Identification, isolation and bioinformatic analysis of squalene sinthase-like cDNA fragments in „Botryococcus terribilis” AICB 870 strain
Keywords:
Bioinformatics analysis, Botryococcus terribilis, cDNA, hydrocarbons, squalene synthase-like.Abstract
Botryococcus terribilis is a freshwater colonial green microalga very similar to B. braunii, due to the hydrocarbon biosynthesis and accumulation of those biosynthetic products in the extracellular matrix. The hydrocarbon biosynthesis pathway was intensively studied, especially in differents strains of B. braunii. Recent studies revealed the presence of three squalene synthase-like (SSL) enzymes involved in the last steps of hydrocarbon biosynthesis from B. braunii. The aim of the study is to identify homologous SSL enzymes to B. terribilis AICB 870, a freshwater isolate from Bihor County (Romania), based on new isolated cDNA fragments and bioinformatics analysis of sequenced fragments. Light and fluorescence microscopy observation revealed that AICB 870 strain presents features similar to a B. terribilis species, especially simple or branched mucilaginous processes and a high number of lipids vesicles. PCR primers designed using SSL nucleotide sequences from B. braunii were successfully used to amplify homologous SSL cDNA fragment in the AICB 870 strain. Bioinformatic analysis of nucleotides and translated amino acid sequences including G+C content, nucleotide frequencies, amino acids frequencies, computed Mw/pI and transmembrane motif prediction showed a high degree of similarity between the SSL identified as pertaining to Botryococcus braunii and those generated in the present work. The results of the present study pointed out for the first time the presence of three squalene synthase-like enzymes in a strain of B. terribilis species.
References
Baba, M., Ioki, M., Nakajima, N., Shiraiwa, Y., Watanabe, M.M. (2012) Transcriptome analysis of an oil-rich race A strains of Botryococcus braunii (BOT-88-2) by de novo assembly of pyrosequencing cDNA reads, Biores. Technol., 100, 282-286
Bell, S.A., Niehaus, T.D., Nybo, S.E., Chappell, J. (2014) Structure - Function Mapping of Key Determinants for Hydrocarbon Biosynthesis by Squalene and Squalene Synthase-like Enzymes from the Green Alga Botryococcus braunii Race B, Biochem., 53, 7570-7581
Blagg, B.S., Jarstfer, M.B., Rogers, D.H., Poulter, C.D. (2002) Recombinant squalene synthase. A mechanism for the rearrangement of presqualene diphosphate to squalene, J. Am. Chem. Soc., 124 (30), 8846–8853
Brown, A.C., Knights, B.A., Conway, E. (1969) Hydrocarbon content and its relationship to physiological state in green alga Botryococcus braunii, Phytochem., 8, 543–547
de Queiroz Mendes, M.C., Comas González, A.A., Vieira Moreno, M.L., Pereira Figueira, C., de Castro Nunes, J.M. (2012) Morphological and ultrastructure features of a strain of Botryococcus terribilis (Trebouxiophyceae) from Brazil, J. Phycol., 48, 1099–1106
Devarenne, T.P., Shin, D.H., Back, K., Yin, S., Chappell, J. (1998) Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor, Arch. Biochem. Biophys., 349 (2), 205-215
Dragoș, N., Péterfi, L., Momeu, L., Popescu, C. (1997) An introduction to the algae and the culture collection of algae at the Institute of Biological Research Cluj-Napoca. Cluj University Press, Cluj-Napoca, Romania
FanésTreviño, I., Sánchez-Castillo, P., Comas González, A. (2009) Contribution to the taxonomic study of the family Botryococcaceae (Trebouxiophyceae, Chlorophyta) in southern Spain, Cryptogamie Algol., 30, 17–30
