MODELING OF CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS SCHEME SIMULATION FOR Fe⁶⁺ DOPED IN K₂MO₄ (M= Cr, S, Se)
Keywords:
Fe⁶⁺, K₂SO₄, K₂CrO₄, K₂SeOv, crystal field parameters, energy levels.Abstract
In this paper we report the results of a detailed comparative crystal field analysis of the crystal field parameters and energy level schemes, for all three above mentioned materials. The crystal structure data was used to calculate the crystal field parameters in the framework of exchange charge model using the Symmetry Adapted Axis System centered at the impurity ion. A thorough consideration of the impurity center symmetry was performed and the calculated crystal field parameters were used to diagonalize the crystal field Hamiltonian for each system. Energy levels obtained in this way were compared with the corresponding experimental data to yield good agreement between the theoretical and experimental results.
References
T.C. Brunold, A. Hauser, H.U. Güdel, J. Lumin. 59, 321 (1994).
S. Kück, Appl. Phys. B72, 515 (2001).
L. Di Sipio, G. De Michelis, E. Baiocc, and G. Ingletto, Transition Met. Chem. 5, 164 (1980).
T.C. Brunold, H.U. Güdel, S. Kück and G. Hüber, J. Lumin. 65, 293 (1996).
D. Reinen, W. Rauw, U. Kesper, M. Atanasov, H.U. Gudel, M. Hazenkamp, U. Oetliker, J. All. Comp. 246, 193 (1997).
B. Wagner, D. Reinen, Th. C. Brunold and H.U. Gudel, Inorg. Chem. 34, 1934 (1995).
K. Wissing, M.T. Barriuso, J.A. Aramburu and M. Moreno, J. Chem. Phys. 111(22), 10217 (1999).
A. Al-Abdalla, L. Seijo and Z. Barandiaran, J. Chem. Phys. 109(15), 6396 (1999).
B.Z. Malkin, in A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-Earth Ions, North-Holland, Amsterdam, 1987, p. 33.
C. Rudowicz, J. Qin, J. Lumin. 110, 39 (2004).
E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177 (1974).
International Tables for Crystallography, Ed. T. Hahn, Vol. A, Springer Verlag, Berlin, 2006, p. 298.
J.A. Mc Ginnety, Acta Crystall. B28, 2845 (1972).
K. Ojima, Y. Nishihata, A. Sawada, Acta Crystall. B51, 287 (1995).
R.W.G. Wyckoff, Crystal Structures, vol. 3, Interscience Publishers, Inc., New York, 1965, p. 95.
N. Yamada, Y. Ono, and T. Ikeda, J. Phys. Soc. Japan, 53, 2565 (1984).
M.G. Brik, N.M. Avram and C.N. Avram Exchange charge model of crystal field for 3d ions, in: N.M. Avram and M.G. Brik (Eds), Optical Properties of 3d Ions in Crystals-Spectroscopy and Crystal Field Analysis, Tsinghua University Press, Springer, Beijing, Berlin, 2013.
C. Jousseaume, D. Vivien, A. Kahn-Harari, B.Z. Malkin, Opt. Mater. 24, 143 (2003).
N.M. Avram, M.G. Brik, I.V. Kityk, Opt. Mater. 32, 1668 (2010).
M.G. Brik, C.N. Avram, J. Lumin. 131, 2642 (2011).
A.M. Srivastava, M.G. Brik, J. Lumin. 132, 579 (2012).
N. Mironova-Ulmane, M.G. Brik, I. Sildos, J. Lumin. 135, 74 (2013).
F. Auzel, O. Malta, J. Phys. 44, 201 (1983).
F. Auzel, Opt. Mater. 19, 89 (2002).
C. Rudowicz, Mag. Res. Rev. 13, 32 (1987).
B.N. Figgis, M.A. Hitchman, Ligand field theory and its application, Wiley-VCH, New York, 2000, p 218.
M.G. Brik, N.M. Avram, C. N. Avram, Physica B371, 43 (2006).
E.-L. Andreici, A.S. Gruia, N.M. Avram, Phys. Scr. T149, 014060 (2012).
Yu Ralcenko, A.E. Kramida, J. Reader and NIST ASD Team (2011), NIST Atomic Spectra Database (ver. 5. 0), National Institute of Standards and Technology, Gaithersburg, MD, http://physics.nist.gov/cgi-bin/ASD/energy1.pl
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Physica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.