorectal Cancer, Cancer Prev. Res. (Phila), 8, 431-443

Toden, S., Okugawa, Y., Jascur, T., Wodarz, D., Komarova, N. L., Buhrmann, C., Shakibaei, M., Boland, C. R., Goel, A. (2015b) Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer, Carcinogenesis, 36, 355-367

Tong, J., Xie, G., He, J., Li, J., Pan, F., Liang, H. (2011) Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer, J. Biomed. Biotechnol., 2011, 740564

Tummala, S., Satish Kumar, M. N., Prakash, A. (2015) Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer, Saudi Pharm. J., 23, 308-314

Tuorkey, M. J. (2014) Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing, Interv. Med. Appl. Sci., 6, 139-146

Udompornmongkol, P., Chiang, B.-H. (2015) Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications, Journal of biomaterials applications, 0885328215594479

Vaiopoulos, A. G., Athanasoula, K., Papavassiliou, A. G. (2014) Epigenetic modifications in colorectal cancer: molecular insights and therapeutic challenges, Biochim. Biophys. Acta, 1842, 971-980

Voboril, R., Weberova-Voborilova, J. (2006) Constitutive NF-kappaB activity in colorectal cancer cells: impact on radiation-induced NF-kappaB activity, radiosensitivity, and apoptosis, Neoplasma, 53, 518-523

Wang, K., Fan, H., Chen, Q., Ma, G., Zhu, M., Zhang, X., Zhang, Y., Yu, J. (2015) Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro, Anticancer Drugs, 26, 15-24

Yadav, V. R., Aggarwal, B. B. (2011) Curcumin: a component of the golden spice, targets multiple angiogenic pathways, Cancer Biol. Ther., 11, 236-241

Yadav, V. R., Prasad, S., Kannappan, R., Ravindran, J., Chaturvedi, M. M., Vaahtera, L., Parkkinen, J., Aggarwal, B. B. (2010) Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake, Biochem. Pharmacol., 80, 1021-1032

Yallapu, M. M., Jaggi, M., Chauhan, S. C. (2013) Curcumin nanomedicine: a road to cancer therapeutics, Curr. Pharm. Des., 19, 1994-2010

Yassin, A. E., Anwer, M. K., Mowafy, H. A., El-Bagory, I. M., Bayomi, M. A., Alsarra, I. A. (2010) Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer, Int. J. Med. Sci., 7, 398-408

Zhang, W., Cui, T., Liu, L., Wu, Q., Sun, L., Li, L., Wang, N., Gong, C. (2015) Improving Anti-Tumor Activity of Curcumin by Polymeric Micelles in Thermosensitive Hydrogel System in Colorectal Peritoneal Carcinomatosis Model, J. Biomed. Nanotechnol., 11, 1173-1182

Zhang, X., Tian, W., Cai, X., Wang, X., Dang, W., Tang, H., Cao, H., Wang, L., Chen, T. passociated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression, PLoS One, 8, e65896

Zhang, Y., Yang, J. M. (2013) Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention, Cancer Biol. Ther., 14, 81-89

Zhao, Y., Butler, E. B., Tan, M. (2013) Targeting cellular metabolism to improve cancer therapeutics, Cell Death Dis., 4, e532

Downloads

Published

2015-12-17

How to Cite

SESĂRMAN, A., & LICĂRETE, E. (2015). Strategies to improve the efficacy of curcumin in colorectal cancer treatment. Studia Universitatis Babeș-Bolyai Biologia, 60(2), 97–111. Retrieved from http://193.231.18.162/index.php/subbbiologia/article/view/4604

Issue

Section

Articles