PHOTOPHYSICAL PROPERTIES OF PERYLENE MOLECULE

Authors

DOI:

https://doi.org/10.24193/subbphys.2017.07

Keywords:

perylene; photophysics; excited state; TD‐DFT; radiative lifetime

Abstract

In this work we investigated computationally the photophysics of the perylene molecule using the time‐dependent Density Functional Theory (TD-DFT). Particularly, we were interested in the vertical emission energy and radiative fluorescence lifetime of the investigated molecule. Using adequate models and proper computational methodologies we were able to satisfactorily predict the experimentally reported photophysical properties of the perylene core.

References

J.Y. Kim, S.W. Woo, J.W. Namgoong, J.P. Kim, A study on the fluorescence property of the perylene derivatives with methoxy groups, Dyes Pigm., 148 (2018), 196-205.

L.B.-A. Johansson, H. Langhals, Spectroscopic studies of fluorescent perylene dyes, Spectrochim. Acta A, 47 (1991), 857-861.

E. Torres, M.N. Berberan-Santos, M.J. Brites, Synthesis, photophysical and electrochemical properties of perylene dyes, Dyes Pigm., 112 (2015), 298-304.

J. Makowiecki, E. Piosik, G. Neunert, R. Stolarski, W. Piecek, T. Martynski, Molecular organization of perylene derivatives in Langmuir-Blodgett multilayers, Opt. Mater., 46 (2015), 555-560.

B. Pagoaga, O. Mongin, M. Caselli, D. Vanossi, F. Momicchioli, M. Blanchard-Desce, G. Lemercier, N. Hoffmann, Optical and photophysical properties of anisole-and cyanobenzene-substituted perylene diimides, Phys. Chem. Chem. Phys., 18 (2016), 4924-4941.

D. Aigner, R.I. Dmitriev, S.M. Borisov, D.B. Papkovsky, I. Klimanta, pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging, J. Mater. Chem. B, 2 (2014), 6792-6801.

S.J. Strickler, R.A. Berg, Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules, J. Chem. Phys., 37 (1962), 814-822.

W.R. Ware, P.T. Cunningham, Fluorescence lifetime and Fluorescence Enhancement of Perylene Vapor, J. Chem. Phys., 44 (1966), 4364-4365.

M. Sonnenschein, A. Amirav, J. Jortner, Absolute fluorescence quantum yields of large molecules in supersonic expansions, J. Phys. Chem., 88 (1984), 4214-4218.

N.I. Nijegorodov, W.S. Downey, The Influence of Planarity and Rigidity on the Absorption and Fluorescence Parameters and Intersystem Crossing Rate Constant in Aromatic Molecules, J. Phys. Chem., 98 (1994), 5639-5643.

M.R. Ribas, R.P. Steer, R. Rüther, Photophysical properties of new bis-perylene dyads for potential upconversion use, Chem. Phys. Lett., 605-606 (2014), 126-130.

D.K. Dalavi, D.P. Bhopate, A.S. Bagawan, A.H. Gore, N.K. Desai, A.A. Kamble, P.G. Mahajan, G.B. Kolekar, S.R. Patil, Fluorescence quenching studies of CTAB stabilized perylene nanoparticles for the determination of Cr(VI) from environmental samples: spectroscopic approach, Anal. Methods, 6 (2014), 6948-6955.

S. Acikgoz, Investigation of time-resolved fluorescence lifetime of perylene dye molecules embedded in silicon nanopillars, Appl. Phys. A, 118 (2015), 629–636.

B. Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH, Weinheim, 2002.

E. Fiserova, M. Kubala, Mean fluorescencelifetimeanditserror, J. Lumin., 132 (2012), 2059-2064.

M. Wahl, Time-Correlated Single Photon Counting, Technical Note TCSPC v.2.1, PicoQuant GmbH, 2009.

M. Savarese, A. Aliberti, D. De Santo, E. Battista, F. Causa, P.A. Netti, N. Rega, Fluorescence Lifetimes and Quantum Yields of Rhodamine Detivatives: New Insights from Theory and Experiment, J. Phys. Chem. A, 116 (2012), 7491-7497.

Y. Zhang, L.L. Zhang, R.S. Wang, X.M. Pan, Theoretical study on the electronic structure and optical properties of carbazole-π-dimesitylborane as bipolar fluorophores for nondoped blue OLEDs, J. Mol. Graphics Modell., 34 (2012), 46-56.

B. Lounis, M. Onil, Single-photon sources, Rep. Prog. Phys., 68 (2005), 1129-1179.

J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/ Plenum Publishers, New York, 1999.

M. Sauer, J. Hofkens, and J. Enderlein, Basic Principles of Fluorescence Spectroscopy, in Handbook of Fluorescence Spectroscopy and Imaging, Wiley-VCH, 2011.

Gaussian 09, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.

A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98 (1993), 5648-5652.

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988), 785.

S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 1980, 58, 1200.

P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields: A Comparison of Local, Nonlocal, and Hybrid Density Functionals, J. Phys. Chem., 98 (1994), 11623‐11627.

Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 120 (2008), 215-241.

A. Austin, G. Petersson, M.J. Frisch, F.J. Dobek, G. Scalmani, and K. Throssell, A density functional with spherical atom dispersion terms, J. Chem. Theory Comput., 8 (2012), 4989-5007.

W.J. Hehre, R. Ditchfield, J.A. Pople, Self Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys., 56 (1972), 2257-2261.

M.J. Frisch, J.A. Pople, J.S. Binkley, Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, J. Chem. Phys., 80 (1984), 3265-3269.

M.R. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem Phys., 108 (1988), 4439-4449.

C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Rowler, J. Van de Streek, Mercury: visualization and analysis of crystal structures, J. Appl. Crystalogr., 39 (2006), 453-457.

J. Tomasi, B. Mennucci, R. Cammi, “Quantum Mechanical Continuum Solvation Models,” Chem. Rev., 105 (2005), 2999–3094.

A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B, 113 (2009), 6378–6396.

http://www.fluorophores.tugraz.at/ (accessed: December 5-th, 2017).

M. Oltean, A. Calborean, G. Mile, M. Vidrighin, M. Iosin, L. Leopold, D. Maniu, N. Leopold, V. Chiş, Absorption spectra of PTCDI: A combined UV–Vis and TD-DFT study, Spectrochim. Acta A, 97 (2012), 703-710.

I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, 1965.

J.M. Dixon, M. Taniguchi, J.S. Lindsey, PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations, Photochem. Photobiol., 81 (2005), 212-213.

J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, 3rd edition, Gaussian, Inc.: Wallingford, CT, 2015.

M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging, Chem. Rev., 110 (2010), 2641-2684.

Downloads

Published

2017-12-30

How to Cite

ŢIMBOLMAŞ, L. M., & CHIŞ, V. (2017). PHOTOPHYSICAL PROPERTIES OF PERYLENE MOLECULE. Studia Universitatis Babeș-Bolyai Physica, 62(1-2), 73–85. https://doi.org/10.24193/subbphys.2017.07

Issue

Section

Articles