Impact of plant-based nanoparticles synthesized from Carica papaya and Bryophyllum pinnatum against selected microorganisms
DOI:
https://doi.org/10.24193/subbbiol.2024.1.04Keywords:
nanoparticles, resistant, antimicrobial, plant-mediated, MAR indexAbstract
Plant-based nanoparticles offer sustainable, eco-friendly alternatives to conventional methods, promising antibacterial properties in the face of antibiotic resistance and addressing global health concerns. Five urine and stool samples were collected from the Benin Medical Centre in Benin City, Edo State, and sent to the Wellspring University Research Laboratory for microbiological analysis. Carica papaya and Bryophyllum pinnatum were used for fresh utilization by washing, weighing, and crushing their leaves, then mixing them with distilled water and heating at 85 °C and 60 °C for 60 minutes. Silver and copper nanoparticles (AgNPs and CuNPs) were synthesized using standard procedures. The NPs were preliminary validated by visual detection of color changes and characterized using a UV-visible spectrophotometer at 300 nm and Fourier transform infrared. The in vitro antimicrobial activity of plant-mediated NPs was investigated using five isolates: S. aureus, B. alvei, H. pylori, P. aeruginosa, and E. coli. The in vitro antimicrobial activity of plant-mediated NPs was investigated using five clinical strains displaying multiple resistance to antibiotics: S. aureus,
B. alvei, H. pylori, P. aeruginosa, and E. coli. The agar-well diffusion method showed inhibition of the isolates by plant-mediated NPs but no inhibition by the plant extract alone. The study indicates that plant-mediated NPs exhibit promising antimicrobial activity, promoting sustainability and eco-friendliness, but further research is needed to assess their safety and efficacy in clinical settings.
Article history: Received 24 November 2023; Revised 19 February 2024;
Accepted 16 May 2024; Available online 30 June 2024.
References
Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Coll Surf B Biointer,. 81(1), 81–86. Doi: 10.1016/j.colsurfb.2010.06.029
Ahmed, M., Marrez, D.A, Mohamed Abdelmoeen, N., Abdelmoneem Mahmoud, E., Ali M.A., Decsi, K., & Tóth, Z. (2023). Studying the antioxidant and the antimicrobial activities of leaf successive extracts compared to the green-chemically synthesized silver nanoparticles and the crude aqueous extract from Azadirachta indica. Processes 11(6), 1644. Doi:10.3390/pr11061644
Ahmed, S., Ahmad, M., Swami, B.L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res, 7(1), 17–28. Doi: 10.1016/j.jare.2015.02.007
Ali, E., Islam, M.S., Hossen, M.I., Khatun, M.M., & Islam, M.A. (2021). Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry. Veter Med Sci, 7(5), 1921–1927. Doi:10.1002/vms3.511
Anandalakshmi, K., Venugobal, J. & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci, 6, 399–408. Doi:10.1007/s13204-015-0449z.
Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs): structural characterization, and their antibacterial potential. Inter Horm Society, 20(1), 15. Doi:10.1177/15593258221088709
Aswini, R., Murugesan, S. & Kannan, K. (2021) Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: larvicidal, histopathological, antibacterial and anticancer activity. Int J Environ Analyt Chem, 101(15), 2926-2936. Doi:10.1080/03067319.2020.1718668
Ayandele, A.A., Oladipo, E.K., Oyebisi, O., & Kaka, M. O. (2020). Prevalence of multi-antibiotic resistant Escherichia coli and Klebsiella species obtained from a tertiary medical institution in Oyo State, Nigeria. Qatar Med J, 2020(1), 9. Doi:10.5339/qmj.2020.9
Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Analy, 6(2), 71–79. Doi: 10.1016/j.jpha.2015.11.005
Bhat, M., Chakraborty, B., Kumar, R.S., Abdulrahman, I.A., Natarajan, A., Kotresha, D., Pallavi, S.S., Dhanyakumara, S.B., Shashira., K.N. & Nayaka, S. (2021). Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. J King Saud Univ-Sci, 33(2), 101296, Doi:10.1016/j.jksus.2020.101296.
Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. Inter J Mol Sci, 22(13), 7202.
Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries, Second Edition, Part 2. pp. 442.
Clinical and Laboratory Standards Institute (2020) CLSI M100-ED29: 2021 Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. Vol. 40.
Ehiaghe, J.I., Amengialue, O.O., Ehiaghe, F.A., Igiebor, F.A. and Koyonen, U. (2022) Antimicrobial susceptibility pattern and plasmid dna profiling of bacteria isolated in some selected hospital in Benin City, Nigeria. BIU J Basic Appl Sci, 7(2), 155 – 165.