Farrell, R.E. (2010) RNA Methodologies – A Laboratory Guide for Isolation and Characterization, 4th Edition, Academic Press - Elsevier, London, pp. 179-219
Gao, C., Wang, Y., Shen, Y., Yan, D., He, X., Dai, J., Wu, Q. (2014) Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes, BMC Genomics, 15 (1), 582
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A. (2005) Protein Identification and Analysis Tools on the ExPASy Server, in The Proteomics Protocols Handbook, Walker, J.M., (ed), Humana Press
Ghawana, S., Paul, A., Kumar, H., Kumar, A., Singh, H., Bhardwaj, P.K., Rani, A., Singh, R.S., Raizada, J., Singh, K., Kumar, S. (2011) An RNA isolation system for plant tissues rich in secondary metabolites, BMC Research Notes, 4 (85)
Ginzberg, I., Thippeswamy, M., Fogelman, E., Demirel, U., Mweetwa, A.M., Tokuhisa, J., Veilleux, R.E. (2012) Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA, Planta, 235 (6), 1341-1353
Gu, P., Ishii, Y., Spencer, T.A., Shechter, I. (1998) Function-structure studies and identification of three enzyme domains involved in the catalytic activity in rat hepatic squalene synthase, J. Biol. Chem., 273, 12515–12525
Guiry, M.D., and Guiry, G.M., (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway
Hegedűs, A., Mocan, A., Barbu-Tudoran, L., Coman, C., Drugă, B., Sicora, C., Dragoș, N. (2015) Morphological, biochemical, and phylogenetic assessments of eight Botryococcus terribilis strains collected from freshwaters of Transylvania, J. App. Phycol., 27 (2), 865-878
Hegedűs, A., Coman, C., Drugă, D., Sicora, C., Dragoș, N. (2014) Botryococcus terribilis - A microalga capable to produce hydrocarbons similar to fossile fuel, J. Biotechnol., 185, S121-122
Hillen, L.W., Pollard, G., Wake, L.V., White, N. (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels, Biotechnol. Bioeng., 24, 193–205
Jennings, S.M., Tsay, Y.H., Fisch, T.M., Robinson, G.W. (1991) Molecular cloning and characterization of the yeast gene for squalene synthetase, Proc. Natl. Acad. Sci. U.S.A., 88 (14), 6038-6042
Kalendar, R., Lee, D., Schulman, A.H. (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis, Genomics, 98 (2), 137-144
Kawachi, M., Tanoi, T., Demura, M., Kaya, K., Watanabe, M.M. (2012) Relationship between hydrocarbon and molecular phylogeny of Botryococcus braunii, Algal Res., 2,114-119
Kim, B.-H., Ramanan, R., Cho, D.-H., Choi, G-G., La, H.-J., Ahn, C.-Y., Oh, H.-M., Kim, H.-S. (2012) Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii, PLoS ONE, 7 (5), e37770
Komárek, J., and Marvan, P. (1992) Morphological differences in natural populations of Botryococcus (Chlorophyceae), Arch. Protistenkd., 141, 65–100
Largeau, C., Casadevall, E., Berkaloff, C. (1980) The biosynthesis of the long-chain hydrocarbon in the green alga Botryococcus braunii, Phytochem., 19, 1081–1085
Lee, S., and Poulter, C.D. (2008) Cloning, Solubilization, and Characterization of Squalene Synthase from Thermosynechococcus elongatus BP-1, J. Bacteriol., 190 (11), 3808-3816
McKenzie, T.L., Jiang, G., Straubhaar, J.R., Conrad, D.G., Shechter, I. (1992) Molecular cloning, expression, and characterization of the cDNA for the rat hepatic squalene synthase, J. Biol. Chem., 267 (30), 21368-21374
Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., et al. (2007), The Chlamydomonas genome reveals the evolution of key animal and plant functions, Science, 318 (5848), 245-250
Metzger, P., Allard, B., Casadevall, E., Berkaloff, C., Coute, A. (1990) Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon, J. Phycol., 26, 258-266
