HOW SHORT IS A SEMI-INFINITE LADDER? AN EXPERIMENTAL APPROACH
DOI:
https://doi.org/10.24193/subbphys.2019.02Keywords:
semi-infinite resistive ladder, equivalent resistance, experimental approach, analytical solutionAbstract
This paper presents the challenging problem of solving of a semi-infinite resistive ladder and highlights some traps and tricks of the subject. The topic is approached from and experimental point of view by solving it using computation, simulation and measurements. All the work was done with the hope that it can be an aid for Physics or Electrical Engineering teachers, students eager to learn and understand more, and to be usefully incorporated into the educational process of talented pupils and students.References
D. Atkinson, F. J. van Steenwijk, Am. J. Phys. 67, 486 (1999)
A. H. Zemanian, IEEE Trans. on Circuits and Systems, 35 (11), 1346 (1988)
M. Jeng, Am. J. Phys., 68, 37 (2000)
B. Denardo, J. Earwood, V. Sazonova, Am. J. Phys., 67, 981 (1999)
A. Saggese, R. De Luca, Eur. J. Phys., 35 (2014) 065006
R. H. March, Am. J. Phys., 61, 900 (1993)
S. S. Sidhu, Am. J. Phys., 62, 815 (1994)
D. Thompson, Am. J. Phys., 65, 88 (1997)
F. J. van Steenwijk, Am. J. Phys., 66, 90 (1998)
R. E. Aitchison, Am. J. Phys., 32, 566 (1964)
F. J. Bartis, Am. J. Phys., 35, 354 (1967)
L. Lavatelli, Am. J. Phys., 40, 1246 (1972)
G. Venezian, Am. J. Phys., 62, 1000 (1994)
H. A. Mavromatis, Am. J. Phys., 63, 85 (1995)
C. H. Wörner, The Physics Teacher, 20, 477 (1982)
P. P. Ong, The Physics Teacher, 21, 459 (1983)
B. Scott, The Physics Teacher, 26, 578 (1988)
J. Higbie, The Physics Teacher, 35, 464 (1997)
T. P. Srinivasan, Am. J. Phys., 60, 461 (1992)
R. M. Dimeo, Am. J. Phys., 68, 669 (2000)
J. Cserti, Am. J. Phys., 68, 896 (2000)
C. E. Mungan, T. C. Lipscombe, Eur. J. Phys., 33, 531 (2012)
R. Beltrán, F. Gómez, R. Franco, J. A. Rodríguez, F. Fajardo, Lat. Am. J. Phys. Educ., 7 (4), 621 (2013)
R. Ph. Feynman, R. B. Leighton, M. Sands, “The Feynman Lectures on Physics vol. II”, Addison-Wesley Publishing Company, 1964, pp. 22-12–22-14
E. M. Purcell, “Electricity and Magnetism, Berkeley Physics Course - vol. 2”, McGraw-Hill, New York, 1985, pp. 167–168
M. Kagan, X. Wang, arXiv:1507.08221v1 [physics.gen-ph] 10 Jul 2015
C. Bender, The Fibonacci Quarterly, 31 (3), 227 (1993)
A. M. Morgan-Voyce, IRE Transactions on Circuit Theory, 6 (3), 321 (1959)
Richard A. Dunlap, “The Golden Ratio and Fibonacci Numbers”, World Scientific, 1997, Chapter 1-2, Chapter 4
A. D’Amico, M. Faccio, G. Ferri, Il Nuovo Cimento D, 12(8), 1165, (1990)
R. Lojacono, C. Falconi, G. Ferri, E. Lo Castro, M. Salmeri, A. Mencattini, M. Santonic, G. Pennazza, A. D’Amico, World Journal of Research and Review (WJRR), 3 (6), 21 (2016)
J. R. Taylor, “An Introduction to Error Analysis, The Study of Uncertainties in Physical Measurements”, University Science Books, USA, 1997, p. 75
G. Van Rossum, “The Python Language Reference Manual” Network Theory Ltd., 2003
http://atom.ubbcluj.ro/alpar/Extra/codes/
https://www.siglent.eu/siglent-sdm-3055.html
https://www.tme.eu/en/details/pc-01lam/universal-pcbs/sci/pc-1/
https://www.vishay.com/docs/28766/mbxsma.pdf
http://www.ti.com/tool/TINA-TI version Tina90-TI en.9.3.200.277
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Physica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.