MAGNETIC PROPERTIES OF (Fe,Co)5SiB2 ALLOYS BY W DOPING
DOI:
https://doi.org/10.24193/subbphys.2022.03Keywords:
ab-initio calculations, B. magneto-crystalline anisotropy, C. magnetization, D. rare earth free magnetsAbstract
The intrinsic magnetic properties (magnetic moments, magneto-crystalline anisotropy, Curie temperatures) of the Fe5-x-yCoyWxSiB2 alloys have been calculated using the spin-polarized relativistic Korringa-Kohn-Rostoker (SPRKKR) band structure method. Our calculations show that for several compounds with x ≥0.5, the magnetocrystalline anisotropy energy (MAE) became axial. Also, theoretical calculations for Fe4WSiB2 compound found a magnetization decrease (with about 20%), a Curie temperature decrease of about 30% but an increased axial magnetocrystalline anisotropy compared with the corresponding values for Fe5SiB2. Several Fe5-xWxSiB2 alloys (x = 0, 0.1, 0.2, 0.5, 1) have been prepared by arc melting of corresponding high purity elements in Ar controlled atmosphere. Composition analysis of the Fe5-xWxSiB2 alloys found an impurity phase along with the tetragonal I4/mcm phase of pure Fe5SiB2. The magnetic measurements found the decrease of the magnetization any significant increase of the coercivity due to W doping.
References
J. Cui, M. Kramer, L. Zhou et al, Acta Materialia 158 118 (2018).
R. Hirian, O. Isnard, V. Pop and D. Benea, J. Magn. Magn. Mater. 505 166748 (2020).
R. Skomski and J. M. D. Coey, Scripta Mater. 112 3 (2016).
J. Thakur, P. Rani, M. Tomar, V. Gupta and M. K. Kashyap, AIP Conf. Proc. 2093, 020012 (2019)
H. Ebert, D. Ködderitzsch and J. Minar, Rep. Prog. Phys, 74 096501 (2011).
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 3865 (1996).
H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).
J. S. Faulkner, Prog. Mater. Sci. 27 1 (1982); J. S. Faulkner and G. M. Stocks, Phys. Rev. B 21 3222 (1980).
J. B. Staunton, L. Szunyogh, A. Buruzs, B. L. Gyorffy, S. Ostanin, and L. Udvardi, Phys. Rev. B 74 144411 (2006).
S. Mankovsky, S. Polesya, J. Minar, F. Hoffmann, D.H. Back and H. Ebert, Phys. Rev. B 84 201201 (2011).
A.I. Liechtenstein, M. I. Katsnelson,V. P. Antropov and V. A. Gubanov, J. Magn. Magn. Mater. 67 65 (1987).
P. Nieves, S. Arapan, J. Maudes-Raedo, R. Marticorena-Sánchez, N.L. Del Brío, A. Kovacs, C. Echevarria-Bonet, D. Salazar, J. Weischenberg, H. Zhang, O.Yu. Vekilova, R. Serrano-López, J.M. Barandiaran, K. Skokov, O. Gutfleisch, O. Eriksson, H.C. Herper, T. Schrefl, S. Cuesta-López, Comput. Mat. Sci. 168 188 (2019).
LMGP-Suite of Programs for the interpretation of X-ray Experiments, by Jean Laugier and Bernard Bochu, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Grenoble, France. WWW: http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.
M. Werwiński, S. Kontos, K. Gunnarsson, P. Svedlindh, J. Cedervall, V. Höglin, M. Sahlberg, A. Edström, O. Eriksson, and J. Rusz, Phys. Rev B 93 174412 (2016).
K. Fukuma et al., J. Phys. Soc. Jpn. 80 024702 (2011).
T.B. Massalski, et al., Binary Alloy Phase Diagrams, ASM International (1990).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Physica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.