Induction of oxidative stress in a variety of durum wheat (Triticum durum Desf) exposed to recommended doses of pesticides

Authors

  • Djamila HAFSI Cellular Toxicology Laboratory, Faculty of Sciences, Badji-Mokhtar University, Annaba, Algeria. Corresponding author: ibsbartai@gmail.com.
  • Ibtissem SBARTAI Cellular Toxicology Laboratory, Faculty of Sciences, Badji-Mokhtar University, Annaba, Algeria. Email: ibsbartai@gmail.com.
  • Hana SBARTAI Cellular Toxicology Laboratory, Faculty of Sciences, Badji-Mokhtar University, Annaba, Algeria. Corresponding author: ibsbartai@gmail.com. https://orcid.org/0000-0002-2810-8406

DOI:

https://doi.org/10.24193/subbbiol.2024.1.02

Keywords:

toxicity, pesticides, Triticum durum, oxidative stress, stress biomarkers

Abstract

The objective of this study was to assess the toxicity of two pesticides (Prosaro® XRT and Decis® EC 25) widely used in the agricultural region of El-Tarf located in northeastern Algeria, as well as their combinations on a variety of durum wheat “Triticum durum Desf”. The toxicity of these products was evaluated using physiological (chlorophyll) and biochemical parameters (proteins, glutathione, catalase activity and glutathione S-transferase, acetylcholine esterase, lipoxygenase). The recommended dose and its double were tested individually and in combination for this. It should be noted that the protocol used and the initial concentrations selected are the same as those used in the field. After D7 and D14 of exposure, all dosages were administered. The results obtained revealed a decrease in chlorophyll contents and Glutathione levels as well as an induction of total proteins and the different enzymatic activity (catalase, glutathione S-transferase, lipooxygenase) and this for the two root and leaf compartments. Thus, it turns out that the concentrations used in open fields are not harmful to the plant but generate free radicals which are taken care of by the latter’s defense system, thus allowing it to tolerate these stress conditions.

Article history: Received 18 September 2023; Revised 16 April 2024;
Accepted 10 May 2024; Available online 30 June 2024.

References

Amamra, R., Djebar, M. R., Grara, N., Moumeni, O., Otmani, H., Alayat, A., & Berrebbah, H. (2015). Cypermethrin-induces oxidative stress to the freshwater Ciliate model: Paramecium tetraurelia. Annu. Res. Rev. Biol, 5(5), 385-399. Doi:10.9734/ARRB/2015/10852.

Ambolet-Camoit A., Kim M.J., Leblanc A., & Aggerbeck M. (2012). Les pollutants organiques persistants : implication dans l’obésité et le syndrome métabolique. Cah. de Nutr. et de Diet, 47(4), 183- 192.

Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol, 55, 373–399. Doi: 10.1146/annurev.arplant.55.031903.141701

Aquilano, K., Baldelli, S., & Ciriolo, MR. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol, 5, 196.

Arfaoui, A., El Hadrami, A., & Daayf, F. (2018) Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiol. Biochem, 122, 121–128.

Doi: 10.1016/j.plaphy.2017.11.014

Arivalagan, M., & Somasundaram, R. (2017). Alteration of photosynthetic pigments and antioxidant systems in tomato under drought with Tebuconazole and Hexaconazole applications. J. Sci. Agric, 1, 146. 10.25081/jsa. 2017.v1.52.

Axelrod, B. (1981). Lipoxygenase from soybeans. Methods Enzymol, 71, 441-451.

Belaid, C., & Sbartai, I. (2021). Assessing the effects of Thiram to oxidative stress responses in a freshwater bioindicator cladoceran (Daphnia magna). Chemosphere, 268, 128808. Doi:10.1016/j.chemosphere.2020.128808.

Belahcene, N., Mouaissia, W., Zenati, N., & Djebar, M.R. (2015). Study of the effect of oxidative stress caused by a systemic herbicide cossack on durum wheat (Triticum durum Desf.),” Int. j. of Innov. and Sci. Res, 14(1), 104–111.

Berova, M., Zlatev, Z., & Stoeva, N. (2002). Effect of Paclobutrazol on wheat seedlings under low temperature stress. Bulg. J. Plant Physiol, 28(1-2), 75-84.

