Romanian Question Answering Using Transformer Based Neural Networks

Authors

  • Bogdan-Alexandru DIACONU Babes-Bolyai University, Department of Computer Science, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania Email address: beata.lorincz@ubbcluj.ro
  • Beáta LAZAR-LORINCZ Babes-Bolyai University, Department of Computer Science, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania Email address: beata.lorincz@ubbcluj.ro https://orcid.org/0000-0002-7728-5863

DOI:

https://doi.org/10.24193/subbi.2022.1.03

Keywords:

question answering, deep learning, Transformer, Romanian.

Abstract

Question answering is the task of predicting answers for questions based on a context paragraph. It has become especially important, as the large amounts of textual data available online requires not only gathering information but also the task of findings specific answers to specific questions. In this work, we present experiments evaluated on the XQuAD-ro question answering dataset that has been recently published based on the translation of the SQuAD dataset into Romanian. Our bestperforming model, Romanian fine-tuned BERT, achieves an F1 score of 0.80 and an EM score of 0.73. We show that fine-tuning the model with the addition of the Romanian translation slightly increases the evaluation metrics.

Received by the editors: 9 December 2021.

2020 Mathematics Subject Classification. 68T07, 68T50.

1998 CR Categories and Descriptors. I.2.7 [Artificial Intelligence]: Natural Language Processing – Language models; I.2.7 [Artificial Intelligence]: Natural Language Processing – Language parsing and understanding; I.2.7 [Artificial Intelligence]: Natural Language Processing – Text analysis .

References

M. Artetxe, S. Ruder, and D. Yogatama. On the Cross-lingual Transferability of Monolingual Representations. arXiv preprint arXiv:1910.11856, 2019.

J. H. Clark, E. Choi, M. Collins, D. Garrette, T. Kwiatkowski, V. Nikolaev, and J. Palomaki. TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages. Transactions of the Association for Computational Linguistics, 8:454–470, 2020.

A. Conneau, G. Lample, R. Rinott, A. Williams, S. R. Bowman, H. Schwenk, and V. Stoyanov. XNLI: Evaluating Cross-lingual Sentence Representations. arXiv preprint arXiv:1809.05053, 2018.

Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

S. D. Dumitrescu, P. Rebeja, B. Lorincz, M. Gaman, A. Avram, M. Ilie, A. Pruteanu, A. Stan, L. Rosia, C. Iacobescu, et al. LiRo: Benchmark and leaderboard for Romanian language tasks. 2021.

P. Gupta and V. Gupta. A Survey of Text Question Answering Techniques. International Journal of Computer Applications, 53(4), 2012.

L. Hirschman and R. Gaizauskas. Natural Language Question Answering: The View from Here. natural language engineering, 7(4):275–300, 2001.

J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson. XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization. In International Conference on Machine Learning, pages 4411–4421. PMLR, 2020.

A. Iftene, D. Trandabat, M. Husarciuc, and M. A. Moruz. Question Answering on Romanian, English and French Languages. In CLEF (notebook papers/LABs/workshops), 2010.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv preprint arXiv:1910.10683, 2019.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, Nov. 2016. Association for Computational Linguistics.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention Is All You Need. In Advances in neural information processing systems, pages 5998–6008, 2017.

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. SuperGLUE: A stickier benchmark for general-purpose language understanding systems. arXiv preprint arXiv:1905.00537, 2019.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144, 2016.

L. Xue, A. Barua, N. Constant, R. Al-Rfou, S. Narang, M. Kale, A. Roberts, and C. Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte models. arXiv preprint arXiv:2105.13626, 2021.

L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, and C. Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934, 2020.

Downloads

Published

2022-07-03

How to Cite

DIACONU, B.-A., & LAZAR-LORINCZ, B. (2022). Romanian Question Answering Using Transformer Based Neural Networks. Studia Universitatis Babeș-Bolyai Informatica, 67(1), 37–44. https://doi.org/10.24193/subbi.2022.1.03

Issue

Section

Articles