Sources and mechanisms of combined heavy-metal and antibiotic resistance traits in bacteria
DOI:
https://doi.org/10.24193/subbb.2017.1.07Keywords:
agriculture, antibiotic resistance, aquaculture, heavy metal resistance.Abstract
Nowadays, antibiotic resistance poses a great threat to the health of the individuals worldwide. In this context, scientific interest on how bacteria adapt in stress-related environmental conditions like those enriched in heavy metals and how the heavy-metal adaptive mechanism influence the antibiotic resistance is increasing. It was noted that the simultaneous use of heavy metals and antibiotics in agriculture and aquaculture might positively impact the dissemination of the antibiotic resistance genes in the environment. Current knowledge on the sources of simultaneous pollution with heavy metals and antibiotics, the co-occurrence of heavy-metal and antibiotic resistance traits in bacteria altogether with physiological mechanism underlying this phenomenon are overviewed.
References
Altug, G., Balkis, N. (2009) Levels of some toxic elements and frequency of bacterial heavy metal resistance in sediment and sea water, Environ. Monit. Assess., 149:61–69
Amachawadi, R. G., Scott, H. M., Alvarado, C. A., Mainini, T.R., Vinasco, J., Drouillard, J. S., Nagarajaa, T. G. (2013) Occurrence of the transferable copper resistance gene tcrb among fecal Enterococci of U.S. feedlot cattle fed copper-supplemented diets, Appl. Environ. Microbiol., 79:4369–4375
Amador, P. P., Fernandes, R. M., Prudêncio, M. C., Barreto, M. P., Duarte, I. M. (2015) Antibiotic resistance in wastewater: occurrence and fate of Enterobacteriaceae producers of class A and class C β-lactamases, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 50:26-39
Baker-Austin, C., Wright, M. S., Stepanauskas, R., McArthura, J. V. (2006) Co-selection of antibiotic and metal resistance, Trends Microbiol., 14:176-182
Banu, C., Preda, N. Vasu, S. (1982) Produsele alimentare și inocuitatea lor, Ed. Tehnică, București, pp. 404-420 [In Romanian]
Berg, J., Tom-Petersen, A., Nybroe, O. (2005) Copper amendment to agricultural soil selects for bacterial antibiotic resistance in the field, Lett. Appl. Microbiol., 40:146–151
Binggan, W., Linsheng, Y. (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchem. J., 94(2):99-107
Budambula, N. M. L., Kinyua, D. M. (2013) Antibiotic resistance of metal tolerant bacteria isolated from soil in Juja, Kenya, Conference Paper: JKUAT Scientific, Technological and Industrialization Conference November 2013, Nairobi
Chen, S., Li, X., Sun, G., Zhang, Y., Su, J., Ye, J. (2015) Heavy metal induced antibiotic resistance in bacterium LSJC7, Int. J. Mol. Sci., 16:23390-23404
Costa, R. A., Araújo, R. L., Souza, O. V., Silva dos Fernandes, R. H. ,Vieira, R. H. (2015) Antibiotic-Resistant Vibrios in Farmed Shrimp, Biomed. Res. Int., 1-5
D’Costa ,V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., Wright, G. D. (2011) Antibiotic resistance is ancient, Nature, 477:457-461
delCastillo, I., Vizán, J. L., Rodríguez-Sáinz, M. C., Moreno, F. (1991) An unusual mechanism for resistance to the antibiotic coumermycin A1, Proc. Natl. Acad. Sci U. S. A., 88(19):8860-8864
Devika, L., Rajaram, R., Mathivanan, K. (2013) Multiple Heavy Metal and Antibiotic Tolerance Bacteria Isolated from Equatorial Indian Ocean, Int. J. Microbiol. Res., 4: 212-218
Fair, R. J., Tor, Y. (2014) Antibiotics and Bacterial Resistance in the 21st Century, Perspect. Medicin. Chem., 6:25–64
Forrest, H. N. (2012) History of zinc in agriculture, Adv. Nutr. 3:783–789
Forsberg, K. J., Reyes A., Wang, B., Selleck, E. M., Sommer, M. O. A., Dantas, G. (2012) The shared antibiotic resistome of soil bacteria and human pathogens, Science, 337: 1107–1111
Gao, X., Chen, C. T. A. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay, Water Res., 46:1901-1911
Gerdes, K., Rasmussen, P. B., Molin, S. (1986) Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells, Proc. Natl. Acad. Sci. U. S A., 83(10):3116–3120
Gillan, D. C., Danis, B., Pernet, P., Joly, G., Dubois, P. (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment, Appl. Environ. Microbiol., 71:679–690
Guidos, R. J. (2011). Combating Antimicrobial Resistance: Policy Recommendations to Save Lives. Clin. Infect. Dis., 52:397–428