Bhagat, J., Ingole, B. S., & Singh, N. (2016). Glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: A review. Invertebr. Surviv. J, 13(1), 336-349. Doi:10.25431/1824-307X/isj.v13i1.336-349.

Bordjiba, O., & Ketif, A. (2009). Effet de trois pesticides (Hexaconazole, Bromuconazole et Fluazifop-p-butyl) sur quelques métabolites physio-biochimiques du blé dur: Triticum durum. Desf. European J. Sci. Res, 36(2), 260-268.

Bradford, M.M., (1976). A rapid and sensitive method for the quantitation of microgram; quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.

Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant, 83, 463-468.

Dann, M. and Pell, E. (1989). Decline of activity and quantity of rand quantity of ribulose bisphosphate carboxylase oxygenase and net photosynthesis in ozone-treated potato foliage. Plant Physiol., 91, 427-432. http: //://dx.doi.org/10.1104/pp.91.1.427.

Dewez, T., Rohmer, J., & Closset, L. (2007). Laser survey and mechanical modeling of chalky sea cliff collapse in Normandy, France, in Mc Innes R., Jakeways J., Fairbanks H. et Mathie E., (eds), Landslide and climate change, Taylor and Francis, London, pp. 281-288.

Farmer, E. E., & Davoine, C. (2007). Reactive electrophile species. Curr. Opin. Plant Biol, 10(4), 380-386.

Ferfar M., Meksem-Amara, L., Grara, N., Meksem, N., Benamara, & M., Djebar, M.R. (2016). Phytotoxic effects of a sulfonylurea herbicide on two varieties of durum wheat (Triticum durumDesf). Int. J. Pharm. Res. Allied Sci, 5(4), 159-168.

Fratelli, M., Goodwin, L.O., Orom, U.A., Lombardi, S., Tonelli, R., Mengozzi, & M., Ghezzi, P. (2005). Gene expression profiling reveals a signaling role of 1lutathione in redox regulation. Proc Natl Acad Sci U S A, 102, 13998‐4003.

Galaris, D., & Evangelou, A. (2002). The role of oxidative stress in mechanisms of metal-induced carcinogenesis. Crit. Rev. Oncol. Hematol, 42(1), 93-103.

Gardès-Albert, M., Bonnefont-Rousselot, D., Abedinzadeh, Z., & Jore, D. (2003). Espèces réactives de l’oxygène. L’Act. Chim, 6, 91-96.

Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione-S-transferase: the first enzymatic step in mercapturic acid formation. J. Biol. Chem, 249, 7130-7139. Doi:10.1016/S0021-9258(19)42083-8.

Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E. El-Maghraby, L., Awad, A., & Abdelaal, K. (2020). Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy, 10, 630.

Handy, D.E., & Loscalzo, J. (2016). Responses to reductive stress in the cardiovascular system. Free Radic Biol Med, 109, 114-124. Doi: 10.1016/j.freeradbiomed.2016.12.006.

Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681. https://doi.org/10.3390/antiox9080681.

Holden, M. (1975). Chlorophylls I, chemistry and biochemistry of plant pigments. 2éme edition. T.W. Goodwin. Academic press Edition. New York., 1-37.

Horton, M. K., Jacobson, J. B., McKelvey, W., Holmes, D., Fincher, B., Quantano, A., & Whyatt, R. M. (2011). Characterization of residential pest control products used in inner city communities in New York City. J Expo Sci Environ Epidemiol, 21(3), 291–301. Doi: 10.1038/jes.2010.18.

Hossain, M.A., Piyatida, P., Da Silva, J.A.T., & Fujita, M., (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot 872875. Doi:10.1155/2012/872875.

Hossain, M. M., Suzuki, T., Jason, R., Richardson, R. J., & Kobayashi, H. (2014). Acute Effects of Pyrethroids on Serotonin Release in the Striatum of Awake Rats: An In Vivo Microdialysis Study. Biochem Mol Toxicol, 27(2): 150–156. Doi: 10.1002/jbt.21450.

IPCS INCHEM (1990). Deltamethrin. EHC 97. WHO. Consultable sur le site www.inchem.org/docu- ments/ehc/ehc/ehc97.htm/

Jones, J. B., Pohronezny, K. L., Stall, R. E., & Jones, J. P. (1986). Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology, 76(4), 430-434.

