NANOCRYSTALLINE MAGNETITE - Fe₃O₄ PARTICLES SYNTHESIZED BY MECHANICAL MILLING

Authors

  • T. F. MARINCA Technical University of Cluj-Napoca, Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro
  • H. F. CHICINAȘ Technical University of Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro https://orcid.org/0000-0001-7150-8029
  • B. V. NEAMȚU Technical University of Cluj-Napoca, Romania. Bogdan.Neamtu@stm.utcluj.ro https://orcid.org/0000-0003-0666-8303
  • F. POPA Technical University of Cluj-Napoca, Romania. florin.popa@stm.utcluj.ro https://orcid.org/0000-0002-8849-1902
  • O. ISNARD Université Grenoble Alpes, France. Corresponding author e-mail: viorel.pop@phys.ubbcluj.ro
  • I. CHICINAȘ Technical University of Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro https://orcid.org/0000-0002-6371-0689

Keywords:

mechanical milling, magnetic material, ferrite, magnetite, nanocrystalline.

Abstract

Nanocrystalline magnetite – Fe3O4 has been synthesized in nanocrystalline state by mechanical milling of well crystallized magnetite samples obtained by heat treatment of a stoichiometric mixture of iron and hematite. Upon increasing the milling time, the mean crystallite size of magnetite is diminishing. After only 5 minutes of mechanical milling the crystallites are 110 nm. The milling up to 120 minutes leads to a continuous reduction of crystallites size up to 8 nm. The mechanical milling process induces strains into the lattice and the lattice strains increase drastically in the first 60 minutes of milling, after that a saturation of lattice strains is noticed. During milling a contamination of the powder with elemental iron occurs for milling times larger than 30 minutes. A decrease of the saturation magnetisation is noticed upon increasing the milling time and the decrease is associated with the structural disorder and defects that are induced into the material during milling. A tendency of the magnetisation to become unsaturated is also noticed and it is related to canted spins effect.

Author Biographies

T. F. MARINCA, Technical University of Cluj-Napoca, Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro

Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro

H. F. CHICINAȘ, Technical University of Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro

Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro

B. V. NEAMȚU, Technical University of Cluj-Napoca, Romania. Bogdan.Neamtu@stm.utcluj.ro

Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania. Bogdan.Neamtu@stm.utcluj.ro

F. POPA, Technical University of Cluj-Napoca, Romania. florin.popa@stm.utcluj.ro

Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania. florin.popa@stm.utcluj.ro

O. ISNARD, Université Grenoble Alpes, France. Corresponding author e-mail: viorel.pop@phys.ubbcluj.ro

Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France

CNRS, Institut NEEL, 25rue des martyrs, BP166, F-38042 Grenoble, France

Corresponding author e-mail: viorel.pop@phys.ubbcluj.ro

I. CHICINAȘ, Technical University of Cluj-Napoca, Romania. Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro

Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania.

Corresponding author e-mail: ionel.chicinas@stm.utcluj.ro

References

R.M Cornell, U. Schwertmann, “The iron oxides”, Wiley-VCH Verlag, KGaA, Weinheim, 2003.

A.K. Gupta, M. Gupta, Biomaterials, 26, 3995 (2005).

N.M. Deraz, A. Alarifi, Ceram. Int., 38, 4049 (2012).

B.D. Cullity, C.D. Graham. “Introduction to Magnetic Materials”, 2nd edition, IEEE Press& Wiley, New Jersey, 2009.

D. Wilson, M.A. Langell, Appl. Surf. Sci., 303, 6 (2014).

P. Panneerselvam, N. Morad, K.A. Tan, J. Hazard. Mater., 186, 1608 (2011).

K. Hayashi, W. Sakamoto, T. Yogo, J. Magn. Magn. Mater., 321, 450 (2009).

M. Fang, V. Ström, R.T. Olsson, L. Belova, K.V. Rao, Nanotechnology, 23, 145601 (2012).

C. Li, Y. Wei, A. Liivat, Y. Zhu, J. Zhu, Mater. Lett., 107, 23 (2013).

B. Peeples, V. Goornavar, C. Peeples, D. Spence, V. Parker, C. Bell, D. Biswal, G.T. Ramesh, A. K. Pradhan, J. Nanopart. Res., 16, 2290 (2014).

X. Wu, J. Tang, Y. Zhang, H. Wang, Mater. Sci. Eng., B, 157, 81 (2009).

G.F. Goya, Solid State Commun., 130, 783 (2004).

G.K. Williamson, W.H. Hall, Acta Metall., 1, 22 (1953).

C. Suryanarayana, “Mechanical Alloying and Milling”, Marcel Dekker, New York, 2004.

T.F. Marinca, I. Chicinaş, O. Isnard, V. Popescu, J. Am. Ceram. Soc., 96, 469 (2013).C.N.

Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault, J.-M. Greneche, Journal of Physics: Condensed Matter, 12, 7795 (2000).

Downloads

Published

2015-06-30

How to Cite

MARINCA, T. F., CHICINAȘ, H. F., NEAMȚU, B. V., POPA, F., ISNARD, O., & CHICINAȘ, I. (2015). NANOCRYSTALLINE MAGNETITE - Fe₃O₄ PARTICLES SYNTHESIZED BY MECHANICAL MILLING. Studia Universitatis Babeș-Bolyai Physica, 60(1), 73–81. Retrieved from http://193.231.18.162/index.php/subbphysica/article/view/5924

Issue

Section

Articles