Gebremedhn, K., Kahsay, M.H. & Aklilu, M.J.J.O.P. (2019). Green synthesis of CuO nanoparticles using leaf extract of Catha edulis and its antibacterial activity. Pharmacol, 7(7), 327-342. Doi:10.17265/2328-2150/2019.06.007
Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S.S., Bellare, J., Dhavale, D.D., Jabgunde, A., & Chopade, B.A. (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine, 7, 483–496. Doi:10.2147/IJN.S24793
Igiebor, F.A., Asia, M. & Ikhajiagbe, B. (2023). Green nanotechnology: A modern tool for sustainable agriculture – a Review. Int J Horticult Sci Tech, 10(4), 269-286. Doi:10.22059/ijhst.2022.344790.571
Ikhajiagbe, B., Igiebor, F.A. & Ogwu, C. (2021). Growth and yield performances of rice (Oryza sativa var. nerica) after exposure to biosynthesized nanoparticles. Bull Nat Res Centre, 45(62), 1-13. Doi:10.1186/s42269-021-00508-y
Joseph, T.M., Kar Mahapatra, D., Esmaeili, A., Piszczyk, Ł., Hasanin, M.S., Kattali, M., Haponiuk, J., & Thomas, S. (2023). Nanoparticles: Taking a unique position in medicine. Nanomaterials (Basel, Switzerland), 13(3), 574. Doi:10.3390/nano13030574
Kaur, R., Alayami, M.H., Saini, B., Bayan, M.F. & Chandrasekaran, B. (2023). Combating microbial infections using metal-based nanoparticles as potential therapeutic alternatives. Antibiotics, 12(5), 909. Doi:10.3390/antibiotics12050909
Kuppusamy, P., Yusoff, M.M., Maniam, G.P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J, 24(4), 473–484. Doi: 10.1016/j.jsps.2014.11.013
Lai, M.J., Huang, Y.W., Chen, H.C., Tsao, L.I., Chang Chien, C.F., Singh, B., & Liu, B.R. (2022). Effect of size and concentration of copper nanoparticles on the antimicrobial activity in Escherichia coli through multiple mechanisms. Nanomaterials (Basel, Switzerland), 12(21), 3715. Doi:10.3390/nano12213715
Maduka, N., Igiebor, F.A. and Elum, O. (2022). Microbiological assessment of home-packed children’s meal, antibiotic susceptibility and prevalence of intestinal parasites among pupils in selected schools in Benin City, Nigeria. FUW Trends Sci Tech J, 7(3), 138 150.
Malabadi, R.B., Chalannavar, R.K., Meti, N.T., Mulgund, G.S., Nataraja, K. & Kumar, S.V. (2012). Synthesis of antimicrobial silver nanoparticles by callus cultures and in vitro derived plants of Catharanthus roseus. Research Pharm, 2(6), 18-31.
Mammari, N., Lamouroux, E., Boudier, A., & Duval, R.E. (2022). Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles. Microorganisms, 10(2), 437. Doi:10.3390/microorganisms10020437
Manke, A., Wang, L., & Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int, 2013, 942916. Doi:10.1155/2013/942916
Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R.K., Kruszka, D., Kachlicki, P., & Franklin, G. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel, Switzerland), 11(6), 940. Doi:10.3390/ma11060940
Melkamu, W.W., & Bitew, L.T. (2021). Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and antioxidant activities. Heliyon, 7(11), e08459. Doi: 10.1016/j.heliyon.2021.e08459
Orta Rivera, A.M., MeléndezContés, Y., Medina Berríos, N., Gómez Cardona, A.M, Ramos Rodríguez, A., Cruz Santiago, C., González Dumeng, C., López, J., Escribano, J. & Rivera Otero, J.J, (2023). Copper-based antibiotic strategies: exploring applications in the hospital setting and the targeting of Cu regulatory pathways and current drug design trends. Inorganics, 11(6), 252. Doi:10.20944/preprints202304.1124.v2
Rajesh, K.M., Ajitha, B., Ashok Kumar Reddy, Y., Suneetha, Y. & Sreedhara Reddy, P. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud exract: Physical, optical and antimicrobial properties. Optik J, 154, 593-600. Doi: 10.1016/J.IJLEO.2017.10.074
Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A.L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A.M., Durazzo, A., Santini, A., Garcia, M.L., & Souto, E.B. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel, Switzerland), 10(2), 292. Doi:10.3390/nano10020292
Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water. 12(12), 3313. Doi:10.3390/w12123313
Singh, A., Gautam, P.K., Verma, A., Singh, V., Shivapriya, P.M., Shivalkar, S., Sahoo, A.K., & Samanta, S.K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotech Rep (Amsterdam, Netherlands), 25, e00427. Doi: 10.1016/j.btre.2020.e00427
Skłodowski, K., Chmielewska-Deptuła, S.J., Piktel, E., Wolak, P., Wollny, T., & Bucki, R. (2023). Metallic nanosystems in the development of antimicrobial strategies with high antimicrobial activity and high biocompatibility. Int J Mol Sci, 24(3), 2104. Doi:10.3390/ijms24032104
Sulochana, S., Krishnamoorthy, P. & Sivaranjani, K. (2012). Synthesis of silver nanoparticles using leaf extract of Andrographis paniculata. J Pharm Toxic, 7, 251-258. Doi:10.3923/jpt.2012.251.258
Troncarelli, M.Z., Brandão, H.M., Gern, J.C., Guimarães, A.S. & Langoni, H. (2013). Nanotechnology and antimicrobials in veterinary medicine. Formatex, 13, 543-556.
Wang, D., Guo, Q., Yuan, Y., & Gong, Y. (2019). The antibiotic resistance of Helicobacter pylori to five antibiotics and influencing factors in an area of China with a high risk of gastric cancer. BMC Micro, 19(1), 152. https://doi.org/10.1186/s12866-019-1517-4
Wang, L. & Weller, C.L. (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Tech, 17, 300-312. Doi: 10.1016/j.tifs.2005.12.004
Yusuf, A., Almotairy, A.R.Z., Henidi, H., Alshehri, O.Y., & Aldughaim, M.S. (2023). Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 15(7), 1596. Doi:10.3390/polym15071596
Zia, R., Riaz, M., Farooq, N., Qamar, A. & Anjum, S. (2018). Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: A comparative analysis. Mat Res Exp, 5, 7. Doi:10.1088/2053-1591/aacf70.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Biologia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.