Has the Fluocinolon-acetonid N ointment any effect on the kidneys and the thyroid gland structure and function?
DOI:
https://doi.org/10.24193/subbbiol.2017.2.04Keywords:
glucocorticoid excess, kidney, thyroid gland.Abstract
Besides the naturally occurring glucocorticoids, there are many other synthetically produced glucocorticoids: dexamethasone, prednisolone, triamcinolone, triamcinolone acetonide, flumetazon, methyl prednisone and methylprednisolone. Corticosteroids are administered intravenously, orally, through inhalation directly onto the inflamed organ, eye drops and by applying skin ointments. Although long term use has its undesirable effects, e.g. high blood pressure, heart failure, diabetes and renal failure. Fluocinolon-acetonid N ointment is a synthetic derivate of the adrenocortical hormone, which is used for medical treatment purposes in dermatology. We also use it in our homes, mostly due to its anti-inflammatory effect, in the treatment of itching, and also in the acute keratosis. It is highly effective in serious, non contagious, dry skin inflammations, such as atopic eczema, seborrheic dermatitis, psoriasis, dermatitis or even in allergic reactions. In prolonged usage due to its liposoluble properties, it is easily absorbed into the bloodstream, which increases the chances of having side effects. The main objective of this study is to analyze the side effects of glucocorticoid excess when treatment is done with Fluocinolon- acetonid N ointment, to see if it has any effect on organs which have an important role in maintaining basal metabolism such as kidneys and thyroid gland. Our results demonstrate that fluocinolon treatment affects the structure and the function of kidneys and thyroid gland.
References
Cain, D.W., Cidlowski, J.A. (2017) Immune regulation by glucocorticoids, Nat. Rev. Immunol., 17: 233–247
de Vries, W.B., van den Borne, P., Goldschmeding, R., Weger, R.A., Bal, M.P., van Bel, F., van Oosterhout, M.F.M. (2010) Neonatal dexamethasone treatment in the rat leads to kidney damage in adulthood, Pediatr. Res., 67 (1): 72-76
Dickinson, H., Walker, D.W., Wintour, E.M., Moritz, K. (2007) Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse, Am. J. Physiol. Regul. Integr. Comp. Physiol., 292: R453–R461
Fonyó, A. (2011) Orvosi élettan. A mellékvese kéreg működése., Medicina Könykiadó, Budapest, pp. 679-695
Gounarides, J.S., Korach-André, M., Killary, K., Argentieri, G., Turner, O., Laurent, D. (2008) Effect of dexamethasone on glucose tolerance and fat metabolism in a diet-induced obesity mouse model, Endocrinology, 149 (2): 758-766
Grigoriadis, A., Heersche, J.N.M., Aubin, J.E. (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell Biol., 106: 2139-2151
Grunfeld, J.P., Eloy, L. (1987) Glucocorticoids modulate vascular reactivity in the rat. Hypertension, 10: 608-618
Hans, P., Vanthuyne, A., Dewandre, P.Y., Brichant, J.F., Bonhomme, V. ( 2006) Blood glucose concentration profile after 10 mg dexamethasone in non-diabetic and type 2 diabetic patients undergoing abdominal surgery, Br. J. Anaesth., 97 (2): 164-170
Hunter, R.W., Ivy, J.R., Bailey, M.A. (2014) Glucocorticoids and renal Na+ transport: implications for hypertension and salt sensitivity, J. Physiol. 592 (8): 1731–1744
Ivy, J.R., Oosthuyzen, W., Peltz, T.S., Howarth, A.R., Hunter, R.W., Dhaun, N., Al-Dujaili, E.A.S., Webb, D.J., Dear, J.W., Flatman, P., Bailey, A.M. (2016) Glucocorticoids induce nondipping blood pressure by activating the thiazide-sensitive cotransporter, Hypertension, 67: 1029-1037
Jeje, S.O., Y. Raji, Y. (2015a) Effects of maternal dexamethasone exposure during lactation on metabolic imbalance and oxidative stress in the liver of male offsprings of Wistar rats, Niger. J. Physiol. Sci. 30: 131-137
Jeje, S.O., Y. Raji, Y. (2015b) Effects of maternal dexamethasone exposure on hematological indices in the male offspring, Int. J. Biol. Chem. Sci. 9 (1): 48-55
Jeje, S.O., Y. Raji, Y. (2017), Maternal treatment with dexamethasone during lactation alters serum electrolyte and adrenal gland morphology in male offspring of wistar rats, J. Afr. Ass. Physiol. Sci. 5 (1): 67-70
Kamphuis, P.J. G.H., de Vries, B.W., Bakker, J.M., Kavelaars, A., van Dijk, J.E., Schipper, M.E., van Oosterhout, M.F.M., Croiset, G., Heijnen, C.J., van Bel, F., Wiegant, V.M. (2007) Reduced life expectancy in rats after neonatal dexamethasone treatment, Pediatr. Res., 61(1): 72-76
Kis, E., Crăciun, C. (2001) Studiul comparativ al efectului tratamentului cu Fluocinolon-acetonid N asupra unor parametri structurali şi gravimetrici la şobolani prepuberi şi puberi, Cell. Mol. Biol., 6: 172-184