Konstantinou, I., Hela, D., & Albanis, T. (2006). The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ. Pollut, 141, 555–570. Doi: 10.1016/j.envpol.2005.07.024.

Korge, P., Calmettes, G., & Weiss, J.N. (2015). Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta 1847: 514‐25.

Liu, R., Li, J., Zhang, L., Feng, T., Zhang, Z., & Zhang, B. (2021). Fungicide difenoconazole induced biochemical and developmental toxicity in wheat (Triticum aestivum L.). Plants, 10(11), 2304. Doi: 10.3390/plants10112304.

Livingstone D.R. (2003). Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Vet., 154, 427–430.

Lu SC. (2013). Glutathione synthesis. Biochim Biophys Acta 1830: 3143‐53.

Mailloux, R.J., Jin, X., & Willmore, W.G. (2014). Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2, 123‐39.

Mebdoua, S., Lazali, M., Ounane, S. M., Tellah, S., Nabi, F., & Ounane, G. (2017). Evaluation of pesticide residues in fruits and vegetables from Algeria. Food Addit & Contam: Part B, 10(2), 91-98. Doi: 10.1080/19393210.2016.1278047.

Mishra, S.; Srivastava, S.; Tripathi, R.D.; Govindarajan, R.; Kuriakose, S.V., & Prasad, M.N.V. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem., 44, 25-37. Doi: 10.1016/j.plaphy.2006.01.007.

Mohamed, H.I., & Akladious, S.A. (2017). Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants. Pestic. Biochem. Physiol. 142, 117–122.

Nagajothi, R., & Jeykumar, P. (2016). Foliar application of trifloxystrobin in combination with tebuconazole enhances antioxidant defense system and yield in tomato (lycopersicon esculentum mill). The Biosean. 11(4), 2615-2619.

Petit, A.N., Fontaine, F., Clément, C., & Vaillant-Gaveau, N. (2008). Photosynthesis Limitations of Grapevine after Treatment with the Fungicide Fludioxonil. J. Agric. Food Chem. 56, 6761–6767. Doi: 10.1021/jf800919u.

Pompeu, G.B, Vilhena M.B., Gratao, P.L, Carvalho, R.F., Rossi, M.L., Martinelli, A.P., & Azevedo, R.A., (2017). Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254, 771–783. Doi: 10.1007/s00709-016-0989-4.

Reich, P. B., & Amundson, R. G. (1985). Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science, 230(4725), 566-570.

Ruzo, L. O., Engel, J. L., & Casida, J. E. (1979). Decamethrin metabolites from oxidative, hydrolytic and conjugative reactions in mice. J. Agric. Food Chem, 27(4), 725-731.

Saillenfait, A.M., Ndiaye D., & Sabaté J.P., (2015). Pyrethroids: Exposure and health effects – An update. Int J Hyg Environ. Health, 218, 281-292.

Mohsin, Sayed. Mohammad., Hasanuzzaman M., Parvin K., Morokuma M., & Fujita M. (2021). Effect of tebuconazole and trifloxystrobin on Ceratocystis fimbriata to control black rot of sweet potato: processes of reactive oxygen species generation and antioxidant defense responses. World J. Microbiol. Biotechnol. 37(9), 148. Doi: 10.1007/s11274-021-03111-5.

Sbartai, I., &, Sbartai, H. (2020). Antioxidant activities and lipid peroxidation in the freshwater bioindicator Paramecium sp. exposed to hydrazine carboxylate (Bifenazate). Egypt. J. Aquat. Biol. Fish, 25(1), 257-268. https://dx.doi.org/10.21608/ejabf.2021.156670.

Serra, A.A., Couée, I., Renault, D., Gouesbet, G., & Sulmon, C. (2015). Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress. J Exp Bot. 66(7), 1801-16. Doi: 10.1093/jxb/eru518.

Serra, A.A., Nuttens, A., Larvor, V., Renault, D., Couée, I., Sulmon, C., & Gouesbet, G. (2013). Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. J Exp Bot. 64(10), 2753-66. Doi: 10.1093/jxb/ert119.

Shen, D., Dalton, T.P., Nebert, D.W., & Shertzer, H.G. (2005). Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem, 280, 25305‐12.

Shi, J. J., & Sun, W. (2011). Effect of benzotriazole as corrosion inhibitor for reinforcing steel in cement mortar. Acta Physico-Chimica Sinica, 27(6), 1457-1466.

