HOW SHORT IS A SEMI-INFINITE LADDER? AN EXPERIMENTAL APPROACH

Authors

  • L. CSILLAG Babeș-Bolyai University, Faculty of Physics, 1 M. Kogălniceanu street, 400084 Cluj-Napoca, Romania
  • A. TUNYAGI Babeș-Bolyai University, Faculty of Physics, 1 M. Kogălniceanu street, 400084 Cluj-Napoca, Romania. arthur.tunyagi@ubbcluj.ro
  • ZS. LÁZÁR Babeș-Bolyai University, Faculty of Physics, 1 M. Kogălniceanu street, 400084 Cluj-Napoca, Romania. zsolt.lazar@ubbcluj.ro
  • A. SIMON Babeș-Bolyai University, Faculty of Physics, 1 M. Kogălniceanu street, 400084 Cluj-Napoca, Romania. alpar.simon@phys.ubbcluj.ro https://orcid.org/0000-0002-6435-5834

DOI:

https://doi.org/10.24193/subbphys.2019.02

Keywords:

semi-infinite resistive ladder, equivalent resistance, experimental approach, analytical solution

Abstract

This paper presents the challenging problem of solving of a semi-infinite resistive ladder and highlights some traps and tricks of the subject. The topic is approached from and experimental point of view by solving it using computation, simulation and measurements. All the work was done with the hope that it can be an aid for Physics or Electrical Engineering teachers, students eager to learn and understand more, and to be usefully incorporated into the educational process of talented pupils and students.

References

D. Atkinson, F. J. van Steenwijk, Am. J. Phys. 67, 486 (1999)

A. H. Zemanian, IEEE Trans. on Circuits and Systems, 35 (11), 1346 (1988)

M. Jeng, Am. J. Phys., 68, 37 (2000)

B. Denardo, J. Earwood, V. Sazonova, Am. J. Phys., 67, 981 (1999)

A. Saggese, R. De Luca, Eur. J. Phys., 35 (2014) 065006

R. H. March, Am. J. Phys., 61, 900 (1993)

S. S. Sidhu, Am. J. Phys., 62, 815 (1994)

D. Thompson, Am. J. Phys., 65, 88 (1997)

F. J. van Steenwijk, Am. J. Phys., 66, 90 (1998)

R. E. Aitchison, Am. J. Phys., 32, 566 (1964)

F. J. Bartis, Am. J. Phys., 35, 354 (1967)

L. Lavatelli, Am. J. Phys., 40, 1246 (1972)

G. Venezian, Am. J. Phys., 62, 1000 (1994)

H. A. Mavromatis, Am. J. Phys., 63, 85 (1995)

C. H. Wörner, The Physics Teacher, 20, 477 (1982)

P. P. Ong, The Physics Teacher, 21, 459 (1983)

B. Scott, The Physics Teacher, 26, 578 (1988)

J. Higbie, The Physics Teacher, 35, 464 (1997)

T. P. Srinivasan, Am. J. Phys., 60, 461 (1992)

R. M. Dimeo, Am. J. Phys., 68, 669 (2000)

J. Cserti, Am. J. Phys., 68, 896 (2000)

C. E. Mungan, T. C. Lipscombe, Eur. J. Phys., 33, 531 (2012)

R. Beltrán, F. Gómez, R. Franco, J. A. Rodríguez, F. Fajardo, Lat. Am. J. Phys. Educ., 7 (4), 621 (2013)

R. Ph. Feynman, R. B. Leighton, M. Sands, “The Feynman Lectures on Physics vol. II”, Addison-Wesley Publishing Company, 1964, pp. 22-12–22-14

E. M. Purcell, “Electricity and Magnetism, Berkeley Physics Course - vol. 2”, McGraw-Hill, New York, 1985, pp. 167–168

M. Kagan, X. Wang, arXiv:1507.08221v1 [physics.gen-ph] 10 Jul 2015

C. Bender, The Fibonacci Quarterly, 31 (3), 227 (1993)

A. M. Morgan-Voyce, IRE Transactions on Circuit Theory, 6 (3), 321 (1959)

Richard A. Dunlap, “The Golden Ratio and Fibonacci Numbers”, World Scientific, 1997, Chapter 1-2, Chapter 4

A. D’Amico, M. Faccio, G. Ferri, Il Nuovo Cimento D, 12(8), 1165, (1990)

R. Lojacono, C. Falconi, G. Ferri, E. Lo Castro, M. Salmeri, A. Mencattini, M. Santonic, G. Pennazza, A. D’Amico, World Journal of Research and Review (WJRR), 3 (6), 21 (2016)

J. R. Taylor, “An Introduction to Error Analysis, The Study of Uncertainties in Physical Measurements”, University Science Books, USA, 1997, p. 75

G. Van Rossum, “The Python Language Reference Manual” Network Theory Ltd., 2003

http://atom.ubbcluj.ro/alpar/Extra/codes/

https://www.siglent.eu/siglent-sdm-3055.html

https://www.tme.eu/en/details/pc-01lam/universal-pcbs/sci/pc-1/

https://www.vishay.com/docs/28766/mbxsma.pdf

http://www.ti.com/tool/TINA-TI version Tina90-TI en.9.3.200.277

https://www.rigolna.com/products/dc-power-loads/dp800/

Downloads

Published

2019-12-30

How to Cite

CSILLAG, L., TUNYAGI, A., LÁZÁR, Z., & SIMON, A. (2019). HOW SHORT IS A SEMI-INFINITE LADDER? AN EXPERIMENTAL APPROACH. Studia Universitatis Babeș-Bolyai Physica, 64(1-2), 11–26. https://doi.org/10.24193/subbphys.2019.02

Issue

Section

Articles