Kis, E., Crăciun, C. (2003a) Atenuarea modificărilor structurale şi metabolice induse de excesul glucocorticoidic prin administrarea de propranolol, Studia UBB Biologia, 48 (1): 67-79
Kis, E., Crăciun, C. (2003b) Atenuarea modificărilor gravimetrice induse de tratamentul cu Fluocinolon-acetonid prin administrarea de propranolol, Studia UBB Biologia, 48 (2): 83-88
Kis, E., Crăciun, C. (2005) Efecte secundare ale unor glucocorticoizi topici, Ed. Risoprint, Cluj Napoca
Li, S., Sloboda, D.M., Moss, T.J.M., Nitsos, I., Polglase, G.R., Doherty, D.A., Newnham, J. P., Challis, J.R.G., Braun, T. (2013) Effects of glucocorticoid treatment given in early or late gestation on growth and development in sheep, JDOHaD 4 (2): 146–156
Lundgren, M., Burén, J., Ruge, T., Myrnäs, T., Eriksson, J.W. (2004) glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes, J. Clin. Endocrinol. & Metab., 89 (6): 2989-2999
Madar, J., Sildan, N., Borsa, M., Ilyes, I. (1995) Effects of epicutaneous treatment with Fluocinolone unguent on glycemia, insulinemia and muscular sensitivity to insulin in various age-groups of Wistar rats, In: Current problems and technique in cellular and milecular biology, Craciun, C., Ardelean, A., (ed.) Mirton, 301-304
Martino, E., Bartalena, L., Bogazzi, F., Braverman, L. E. (2001) The effects of amiodarone on the thyroid. Endocrine Reviews, 22 (2): 240-254
Martins, J.P.C., Monteiro, J.C., Paixão, A.D.O. (2003) Renal function in adult rats subjected to prenatal dexamethasone, CEEP, 30: 32-37
Menconi, F., Marinò, M., Pinchera, A., Rocchi, R., Mazzi, B., Nardi, M., Bartalena, L., Marcocci, C. (2007) Effects of total thyroid ablation versus near-total thyroidectomy alone on mild to moderate graves’ orbitopathy treated with intravenous glucocorticoids, J. Clin. Endocrinol. Metab., 92 (5): 1653-1658
Moritz, K.M., De Matteo, R., Dodic, M., Jefferies, A.J., Arena, D., Wintour, E.M., Probyn, E., Bertram, J.., Singh, R. R., Zanini, S., Evans, R.G. (2011), Prenatal glucocorticoid exposure in the sheep alters renal development in utero: implications for adult renal function and blood pressure control, Am. J. Physiol. Regul. Integr. Comp. Physiol., 301: R500–R509
Mureşan, E., Gaboreanu, M., Bogdan, A.T., Baba, A.I. (1974) Tehnici de histologie normală şi patologică, Ed. Ceres, Bucureşti
Nadolnik, L. (2012) Role of glucocorticoids in regulation of iodine metabolism in thyroid gland: effects of hyper-and hypocorticism, InTech, 12: 265-302
Nyirenda, M.J., Secki, J.R., Cleasby, M. (2000) Glucocorticoids, 11b-hydroxysteroid dehydrogenase, and fetal programming, Kidney Internat., 57: 1412-1417
O’Sullivan, L., Cuffe, J.S.M., Paravicini, T.M., Campbell, S., Dickinson, H., Singh, R.R., Gezmish, O., Black, J.M., Moritz, K.M. (2013) Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring, PLOS, 8 (7): 1-10
Ortiz, L. A., Quan, A., Zarzar, F., Weinberg, A., Baum, M. (2003) Prenatal dexamethasone programs hypertension and renal injury in the rat, Hypertension, 41: 328-334
Poggioli, R., Ueta, C.B., e Drigo, R.A., Castillo, M., Fonseca, T.L., Bianco, A.C. (2013) Dexamethasone reduces energy expenditure and increases susceptibility to diet-induced obesity in mice, Obesity, 21 (9): E415-E420
Singh, R.R., Cuffe, J.S.M., Moritz, K.M. (2012) Short and long term effects of exposure to natural and synthetic glucocorticoids during development, J. Austral. Ass. Physiol. Sci., 43: 57-69
Singh, R., Moritz, K., Bertram, J.F., Cullen-McEwen, L.A. (2007) Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies, Am. J. Physiol.-Renal Physiol., 293: F548–F554
Stewart, P.M., Boulton, A., Kumar, S., Clark, P.M., Shackleton, C.H. (1999) Cortisol metabolism in human obesity: impaired cortisone cortisol conversion in subjects with central adiposity, J. Clin. Endocrinol. Metab., 84: 1022-1027
Stojanoski, M.M., Nestorović, N., Milošević, V. (2012) Prenatal glucocorticoids: short-term benefits and long-term risks, In: Medicine ”Glucocorticoids -new recognition of our familiar friend”, Xiaoxiao Qian (ed.): 337-390
Wade, J.B., O'Neil, R.G., Pryor, J.L., Boulpaep, E.L. (1979) Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones, J. Cell. Biol., 81: 439–445
Waldron, N.H., Jones, C.A., Gan, T.J., Allen, T.K., Habib, A.S. (2013) Impact of perioperative dexamethasone on postoperative analgesia and side-effects: systematic review and meta-analysis, Br. J. Anaesth., 110: 191-200
Woods, L.L., Weeks, D.A. (2005) Prenatal programming of adult blood pressure: role of maternal corticosteroids, Am. J. Physiol. Regul. Integr. Comp. Physiol., 289: 955-962
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Biologia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.