SUSPENSION BASED ON A MIXTURE OF TITANIA-SILICA-FUNCTIONALIZED GRAPHENE OXIDE FOR SURFACE CONSOLIDATION OF HISTORICAL ANDESITE STONE AND MORTAR

Authors

  • Liviu Cosmin COTEȚ Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University; Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Cluj-Napoca, Romania. Email: ccosmin@chem.ubbcluj.ro. https://orcid.org/0000-0001-5306-2414
  • C. SĂLĂGEAN Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University; Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania. Corresponding author: cosmin.cotet@ubbcluj.ro.
  • Alin Grig MIHIȘ Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Cluj-Napoca, Romania. Corresponding author: cosmin.cotet@ubbcluj.ro. https://orcid.org/0000-0002-2344-9973
  • István-Attila SZÉKELY Faculty of Physics, Babes-Bolyai University; Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University Cluj-Napoca, Romania. Email: szistike@yahoo.com. https://orcid.org/0000-0002-8118-7107
  • Zsejke Réka TÓTH Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: tothzsejkereka@yahoo.com. https://orcid.org/0000-0001-5664-2481
  • Lucian BAIA Institute of Research-Development-Innovation in Applied Natural Sciences; Faculty of Physics, Babes-Bolyai University; Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: lucian.baia@ubbcluj.ro. https://orcid.org/0000-0003-3196-4868
  • Monica BAIA Institute of Research-Development-Innovation in Applied Natural Sciences; Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania. Email: monica.baia@ubbcluj.ro. https://orcid.org/0000-0001-6820-2491
  • Gabriela OLTEANU S.C. Duct S.R.L., Bucuresti, Romania. Corresponding author: cosmin.cotet@ubbcluj.ro.
  • Iulian Daniel OLTEANU S.C. Duct S.R.L., Bucuresti, Romania. Corresponding author: cosmin.cotet@ubbcluj.ro.
  • Virginia DANCIU Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania. Email: vdanciu@chem.ubbcluj.ro. https://orcid.org/0000-0003-2479-5330

DOI:

https://doi.org/10.24193/subbphys.2022.06

Keywords:

functionalized graphene oxide, surface consolidation, historical stones, historical mortars

Abstract

Three-components suspension, based on a mixture of titania (TiO2)-silica (SiO2)-functionalized graphene oxide (GO) is prepared and used for surface consolidation of historical andesite stone and mortar. For comparison, mono- and bi-component suspensions are also involved in this study. In order to increase the attachment capacity of GO to substrate with silicon, GO functionalized with (3-aminopropyl) triethoxysilane (GO-APTES) was involved. Unmodified and modified by painting with prepared suspensions andesite and mortar samples were investigated by microscopy (Optic and SEM-EDX), XRD, FT-IR and Raman spectra before and after 6 months of exposure to ambient conditions. After investigation, even the amount of used consolidant suspension was low, the stability of the modified samples was found that remains constant and in a long time it is possibly to reach even a higher stability level. This approach provides the idea that the prepared suspension could be an interesting option to be involved in stone and mortar consolidation-restoration field.

References

L. Dei and B. Salvadori, “Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay,” J. Cult. Herit., vol. 7, no. 2, pp. 110–115, 2006, doi: 10.1016/j.culher.2006.02.001.

A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., vol. 95, no. 3, pp. 735–758, 1995, doi: 10.1021/cr00035a013.

P. Munafò, G. B. Goffredo, and E. Quagliarini, “TiO2-based nanocoatings for preserving architectural stone surfaces: An overview,” Constr. Build. Mater., vol. 84, pp. 201–218, 2015, doi: 10.1016/j.conbuildmat.2015.02.083.

A. Sierra-Fernandez, L. S. Gomez-Villalba, M. E. Rabanal, and R. Fort, “New nanomaterials for applications in conservation and restoration of stony materials: A review,” Mater. Constr., vol. 67, no. 325, 2017, doi: 10.3989/mc.2017.07616.

R. Wang et al., “Light-induced amphiphilic surfaces [4],” Nature, vol. 388, no. 6641, pp. 431–432, 1997, doi: 10.1038/41233.

A. Maury and N. de Belie, “State of the art of TiO2 containing cementitious materials: Self-cleaning properties,” Mater. Constr., vol. 60, no. 298, pp. 33–50, 2010, doi: 10.3989/mc.2010.48408.

