PERPENDICULAR MAGNETIC ANISOTROPY AND ITS ELECTRIC FIELD MANIPULATION IN MAGNETIC MULTILAYERED HETEROSTRUCTURES

Authors

  • Roxana-Alina ONE Babeș-Bolyai University, Faculty of Physics, 1 M. Kogălniceanu, 400084, Cluj-Napoca, Romania https://orcid.org/0000-0003-1637-7200
  • Sever MICAN Babeș-Bolyai University, Faculty of Physics, 1 M. Kogălniceanu, 400084, Cluj-Napoca, Romania https://orcid.org/0000-0002-7186-5883
  • Coriolan Viorel TIUSAN Babeș-Bolyai University, Faculty of Physics, 1 M. Kogălniceanu, 400084, Cluj-Napoca, Romania; Technical University of Cluj-Napoca, Department of Physics and Chemistry, 28 Memorandumului, 400114, Cluj-Napoca, Romania; National Center of Scientific Research, France. * Corresponding author: coriolan.tiusan@ubbcluj.ro https://orcid.org/0000-0003-1338-3867

DOI:

https://doi.org/10.24193/subbphys.2021.09

Keywords:

perpendicular magnetic anisotropy, electric field control of PMA, magnetic tunnel junctions, magnetic multilayer heterostructures, atomistic magnetic simulations.

Abstract

Understanding of underlying physics related to the Perpendicular Magnetic Anisotropy (PMA) in magnetic heterostructures represents a major issue for its exploit in random-access memory (MRAM) devices. Using ab-initio analysis, we reveal some basic aspects related to the anatomy of PMA and its variation with electric field in various X/Fe/MgO(001) multilayer configurations (X=Cr, Au, V, Ag, Pt, Pd,…) compatible with standard experimental architectures of magnetic tunnel junction devices. Our study quantifies and underlines the significant role of the Rashba interfacial field on PMA. We explain and correlate the sign, the magnitude, and the electric field dependence of the PMA, the Rashba coefficient αR and the Dzyaloshinskii–Moriya (DMI) asymmetric exchange interaction parameter. Moreover, when varying the Fe thickness in X/Fe/MgO(001) systems, we observe oscillations of PMA with the number of Fe monolayers, explained within the framework of quantum wells of the Δ1 Bloch symmetry electrons in Fe. Further atomistic micromagnetic simulations including different Fe layer thicknesses and the corresponding PMA predict macroscopic magnetization characteristics in realistic experimental systems.

References

B. Dieny, M. Chshiev, Rev. of Mod. Phys., vol. 89, (2017).

D. C. M. Yamanouchi, F. Matsukura, H. Ohno, Science, 301, 943-945 (2003).

S. Kanai, F. Matsukura, H. Ohno, Appl. Phys. Lett., 108, 192406 (2016).

C. Grezes, F. Ebrahimi, J. G. Alzate, X. Cai, J. A. Katine, J. Langer, B. Ocker, P. Khalili Amiri, K. L. Wang, Appl. Phys. Lett., 108, 012403 (2016).

E. G. V. Krizakova, G. Sala, F. Yasin, S. Couet, G. S. Kar, K. Garello, P. Gambardella, Nature Nanotechnology, 15, 111 (2020).

M. K. Niranjan, C-G. Duan, S. S. Jaswal, E. Y. Tsymbal, Appl. Phys. Lett., 96, 222504 (2010).

K. H. He, J. S. Chen, Y. P. Feng, Appl. Phys. Lett., 99, 072503 (2011).

F. Ibrahim, H. Yang, A. Halla, M. Chshiev, Phys. Rev. B, 93, 014429 (2016).

S. E. Barnes, J. Ieda, S. Maekawa, Sci. Rep., 4, 4105 (2015).

T. Srivastava, M. Schott, R. Juge, V. Křižáková, M. Belmeguenai, Y. Roussigné, A. Bernand-Mantel, L. Ranno, S. Pizzini, S-M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin, M. Chshiev, C. Baraduc, H. Béa, Nano Lett., 18, 4871 (2018).

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, L. D. Marks, J. Chem. Phys., 152, 074101 (2020).

X. Wang, D-S. Wang, R. Wu, A.J. Freeman, J. Magn. Magn. Mater., 159, 337 (1996).

J. Stahn, U. Pietsch, P. Blaha, and K. Schwarz, Phys. Rev. B, 63, 165205, (2001).

G. Nicolay, F. Reinert, S. Hufner, P. Blaha, Phys. Rev. B, 65, 033407 (2002).

F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, S. Hufner, Phys. Rev. B 63, 115415 (2001).

R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, R. W. Chantrell, J. Phys.: Condens. Matter, 26, 103202 (2014).

W.F. Brown Jr, IEEE Trans. Magn. 15, 1196 (1979).

H. Yang, O. Boulle, V. Cros, A. Fert, M. Chshiev, Sci. Rep., 8, 12326 (2018).

C. Antoniak, J. Lindner, K. Fauth, J.-U. Thiele, J. Minár, S. Mankovsky, H. Ebert, H. Wende, M. Farle, Phys. Rev. B, 82, 064403 (2010).

S. S. P. Parkin, M. Hayashi, L. Thomas, Science, 320, 190 (2008).

J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotechnol., 8, 839 (2013).

F. Greullet, C. Tiusan, F. Montaigne, M. Hehn, D. Halley, O. Bengone, M. Bowen, and W. Weber, Phys. Rev. Let. 99, 187202, (2007).

Downloads

Published

2021-12-30

How to Cite

ONE, R.-A., MICAN, S., & TIUSAN, C. V. (2021). PERPENDICULAR MAGNETIC ANISOTROPY AND ITS ELECTRIC FIELD MANIPULATION IN MAGNETIC MULTILAYERED HETEROSTRUCTURES. Studia Universitatis Babeș-Bolyai Physica, 66(1-2), 91–110. https://doi.org/10.24193/subbphys.2021.09

Issue

Section

Articles