RENORMALIZATION FUNCTION FOR THE ELECTRON-FLEXURAL PHONON INTERACTION

Authors

DOI:

https://doi.org/10.24193/subbphys.2018.13

Keywords:

Renormalization function, two-dimensional systems, flexural phonons.

Abstract

The renormalization function for the electron-phonon interaction is discussed. The system is considered as two-dimensional, and we consider the case of flexural phonons. The flexural phonons have a dispersion which is linear for wave-vectors less than a critical value q꜀ , and quadratic for q > q꜀. The renormalization function differs from the standard expression, and leads to modifications of the normal and superconducting properties of materials.

References

J.Bardeen, L.N.Cooper, J.R.Schrieffer, Phys.Rev., 108, 1175 (1957)

A.B.Migdal, Sov.Phys.JETP 34, 996 (1958)

L.Pietronero, S.Strassler, C.Grimaldi, Phys.Rev.B, 52, 10516 (1995)

B.Roy, J.D.Sau, S.Das Sarma, Phys.Rev B, 89, 165119 (2014)

I.Grosu, M.Crisan, Phys.Rev.B, 49, 1269 (1994)

G.M.Eliashberg, Sov.Phys.JETP, 11, 696 (1960)

P.B.Allen, B.Mitrovic, Solid State Physics, edited by H.Ehrenreich, F.Seitz, D. Turnbull, Academic, New York (1982)

M.V.Fischetti, W.G.Vandenberghe, Phys.Rev.B, 93, 155413 (2016)

E.Mariani, F.von Oppen, Phys.Rev.Lett., 100, 076801 (2008)

A.V.Chubukov, D.L.Maslov, Phys.Rev.B, 68, 155113 (2003)

I.Grosu, T.Veres, M.Crisan, Phys.Rev.B, 50, 9404 (1994)

D.C.Mattis, M.Molina, Phys.Rev.B, 44, 12565 (1991)

B.Krunavakarn, P.Udomsamuthirun, S.Yoksan, I.Grosu, M.Crisan, J.Supercond., 11, 271 (1998)

J.P.Carbotte, Rev.Mod.Phys., 62, 1027 (1990)

A.J.Millis, H.Monien, D.Pines, Phys.Rev.B, 42, 167 (1990)

M.Crisan, I.Tifrea, D.Bodea, I.Grosu, Phys.Rev.B, 72, 184414 (2005)

N.F.Berk, J.R.Schrieffer, Phys.Rev.Lett., 17, 433 (1966)

P.W.Anderson, Science, 235, 1196 (1987)

S.Chakravarty, P.W.Anderson, Phys.Rev.Lett., 72, 3859 (1994)

V.N.Muthukumar, D.Sa, M.Sardar, Phys.Rev.B, 52, 9647 (1995)

I.Grosu, I.Tifrea, M.Crisan, J.Supercond., 11, 339 (1998)

Downloads

Published

2018-12-30

How to Cite

GROSU, I. (2018). RENORMALIZATION FUNCTION FOR THE ELECTRON-FLEXURAL PHONON INTERACTION. Studia Universitatis Babeș-Bolyai Physica, 63(1-2), 127–132. https://doi.org/10.24193/subbphys.2018.13

Issue

Section

Articles