J. Chen and C. sun Poon, “Photocatalytic construction and building materials: From fundamentals to applications,” Build. Environ., vol. 44, no. 9, pp. 1899–1906, 2009, doi: 10.1016/j.buildenv.2009.01.002.

M. Pelaez et al., “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B Environ., vol. 125, pp. 331–349, 2012, doi: 10.1016/j.apcatb.2012.05.036.

O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium

dioxide,” Prog. Solid State Chem., vol. 32, no. 1–2, pp. 33–177, 2004, doi: 10.1016/j.progsolidstchem.2004.08.001.

M. Batzill, “Fundamental aspects of surface engineering of transition metal oxide photocatalysts,” Energy Environ. Sci., vol. 4, no. 9, pp. 3275–3286, 2011, doi: 10.1039/c1ee01577j.

J. Schneider et al., “Schneider et al. - 2014 - Understanding TiO 2 Photocatalysis Mechanisms and Materials(2).pdf,” Chem. Rev., vol. 114, no. 9, p. 9919−9986, 2014.

J. Chen, F. Qiu, W. Xu, S. Cao, and H. Zhu, “Recent progress in enhancing photocatalytic efficiency of TiO2-based materials,” Appl. Catal. A Gen., vol. 495, pp. 131–140, 2015, doi: 10.1016/j.apcata.2015.02.013.

X. Kang, S. Liu, Z. Dai, Y. He, X. Song, and Z. Tan, Titanium dioxide: From engineering to applications, vol. 9, no. 2. 2019.

N. Zhang, Y. Zhang, and Y. J. Xu, “Recent progress on graphene-based photocatalysts: Current status and future perspectives,” Nanoscale, vol. 4, no. 19, pp. 5792–5813, 2012, doi: 10.1039/c2nr31480k.

S. Linley, Y. Liu, C. J. Ptacek, D. W. Blowes, and F. X. Gu, “Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties,” ACS Appl. Mater. Interfaces, vol. 6, no. 7, pp. 4658–4668, 2014, doi: 10.1021/am4039272.

E. SOLANO BERRAL, “Sobre un caso de cervicitis gonocócia y gestación.,” Medicamenta (Madr)., vol. 10, no. 215, p. 224, 1952.

J. Shen, B. Yan, M. Shi, H. Ma, N. Li, and M. Ye, “One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets,” J. Mater. Chem., vol. 21, no. 10, pp. 3415–3421, 2011, doi: 10.1039/c0jm03542d.

D. Feng et al., “Portland cement paste modified by TiO2 nanoparticles: A microstructure perspective,” Ind. Eng. Chem. Res., vol. 52, no. 33, pp. 11575–11582, 2013, doi: 10.1021/ie4011595.

Z. Li, S. Ding, X. Yu, B. Han, and J. Ou, “Multifunctional cementitious composites modified with nano titanium dioxide: A review,” Compos. Part A Appl. Sci. Manuf., vol. 111, pp. 115–137, 2018, doi: 10.1016/j.compositesa.2018.05.019.

C. Mendoza, A. Valle, M. Castellote, A. Bahamonde, and M. Faraldos, “TiO2 and TiO2-SiO2 coated cement: Comparison of mechanic and photocatalytic properties,” Appl. Catal. B Environ., vol. 178, pp. 155–164, 2015, doi: 10.1016/j.apcatb.2014.09.079.

A. Naumann, I. Stephan, and M. Noll, “Material resistance of weathered wood-plastic composites against fungal decay,” Int. Biodeterior. Biodegrad., vol. 75, pp. 28–35, 2012, doi: 10.1016/j.ibiod.2012.08.004.

C. Kapridaki, L. Pinho, M. J. Mosquera, and P. Maravelaki-Kalaitzaki, “Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings,” Appl. Catal. B Environ., vol. 156–157, pp. 416–427, 2014, doi: 10.1016/j.apcatb.2014.03.042.

S. Khannyra, M. Luna, M. L. A. Gil, M. Addou, and M. J. Mosquera, “Self-cleaning durability assessment of TiO2/SiO2 photocatalysts coated concrete: Effect of indoor and outdoor conditions on the photocatalytic activity,” Build. Environ., vol. 211, p. 108743, 2022, doi: 10.1016/j.buildenv.2021.108743.

M. Zhang, L. Shi, S. Yuan, Y. Zhao, and J. Fang, “Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol,” J. Colloid Interface Sci., vol. 330, no. 1, pp. 113–118, 2009, doi: 10.1016/j.jcis.2008.10.038.

