MAGNETIC PROPERTIES OF PrFe₁₁Ti ALLOYS BY Co AND Zr DOPING
DOI:
https://doi.org/10.24193/subbphys.2021.01Keywords:
A. ab-initio calculations; B. magneto-crystalline anisotropy; C. magnetization; D. rare earth magnets.Abstract
Theoretical investigations on the electronic and magnetic properties (magnetic moments, magneto-crystalline anisotropy, exchange-coupling parameters) of the PrFe11-xCoxTi (x = 0 – 3) and Pr0.8Zr0.2Fe11Ti alloys are presented. Our calculations show that Co for Fe doping in PrFe11-xCoxTi maximize the calculated total magnetic moment and magnetocrystalline anisotropy energy (MAE) for x = 1. The calculated exchange-coupling parameters for the first neighbours of each Fe site (8i, 8j and 8f) show an increase by increasing the Co content suggesting higher Curie temperatures for Co doped PrFe11Ti-based alloys. On the other hand, the Zr for Y substitution in Pr1-yZryFe11Ti (y = 0 - 0.2) decreases MAE without a noticeable decrease of the calculated total magnetic moment. Zr doping has opposite effects on the exchange coupling parameters Jij for different spin pairs. As consequence, any significant changes of the Curie temperatures are predicted for Zr doped PrFe11Ti based alloys in the investigated doping range.
References
K. H. J. Buschow, J. Magn. Magn. Mater., 100 79 (1991).
A.M. Gabay and C. C. Hadjipanayis, Scripta Materialia, 154 284 (2018).
P. Tozman, H. Sepehri-Amin, Y. K. Takahashi, S. Hirosawa and K. Hono, Acta Materialia, 153 354 (2018).
L. Ke and D. D. Johnson, Phys. Rev. B, 94 024423 (2016).
A. M. Gabay, A. Martin-Cid, J. M. Barandiaran, D. Salazar and G. C. Hadjipanayis, AIP Advances, 6, 056015 (2016).
J. M. D. Coey, Engineering, 6 119 (2020).
Von Barth U. and Hedin L., J. Phys., C5 1629 (1972).
Ebert H., Ködderitzsch D. and Minar J., Rep. Prog. Phys., 74 096501 (2011).
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 3865 (1996).
Monkhorst H. and Pack J., Phys. Rev. B, 13, 5188 (1976).
Faulkner J.S., Prog. Mater. Sci., 27 1 (1982); Faulkner J. S. and Stocks G.M., Phys. Rev. B, 21 3222 (1980).
J.B. Staunton, L. Szunyogh, A. Buruzs, B.L. Gyorffy, S. Ostanin, and L. Udvardi, Phys. Rev. B, 74 144411 (2006).
S. Mankovsky, S. Polesya, J. Minar, F. Hoffmann, D.H. Back and H. Ebert, Phys. Rev. B, 84 201201 (2011).
Liechtenstein A.I., Katsnelson M.I., Antropov V.P. and Gubanov V.A., J. Magn. Magn. Mater., 67 65 (1987).
M. Bouhbou, R. Moubah, E.K. Hlil, H. Lassri and L. Bessais, J. Magn. Magn. Mater., 518 167362 (2021).
L. Bessais, S. Sab and C. Djega-Mariadassou, Phys. Rev. B, 66 054430 (2002).
I.S. Tereshina, P. Gaczynski, V.S. Rusakov, H. Drulis, S.A. Nikitin, W. Suski, N.V. Tristan and T. Palewski, Phys. Condens. Matter., 13 8161 (2001).
I.S. Tereshina, S.A. Nikitin, T.I. Ivanova, K.P. Skokov, J. Alloys Compd., 275-277 625 (1990).
D. Benea et al., Co, Zr and C doping on RFe11Ti-based alloys (R = Y, Gd), in press (2022).
. R. Skomski and D.J. Sellmyer, J. of Rare Earth, 27 675 (2009).
X. C. Kou, T.S. Zhao, R. Grossinger, H.R. Kirchmayr, X. Li and F.R. de Boer, Phys. Rev. B, 47 3231 (1993).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Physica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.