Adaptation of the diaphonization protocol and the highlight of some significant structures development in the chicken embryo (Gallus gallus) skeleton
DOI:
https://doi.org/10.24193/subbbiol.2024.1.07Keywords:
diaphonization protocol, chicken embryo development, skeletal visualization, developmental biologyAbstract
Diaphonization is a technique used in developmental biology, anatomy, and comparative morphology to visualize and study the internal structures of small organisms. In this study, we used diaphonization to visualize the development of chicken embryos (Gallus gallus). Diaphonization was performed on chicken eggs at different stages of development, from 10 to 13 days of incubation, and the resulting specimens were analyzed using microscopy. The results suggest that for embryos older than 14 days, a longer storage time in 1% KOH is recommended (approximately 30% longer incubation time compared to the original protocol). In the case of more developed chicken embryos, it is also recommended to carry out evisceration. These results provide insight into the early stages of avian development and may have applications in the fields of developmental biology and anatomy.
Article history: Received 14 February 2024; Revised 19 April 2024;
Accepted 10 June 2024; Available online 30 June 2024.
References
Abourachid A., & Höfling E. (2012). The legs: a key to bird evolutionary success. J. Ornithol., 153(1), 193-198. Doi: 10.1007/s10336-012-0856-9;
Atanasoff A., Tsandev N., Roydev R., Ekim O., Pavlova-Petrova E., & Uzunova K. (2018). Using the diaphonization for enhanced visualization of skeletal anomalies in juvenile Siberian sturgeon (Acipenser baerii). Hydromedit. 3rd Int. Congr. Appl. Ichthyol. Aquat. Environ., 601-602;
Barber J., Daly J., Rutland C., Hauber M., & Cawthray A. (2018). The chicken: a natural history. Princeton University Press. p. 14-25. Doi: 10.2307/j.ctv3dnq3j.
Casinos A., & Cubo J. (2001). Avian long bones, flight and bipedalism. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 131(1), 159-167. Doi: 10.1016/S1095-6433(01)00463-9;
Chatterjee S. (2015). The rise of birds: 225 million years of evolution. University Press. p. 19-72;
Chitra V., & Sharon S.E. (2020). Diaphonization of the ovariectomized laboratory animal. Res. J. Pharm. Technol., 13(5), 2228;
Gofur M. R. (2020). Aves osteology and skeletal system. Textbook of avian anatomy. Uttoran Offset Printing Press. p. 16-28;
Hamburger V., & Hamilton H.L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol., 88(1), 49-92. doi:10.1002/jmor.1050880104;
Khan F.R., Rehman K., & Habib S. (2015). Diaphonization: a recipe to study teeth. J. Contemp. Dent. Pract., 16(3), 248-251;
Liutenko M.A., Hromko Y.A., & Tretiakov A.V. (2023). History of origin, advantages and disadvantages, vectors of application of the diaphonization method: current state of the problem. Pol. Merkur. Lekarski, 51(6), 632-637. DOI: 10.36740/merkur202306109. PMID: 38207065;
Namba Y., Yamazaki Y., Yuguchi M., Kameoka S., Usami S., Honda K., & Isokawa K. (2010). Development of the tarsometatarsal skeleton by the lateral fusion of three cylindrical periosteal bones in the chick embryo (Gallus gallus). Anat. Rec., 293(9), 1527-1535. Doi: 10.1002/ar.21179;
Ostrom J.H. (1976). Archaeopteryx and the origin of birds. Biol. J. Linn. Soc., 8(2), 91-182. doi:10.1111/j.1095-8312.1976.tb00244.x;
Rashid D.J., Chapman S.C., & Larsson H.C. (2014). From dinosaurs to birds: a tail of evolution. EvoDevo, 5(25), 1-20. Doi: 10.1186/2041-9139-5-25;
Shipman P. (1998). Taking wing: Archaeopteryx and the evolution of bird flight. Simon & Schuster p. 21-47;
Stern C.D. (2022). Reflections on the past, present and future of developmental biology. Dev. Biol., 488, 30-34. doi: 10.1016/j.ydbio.2022.05.001.
Sullivan T.N., Wang B., Espinosa H.D., & Meyers M.A. (2017). Extreme lightweight structures: avian feathers and bones. Mater. Today, 20(7), 377-391. Doi: 10.1016/j.mattod.2017.02.004;
Tsandev N., Vodenicharov A., & Stefanov I. (2020). Using of diaphonization for study of domestic pig’s auditory tube. Acta Morphol. Anthropol., 27(3-4), 101-105;
Tsuihiji T. (2017). The atlas rib in Archaeopteryx and its evolutionary implications. J. Vertebr. Paleontol., 37(4), 1-9. Doi: 10.1080/02724634.2017.1342093;
Vovk O.Y., Ionov I., Lyutenko M., & Gromko Y. (2022). Diaphonization as a method of modern morphological research. Clin. Anat. Oper. Surg, 21(4), 46–51.
Doi:10.24061/1727-0847.21.4.2022.45.;
Wang M., Li Z., & Zhou Z. (2017). Insight into the growth pattern and bone fusion of basal birds from an early Cretaceous enantiornithine bird. Proc. Natl. Acad. Sci. U.S.A., 114(43), 11470-11475. Doi: 10.1073/pnas.1707237114.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Biologia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.