Hayashi, S., Abe, M., Kimoto, M., Furukawa, S., Nakazawa, T. (2000) The DsbA-DsbB Disulfide Bond Formation System of Burkholderia cepacia Is Involved in the Production of Protease and Alkaline Phosphatase, Motility, Metal Resistance, and Multi-Drug Resistance, Microbiol. Immunol., 44(1):41-50
Heuer, O. E, Kruse, H., Grave, K., Collignon, P., Karunasagar, I., Angulo, F. J. (2009) Human health consequences of use of antimicrobial agents in aquaculture, Clin. Infect. Dis., 49:1248–1253
Hill, D. A., Peo, E. R., Lewis, A. J., Crenshaw, J. D. (1986) Zinc-amino acid complexes for swine, J. Anim. Sci., 63:121–30
Hossain, M. M. M., Islam, M. M. (2006) Ship breaking activities and its impact on the coastal zone of Chittagong, Bangladesh: Towards sustainable management, Young Power in Social Action (YPSA), Chittagong, Bangladesh, 12-16
Hui, L., Yi-Feng, L., Williams, B. J., Blackwell, T. S., Can-Mao, X. (2011) Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies, Int. J. Med. Microbiol., 302(2):10
Jackson, B. P., Bertsch, P. M., Cabrera, M. L., Camberato, J. J., Seaman, J. C., Wood, C. W. (2003) Trace element speciation in poultry litter, J. Environ. Qual., 32:535–540
Jassim, S. A. A., Limoges, R. G. (2014) Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’, World J. Microbiol. Biotechnol., 30(8):2153–2170
Jie, S., Li, M., Gan, M., Zhu, J., Yin, H., Liu, X. (2016) Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination, BMC Microbiol., 16:179
Jones, H. C., Tuckman, M., Murphy, E., Bradford, P. A. (2006) Identification and Sequence of a tet(M) Tetracycline Resistance Determinant Homologue in Clinical Isolates of Escherichia coli, J. Bacteriol., 188(20):7151–7164
Kacar, A., Kocyigit, A. (2013) Characterization of heavy metal and antibiotic resistant bacteria isolated from Aliaga Ship Dismantling Zone, Eastern Aegean Sea, Turkey, Int. J. Environ. Res., 7:895-902
Karimi, A., Sadeghi, G., Vaziry, A. (2011) The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks, J. Appl. Poult. Res., 20:203-209
Knapp, C. W., McCluskey, S. M., Singh, B. K., Colin, D. C., Hudson, G., Graham, W. D. (2011) Antibiotic Resistance Gene Abundances Correlate with Metal and Geochemical Conditions in Archived Scottish Soils, PLoS Onev., 6(11):1-6
Kohanski, M. A., Dwyer, D. J., Collins, J. J. (2010) How antibiotics kill bacteria: from targets to networks, Nature Revs. Microbiol., 8:423–435
Landers, T. F., Cohen, B., Wittum, T. E., Larson, E. L. (2012) A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential, Public Health Rep., 127(1), 4–22
Levy, S. B. (2002) Active efflux, a common mechanism for biocide and antibiotic resistance, J. Appl. Microbiol., 92:65–71
Li, Y. X., Chen, T. B. (2005) Concentrations of additive arsenic in Beijing pig feeds and the residues in pig manure, Res. Conserv. Recy., 45:356–367
Matyar, F., Akkan, T., Uçak, Y., Eraslan, B. (2010) Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea), Environ. Monit. Assess., 167:309–320
Matyar, F., Kaya, A., Dinçer, S. (2008) Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey, Sci. Total Environ., 407:279-285
Mehi, O., Bogos, B., Csörgő, B., Pál, F., Nyerges, A., Papp, B., Pál, C. (2014) Perturbation of Iron Homeostasis Promotes the Evolution of Antibiotic Resistance, Mol. Biol. Evol., 31(10):2793–2804
Morillo, J., Usero, J., Gracia, I. (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55:431-442
Munita, J. M. Arias, C. A. (2016) Mechanisms of Antibiotic Resistance, Microbiol Spectr., 4(2):10
Nies, D.H. (2003) Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiol. Rev., 27:313-319
Pal, C., Bengtsson-Palme, J., Kristiansson, E., Larsson, D. J. (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential, BMC Genomics, 16:964
Plum, M. L., Rink, L., Hajo, H. (2010) The Essential Toxin: Impact of Zinc on Human Health, Int. J. Environ. Res. Public Health, 7(4):1342–1365
Quero, G. M., Cassin, D., Botter, M., Perini, L., Luna, G. M. (2015) Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), Front. Microbiol., 6: 1053
Resende, J. A., Silva, V. L., Fontes, C. O., Souza-Filho, J. A., de Oliveira, T. L. R., Coelho, C. M., César, D. E., Diniz, C. G. (2012) Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system, Microbes. Environ., 27:449–455
