Crimping Standard DIN vs USCAR Gap Analysis

Authors

  • Florin DRAGOMIR Doctoral School of Engineering, Faculty of Engineering, Babes-Bolyai University, Reşiţa, Romania. Email: florin.dragomir@ubbcluj.com. https://orcid.org/0009-0003-6168-2092
  • Tiberiu Ștefan MĂNESCU Department of Automation, Industrial Engineering, Textiles and Transportation, Aurel Vlaicu University, Arad, Romania. Email: manescu.tiberiu@gmail.com. https://orcid.org/0000-0001-8719-7149
  • Zeno-Iosif PRAISACH Department of Engineering Science, Faculty of Engineering, Babes-Bolyai University, Reșița, Romania. Email: zeno.praisach@ubbcluj.ro. https://orcid.org/0000-0002-8613-8224

DOI:

https://doi.org/10.24193/subbeng.2023.spiss.5

Keywords:

crimping standard, gap analysis, crimping microsection, statistical analysis, crimping compression

Abstract

In this paper, the main objective is to present the current status of the automotive specifications related to the crimping process, an in particular how these specifications were adopted by the suppliers of the crimping components (e.g. Terminals and cables). For this reason, we took as reference two of the most worldwide used standards form the automotive manufacturing industry: DIN (“Deutsches Institut für Normung”) with the corresponding Romanian standard SR EN 60352-2:2006 and SAE/USCAR-21 REVISION 3.

References

SAE International, Performance Specification for Cable-to-Terminal Electrical Crimps. SAE/USCAR-21. 4th SAE International, U.S. and Canada, 2020, https://global.ihs.com/doc_detail.cfm?document_name=SAE%20USCAR%2D21&item_s_key=00407431.

SR EN 6032-2:2006/A1:2014, Solderless connections, Part2: Solderless crimped connections, General Requirements, test methods and practical guidance, https://magazin.asro.ro/ro/standard/224996.

Mocellin K., Petitprez M., Experimental and Numerical Analysis of Electrical Contact Crimping to Predict Mechanical Strength, Procedia Engineering, 81, 2014, https://doi.org/10.1016/j.proeng.2014.10.274

Morgado L., Teixeira A., Sá J., Pinto Ferreira L., Almeida F.D., Analysis and Development of a Failure Prediction Model for Electrical Terminals Used in the Automotive Industry, Procedia Manufacturing, 51, 2020, pp. 207-214, https://doi.org/10.1016/j.promfg.2020.10.030.

Delozier M.R., Orlich S., Discovering influential cases in linear regression with MINITAB: Peeking into multidimensions with a MINITAB macro, Statistical Methodology, 2(2), 2005, pp. 71-81, https://doi.org/10.1016/j.stamet.2004.11.005

Ilca D., Manescu T., Gillich G.-R, Praisach Z.-I., Tufisi C., Determination of proper parameters for ultrasonic welding of copper plate with copper wire strands, Vibroengineering Procedia, 51, 2023, 173-178, https://doi.org/10.21595/vp.2023.23680.

Castro T.A.M., Campilho R., Optimising a Specific Tool for Electrical Terminals Crimping Process, Procedia Manufacturing, 11, 2017, pp.1438-1447, https://doi.org/10.1016/j.promfg.2017.07.274.

Downloads

Published

2023-11-15

How to Cite

DRAGOMIR, F. ., MĂNESCU, T. Ștefan ., & PRAISACH, Z.-I. . (2023). Crimping Standard DIN vs USCAR Gap Analysis. Studia Universitatis Babeș-Bolyai Engineering, 68(Special Issue), 47–54. https://doi.org/10.24193/subbeng.2023.spiss.5

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>