Metzger, P., David, M., Casadevall, E. (1987) Biosynthesis of triterpenoid hydrocarbons in the B-race of the green alga Botryococcus braunii. Sites of production and nature of the methylating agent, Phytochem., 26, 129–134
Metzger, P., Berkaloff, C., Casadevall, E., Coute, A. (1985) Alkadiene – and botryococcene - producing races of wild strains of Botryococcus braunii, Phytochem., 24, 2305–2312
Nakashima, T., Inoue, T., Oka, A., Nishino, T., Osumi, T., Hata, S. (1995) Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase, Proc. Natl. Acad. Sci. U.S.A., 92 (6), 2328-2332
Niehaus, T.D., Okada, S., Devarenne, T.P., Watt, D.S., Sviripa, V., Chappell, J. (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii, Proc. Natl. Acad. Sci. U.S.A., 108 (30), 12260-12265
Okada, S., Devarenne, T.P., Murakami, M., Abe, H., and Chappell, J. (2004) Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, Race B, Arch. Biochem. Biophys., 422, 110−118
Okada, S., Murakami, M., Yamaguchi, K. (1995) Hydrocarbon composition of newly isolated strains of the green microalga Botryococcus braunii. J. Appl. Phycol., 7, 555–559
Pandit, J., Danley, D.E., Schulte, G.K., Mazzalupo, S., Pauly, T.A., Hayward, C.M., Hamanaka, E.S., Thompson, J.F., Harwood, Jr. H.J. (2000) Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis, J. Biol. Chem., 275, 30610–30617
Poulter, C.D. (1990) Biosynthesis of non-head-to-tail terpenes - formation of 1′-1 and 1′-3 linkages, Acc. Chem. Res., 23, 70–77
Sasiak, K., and Rilling, H.C. (1988) Purification to homogeneity and some properties of squalene synthetase, Arch. Biochem. Biophys., 260, 622–627
Sato, I., Ito, Y., Okada, S., Murakami, M., Abe, H. (2003) Biosynthesis of the triterpenoids, botryococcenes and tetramethyl squalene in the B race of Botryococcus braunii via the non-mevalonate pathway, Tetrahedron Lett., 44, 7035–7037
Schechter, I., Conrad, D.G., Hart, I., Berger, R.C., McKenzie, T.L., Bleskan, J., Patterson, D. (1994) Localization of the squalene synthase gene (FDFT1) to human chromosome 8p22-p23.1, Genomics, 20 (1), 116-118
Shechter, I., Klinger, E., Rucker, M.L., Engstrom, R.G., Spirito, J.A., Islam, M.A., Boettcher, B.R., Weinstein, D.B. (1992) Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase, J. Biol. Chem., 267 (12), 8628-8635
Sonnhammer, E.L., von Heijne, G., Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences, Proc. Int. Conf. Intell. Syst. Mol. Biol., 6, 175-182
Stamellos, K.D., Shackelford, J.E., Shechter, I., Jiang, G., Conrad, D., Keller, G.A., Krisans, S.K. (1993) Subcellular localization of squalene synthase in rat hepatic cells. Biochemical and immunochemical evidence, J. Biol. Chem., 268, 12825–12836
Tamura, K., Strecher, G., Peterson, D., Filipski, A., Kumar, S. (2013) MEGA 6 Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol., 30 (12), 2725-2729
Weiss, T.L., Roth, R., Goodson, C., Vitha, S., Black, I., Azadi, P., Rusch, J., Holzenburg, A., Devarenne, T.P., Goodenough, U. (2012) Colony Organization in the Green Alga Botryococcus braunii (Race B) is Specified by a Complex Extracellular Matrix, Euk. Cell, 11 (12), 1424-1440
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics, 13, 134
Zhang, D., Jennings, S.M., Robinson, G.W., Poulter, C.D. (1993) Yeast squalene synthase: expression, purification, and characterization of soluble recombinant enzyme, Arch. Biochem. Biophys., 304, 133–143
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Biologia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.