ENHANCING THE PHOTOLUMINESCENCE OF POLYFLUORENE-BASED THIN FILMS VIA ILLUMINATION
DOI:
https://doi.org/10.24193/subbphys.2022.07Keywords:
conjugated polymers, illumination, photoluminescence, β-phase conformationsAbstract
We show in this work that exposing thin films of conjugated poly[9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-diyl] to light under nitrogen atmosphere led to an increase of their emission up to 2.2 folds. This enhancement was due to the appearance of structural changes in the glassy and β-phase conformations induced upon thin film illumination, as revealed by the Franck-Condon analysis of the photoluminescence spectra. Interestingly, the photoluminescence of thin films remained at the enhanced value for 75 days after stopping the illumination, most probably due to the permanent structural changes induced upon illumination.
References
E. Collini and G.D. Scholes, Science, 323, 369–373 (2009).
S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, and K. Müllen, Adv. Mater., 24, 417–420 (2012).
B. Ma, B.J. Kim, L. Deng, D.A. Poulsen, M.E. Thompson, and J.M.J. Fréchet, Macromolecules, 40, 8156–8161 (2007).
E.D. Como, N.J. Borys, P. Strohriegl, M.J. Walter, and J.M. Lupton, J. Am. Chem. Soc., 133, 3690–3692 (2011).
J.C. Bolinger, M.C. Traub, T. Adachi, and P.F. Barbara, Science, 331, 565–567 (2011).
L. Brambilla, M. Tommasini, I. Botiz, K. Rahimi, J.O. Agumba, N. Stingelin, and G. Zerbi, Macromolecules, 47, 6730–6739 (2014).
F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, Nat. Phys., 2, 32–35 (2006).
R.A. Segalman, B. McCulloch, S. Kirmayer, and J.J. Urban, Macromolecules, 42, 9205–9216 (2009).
I. Botiz, J. Mater. Chem. C, 11, 364–405 (2023).
I. Botiz, S. Astilean, and N. Stingelin, Polym. Int., 65, 157–163 (2016).
I. Botiz, P. Freyberg, N. Stingelin, A.C.M. Yang, and G. Reiter, Macromolecules, 46, 2352–2356 (2013).
I. Botiz, P. Freyberg, C. Leordean, A.-M. Gabudean, S. Astilean, A.C.-M. Yang, and N. Stingelin, ACS Appl. Mater. Interfaces, 6, 4974–4979 (2014).
I. Botiz, P. Freyberg, C. Leordean, A.-M. Gabudean, S. Astilean, A.C.-M. Yang, and N. Stingelin, Synth. Met., 199, 33–36 (2015).
B. Morgan and M.D. Dadmun, Eur. Polym. J., 89, 272–280 (2017).
B. Morgan and M.D. Dadmun, Polymer, 108, 313–321 (2017).
X.L. Ho and J.D. White, Chem. Phys. Lett., 735, 136753 (2019).
V. Bliznyuk, S. Carter, J. Scott, G. Klärner, R. Miller, and D. Miller, Macromolecules, 32, 361–369 (1999).
M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blässing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, and A. Winnacker, J. Appl. Phys., 87, 4467–4475 (2000).
S. Napolitano, E. Glynos, and N.B. Tito, Rep. Prog. Phys., 80, 036602 (2017).
J.L. Keddie, R.A. Jones, and R.A. Cory, Europhys. Lett., 27, 59–64 (1994).
M. Chowdhury and R. Priestley, Proc. Natl. Acad. Sci. USA, doi/10.1073/pnas.1704886114 (2017).
D. Long and F. Lequeux, Eur. Phys. J. E, 4, 371–387 (2001).
J.A. Forrest and K. Dalnoki-Veress, Adv. Colloid Interface Sci., 94, 167–195 (2001).
K.-P. Tung, C.-C. Chen, P. Lee, Y.-W. Liu, T.-M. Hong, K.C. Hwang, J.H. Hsu, J.D. White, and A.C.-M. Yang, ACS Nano, 5, 7296–7302 (2011).
P.W. Lee, W.-C. Li, B.-J. Chen, C.-W. Yang, C.-C. Chang, I. Botiz, G. Reiter, Y.T. Chen, T.L. Lin, J. Tang, J.-H. Jou, and A.C.-M. Yang, ACS Nano, 7, 6658–6666 (2013).
U. Scherf and E.J. List, Adv. Mater., 14, 477–487 (2002).
D. Neher, Macromol. Rapid Commun., 22, 1365–1385 (2001).
A. Perevedentsev, N. Chander, J. Kim, and D.D. Bradley, J. Polym. Sci. Part B: Polym. Phys., 54, 1995–2006 (2016).
W. Chunwaschirasiri, B. Tanto, D. Huber, and M. Winokur, Phys. Rev. Lett., 94, 107402 (2005).
M. Grell, D. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. Woo, and M. Soliman, Acta Polym., 49, 439–444 (1998).
C. Liu, Q. Wang, H. Tian, J. Liu, Y. Geng, and D. Yan, Macromolecules, 46, 3025–3030 (2013).
A. Perevedentsev, P.N. Stavrinou, D.D.C. Bradley, and P. Smith, J. Polym. Sci. Part B: Polym. Phys., 53, 1481–1491 (2015).
X. Li, Z. Bai, B. Liu, T. Li, and D. Lu, J. Phys. Chem. C, 121, 14443–14450 (2017).
A.L.T. Khan, M.J. Banach, and A. Köhler, Synth. Met., 139, 905–907 (2003).
A.L.T. Khan, P. Sreearunothai, L.M. Herz, M.J. Banach, and A. Köhler, Phys. Rev. B, 69, 085201 (2004).
I. Botiz, M.-A. Codescu, C. Farcau, C. Leordean, S. Astilean, C. Silva, and N. Stingelin, J. Mater. Chem. C, 5, 2513–2518 (2017).
M. Ariu, D. Lidzey, M. Sims, A. Cadby, P. Lane, and D. Bradley, J. Phys.: Condens. Matter, 14, 9975 (2002).
A. Cadby, P. Lane, H. Mellor, S. Martin, M. Grell, C. Giebeler, D. Bradley, M. Wohlgenannt, C. An, and Z. Vardeny, Phys. Rev. B, 62, 15604 (2000).
C. Rothe, S. King, F. Dias, and A. Monkman, Phys. Rev. B, 70, 195213 (2004).
M. Ariu, M. Sims, M. Rahn, J. Hill, A. Fox, D. Lidzey, M. Oda, J. Cabanillas-Gonzalez, and D. Bradley, Phys. Rev. B, 67, 195333 (2003).
C. Yang, Z. Vardeny, A. Köhler, M. Wohlgenannt, M.K. Al-Suti, and M.S. Khan, Phys. Rev. B, 70, 241202 (2004).
Q. Zhang, L. Chi, G. Hai, Y. Fang, X. Li, R. Xia, W. Huang, and E. Gu, Molecules, 22, 315 (2017).
T. Tromholt, M.V. Madsen, J.E. Carle, M. Helgesen, and F.C. Krebs, J. Mater. Chem., 22, 7592–7601 (2012).
S. Alem, S. Wakim, J. Lu, G. Robertson, J. Ding, and Y. Tao, ACS Appl. Mater. Interfaces, 4, 2993–2998 (2012).
A. Rivaton, S. Chambon, M. Manceau, J.-L. Gardette, N. Lemaître, and S. Guillerez, Polymer Degradation and Stability, 95, 278–284 (2010).
M. Jørgensen, K. Norrman, and F.C. Krebs, Sol. Energy Mater. Sol. Cells, 92, 686–714 (2008).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Physica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.