Open-source Software as an Alternative Means of Biomechanical Assessment

Authors

  • Vlad POPA Faculty of Physical Education and Sport, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: vlad.kinetoterapie@gmail.com.
  • Iosif SANDOR Faculty of Physical Education and Sport, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: vlad.kinetoterapie@gmail.com. https://orcid.org/0000-0003-2677-4568
  • Rareș D. CIOCOI-POP Faculty of Physical Education and Sport, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: rares.ciocooipop@ubbcluj.ro. https://orcid.org/0000-0002-2483-8014

DOI:

https://doi.org/10.24193/subbeag.69(2).10

Keywords:

Assessment, Kinovea, open-source, biomechanics, Python

Abstract

In an attempt to gain more and more resources for dynamic assessment of movement, and especially more accessible ones, we tried to utilize open-source software like kinovea for data extraction and Python for automatization. By using these we can show the ease of creating patterns of investigation, after which further data is simply collected and manipulated on the system created. The best part about having these resources as means for biomechanical assessment is that they are cost free. We broke down the walking cycle into four main stages and extracted the data from those, after which we made it more comprehensible even for the trained naked eye. Video footage was taken from 10 healthy subjects. The hypothesis of this work was thus: If we modify the walking speed we can check out from low intensity to high intensity, we won’t see bigger amounts of deviation at ankle level. After analyzing the data collected, we couldn’t say that by increasing the walking we also increase the amount of deviation in the ankle

 

Software Open-Source ca mijloace alternative de analiză bio–mecanică. Într-o tentative de a depista și câștiga tot mai multe resurse de analiză biomecanică și mai ales cost eficiente, am încercat să utilizăm mai multe aplicații open-source precum Kinovea pentru colectarea datelor, dar și Python pentru automatizare. Folosindu-ne de acestea putem arăta cât de facil este să creăm șabloane de investigare, după care ne rămâne doar să extragem și manipulăm datele în funcție de obiectivele noastre în cadrul sistemului nou creat. Partea cea mai bună privind aceste mijloace este că sunt absolut gratuite. Am defragmentat ciclul mersului în 4 etape esențiale din care ulterior s-au extras datele necesare și au fost gestionate în așa fel încât acestea să devină mai comprehensibile chiar și văzute de un ochi liber neantrenat. Materialul video a fost obținut de la 10 subiecți sănătoși. Ipoteza de lucru presupunea că dacă modificăm de la intensitate mică spre intensitate mare a vitezei de deplasare, pe măsură ce vom crește intensitatea nu vom observa și o creștere a gradului de deviații de la nivelul gleznelor picioarelor. După ce au fost analizate datele colectate, nu putem afirma că prin creșterea vitezei de deplasare în cadrul mersului, favorizăm și introducerea unei cantități de deviere majore la nivelul gleznelor.

Cuvinte-cheie: evaluare; Kinovea; open-source; biomecanică Python

Article history: Received: 2024 May 31; Revised: 2024 August 12; Accepted: 2024 August 27;

Available online: 2024 August 30; Available print: 2024 August 30

References

Ang CL, Kong PW. Field-Based Biomechanical Assessment of the Snatch in Olympic Weightlifting Using Wearable In-Shoe Sensors and Videos-A Preliminary Report. Sensors (Basel). 2023 Jan 19;23(3):1171. doi: 10.3390/s23031171.

Requena B, García I, Requena F, Saez-Saez de Villarreal E, Pääsuke M. Reliability and validity of a wireless microelectromechanicals based system (keimove™) for measuring vertical jumping performance. J Sports Sci Med. 2012 Mar 1;11(1):115-22. PMID: 24137067; PMCID: PMC3737853.

Baker, R. (2007). The history of gait analysis before the advent of modern computers. Gait & Posture, 26(3), 331–342. doi:10.1016/j.gaitpost.2006.10.01.

Balsalobre-Fernández, C., Tejero-González, C. M., del Campo-Vecino, J., & Bavaresco, N. (2014). The Concurrent Validity and Reliability of a Low-Cost, High-Speed Camera-Based Method for Measuring the Flight Time of Vertical Jumps. Journal of Strength and Conditioning Research, 28(2), 528–533. doi:10.1519/jsc.0b013e318299a52e.