X. Li and J. He, “Synthesis of Raspberry-Like SiO 2 − TiO 2 Nanoparticles toward Antire fl ective and Self-Cleaning Coatings,” 2013.

R. Fateh, R. Dillert, and D. Bahnemann, “Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate,” Langmuir, vol. 29, no. 11, pp. 3730–3739, 2013, doi: 10.1021/la400191x.

M. C. Dudescu, I. Olteanu, L. C. Cotet, and V. Danciu, “APTES Functionalized Graphene Oxide for Silane-Based Mortar Performances,” vol. 20, no. xx, pp. 1–9, 2020, doi: 10.1166/jnn.2020.18958.

L. C. Cotet, K. Magyari, M. Todea, M. C. Dudescu, V. Danciu, and L. Baia, “Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water-ethanol suspension,” J. Mater. Chem. A, vol. 5, no. 5, pp. 2132–2142, 2017, doi: 10.1039/C6TA08898H.

D. C. Marcano et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, 2010, doi: 10.1021/nn1006368.

M. Pavlovic, M. Dojcinovic, R. Prokic-Cvetkovic, L. Andric, Z. Ceganjac, and L. Trumbulovic, “Cavitation wear of basalt-based glass ceramic,” Materials (Basel)., vol. 12, no. 9, 2019, doi: 10.3390/ma12091552.

A. T. Djowe, S. Laminsi, D. Njopwouo, E. Acayanka, and E. M. Gaigneaux, “Surface modification of smectite clay induced by non-thermal gliding arc plasma at atmospheric pressure,” Plasma Chem. Plasma Process., vol. 33, no. 4, pp. 707–723, 2013, doi: 10.1007/s11090-013-9454-8.

Y. Liu, F. Zeng, B. Sun, P. Jia, and I. T. Graham, “Structural characterizations of aluminosilicates in two types of fly ash samples from Shanxi Province, North China,” Minerals, vol. 9, no. 6, pp. 1–16, 2019, doi: 10.3390/min9060358.

L. Y. Yu, Z. X. Huang, and M. X. Shi, “Synthesis and characterization of silica by sol-gel method,” Adv. Mater. Res., vol. 1030–1032, pp. 189–192, 2014, doi: 10.4028/www.scientific.net/AMR.1030-1032.189.

J. T. Kloprogge, Infrared and Raman Spectroscopies of Pillared Clays, 1st ed., vol. 8. Elsevier Ltd., 2017.

A. Eisazadeh, K. A. Kassim, and H. Nur, “Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays,” Appl. Clay Sci., vol. 67–68, pp. 5–10, 2012, doi: 10.1016/j.clay.2012.05.006.

R. Babilas, A. Bajorek, A. Radoń, and R. Nowosielski, “Corrosion study of resorbable Ca60Mg15Zn25 bulk metallic glasses in physiological fluids,” Prog. Nat. Sci. Mater. Int., vol. 27, no. 5, pp. 627–634, 2017, doi: 10.1016/j.pnsc.2017.08.011.

M. A. Legodi, D. De Waal, J. H. Potgieter, and S. S. Potgieter, “Technical note rapid determination of CaCo3 in mixtures utilising FT-IR spectroscopy,” Miner. Eng., vol. 14, no. 9, pp. 1107–1111, 2001, doi: 10.1016/S0892-6875(01)00116-9.

F. B. Reig, J. V. G. Adelantado, and M. C. M. Moya Moreno, “FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples,” Talanta, vol. 58, no. 4, pp. 811–821, 2002, doi: 10.1016/S0039-9140(02)00372-7.

A. V. Oancea et al., “Multi-analytical characterization of Cucuteni pottery,” J. Eur. Ceram. Soc., vol. 37, no. 15, pp. 5079–5098, 2017, doi: 10.1016/j.jeurceramsoc.2017.07.018.

B. J. Saikia, “Spectroscopic Estimation of Geometrical Structure Elucidation in Natural SiO2 Crystal,” J. Mater. Phys. Chem., vol. 2, no. 2, pp. 28–33, 2014, doi: 10.12691/jmpc-2-2-3.

J. J. Freeman, A. Wang, K. E. Kuebler, B. L. Jolliff, and L. A. Haskin, “Characterization of natural feldspars by raman spectroscopy for future planetary exploration,” Can. Mineral., vol. 46, no. 6, pp. 1477–1500, 2008, doi: 10.3749/canmin.46.6.1477.