Ruiz, N. (2003) The role of Serratia marcescens porins in antibiotic resistance, Microb. Drug Resist., 9:257–264
Sabry, S. A., Ghozlan, H. A., Abou-Zeid, D. M. (1997) Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water , J. Appl. Microbiol., 82:245-252
Salami, I. R., Rahmawati, S., Sutarto, R. I., Jaya, P. M. (2008) Accumulation of heavy metals in freshwater fish in cage aquaculture at Cirata Reservoir, West Java, Indonesia, Ann. N. Y. Acad. Sci., 1140:290-6
Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., Lawrence, R. (2008) Aquaculture practices and potential human health risks: current knowledge and future prioritie, Environ. Int., 34:1215-1226
Sarmah, A. K., Meyer, M. T., Boxall, A. B. (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65(5):725-59
Seiler, C., Berendonk, T. U. (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Role and prevalence of antibiosis and the related resistance genes in the environment, Front. Microbiol., 3: 399
Silver, S. (1996) Bacterial heavymetal resistance: new surprises, Ann. Rev. Microb., 50: 753–789
Stepanauskas, R., Glenn, T. C., Jagoe, C. H., Tuckfield, R. C., Lindell, A. H., King, C. J., McArthur, J. V. (2006) Coselection for microbial resistance to metals and antibiotics in freshwater microcosms, Environ Microbiol., 8(9):1510-1514
Szekeres, E., Baricz, A., Chiriac, C. M., Farkaș, A., Opris, O., Soran, M. L., Andrei, A. S., Rudi, K., Balcázar, J. L., Dragos, N., Coman, C. (2017) Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals, Environ. Poll., http://doi.org/10.1016/j.envpol.2017.01.054
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., Sutton, D. J. (2012) Heavy metals toxicity and the environment, EXS, 101:133–164
Thomsen, P. T. (2015) Short communication: Efficacy of copper sulfate hoof baths against digital dermatitis—Where is the evidence?, J. Dairy Sci., 98:2539-2544
Tsai, A., Uemura, S., Johansson, M., Puglisi, E., Marshall, R., Colin, C., E., Korlach, J., Ehrenberg, M., Puglisi, D. J (2013) The impact of aminoglycosides on the dynamics of translation elongation, Cell Rep., 3(2):497–508
Ţugui, C.G., Vlădăreanu, I., Baricz, A., Coman, C. (2015) Detection of beta-lactamase resistance genes in a hospital chlorinated wastewater treatment system. Studia UBB Biologia, 60:33-38
Underwood, E. J., Suttle, N. F. (1999) Zinc. In: Mineral nutrition of livestock. 3rd ed. CAB International New York, 477–512
Voica, D. M., Bartha, L., Banciu, H. K., Oren, A. (2016) Heavy metal resistance in halophilic Bacteria and Archaea, FEMS Microbiol. Lett., 363(14):1-9
Wales, D. A., Davies, R. H. (2015) Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens, Antibiotics (Basel), 4(4): 567–604
Walker, B., Barrett, S., Polasky, S. Galaz, V., Folke, C., Engström, G., Daily, G. (2009) Looming global-scale failures and missing institutions, Science, 325:1345-1346
Webber, M. A., Piddock, L. J. V. (2013) The importance of efflux pumps in bacterial antibiotic resistance, J. Antimicrob. Chemother., 51(1):9-11
Wireman, J., Liebert, C. A., Smith, T., Summers, A. O. (1997) Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates, Appl Environ Microbiol., 63(11):4494–4503
Wright, G. D. (2007) The antibiotic resistome: the nexus of chemical and genetic diversity, Nature Revs. Microbiol., 5:175-186
Wright, G. D., Poinar, H. (2012) Antibiotic resistance is ancient: implications for drug discovery, Trends Microbiol., 20:157-159
Wu, X. Y., Yang, Y. F. (2011) Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp Litopenaeus vannamei tissues from aquaculture and wild source, J. Food Comp. Anal., 24:62-65
Yazdankhah, S., Rudi, K., Bernhoft, A. (2014) Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin, Microb. Ecol. Health Dis., 25:10
Zhang, F., Li, Y., Yang, M., Li, W. (2012) Content of Heavy Metals in Animal Feeds and Manures from Farms of Different Scales in Northeast China, Int. J. Environ. Res. Public Health, 9:2658-2668
Zhang, W., Ki, J. S., Qian P. Y. (2008) Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA, Estuar. Coast. Shelf. Sci. 76:668–681
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Biologia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.