Barrett, R. S., Mills, P. M., & Begg, R. K. (2010). A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait & Posture, 32(4), 429–435. doi:10.1016/j.gaitpost.2010.07.0.

Donlin MC, Pariser KM, Downer KE, (2022). Higginson JS. Adaptive treadmill walking encourages persistent propulsion. Gait Posture. 246-251. doi: 10.1016/j.gaitpost.2022.02.017. Epub 2022 Feb 16. PMID: 35190317; PMCID: PMC8930561.

Fernández-González, P., Koutsou, A., Cuesta-Gómez, A., Carratalá-Tejada, M., Miangolarra-Page, J. C., & Molina-Rueda, F. (2020). Reliability of Kinovea® Software and Agreement with a Three-Dimensional Motion System for Gait Analysis in Healthy Subjects. Sensors, 20(11), 3154. doi:10.3390/s20113154.

Hayot, C., Sakka, S., & Lacouture, P. (2013). Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force. Human Movement Science, 32(2), 279–289. doi:10.1016/j.humov.2012.10.003.

Kerrigan, D. C., Croce, U. D., Marciello, M., & Riley, P. O. (2000). A refined view of the determinants of gait: Significance of heel rise. Archives of Physical Medicine and Rehabilitation, 81(8), 1077–1080. doi:10.1053/apmr.2000.6306.

Kuo, A. D., & Donelan, J. M. (2009). Dynamic Principles of Gait and Their Clinical Implications. Physical Therapy, 90(2), 157–174. doi:10.2522/ptj.20090125.

Liu J, Stewart H, Wiens C, McNitt-Gray J, Liu B (2022). Development of an integrated biomechanics informatics system with knowledge discovery and decision support tools for research of injury prevention and performance enhancement. Comput Biol Med. 2022 Feb;141:105062. doi: 10.1016/j.compbiomed.2021.105062.

Lovejoy, C. O. (1981). The Origin of Man. Science, 211(4480), 341–350. doi:10.1126/science.211.4480.341.

Mahadas, S., Mahadas, K., & Hung, G. K. (2018). Biomechanics of the golf swing using OpenSim. Computers in Biology and Medicine. doi:10.1016/j.compbiomed.2018.12.

McGeer T. (1990) Passive walking with knees. In: Proceedings of the IEEE International Robotics & Automation Conference. Los Alamitos, CA: IEEE Computer Society; p 1640 –1645.

Mochon, S., & McMahon, T. A. (1980). Ballistic walking. Journal of Biomechanics, 13(1), 49–57. doi:10.1016/0021-9290(80)90007-x.

Nor Adnan, N. M., Ab Patar, M. N. A., Lee, H., Yamamoto, S.-I., Jong-Young, L., & Mahmud, J. (2018). Biomechanical analysis using Kinovea for sports application. IOP Conference Series: Materials Science and Engineering, 342, 012097. doi:10.1088/1757-899x/342/1/012097.

Paolino S, Zampa F. Determination of vehicle speed from recorded video using the open-source software Kinovea. J Forensic Sci. 2023 Mar;68(2):667-675. doi: 10.1111/1556-4029.15191. Epub 2022 Dec 30. PMID: 36583455.

Van Hooren, B., Fuller, J. T., Buckley, J. D., Miller, J. R., Sewell, K., Rao, G., … Willy, R. W. (2019). Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies. Sports Medicine. doi:10.1007/s40279-019-01237-z.

Voloshina, A. S., Kuo, A. D., Daley, M. A., & Ferris, D. P. (2013). Biomechanics and energetics of walking on uneven terrain. Journal of Experimental Biology, 216(21), 3963–3970. doi:10.1242/jeb.081711.

Yang, X., Zhao, G., Liu, D., Zhou, W., & Zhao, H. (2015). Biomechanics analysis of human walking with load carriage. Technology and Health Care, 23(s2), S567–S575. doi:10.3233/thc-150995.

Downloads

Published

2024-08-30

How to Cite

POPA, V. ., SANDOR, I. ., & CIOCOI-POP, R. D. . (2024). Open-source Software as an Alternative Means of Biomechanical Assessment. Studia Universitatis Babeș-Bolyai Educatio Artis Gymnasticae, 69(2), 31–43. https://doi.org/10.24193/subbeag.69(2).10

Issue

Section

Articles

Most read articles by the same author(s)