A. I. Apopei, V. Diaconu, C. Muzeal, J. Neamț, and A. Buzatu, “The composition and source of the raw material of two stone axes of Late Bronze Age from Neamț County (Romania)-A Raman study,” no. March, 2018, [Online]. Available: http://geology.uaic.ro/auig/.

Y. Zhang, C. K. Chan, J. F. Porter, and W. Guo, “Powders Prepared By Vapor Hydrolysis,” vol. 13, no. 9, 1998.

F. C. Donnelly, F. Purcell-Milton, V. Framont, O. Cleary, P. W. Dunne, and Y. K. Gun’ko, “Synthesis of CaCO3 nano- and micro-particles by dry ice carbonation,” Chem. Commun., vol. 53, no. 49, pp. 6657–6660, 2017, doi: 10.1039/c7cc01420a.

J. R. Johnson, S. J. Jaret, T. D. Glotch, and M. Sims, “Raman and Infrared Microspectroscopy of Experimentally Shocked Basalts,” J. Geophys. Res. Planets, vol. 125, no. 2, pp. 0–3, 2020, doi: 10.1029/2019JE006240.

S. Ortaboy et al., “Effects of CO2 and temperature on the structure and chemistry of C-(A-)S-H investigated by Raman spectroscopy,” RSC Adv., vol. 7, no. 77, pp. 48925–48933, 2017, doi: 10.1039/c7ra07266j.

R. Taziwa, E. Meyer, and N. Takata, “Structural and Raman Spectroscopic Characterization of C-TiO 2 Nanotubes Synthesized by a Template-Assisted Sol-Gel Technique,” J. Nanosci. Nanotechnol. Res., vol. 1, no. 1, pp. 1–11, 2017, doi: 10.4229/EUPVSEC20172017-3DV.2.103.

R. Kaveh, M. Mokhtarifar, M. Bagherzadeh, A. Lucotti, M. V. Diamanti, and M. P. Pedeferri, “Magnetically recoverable TiO2/SiO2/γ-Fe2O3/rGO composite with significantly enhanced UV-visible light photocatalytic activity,” Molecules, vol. 25, no. 13, 2020, doi: 10.3390/molecules25132996.

G. Marucci, A. Beeby, A. W. Parker, and C. E. Nicholson, “Raman spectroscopic library of medieval pigments collected with five different wavelengths for investigation of illuminated manuscripts,” Anal. Methods, vol. 10, no. 10, pp. 1219–1236, 2018, doi: 10.1039/c8ay00016f.

O. F. S. Polymorphs, “DEPENDENCE SPECTRA a resolution,” pp. 347–359, 1987.

P. Schmidt, L. Bellot-Gurlet, A. Slodczyk, and F. Fröhlich, “A hitherto unrecognised band in the Raman spectra of silica rocks: Influence of hydroxylated Si-O bonds (silanole) on the Raman moganite band in chalcedony and flint (SiO 2),” Phys. Chem. Miner., vol. 39, no. 6, pp. 455–464, 2012, doi: 10.1007/s00269-012-0499-7.

M. Musielak, A. Gagor, B. Zawisza, E. Talik, and R. Sitko, “Graphene Oxide/Carbon Nanotube Membranes for Highly Efficient Removal of Metal Ions from Water,” ACS Appl. Mater. Interfaces, vol. 11, no. 31, pp. 28582–28590, 2019, doi: 10.1021/acsami.9b11214.

Downloads

Published

2022-12-30

How to Cite

COTEȚ, L. C. ., SĂLĂGEAN, C. ., MIHIȘ, A. G. ., SZÉKELY, I.-A. ., TÓTH, Z. R. ., BAIA, L. ., BAIA, M. ., OLTEANU, G. ., OLTEANU, I. D. ., & DANCIU, V. . (2022). SUSPENSION BASED ON A MIXTURE OF TITANIA-SILICA-FUNCTIONALIZED GRAPHENE OXIDE FOR SURFACE CONSOLIDATION OF HISTORICAL ANDESITE STONE AND MORTAR. Studia Universitatis Babeș-Bolyai Physica, 67(1-2), 55–77. https://doi.org/10.24193/subbphys.2022.06

Issue

Section

Articles

Most read articles by the same author(s)