Shishatskaya E, Menzyanova N, Zhila N, Prudnikova S, Volova T, & Thomas S. (2018). Toxic effects of the fungicide tebuconazole on the root system of Fusarium-infected wheat plants. Plant Physiol Biochem. 132, 400-407. Doi: 10.1016/j.plaphy.2018.09.025.

Sies H. (1993). Strategies of antioxidant defenses. Eur J Bio-chem., 215, 213–219. Doi:10.1111/j.1432-1033.1993.tb18025.x.

TianhuiJiao, M.d., Mehedi, H., Jiaji, Zhu., Shujat, A., Waqas, A., Jingjing W., Changxin, L.V, Quansheng, Chen, & Huanhuan Li, (2021). Quantification of deltamethrin residues in wheat by Ag@ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models. Food Chem, 337, 127652. Doi: 10.1016/j.foodchem.2020.127652.

Toscano, N. C., Sances, F. V., Johnson, M. W., & LaPre, L. F. (1982). Effect of various pesticides on lettuce physiology and yield. J. Econ. Entomol, 75(4), 738-741.

Untiedt, R., & Blanke, M. (2001). Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration. Plant Growth Regul. 35, 1–9.

Van der Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol, 13(2), 57-149. Doi: 10.1016/S1382-6689(02)00126-6.

Wandscheer, A. C., Marchesan, E., Santos, S., Zanella, R., Silva, M. F., Londero, G. P., & Donato, G. (2017). Richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides in rice paddy fields. Anais da Academia Brasileira de Ciências, 89, 355-369. Doi: 10.1590/0001-3765201720160574.

Wang, Y., Ren, Y., Ning, X., Li, G., & Sang, N. (2023). Environmental exposure to triazole fungicide causes left-right asymmetry defects and contributes to abnormal heart development in zebrafish embryos by activating PPARγ-coupled Wnt/β-catenin signaling pathway. Sci Total Environ, 859, 160286. Doi: 10.1016/j.scitotenv.2022.160286.

Weckbecker, G., & Cory, J. G. (1988). Ribonucleotide reductase activity and growth of glutathione depleted mouse leukemia L1210 cells in vitro. Cancer Lett, 40(3), 257-264. Doi:10.1016/0304-3835(88)90084-5.

Wolansky, M. J., & Tornero-Velez, R. (2013). Critical consideration of the multiplicity of experimental and organismic determinants of pyrethroid neurotoxicity: A proof of concept. J. Toxicol. Environ. Health, Part B, 16(8), 453-490. Doi: 10.1080/10937404.2013.853607.

Xiao, N., Jing B., Ge F., & Liu X, (2006). The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere 62, 1366-1373. Doi: 10.1016/j.chemosphere.2005.07.043.

Xiao, W., & Loscalzo, J, (2019). Metabolic Responses to Reductive Stress. Antioxidants and Redox Signaling, 32(18), 1330–1347. Doi: 10.1089/ars.2019.7803

Yan, L.J. (2014). Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res, 137919.

Yang, J. M., Zhu, C. Z., Tang, X. Y., & Shi, M. (2014). Rhodium (II)‐Catalyzed Intramolecular Annulation of 1‐Sulfonyl‐1, 2, 3‐Triazoles with Pyrrole and Indole Rings: Facile Synthesis of N‐Bridgehead Azepine Skeletons. Angew. Chem. Int. Ed, 53(20), 5142-5146. Doi: 10.1002/anie.201400881.

Zhang, C., Wang, Q., Zhang, B., Zhang, F., Liu, P., Zhou, S., & Liu, X. (2020). Hormonal and enzymatic responses of maize seedlings to chilling stress as affected by triazoles seed treatments. Plant Physiol Biochem. 148, 220-227, Doi: 10.1016/j.plaphy.2020.01.017.

Downloads

Published

2024-06-30

How to Cite

HAFSI, D. ., SBARTAI, I. ., & SBARTAI, H. . (2024). Induction of oxidative stress in a variety of durum wheat (Triticum durum Desf) exposed to recommended doses of pesticides. Studia Universitatis Babeș-Bolyai Biologia, 69(1), 33–50. https://doi.org/10.24193/subbbiol.2024.1.02

Issue

Section

Articles